立体几何概念题选择题专项练习
高三数学立体几何专项练习题及答案
高三数学立体几何专项练习题及答案一、选择题1. 下列哪个几何体的所有面都是三角形?A. 正方体B. 圆柱体C. 正六面体D. 球体答案:C2. 一个有8个面的多面体,其中6个面是正方形,另外2个面是等边三角形,它的名字是?A. 正八面体B. 正十二面体C. 正二十面体D. 正二十四面体答案:C3. 空间中任意一点到四个角落连线的垂直距离相等的四棱锥称为?A. 正四棱锥B. 圆锥台C. 四棱锥D. 无法确定答案:C4. 任意多面体的面数与顶点数、棱数的关系是?A. 面数 + 顶点数 = 棱数 + 2B. 面数 + 棱数 = 顶点数 + 2C. 顶点数 + 棱数 = 面数 + 2D. 顶点数 + 面数 = 棱数 + 2答案:A5. 求下列多面体的棱数:(1)正六面体(2)正八面体(3)正十二面体答案:(1)正六面体的棱数为 12(2)正八面体的棱数为 24(3)正十二面体的棱数为 30二、填空题1. 下列说法正确的是:一棱锥没有底面时,它的底面是一个______。
答案:点2. 铅垂线是指从一个多面体的一个顶点到与它相对的棱上所作的垂线,它与该棱垂足的连线相交于该多面体的______上。
答案:中点3. 对正八面体,下列说法不正确的是:_____条对角线与_____两两垂直。
答案:六,相邻面三、计算题1. 一个棱锥的底面是一个边长为6cm的正三角形,其高为8cm。
求棱锥体积。
解答:底面积 S = (1/2) ×底边长 ×高 = (1/2) × 6 × 8 = 24 cm²棱锥体积 V = (1/3) × S ×高 = (1/3) × 24 × 8 = 64 cm³所以,棱锥的体积为64 cm³。
2. 一个正四棱锥的底面是一个边长为10cm的正方形,其高为12cm。
求四棱锥的体积。
解答:底面积 S = 边长² = 10² = 100 cm²四棱锥体积 V = (1/3) × S ×高 = (1/3) × 100 × 12 = 400 cm³所以,四棱锥的体积为400 cm³。
高中数学立体几何专项练习题及答案
高中数学立体几何专项练习题及答案一、选择题1. 下面哪个选项不是描述柱体的特点?A. 体积恒定B. 底面形状不限C. 侧面是矩形D. 顶面和底面平行答案:A2. 如果一个四面体的一个顶点的对边垂直于底面,那么这个四面体是什么类型?A. 正方形四面体B. 倒立四面体C. 锥体D. 正方锥体答案:C3. 以下哪个选项正确描述了一个正方体的特点?A. 全部面都是正方形B. 12 条棱长度相同C. 8 个顶点D. 6 个面都是正方形答案:D4. 若长方体的高度是 6cm,底面积是 5cm²,底面对角线长为 a cm,那么 a 的值为多少?A. √11B. √29C. √31D. √41答案:C二、填空题1. 一个正方体的棱长为 4cm,它的体积是多少?答案:64cm³2. 一个球的表面积是100π cm²,那么它的半径是多少?答案:5cm3. 一个圆柱体的底面半径为 3cm,高度为 8cm,它的体积是多少?答案:72π cm³4. 一个圆锥的底面半径为 6cm,高度为 10cm,它的体积是多少?答案:120π cm³三、计算题1. 一个四棱锥的底面是边长为 5cm 的正方形,高度为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:5cm * 5cm = 25cm²再计算体积:25cm² * 8cm / 3 = 200cm³2. 一个圆柱体的底面直径为 12cm,高度为 15cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面半径:12cm / 2 = 6cm再计算底面积:π * 6cm * 6cm = 36π cm²最后计算体积:36π cm² * 15cm = 540π cm³3. 一个球的直径为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算半径:8cm / 2 = 4cm再计算体积:4/3 * π * 4cm * 4cm * 4cm = 268.08π cm³4. 一个圆锥的底面半径为 10cm,高度为 20cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:π * 10cm * 10cm = 100π cm²最后计算体积:100π cm² * 20cm / 3 = 2000π cm³四、解答题1. 若一个长方体的长度、宽度、高度分别为 a、b、c,它的表面积为多少?答案:单位为 cm²,计算过程如下:首先计算侧面积:2 * (a * b + a * c + b * c)再计算底面积:a * b最后计算表面积:2 * (a * b + a * c + b * c) + a * b2. 一个四棱锥的底面为边长为 a 的正三角形,高度为 h,求这个四棱锥的体积。
专题14 立体几何选择题(理科)(解析版)
十年(2014-2023)年高考真题分项汇编立体几何选择题目录题型一:立体几何的机构特征及其直观图 (1)题型二:简单几何体的表面积和体积 (10)题型三:球的有关问题 (38)题型四:线面之间的位置关系与垂直与平行 (43)题型五:空间角与空间距离 (52)题型一:立体几何的机构特征及其直观图1.(2023年北京卷·第9题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m,10m ABBC AD ===,且等腰梯形所在的平面、等腰三角形所在的平面与平面ABCD,则该五面体的所有棱长之和为 ( )( )A .102mB .112mC 117mD .125m【答案】C 解析:如图,过E 做EO ⊥平面ABCD ,垂足为O ,过E 分别做EG BC ⊥,EM AB ⊥,垂足分别为G ,M ,连接,OG OM ,由题意得等腰梯形所在的面、等腰三角形所在的面与底面夹角分别为EMO ∠和EGO∠,.所以tan tan EMO EGO ∠=∠. 因为EO ⊥平面ABCD ,BC ⊂平面ABCD ,所以EO BC ⊥,因为EG BC ⊥,,EO EG ⊂平面EOG ,EO EG E ∩=,所以BC ⊥平面EOG ,因为OG ⊂平面EOG ,所以BC OG ⊥,. 同理:OM BM ⊥,又BM BG ⊥,故四边形OMBG 是矩形,所以由10BC =得5OM =,所以EO =5OG =,所以在直角三角形EOG中,EG =在直角三角形EBG 中,5BG OM==,8EB =,又因为55255515EF AB −−−−,所有棱长之和为2252101548117m ×+×++×=. 故选:C2.(2023年全国乙卷理科·第3题)如图,网格纸上绘制一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为 ( )( )A .24B .26C .28D .30【答案】D 解析:如图所示,在长方体1111ABCD A B C D −中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D −去掉长方体11ONIC LMHB −之后所得的几何体,的该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:()()()22242321130××+××−××=. 故选:D .3.(2021年高考浙江卷·第4题)某几何体的三视图如图所示,则该几何体的体积是 ( )( )A .32 B .3 C D .【答案】A解析:几何体为如图所示的四棱柱1111ABCD A B C D −,其高为1,底面为等腰梯形ABCD ,,下底为,腰长为1故111113122ABCD A B C D V −=×=,故选A .4.(2021年新高考Ⅰ卷·第3题),其侧面展开图为一个半圆,则该圆锥的母线长为( )A .2B .C .4D .【答案】B解析:设圆锥的母线长为l ,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=l =,故选B .5.(2021年高考全国甲卷理科·第6题)在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG −后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )( )A .B .C .D .【答案】D解析:由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D6.(2020年高考课标Ⅰ卷理科·第3题)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为 ( )( )A B C D 【答案】C【解析】如图,设,CD a PE b ==,则PO 由题意212PO ab =,即22142a b ab −=,化简得24()210b b a a −⋅−=,解得b a =负值舍去). 故选:C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题. 7.(2020年高考课标Ⅱ卷理科·第7题)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为 ( )( )A .EB .FC .GD .H【答案】A 解析:根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.8.(2018年高考数学课标Ⅲ卷(理)·第3题)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体.则咬合时带卯眼的木构件的俯视图可以是 ( )( )【答案】A 解析:依题意,结合三视图的知识易知,带卯眼的木构件的俯视图可以是A 图.9.(2018年高考数学课标卷Ⅰ(理)·第7题)某圆柱的高为2,底面周长为16,其三视图如右圈,圆柱表面上的点M 在正视图上的对应点为A .圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A. B.C .3 D .2【答案】B 解析:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的B . 10.(2014·第12题)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为 ( )( )A .B .C .6D .4 【答案】C【解析】:如图所示,原几何体为三棱锥,D ABC −其中,,故最长的棱的长度为, 选C .11.(2014高考数学江西理科·第5题)一几何体的直观图如右图,下列给出的四个俯视图中正确的是 ( )()【答案】 B 解析:俯视图为几何体在底面上的投影,应为B 中图形.12.(2014高考数学湖北理科·第8题)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为 ( ) 4,AB BC AC DB DC =====6DA 6DA =A BC DA .227B .258C .15750D .355113【答案】B 解析:由题意可知:L =2πr ,即2πL r =,圆锥体积222211112ππ3332π12π75L V Sh r h h L h L h ==⋅≈ ==,故1212π75≈,25π8≈,故选B . 备注:13.(2014高考数学湖北理科·第5题)在如图所示的空间直角坐标系xyz O −中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).,给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为 ( )( )A .①和②B .③和①C .④和③D .④和② 【答案】D 解析:如图所示A (0,0,2),B (2,2,0),C (1,2,1),D (2,2,2),B ,C ,D 点在面yOz 上的射影分别为B 1,C 1,D 1,它们在一条线上,且C 1为B 1D 1的中点.从前往后看时,看不到棱AC ,正视图中AC 1应为虚线.故正视图应为图④.点A ,D ,C 在面xOy 内的射影分别为O ,B ,C 2,俯视图为△OC 2B ,故选图②.综上选D .14.(2014高考数学福建理科·第2题)某空间几何体的正视图是三角形,则该几何体不可能是( )A .圆柱B .圆锥C .四面体D .三棱柱 【答案】A 解析:圆柱的正视图为矩形,故选:A .15.(2014高考数学北京理科·第7题)在空间直角坐标系Oxyz 中,已知(2,0,0)A ,(2,2,0)B ,(0,2,0)C ,D,若1S ,2S ,3S 分别表示三棱锥D ABC −在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则 ( )A .123S S S == B .12S S =且31S S ≠ C .13S S =且32S S ≠D .23S S =且13S S ≠【答案】D 解析:设顶点D 在三个坐标平面xoy 、yoz 、zox 上的正投影分别为1D 、2D 、3D ,则11AD BD ==,2AB =,∴1S =12×2×2=2,2S =2SO CD ⋅=12×2×2=2,33S SO AD =⋅=12×2×2=2.∴选D .16.(2017年高考数学北京理科·第7题)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A .B .C .D .【答案】 B【解析】几何体是四棱锥,如图所示红色图形为三视图还原后的几何体,最长的棱长为正方体的对角线,,故选B.题型二:简单几何体的表面积和体积1.(2023年天津卷·第8题)在三棱锥−P ABC 中,线段PC 上的点M 满足13PM PC =,线段PB 上的点N 2l =满足23PN PB =,则三棱锥P AMN −和三棱锥−P ABC 的体积之比为 ( )A .19B .29C .13D .49【答案】B解析:如图,分别过,M C 作,MM PA CC PA ′′⊥⊥,垂足分别为,M C ′′.过B 作BB ′⊥平面PAC ,垂足为B ′,连接PB ′,过N 作NN PB ′′⊥,垂足为N ′.因为BB ′⊥平面PAC ,BB ′⊂平面PBB ′,所以平面PBB ′⊥平面PAC .又因为平面PBB ′ 平面PAC PB ′=,NN PB ′′⊥,NN ′⊂平面PBB ′,所以NN ′⊥平面PAC ,且//BB NN ′′.在PCC ′△中,因为,MM PA CC PA ′′⊥⊥,所以//MM CC ′′,所以13PM MM PCCC ′==′, 在PBB ′△中,因为//BB NN ′′,所以23PN NN PB BB ′==′,所以11123231119332PAM P AMN N PAM P ABC B PAC PAC PA MM NN S NN V V V V S BB PA CC BB −−−− ′′′⋅⋅⋅⋅ ==== ′′′⋅⋅⋅⋅.故选:B2.(2023年全国乙卷理科·第8题)已知圆锥POO 为底面圆心,P A .PB 为圆锥的母线,120AOB ∠=°,若PAB( ) A .π BC .3πD.【答案】B解析:在AOB 中,120AOB ∠=o ,而OA OB ==,取AB 中点C ,连接,OC PC ,有,OC AB PC AB ⊥⊥,如图,30ABO = ∠,23OCAB BC ===,由PAB132PC ××解得PC =PO ,所以圆锥的体积2211ππ33V OA PO =××=×=. 故选:B3.(2021年新高考全国Ⅱ卷·第5题)正四棱台上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A.20+ B.C .563D.3【答案】D解析:作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高h ,下底面面积116S =,上底面面积24S =,所以该棱台的体积((121116433V h S S =++=++=故选D . 4.(2020年高考课标Ⅲ卷理科·第8题)下图为某几何体的三视图,则该几何体的表面积是( )的( )A .B .C .D .【答案】C解析:根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===××=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为根据三角形面积公式可得:211sin 6022ADBS AB AD =⋅⋅°=△∴该几何体的表面积是:632=×++.故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.5.(2020年浙江省高考数学试卷·第5题)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm 3)是( )( )A .73B .143C .3D .6【答案】A解析:由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233 ××××+×××=+=. 故选:A6.(2022高考北京卷·第9题)已知正三棱锥P ABC −的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为 ( )A .34πB .πC .2πD .3π【答案】B解析:设顶点P 在底面上的投影为O ,连接BO ,则O 为三角形ABC 的中心,且263BO =×=,故PO =因为5PQ =,故1OQ =,故S 的轨迹为以O 为圆心,1为半径的圆,而三角形ABC 内切圆的圆心为O1>,故S 的轨迹圆在三角形ABC 内部,故其面积为π 故选,B7.(2022年高考全国甲卷数学(理)·第9题)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙( )AB. CD【答案】C【解析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r , 则11222S rl r S r l r ππ===甲乙,所以122r r =,又12222r r l lπππ+=,则121r r l +=, 所以1221,33r l r l =,所以甲圆锥的高1h ,乙圆锥的高2h,所以2112221313r h V V r h ππ==甲乙.故选:C .8.(2022年高考全国甲卷数学(理)·第4题)如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )( )A. 8B .12C .16D .20【答案】B【解析】由三视图还原几何体,如图,则该直四棱柱的体积2422122V +=××=. 故选:B .9.(2022年浙江省高考数学试题·第5题)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )( )A .22πB .8πC .22π3D .16π3【答案】C解析:由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为1cm ,圆台的下底面半径为2cm ,所以该几何体的体积(322214122ππ1π122π2π12333V =××+××+×××+×+=3cm .故选:C .10.(2022新高考全国II 卷·第7题)已知正三棱台的高为1,上、下底面边长分别为,其顶点都在同一球面上,则该球的表面积为 ( )A .100πB .128πC .144πD .192π【答案】A解析:设正三棱台上下底面所在圆面的半径12,r r ,所以1222r r =123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d =,2d =,故121d d −=或121d d +=1=,解得225R =符合题意,所以球的表面积为24π100πS R ==. 故选:A .11.(2022新高考全国I 卷·第8题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤( )A .8118,4B .2781,44C .2764,43D .[18,27]【答案】C解析: ∵ 球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h , 则2222l a h =+,22232(3)a h =+−,所以26h l =,2222a l h =−所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ==××=×−×− ,所以5233112449696l l V l l−′=−=,当3l ≤≤0V ′>,当l <≤时,0V ′<,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =, 所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是276443,. 故选:C . 12.(2022新高考全国I 卷·第4题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,增加的水量约为2.65≈)( )A .931.010m ×B .931.210m ×C .931.410m ×D .931.610m ×【答案】C解析: 依题意可知棱台的高为157.5148.59MN =−=(m),所以增加的水量即为棱台的体积V .棱台上底面积262140.014010S ==×km m ,下底面积262180.018010S ′==×km m ,∴((66119140101801033V h S S =++=×××+×+′(()679933320109618 2.6510 1.43710 1.410(m )=×+×≈+××=×≈×.故选:C .13.(2022年高考全国乙卷数学(理)·第9题)已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为 ( )A 13B .12C【答案】C解析:设该四棱锥底面为四边形ABCD ,四边形ABCD 所在小圆半径为r , 设四边形ABCD 对角线夹角为α, 则2111sin 222222ABCD S AC BD AC BD r r r α=⋅⋅⋅≤⋅⋅≤⋅⋅= (当且仅当四边形ABCD 为正方形时等号成立)即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r 又22r h 1+=则2123O ABCDV r h −=⋅⋅=≤=当且仅当222r h =即h 时等号成立,故选:C14.(2021高考天津·第6题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为 ().A .3πB .4πC .9πD .12π【答案】B解析:如下图所示,设两个圆锥的底面圆圆心为点D , 设圆锥AD 和圆锥BD 的高之比为3:1,即3AD BD =,设球的半径为R ,则343233R ππ=,可得2R =,所以,44AB AD BD BD =+==, 所以,1BD =,3AD =,CD AB ⊥ ,则90CAD ACD BCD ACD ∠+∠=∠+∠= ,所以,CAD BCD ∠=∠,又因为ADC BDC ∠=∠,所以,ACD CBD △∽△,所以,AD CDCD BD=,CD ∴=,因此,这两个圆锥的体积之和为()21134433CD AD BD πππ×⋅+=××=. 故选:B . 15.(2021高考北京·第4题)某四面体的三视图如图所示,该四面体的表面积为( )( )A .32 B .3C .32+ D .3+2【答案】A解析:根据三视图可得如图所示的几何体-正三棱锥O ABC −,其侧面为等腰直角三角形,底面等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为213112×××+ 故选:A .16.(2016高考数学北京理科·第6题)某三棱锥的三视图如图所示,则该三棱锥的体积为 ( )( )A .16B .13 C .12D .1【答案】A解析:通过三视图可还原几何体为如图所示三棱锥,则通过侧视图得高1h =,底面积111122S =××=,所以体积1136VSh==.17.(2020天津高考·第5题)若棱长为的正方体的顶点都在同一球面上,则该球的表面积为 ( )A .12πB .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R,所以,这个球的表面积为2244336S R πππ==×=.故选:C .18.(2020北京高考·第4题)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).( )A .6+B .6+C .12D .12+【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S=××+××××°=+.故选:D .19.(2019·浙江·第4题)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式=V Sh 柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:3cm )是 ( )A .158B .162C .182D .324【答案】B【解析】由三视图可知该几何体是棱柱,高为6,底面是由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2646(33)616222++×+××=.故选B .20.(2019·上海·第14题)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为 ( )A. 1B .2C .4D .8【答案】B【解析】依题意:ππ34123121=⋅⋅⋅=V ,ππ32213122=⋅⋅⋅=V ,选B. 【点评】本题主要考查圆锥的体积.21.(2018年高考数学浙江卷·第3题)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是()俯视图侧视图正视图() A.2 B.4 C.6 D.8【答案】C【解析】该几何体的直观图如图所示,该几何体是棱长为2的正方体的34,其体积333264V cm=×=22.(2018年高考数学课标Ⅲ卷(理)·第10题)设,,,A B C D是同一个半径为4的球的球面上四点,ABC△为等边三角形且其面积为D ABC−体积的最大值为() A.B.C.D.【答案】B解析:设ABC△的边长为a,则21sin6062ABCS a a=°=⇒=△,此时ABC△外接圆的半径为112sin602ar=⋅=×°,故球心O到面ABC2,故点D到面ABC的最大距离为26R+=,此时11633D ABC ABC D ABCV S d−−=⋅=×=△,故选B.俯视图正视图点评:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当DM ⊥平面ABC 时,三棱锥D ABC −体积最大很关键,由M 为三角形ABC 的重心,计算得到23BMBE ==OM ,进而得到结果,属于较难题型. 23.(2014高考数学重庆理科·第7题)某几何体的三视图如图所示,则该几何体的表面积为( )A .54B .60C .66D .72【答案】B解析:由三视图可知,该几何体是由下方的直三棱柱与上方的四棱锥组成的组合体,其中直三棱柱底面为一个边长为3,4,5的直角三角形,高为2,上方的四棱锥是底面边长是3的正方形,一个侧面与直三棱柱的底面重合。
高考必刷小题 立体几何
11.如图所示,在正方体ABCD-A1B1C1D1中,E是平面ADD1A1的中心,M, N,F分别是B1C1,CC1,AB的中点,则下列说法正确的是 A.MN=12EF
√B.MN≠12EF √C.MN与EF异面
D.MN与EF平行
1 A.4
dm2
C.
3 4
dm2
√B.
2 4
dm2
D.34 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
根据题意,在平面VAC内,过点P作EF∥AC分别交VA,VC于点F,E, 在平面VBC内,过点E作EQ∥VB交BC于点Q, 在平面VAB内,过点F作FD∥VB交AB于点D,连接DQ,如图所示, 因为EF∥AC, 所以△VEF∽△VCA,设其相似比为k, 则VVAF=VVCE=AECF=k,0<k<1, 因为 VA=VB=VC=1,且两两垂直,所以 AC= 2,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
因为EF⊂平面VAC, 所以FD⊥EF, 所以四边形 FEQD 是矩形,即 S 矩形 FEQD=
FD·EF=(1-k)· 2k=- 2k-122+ 42,
所以当
k=12时,S
矩形 FEQD
有最大值
2 4.
故该截面面积的最大值是
对于A,如图(1),α∩β=l,m⊥l,n∥l,则满足m∥α,n∥β,m⊥n, 平面α与β不一定垂直,故A错误; 对于B,如图(2),α∩β=l,n∥l,m⊥α,则满足n∥β,m⊥n,平面 α与β不一定垂直,故B错误;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
立体几何练习题(含答案)
立几测001试一、选择题:1.a 、b 是两条异面直线,下列结论正确的是( )A .过不在a 、b 上的任一点,可作一个平面与a 、b 都平行B .过不在a 、b 上的任一点,可作一条直线与a 、b 都相交C .过不在a 、b 上的任一点,可作一条直线与a 、b 都平行D .过a 可以且只可以作一个平面与b 平行2.空间不共线的四点,可以确定平面的个数为 ( )A.0 B.1 C.1或4 D.无法确定3.在正方体1111ABCD A B C D -中,M 、N 分别为棱1AA 、1BB 的中点,则异面直线CM 和1D N 所成角的正弦值为 ( ) A.19 B.2345 254.已知平面α⊥平面β,m 是α内的一直线,n 是β内的一直线,且m n ⊥,则:①m β⊥;②n α⊥;③m β⊥或n α⊥;④m β⊥且n α⊥。
这四个结论中,不正确...的三个是 ( )A.①②③ B.①②④ C.①③④ D.②③④5.一个简单多面体的各个面都是三角形,它有6个顶点,则这个简单多面体的面数是( ) A. 4 B. 5 C. 6 D. 86. 在北纬45°的纬度圈上有甲、乙两地,两地经度差为90°,则甲、乙两地最短距离为(设地球半径为R )( ) A.R π42 B. R 3π C. R 2π D. 3R7. 直线l ⊥平面α,直线m ⊂平面β,有下列四个命题(1)m l ⊥⇒βα// (2)m l //⇒⊥βα (3)βα⊥⇒m l // (4)βα//⇒⊥m l 其中正确的命题是( )A. (1)与(2)B. (2)与(4)C. (1)与(3)D. (3)与(4)8. 正三棱锥的侧面均为直角三角形,侧面与底面所成角为α,则下列不等式成立的是( ) A. 60πα<< B.46παπ<< C.34παπ<< D.23παπ<<9.ABC ∆中,9AB =,15AC =,120BAC ∠=︒,ABC ∆所在平面α外一点P 到点A 、B 、C 的距离都是14,则P 到平面α的距离为( )A.7 B.9 C.11 D.1310.在一个45︒的二面角的一个平面内有一条直线与二面角的棱成角45︒,则此直线与二面角的另一个平面所成角的大小为 ( )A.30︒ B.45︒ C.60︒ D.90︒11. 如图,E, F 分别是正方形SD 1DD 2的边D 1D,DD 2的中点, 沿SE,SF,EF 将其折成一个几何体,使D 1,D,D 2重合,记作 D.给出下列位置关系:①SD ⊥面DEF; ②SE ⊥面DEF;③DF ⊥SE; ④EF ⊥面SED,其中成立的有: ( )A. ①与② B. ①与③ C. ②与③ D. ③与④12. 某地球仪的北纬60度圈的周长为6πcm,则地球仪的表面积为( )A. 24πcm 2B. 48πcm 2C. 144πcm 2D. 288πcm 2二、填空题(本大题共4小题,每小题4分,共16分) 13. 直二面角α—MN —β中,等腰直角三角形ABC 的斜边BC ⊂α,一直角边AC ⊂β,BC 与β所成角的正弦值是46,则AB 与β所成角大小为__________。
立体几何基础选择题(附答案)
立体几何基础选择题(附答案)1.设l,m是两条不同的直线,α是一个平面,则正确的命题是()A、若l⊥m,m∈α,则XXX⊥αB、XXX⊥α,l∥m,则XXX⊥αC、若l∥α,XXXα,则l∥mD、若l∥α,m∥α,则l∥m2.在空间中,正确的命题是()A、平行于同一平面的两条直线平行B、平行于同一直线的两个平面平行C、垂直于同一平面的两个平面平行D、垂直于同一平面的两条直线平行3.用a、b、c表示三条不同的直线,α表示平面,正确的命题有:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥α,b∥α,则a∥b;④若a⊥α,XXXα,则a∥b。
A.①②B.②③C.①④D.③④4.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直。
其中,为真命题的是()A。
①和② B。
②和③ C。
③和④ D。
②和④5.设α,β是两个不同的平面,l是一条直线,正确的命题是()A。
XXX⊥α,α⊥β,则XXXβB。
若XXXα,α∥β,则XXXβC。
XXX⊥α,α∥β,则XXX⊥βD。
若XXXα,α⊥β,则XXX⊥β6.已知m,n是两条不同直线,α,β,γ是三个不同平面,正确的命题是()A。
若m∥α,n∥α,则XXXB。
若α⊥γ,β⊥γ,则α∥βC。
若m∥α,m∥β,则α∥βD。
XXX⊥α,n⊥α,则XXX7.设有直线m,n和平面α,β。
正确的命题是()A。
若m∥α,n∥α,则XXXB。
若m∈α,n∈α,m∥β,n∥β,则α∥βC。
若α⊥β,XXXα,则m⊥βD。
若α⊥β,m⊥β,m∈α,则m∥α8.已知直线m,n与平面α,β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则m⊥n;③若m⊥α,m∥β,则α⊥β。
立体几何考察试题及答案
立体几何考察试题及答案一、选择题1. 若直线l与平面α垂直,则直线l与平面α内任意直线的关系是()。
A. 相交B. 平行C. 异面D. 垂直答案:D2. 已知一个正四面体的棱长为a,求其体积。
A. \( \frac{a^3 \sqrt{2}}{12} \)B. \( \frac{a^3 \sqrt{2}}{6} \)C. \( \frac{a^3 \sqrt{3}}{12} \)D. \( \frac{a^3 \sqrt{3}}{6} \)答案:C二、填空题1. 已知一个长方体的长、宽、高分别为a、b、c,则其对角线的长度为 \( \sqrt{a^2 + b^2 + c^2} \)。
2. 一个球的半径为r,则其表面积为 \( 4\pi r^2 \)。
三、解答题1. 已知一个圆锥的底面半径为r,高为h,求其体积。
解:圆锥的体积公式为 \( V = \frac{1}{3}\pi r^2 h \)。
答:圆锥的体积为 \( \frac{1}{3}\pi r^2 h \)。
2. 已知一个圆柱的底面半径为r,高为h,求其侧面积。
解:圆柱的侧面积公式为 \( A = 2\pi rh \)。
答:圆柱的侧面积为 \( 2\pi rh \)。
四、证明题1. 证明:若直线l与平面α内的两条直线m和n都垂直,则直线l与平面α垂直。
证明:设直线m和n在平面α内的交点为O,由于直线l与m、n都垂直,根据直线与平面垂直的判定定理,直线l与平面α垂直。
答:直线l与平面α垂直。
2. 证明:若两个平面α和β的交线为l,直线m在平面α内且与l平行,直线n在平面β内且与l平行,则直线m与直线n平行。
证明:设直线m与直线n的交点为P,由于m在平面α内且与l平行,n在平面β内且与l平行,根据平面与平面平行的性质,直线m与直线n平行。
答:直线m与直线n平行。
高中立体几何试题及答案
高中立体几何试题及答案一、选择题(每题3分,共15分)1. 空间中,如果直线a与平面α平行,那么直线a与平面α内的任意直线b的位置关系是:A. 平行B. 异面C. 相交D. 垂直2. 一个正方体的棱长为a,那么它的对角线长度为:A. a√2B. a√3C. 2aD. 3a3. 已知一个圆锥的底面半径为r,高为h,圆锥的体积是:A. πr²hB. 1/3πr²hC. 2πr²hD. 3πr²h4. 一个球的半径为R,那么它的表面积是:A. 4πR²B. 2πR²C. πR²D. R²5. 空间中,如果两个平面α和β相交于直线l,那么直线l与平面α和平面β的位置关系是:A. 平行B. 垂直C. 相交D. 包含二、填空题(每题2分,共10分)6. 空间直角坐标系中,点A(2,3,4)到原点O的距离是________。
7. 一个正四面体的每个顶点都与其它三个顶点相连,那么它的边长与高之比为________。
8. 已知一个长方体的长、宽、高分别为l、w、h,那么它的体积是________。
9. 空间中,如果一个点到平面的距离是d,那么这个点到平面上任意一点的距离的最大值是________。
10. 一个圆柱的底面半径为r,高为h,它的侧面积是________。
三、解答题(共75分)11. (15分)已知空间直角坐标系中,点A(1,2,3),B(4,5,6),点C 在平面ABC内,且AC=BC=2,求点C的坐标。
12. (20分)一个圆锥的底面半径为3,高为4,求圆锥的全面积和表面积。
13. (20分)一个长方体的长、宽、高分别为5、3、2,求其外接球的半径。
14. (20分)已知一个球的表面积为4π,求该球的体积。
答案:一、选择题1. A2. B3. B4. A5. C二、填空题6. √(1²+2²+3²)=√147. √3:18. lwh9. d+R10. 2πrh三、解答题11. 点C的坐标可以通过向量运算求得,设C(x,y,z),则向量AC=向量BC,即(1-x,2-y,3-z)=(x-4,5-y,6-z),解得x=3,y=4,z=5,所以点C的坐标为(3,4,5)。
高中数学立体几何小题100题(含答案与解析)
立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C【解析】设AB =a.由题设知AQ 为棱锥Q -ABCD 的高,所以棱锥Q -ABCD 的体积V 1=.易证PQ ⊥面DCQ ,而PQ =,△DCQ 的面积为,所以棱锥P -DCQ 的体积V 2=.故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1:1,选C.25.正四面体ABCD ,线段AB //平面α,E ,F 分别是线段AD 和BC 的中点,当正四面体绕以AB 为轴旋转时,则线段AB 与EF 在平面α上的射影所成角余弦值的范围是( )A . [0,22]B .[22,1]C .[21,1] D .[21,22] 【答案】B【解析】试题分析:如图,取AC 中点为G ,结合已知得GF //AB ,则线段AB 、EF 在平面α上的射影所成角等于GF 与EF 在平面α上的射影所成角,在正四面体中,AB ⊥CD ,又GE //CD ,所以GE ⊥GF,所以222GF GE EF +=,当四面体绕AB 转动时,因为GF //平面α,GE 与GF 的垂直性保持不变,显然,当CD 与平面α垂直时,GE 在平面上的射影长最短为0,此时EF 在平面α上的射影11F E 的长取得最小值21,当CD 与平面α平行时,GE 在平面上的射影长最长为21,11F E 取得最大值22,所以射影11F E 长的取值范围是 [21,22],而GF 在平面α上的射影长为定值21,所以AB 与EF 在平面α上的射影所成角余弦值的范围是[22,1].故选B 考点:1线面平行;2线面垂直。
2023-2024学年高考数学空间向量与立体几何专项练习题(附答案)
A .B .223.若直线的方向向量为,平面l bA .()(1,0,0,2,0,0b n ==-()(0,2,1,1,0,1b n ==--A .B .5136.如图,在平行六面体ABCDA.1122a b c -++C.1122a b c --+7.如图,在四面体OABC中,1-16.已知四棱锥P ABCDPC棱上运动,当平面1.C【分析】根据已知结合向量的坐标运算可得出,且.然后根据向量的数量积a b a +=- 14a = 运算求解,即可得出答案.【详解】由已知可得,且.()1,2,3a b a+=---=-14a =又,()7a b c +⋅= 所以,即有,7a c -⋅= cos ,14cos ,7a c a c a c -⋅=-=所以,.1cos ,2a c =-又,所以.0,180a c ≤≤ ,120a c =︒ 故选:C.2.C【分析】利用中点坐标公式求出中点的坐标,根据空间两点间的距离公式即可得出中线BC 长.【详解】由图可知:,,,(0,0,1)A (2,0,0)B (0,2,0)C 由中点坐标公式可得的中点坐标为,BC (1,1,0)根据空间两点间距离公式得边上的中线的长为.BC 22211(1)3++-=故选:C 3.D【分析】若直线与平面平行,则直线的方向向量与平面的法向量垂直,利用向量数量积检验.【详解】直线的方向向量为,平面的法向量为,l bαn 若可能,则,即.//l αb n ⊥r r 0b n ⋅=r r A 选项,;()1220b n =⨯-⋅=-≠B 选项,;11305160b n =⨯⨯⋅+⨯+=≠C 选项,;()()01201110b n =⨯-+⨯+⨯-⋅=-≠D 选项,;()1013310b n =⨯+-⨯=⋅+⨯因为,,3AB =4BC =2PA =所以()()(0,0,2,3,0,0,0,0,1P B Q 设平面的法向量为BQD (m x =()(),,3,0,1m BQ x y z ⎧设,2AB AD AS ===则()()()0,0,0,0,0,2,2,2,0,A S C P 设,()0,,2M t t -(1,1,2OM t =--所以1120OM AP t t ⊥=-+-+-=点到平面与平面的距离和为为定值,D 选项正确.M ABCD SAB 22t t -+=,,()2,0,0B ()()2,0,2,0,2,0SB BC =-=设平面的法向量为,SBC (),,n x y z =则,故可设,22020n SB x z n BC y ⎧⋅=-=⎪⎨⋅==⎪⎩()1,0,1n = 要使平面,又平面,//OM SBC OM ⊄SBC 则,()()1,1,21,0,11210OM n t t t t ⋅=---⋅=-+-=-=解得,所以存在点,使平面,B 选项正确.1t =M //OM SBC 若直线与直线所成角为,又,OM AB 30︒()2,0,0AB =则,()()222213cos3022661122OM ABOM ABt t t t ⋅-︒====⋅-++-+-⨯ 整理得,无解,所以C 选项错误.23970,8143730t t -+=∆=-⨯⨯=-<故选:ABD.10.BCD【分析】根据向量的多边形法则可知A 正确;根据向量的三角不等式等号成立条件可知,B 错误;根据共线向量的定义可知,C 错误;根据空间向量基本定理的推论可知,D 错误.【详解】对A ,四点恰好围成一封闭图形,根据向量的多边形法则可知,正确;对B ,根据向量的三角不等式等号成立条件可知,同向时,应有,即必要,a b a b a b+=+ 性不成立,错误;对C ,根据共线向量的定义可知,所在直线可能重合,错误;,a b对D ,根据空间向量基本定理的推论可知,需满足x +y +z =1,才有P 、A 、B 、C 四点共面,错误.故选:BCD .11.AB【分析】以,,作为空间的一组基底,利用空间向量判断A ,C ,利用空间向量法ABAD AA 可得面,再用向量法表示,即可判断B ,利用割补法判断D ;1AC ⊥PMN AH【详解】依题意以,,作为空间的一组基底,ABAD AA 则,,11AC AB AD AA =++ ()1122MN BD AD AB ==-因为棱长均为2,,11π3A AD A AB ∠=∠=所以,,224AB AD == 11π22cos 23AA AD AA AB ⋅=⋅=⨯⨯= 所以()()1112D A A C MN AD A A B AA B++⋅⋅=- ,()2211102AB AD AB AD AB AD AA AD AA AB ⋅-+-⋅+==⋅+⋅故,即,故A 正确;1AC MN ⊥1AC MN ⊥同理可证,,面,面,PN AC ⊥MN PN N ⋂=MN ⊂PMN PN ⊂PMN 所以面,即面,即为正三棱锥的高,1AC ⊥PMN AH ⊥PMN AH A PMN -所以()()1133AH AN NH AN NP NM AN AP AN AM AN=+=++=+-+- ,()13AP AM AN =++又,,分别是,,的中点,,P M N 1AA AB AD π3PAM PAN MAN ∠=∠=∠=所以,则三棱锥是正四面体,1PA AM AN PM MN PN ======P AMN -所以()11111133222AH AP AM AN AA AB AD ⎛⎫=++=⨯++ ⎪⎝⎭ ,()111166AA AB AD AC =++=所以,故B 正确;116AH AC =因为()211AC AB AD AA =++ ()()()222111222AB ADAA AB AD AB AA AD AA =+++⋅+⋅+⋅ ,2426==()21111111=AC AA AB AD AA AA AB AA AD AA AA ⋅=++⋅⋅+⋅+ ,11222222=822=⨯⨯+⨯⨯+⨯设直线和直线所成的角为,1AC 1BB θ则,故C 错误;1111111186cos cos ,cos ,3262AC AA AC BB AC AA AC AA θ⋅=====⨯ ,11111111111111A B D C ABCD A B C D A B D A C B D A B ABC D ADCV V V V V V ------=----其中,1111111111116ABCD A B C D A B D A C B D C B ABC D ADC V V V V V -----====所以,故D 错误.1111113A B D C ABCD A B C D V V --=故选:AB.关键点睛:本题解决的关键点是利用空间向量的基底法表示出所需向量,利用空间向量的数量积运算即可得解.12.AC【分析】对于A ,根据即可算出的值;对于B ,根据计算;对于C ,根据||2a = m a b ⊥ m 计算即可;对于D ,根据求出,从而可计算出.a b λ= 1a b ⋅=- m a b + 【详解】对于A ,因为,所以,解得,故A 正确;||2a = 2221(1)2m +-+=2m =±对于B ,因为,所以,所以,故B 错误;a b ⊥ 2120m m -+-+=1m =对于C ,假设,则,a b λ= (1,1,)(2,1,2)m m λ-=--所以,该方程组无解,故C 正确;()12112m m λλλ=-⎧⎪-=-⎨⎪=⎩对于D ,因为,所以,解得,1a b ⋅=- 2121m m -+-+=-0m =所以,,所以,故D 错误.(1,1,0)a =- (2,1,2)b =-- (1,2,2)+=-- a b 故选:AC.13.15【分析】根据线面垂直,可得直线的方向向量和平面的法向量共线,由此列式计算,即得答案.【详解】∵,∴,∴,解得,l α⊥u n ∥ 3123a b ==6,9a b ==∴,15a b +=故1514.2【分析】根据垂直得到,得到方程,求出.()0a a b λ⋅-= 2λ=【详解】,()()()2,1,31,2,12,12,3a b λλλλλ-=---=--- 因为,所以,()a a b λ⊥- ()0a a b λ⋅-= 即,()()2,12,3241293702,1,134λλλλλλλ----=-++-+-=+⋅-=解得.2λ=故215.17【分析】利用向量的加法,转化为,直接求模长即可.CD CA AB BD =++ 【详解】因为.CD CA AB BD =++ 所以()22CD CA AB BD =++ 222222CA CA AB AB AB BD BD CA BD=+⋅++⋅++⋅ 222132022042342⎛⎫=+⨯++⨯++⨯⨯⨯- ⎪⎝⎭17=所以.17CD = 故答案为.1716.33【分析】首先建立空间直角坐标系,分别求平面和平面的法向量,利用法向量垂MBD PCD 直求点的位置,并利用向量法求异面直线所成角的余弦值,即可求解正弦值.M 【详解】如图,以点为原点,以向量为轴的正方向,建立空间直角坐标A ,,AB AD AP ,,x y z 系,设,2AD AP ==,,,,()2,0,0B ()0,2,0D ()002P ,,()2,2,0C 设,()()()0,2,22,2,22,22,22DM DP PM DP PC λλλλλ=+=+=-+-=-- ,,,()2,2,0BD =-u u u r ()2,0,0DC =u u u r ()0,2,2DP =- 设平面的法向量为,MBD ()111,,m x y z =r ,()()11111222220220DM m x y z DM m x y λλλ⎧⋅=+-+-=⎪⎨⋅=-+=⎪⎩33故。
立体几何概念题选择题专项练习
立体几何基本概念选择三十题姓名:_________________ 正确个数:_________________选择题(共30 小题)1.(2012?浙江)设l 是直线,α,β是两个不同的平面()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD若α⊥β,l∥α,则l⊥β.2.(2011?浙江)若直线l 不平行于平面α,且l?α,则()A.α内存在直线与l 异面B.α内存在与l 平行的直线C.α内存在唯一的直线与l 平行D.α内的直线与l 都相交3.(2011?浙江)下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β,=l那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β4.(2010?浙江)设l,m 是两条不同的直线,α是一个平面,则下列命题正确的是()A 若l⊥m,m? α,则l⊥αB 若l⊥α,l∥m,则m⊥αC 若l∥α,m? α,则l∥mD 若l∥α,m∥α,则l∥m5.(2010?江西)如图,M 是正方体ABCD﹣A1B1C1D1 的棱DD1 的中点,给出下列命题①过M 点有且只有一条直线与直线AB、B1C1 都相交;②过M 点有且只有一条直线与直线AB、B1C1 都垂直;③过M 点有且只有一个平面与直线AB、B1C1 都相交;④过M 点有且只有一个平面与直线AB、B1C1 都平行.其中真命题是()A.②③④B.①③④C.①②④D.①②③6.(2008?江西)设直线m 与平面α相交但不垂直,则下列说法中正确的是()A.在平面α内有且只有一条直线与直线m 垂直B.过直线m 有且只有一个平面与平面α垂直C.与直线m 垂直的直线不可能与平面α平行D.与直线m 平行的平面不可能与平面α垂直7.(2008?湖南)设有直线m、n 和平面α、β,下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m? α,n? α,m∥β,n∥β,则α∥βC.若α⊥β,m? α,则m⊥β D.若α⊥β,m⊥β,m?α,则m∥α8.(2008?湖南)已知直线m、n 和平面α、β满足m⊥n,m⊥α,α⊥β,则()A.n⊥βB.n∥β,或n? βC.n⊥αD.n∥α,或n? α9.(2008?海南)已知平面α⊥平面β,α∩β,=点l A∈α,A?l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β10.(2008?安徽)已知m,n 是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的为()A 若α⊥γ,β⊥γ,则α∥βB.若m∥α,m∥β,则α∥βC 若m∥α,n∥α,则m∥n D 若m⊥α,n⊥α,则m∥n11.设a,b 为两条直线,α,β为两个平面,下列四个命题中,正确的命题是()A.若a,b 与α所成的角相等,则α∥b B.若a∥α,b∥β,α∥β,则a∥bC.若a? α,b? β,α∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,是a⊥b12.若m,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中为真命题的是()A.若m? β,α⊥β,则m⊥αB.若α∩γ=,mβ∩γ,=nm∥n,则α∥βC.若α⊥γ,α⊥β,则β∥γD.若m⊥β,m∥α,则α⊥β13.已知两条直线m,n,两个平面α,β,给出下面四个命题:①m∥n,m⊥α? n⊥α②α∥β,m? α,n? β?m∥n③m∥n,m∥α? n∥α④α∥β,m∥n,m⊥α? n⊥β其中正确命题的序号是()A.①③B.②④C.①④D.②③14.平面α外有两条直线m 和n,如果m 和n 在平面α内的射影分别是m′和n′,给出下列四个命题:①m′⊥n′?m⊥n;②m⊥n? m′⊥n′;③m′与n′相交? m 与n 相交或重合;④m′与n′平行? m 与n 平行或重合.其中不正确的命题个数是()A.1 B.2 C.3 D.415.已知m、n 为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是()A.m? α,n? α,m∥β,n∥β? α∥βB.α∥β,m? α,n? β,? m∥nC.m⊥α,m⊥n? n∥αD.n∥m,n⊥α? m⊥α16.对于任意的直线l 与平面α,在平面α内必有直线m,使m 与l()A.平行B.相交C.垂直D.互为异面直线17.给出下列四个命题:①垂直于同一直线的两条直线互相平行.②垂直于同一平面的两个平面互相平行.③若直线l1,l2 与同一平面所成的角相等,则l1,l2 互相平行.④若直线l1,l2 是异面直线,则与l1,l2 都相交的两条直线是异面直线.其中假命题的个数是()A.1 B.2 C.3 D.418.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4 个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上19.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α,β都平行于γ②存在平面γ,使得α,β都垂直于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l,m,使得l∥α,l∥β,m∥α,m∥β.其中,可以判定α与β平行的条件有()A.1 个B.2 个C.3 个D.4 个20.已知m、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若m⊥α,m⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若m∥α,n∥β,m∥n,则α∥β;④若m、n 是异面直线,m⊥α,m∥β,n⊥β,n∥α,则α⊥β其中真命题是()A.①和②B.①和③C.③和④D.①和④21.已知a、b、c 是三条直线,β是平面,给出下列命题:①若a⊥b,b⊥c,则a∥c;②若a∥b,b⊥c,则a⊥c;③若a∥β,b? β,则a∥b;④若a 与b 异面,且a∥β,则 b 与β相交;⑤若a 与b 异面,则至多有一条直线与a,b 都垂直.其中真命题的个数是()A.1 B.2 C.3 D.422.已知直线m、n 与平面α,β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中真命题的个数是()A.0 B.1 C.2 D.323.不同直线m,n 和不同平面α,β,给出下列命题:①,②,③,④其中假命题有:()A.0 个B.1 个C.2 个D.3 个24.在下列关于直线l、m 与平面α、β的命题中,真命题是()A.若l? β,且α⊥β,则l⊥αB.若l⊥β,且α∥β,则l⊥αC.若α∩β=,m且l⊥m,则l∥αD.若l⊥β,且α⊥β,则l∥α25.(2004?湖北)如图是正方体的平面展开图.在这个正方形中,①BM 与ED 平行;②CN 与BE是异面直线;③CN 与BM 成60°角;④DM 与BN 垂直.以上四个命题中,正确命题的序号是()A.①②③B.②④C.③④D.②③④26.设m、n 是两条不同的直线,α、β、γ是三个不同的平面.给出下列四个命题,其中正确命题的序号是()①若m⊥α,n∥α,则m⊥n ②若α∥β,β∥γ,m⊥α,则m⊥γ③若m∥α,n∥α,则m∥n ④若α⊥γ,β⊥γ,则α∥βA.①②B.②③C.③④D.①④27.已知三条直线m、n、l,三个平面α、β、γ,下列四个命题中,正确的是()A.B.C.D.28.在下列条件中,可判断平面α与β平行的是()A.α、β都垂直于平面rB.α内存在不共线的三点到β的距离相等C.l,m 是α内两条直线,且l∥β,m∥βD.l,m 是两条异面直线,且l∥α,m∥α,l∥β,m∥β29.已知m,n 为异面直线,m? 平面α,n? 平面β,α∩β,=则l l()A.与m,n 都相交B.与m,n 中至少一条相交C.与m,n 都不相交D.至多与m,n 中的一条相交30.已知直线l、m,平面α、β,且l⊥a,m⊥β,给出下列四个命题;(1)若α∥β,则l⊥m.(2)若l⊥m,则α∥β.(3)若α⊥β,则l∥m.(4)若l∥m,则α// β.其中正确命题的个数是()A.1 个B.2 个C.3 个D.4 个。
立体几何经典习题集(含答案)
立体几何基础A 组题一、选择题:1.下列命题中正确命题的个数是 ( ) ⑴ 三点确定一个平面⑵ 若点P 不在平面α内,A 、B 、C 三点都在平面α内,则P 、A 、B 、C 四点不在同一平面内 ⑶ 两两相交的三条直线在同一平面内⑷ 两组对边分别相等的四边形是平行四边形A.0B.1C.2D.3答案:A2.已知异面直线a 和b 所成的角为︒50,P 为空间一定点,则过点P 且与a 、b 所成的角都是︒30的直线条数有且仅有 ( ) A.1条 B.2条 C.3条 D.4条答案:B 3.已知直线⊥l 平面α,直线⊂m 平面β,下列四个命题中正确的是 ( ) (1) 若βα//,则m l ⊥ (2) 若βα⊥,则m l // (3) 若m l //,则βα⊥ (4) 若 m l ⊥,则βα//A.(3)与(4)B.(1)与(3)C.(2)与(4)D.(1)与(2)答案:B4.已知m 、n 为异面直线,⊂m 平面α,⊂n 平面β,l =βα ,则l ( ) A.与m 、n 都相交 B.与m 、n 中至少一条相交 C.与m 、n 都不相交 D.至多与m 、n 中的一条相交答案:B5.设集合A={直线},B={平面},B A C =,若A a ∈,B b ∈,C c ∈,则下列命题中的真命题是 ( )A. c a b a b c ⊥⇒⎭⎬⎫⊥// B.c a c b b a //⇒⎭⎬⎫⊥⊥ C.c a b c b a //////⇒⎭⎬⎫ D. c a b c b a ⊥⇒⎭⎬⎫⊥//答案:A6.已知a 、b 为异面直线,点A 、B 在直线a 上,点C 、D 在直线b 上,且AC=AD ,BC=BD ,则直线a 、b 所成的角为 ( ) A. ︒90 B. ︒60 C. ︒45 D. ︒30答案:A7.下列四个命题中正确命题的个数是 ( ) 有四个相邻侧面互相垂直的棱柱是直棱柱 各侧面都是正方形的四棱柱是正方体底面是正三角形,各侧面都是等腰三角形的三棱锥是正三棱锥A.1个B.2个C.3个D.0个答案:D8.设M={正四棱柱},N={长方体},P={直四棱柱},Q={正方体},则这些集合之间关系是 ( ) A.Q M N P B.Q M N P C.Q N M P D.Q N M P答案:B9.正四棱锥P —ABCD 中,高PO 的长是底面长的21,且它的体积等于334cm ,则棱AB 与侧面PCD 之间的距离是 ( ) A.cm 2 B. cm 2 C. cm 1 D.cm 22答案:A10.纬度为α的纬圈上有A 、B 两点,弧在纬圈上,弧AB 的长为απcos R (R 为球半径),则A 、B 两点间的球面距离为 ( )A. R πB. R )(απ-C. R )2(απ-D. R )2(απ-答案:D11.长方体三边的和为14,对角线长为8,那么 ( ) A.它的全面积是66 B.它的全面积是132C.它的全面积不能确定D.这样的长方体不存在答案:D12.正四棱锥P —ABCD 的所有棱长都相等,E 为PC 的中点,那么异面直线BE 与PA 所成角的余弦值等于( )A.21B. 22C. 32D. 33答案:D13.用一个过正四棱柱底面一边的平面去截正四棱柱,截面是 ( )A.正方形B.矩形C.菱形D.一般平行四边形答案:B二、填空题:14.正方体1111D C B A ABCD -中,E 、F 、G 分别为AB 、BC 、CC 1的重点,则EF 与BG 所成角的余弦值为________________________答案:510 15.二面角βα--a 内一点P 到两个半平面所在平面的距离分别为22和4,到棱a 的距离为24,则这个二面角的大小为__________________答案:︒︒16575或16.四边形ABCD 是边长为a 的菱形,︒=∠60BAD ,沿对角线BD 折成︒120的二面角A —BD —C 后,AC 与BD 的距离为_________________________答案:a 43 17.P 为︒120的二面角βα--a 内一点,P 到α、β的距离为10,则P 到棱a 的距离是_________________答案:3320 18.如图:正方形ABCD 所在平面与正方形ABEF 所在平面成︒60的二面角,则异面直线AD 与BF 所成角的余弦值是______________________答案:4219.已知三棱锥P —ABC 中,三侧棱PA 、PB 、PC 两两互相垂直,三侧面与底面所成二面角的大小分别为γβα,,,则=++γβα222cos cos cos _______________答案:1 20.若四面体各棱的长是1或2,且该四面体不是正四面体,则其体积的值是_____________(只需写出一个可能的值)。
最新-立体几何综合练习题(附详解)[原创] 精品
立体几何练习题 一、选择题1.两条异面直线在同一平面内的射影不可能是( )A.两条相交直线B.两条平行直线C.两条重合直线D.一条直线和这条直线外一点2.设命题甲:“直四棱拄1111D C B A ABCD -中,平面1ACB 与对角面D D BB 11垂直”;命题乙:“直四棱柱1111D C B A ABCD -是正方体”。
那么,甲是乙的( )A .充分必要条件 B.充分非必要条件C.必要非充分条件D.既非充分又非必要条件3.某电视台的颁奖礼盒用如下方法做成:先将一个奖品放入一个正方体内,再将正方体放在一个球内,使正方体内接于球;然后再将该球放入一个正方体内,球内切于该正方体,再将正方体放入一个球内,正方体内接于球,……如此下去,正方体与球交替出现.如果正方体与球共有13个,最大正方体的棱长为162cm ,奖品为羽毛球、篮球、乒乓球拍、手表、项链之一,则奖品只能是(构成礼品盒材料的厚度忽略不计)( ) A .项链 B.项链或手表 C.项链或手表,或乒乓球拍 D.项链或手表,或乒乓球拍,或篮球4.已知平面α//平面β,直线α⊂l ,点l P ∈,平面βα、间的距离为8,则在β内到点P 的距离为10且到直线l 的距离为9的点的轨迹是( )A.一个圆B.两条直线C.四个点D.两个点5.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞F E D ,,,且知1:2:::===FS CF EB SE DA SD ,若仍用这个容器盛水,则最多可盛原来水的( )A .2923 B.2723 C.2719 D.5531(第5题)二、填空题6.一个十二面体共有8个顶点,其中两个顶点处各有6条棱,其他顶点处各有相同数目的棱,则其他顶点各有 条棱7.AB 是异面直线b a 、的公垂线段,b a AB 、,2=成30角,在a 上取P 点使4=AP ,则点p 到b 的距离等于SCBA8.如图所示,二面角βα--CD 的大小为θ,点A 在平面α内,ACD ∆的面积为S ,且m CD =,过A 点的直线交平面于B ,CD AB ⊥,且AB 与平面β所成的角为 30,则当=θ 时,BCD ∆的面积取得最大值。
高考数学立体几何选择题
高考数学立体几何选择题1. 题目:一个正方体的对角线长为6,求正方体的边长。
选项:A. 2 B. 3 C. 4 D. 52. 题目:一个圆柱的底面半径为3,高为4,求圆柱的侧面积。
选项:A. 12π B. 24π C. 36π D. 48π3. 题目:一个圆锥的底面半径为4,高为5,求圆锥的侧面积。
选项:A. 2π B. 4π C. 6π D. 8π4. 题目:一个长方体的长、宽、高分别为4、3、2,求长方体的对角线长度。
选项:A. 5 B. 6 C. 7 D. 85. 题目:一个球的直径为10,求球的表面积。
选项:A. 314 B. 628 C. 1256 D. 25126. 题目:一个正四面体的棱长为3,求正四面体的外接球半径。
选项:A. 1 B. 2 C. 3 D. 47. 题目:一个圆台的上下底面半径分别为3和2,高为4,求圆台的侧面积。
选项:A. 2π B. 4π C. 6π D. 8π8. 题目:一个正方体的对角线长为8,求正方体的体积。
选项:A. 64 B. 125 C. 216 D. 3439. 题目:一个圆柱的底面半径为5,高为6,求圆柱的体积。
选项:A. 9π B. 18π C. 27π D. 36π10. 题目:一个圆锥的底面半径为4,高为5,求圆锥的体积。
选项:A. π B. 2π C. 4π D. 8π11. 题目:一个长方体的长、宽、高分别为3、2、1,求长方体的体积。
选项:A. 6 B. 12 C. 18 D. 2412. 题目:一个球的直径为12,求球的体积。
选项:A. 4π B. 16π C. 64π D. 125π13. 题目:一个正四面体的棱长为4,求正四面体的体积。
选项:A. 2 B. 4 C. 8 D. 1614. 题目:一个圆台的上下底面半径分别为5和3,高为4,求圆台的体积。
选项:A. π B. 2π C. 4π D. 8π15. 题目:一个正方体的对角线长为10,求正方体的表面积。
立体几何练习题(含答案)精选全文完整版
可编辑修改精选全文完整版《立体几何 》练习题一、 选择题1、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( )A 、垂直B 、平行C 、相交不垂直D 、不确定2. 在正方体1111ABCD A B C D -中, 与1A C 垂直的是( )A. BDB. CDC. BCD. 1CC3、线n m ,和平面βα、,能得出βα⊥的一个条件是( )A.βα//n ,//m ,n m ⊥B.m ⊥n ,α∩β=m ,n ⊂αC.αβ⊆⊥m n n m ,,//D.βα⊥⊥n m n m ,,//4、平面α与平面β平行的条件可以是( )A.α内有无穷多条直线与β平行;B.直线a//α,a//βC.直线a α⊂,直线b β⊂,且a//β,b//αD.α内的任何直线都与β平行5、设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题:①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ其中正确命题的序号是( )A.①和②B.②和③C.③和④D.①和④6.点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O,若PA=PB=PC ,则点O 是ΔABC 的( )A.内心B.外心C.重心D.垂心7. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是( )A .若//,,l n αβαβ⊂⊂,则//l nB .若,l αβα⊥⊂,则l β⊥C. 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m8. 已知两个平面垂直,下列命题中正确的个数是( )①一个平面内的已知直线必垂直于另一个平面的任意一条直线;②一个平面内的已知直线必垂直于另一个平面的无数条直线;③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面.A.3B.2C.1D.09. 设m.n 是两条不同的直线,α.β是两个不同的平面,( ) A .若m ∥α,n ∥α,则m ∥n B .若m ∥α,m ∥β,则α∥βC .若m ∥n,m ⊥α,则n ⊥αD .若m ∥α,α⊥β,则m ⊥β10. 设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 二、填空题11、在棱长为2的正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是棱AB ,BC 中点,则三棱锥B —B 1EF 的体积为 .12.对于空间四边形ABCD ,给出下列四个命题:①若AB=AC ,BD=CD 则BC ⊥AD ;②若AB=CD ,AC=BD 则BC ⊥AD ;③若AB ⊥AC ,BD ⊥CD 则BC ⊥AD ;④若AB ⊥CD , BD ⊥AC 则BC ⊥AD ;其中真命题序号是 .13. 已知直线b//平面α,平面α//平面β,则直线b 与β的位置关系为 .14. 如图,△ABC 是直角三角形,∠ACB=︒90,PA ⊥平面ABC ,此图形中有 个直角三角形参考答案 选择题:AACDA,BCCCB填空题:11、1312、①④ 13、//b b ββ⊂或 14、4A B C P欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
高考数学立体几何选择题
高考数学立体几何选择题1. 下列哪个图形是球体?A. 圆柱体B. 圆锥体C. 球体D. 立方体2. 下列哪个图形是正方体?A. 圆柱体B. 圆锥体C. 球体D. 正方体3. 下列哪个图形是圆柱体?A. 圆锥体B. 球体C. 圆柱体D. 立方体4. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 立方体5. 下列哪个图形是立方体?A. 圆柱体B. 圆锥体C. 球体D. 立方体6. 下列哪个图形是长方体?A. 圆柱体B. 圆锥体C. 球体D. 长方体7. 下列哪个图形是正四面体?A. 圆柱体B. 圆锥体C. 球体D. 正四面体8. 下列哪个图形是正方体?A. 圆柱体B. 圆锥体C. 球体D. 正方体9. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体10. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体11. 下列哪个图形是球体?A. 圆柱体B. 圆锥体C. 球体12. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体13. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体14. 下列哪个图形是立方体?A. 圆柱体B. 圆锥体C. 球体D. 立方体15. 下列哪个图形是长方体?A. 圆柱体C. 球体D. 长方体16. 下列哪个图形是正四面体?A. 圆柱体B. 圆锥体C. 球体D. 正四面体17. 下列哪个图形是正方体?A. 圆柱体B. 圆锥体C. 球体D. 正方体18. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体19. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体20. 下列哪个图形是球体?A. 圆柱体B. 圆锥体C. 球体D. 球体21. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体22. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体23. 下列哪个图形是立方体?A. 圆柱体B. 圆锥体C. 球体D. 立方体24. 下列哪个图形是长方体?A. 圆柱体B. 圆锥体C. 球体D. 长方体25. 下列哪个图形是正四面体?A. 圆柱体B. 圆锥体C. 球体D. 正四面体26. 下列哪个图形是正方体?A. 圆柱体C. 球体D. 正方体27. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体28. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体29. 下列哪个图形是球体?A. 圆柱体B. 圆锥体C. 球体D. 球体30. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体31. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体32. 下列哪个图形是立方体?A. 圆柱体B. 圆锥体C. 球体D. 立方体33. 下列哪个图形是长方体?A. 圆柱体B. 圆锥体C. 球体D. 长方体34. 下列哪个图形是正四面体?A. 圆柱体B. 圆锥体C. 球体D. 正四面体35. 下列哪个图形是正方体?A. 圆柱体B. 圆锥体C. 球体D. 正方体36. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体37. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体38. 下列哪个图形是球体?A. 圆柱体B. 圆锥体C. 球体D. 球体39. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体40. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体41. 下列哪个图形是立方体?A. 圆柱体B. 圆锥体C. 球体D. 立方体42. 下列哪个图形是长方体?A. 圆柱体B. 圆锥体C. 球体D. 长方体43. 下列哪个图形是正四面体?A. 圆柱体B. 圆锥体C. 球体D. 正四面体44. 下列哪个图形是正方体?A. 圆柱体B. 圆锥体C. 球体D. 正方体45. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体46. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体47. 下列哪个图形是球体?A. 圆柱体B. 圆锥体C. 球体D. 球体48. 下列哪个图形是圆柱体?A. 圆柱体B. 圆锥体C. 球体D. 圆柱体49. 下列哪个图形是圆锥体?A. 圆柱体B. 圆锥体C. 球体D. 圆锥体50. 下列哪个图形是立方体?A. 圆柱体B. 圆锥体C. 球体D. 立方体。
立体几何复习选择、填空训练题(含答案)
立体几何复习训练题一. 选择题:1.给出以下关于斜二测直观图的结论,其中正确的个数是( )①角的水平放置的直观图一定是角.②相等的角在直观图中仍相等.③相等的线段在直观图中仍然相等.④若两条线段平行,则在直观图中对应的两条线段仍然平行.A .0B .1C .2D .32.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上说法正确的是( )A .①B .①②C .③④D .①②③④3.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=4,O ′C ′=2,则原图形是( )A .正方B .矩形C .菱形D .梯形4.已知△ABC 是边长为2a 的正三角形,那么它的平面直观图△A ′B ′C ′的面积为( ) A.32a 2 B.34a 2 C.64a 2 D.6a 25.若某空间几何体的三视图如图所示,则该几何体的体积是 ( )A.13B.23 C .1 D .26.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方形D.圆柱7.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是 ( )8.(全国Ⅰ理6)在一个几何体的三视图中,正视图和俯视图如右上图所示,则相应的侧视图可以为 ( )9.(广东理7)如图l—3.某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为 ( )A.C.10.某四面体三视图如图所示,该四面体四个面的面积中最大的是 ( )A. 8B.C. 10D.S B 1C 1A 1C A11.在正四棱锥V ABCD -中,底面正方形ABCD 的边长为1,侧棱长为2,则异面直线VA 与BD 所成角的大小为 ( )A .6πB .4πC .3πD .2π 12.正六棱锥底面边长为a ,体积为323a,则侧棱与底面所成的角等于 ( ) A.6π B.4π C.3π D.125π 13.棱台的上、下底面面积分别为4和9,则这个棱台的高和截得棱台的原棱锥的高的比是 ( )A .21 B.31 C.32 D.43 14.在体积为15的斜三棱柱ABC -A 1B 1C 1中,S 是C 1C 上的一点, S -ABC 的体积为3,则三棱锥S -A 1B 1C 1的体积为 ( ) A .1 B .32 C .2 D .3 15 . 如果一个正三棱锥的底面边长为6棱锥的体积是 ( ) A.92B.9 C.272D.216、长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是 ( )A 、25π;B 、50π;C 、125π;D 、都不对17. 一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是 ( )A .31003cm πB .32083cm π C .35003cm π D318.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是 ( ).A .29πB .27πC .25πD .23π 19、下列叙述中错误的是 ( )A 、若P αβ∈ 且l αβ= ,则P l ∈;B 、三点,,A BC 确定一个平面;C 、若直线a b A = ,则直线a 与b 能够确定一个平面;D 、若,A l B l ∈∈且,A B αα∈∈,则l α⊂。
2025届新高考一轮复习特训---立体几何初步(含解析)
2025届新高考一轮复习特训 立体几何初步一、选择题1.平行六面体1111ABCD A B C D -中,底面ABCD 为正方形,11A AD A AB ∠=∠=11AA AB ==,E 为11C D 的中点,则异面直线BE 和DC 所成角的余弦值为( )2.已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别是AB ,1BB ,11B C 的中点,则过这三点的截面面积是( )A.3.已知平面α,β,γ,l αβ= ,则“l γ⊥”是“αγ⊥且βγ⊥”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.如图,某车间生产一种圆台形零件,其下底面的直径为4cm ,上底面的直径为8cm ,高为4cm ,已知点P 是上底面圆周上不与直径AB 端点重合的一点,且AP BP =,O 为上底面圆的圆心,则OP 与平面ABC 所成的角的正切值为( )5.已知长方体的一条棱长为2,体积为16,则其外接球表面积的最小值为( )A.5πB.12πC.20πD.80π6.如图,在棱长为1的正方体1111ABCD A B C D -中,E 为线段1DD 的中点,F 为线段1BB 的中点.直线1FC 到平面1AB E 的距离为( ).7.在三棱柱111ABC A B C -中,AB BC AC ==,侧棱1AA ⊥底面ABC ,若该三棱柱的所有顶点都在同一个球O 的表面上,且球O 的表面积的最小值为4π,则该三棱柱的侧面积为( )A.8.设A ,B ,C ,D 是同一个半径为4的球的球面上的四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为( )A. C.二、多项选择题9.在ABC △中,AC BC ==2AB =,ABD △是有一个角是30°的直角三角形,若二面角D AB C --是直二面角,则DC 的长可以是( )10.如图,P 为矩形ABCD 所在平面外一点,矩形对角线的交点为O ,M 为PB 的中点,则下列结论成立的是( )A.//OM 平面PCDB.//OM 平面PDAC.//OM 平面PBAD.平面PBC11.如图,正方体1111ABCD A B C D -的棱长为1,动点P 在对角线1BD 上,过P 作垂直于1BD 的平面α,记平面α与正方体1111ABCD A B C D -的截面多边形(含三角形)的周长为L,面积为S ,BP x =,(x ∈,下面关于函数()L x 和()S x 的描述正确的是( )A.(S x B.()L x 在x=C.()L x 在⎛⎝上单调递增,在上单调递减;D.()S x 在⎛⎝上单调递增,在上单调递减三、填空题12.如图一个正六棱柱的茶叶盒,底面边长为10cm ,高为20cm ,则这个茶叶盒的表面积为______2cm .13.已知正三棱柱111ABC A B C-的各棱长都等于2,点E 是11A B 的中点,则异面直线AE 与1BC 所成角的余弦值为________.14.底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,//OM高为3的正四棱锥,所得棱台的体积为____________.四、解答题15.如图,在三棱锥A BCD -中,BCD △是边长为2的等边三角形,AB AC =,O 是BC 的中点,OA CD ⊥.(1)证明:平面ABC ⊥平面BCD .(2)若点E 是棱AC 上的一点,则从①2CE EA =,②二面角E BD C --的大小为60︒,③三棱锥A BCD -成立.16.如图,垂直于梯形ABCD 所在平面,,F 为线段PA 上一点,112ABAD CD ===,四边形为矩形.(1)若F 是PA 的中点,求证:平面DEF ;(2)求直线与平面BCP 所成角的正弦值;(3)若点F 到平面的长.17.如图,P 为圆锥的顶点,O 为圆锥底面的圆心,AC 为底面直径,ABD △为底面四O 的内接正三角形,且△PC 上,且AE =1CE =.PD 90ADC BAD ∠∠==︒PD =PDCE //AC AE(1)求证:BD AE ⊥,并求三棱锥P BDE -的体积;(2)若点M 为线段PO 上的动点,当直线DM 与平面ABE 所成角的正弦值最大时,求此时点M 到平面ABE 的距离.18.如图,在多面体ABCDEF 中,已知四边形ABCD 是菱形,AF ⊥平面ABCD .(1)证明:平面BDE ⊥平面ACF ;(2)若4AD =,6AF =,3DE =,//DE AF ,AE 与平面BDE 三棱锥F CDE -的体积.19.如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =1AF =,M 是线段EF 的中点.求证:(1)//AM 平面BDE ;(2)AM ⊥平面BDF .参考答案1.答案:A解析:由题意,11π11cos 3AA AB AA AD ⋅=⋅=⨯⨯= 0AB AD ⋅= ,又DC AB = ,1111112BE AE AB AA A D D E AB AA AD AB =-=++-=+-,所以111100222BE DC AA AD AB AB ⎛⎫⋅=+-⋅=+-= ⎪⎝⎭,即有BE DC ⊥ ,故选:A.2.答案:D解析:如图所示,分别取11C D ,1DD ,AD 的中点H ,M ,N ,连接GH ,HM ,MN ,NE ,在正方体1111ABCD A B C D -中,可得//GH NE ,//HM EF ,//MN FG ,所以经过点E,F ,G 的截面为正六边形EFGHMN ,又因为正方体1111ABCDA B C D -的棱长为2,在直角BEF△中,可得EF==所以截面正六边形的面积为26=故选:D.3.答案:C解析:由于l αβ= ,所以l α⊂,l β⊂,若l γ⊥,则αγ⊥,βγ⊥,故充分性成立,若αγ⊥,βγ⊥,设m αγ= ,n βγ= ,则存在直线,a γ⊂使得a m ⊥,所以a α⊥,由于l ⊂α,故a l ⊥,同理存在直线,b γ⊂使得b n ⊥,所以b β⊥,由于l β⊂,故b l ⊥,由于a ,b 不平行,所以a ,b 是平面γ内两条相交直线,所以l γ⊥,故必要性成立,故选:C.4.答案:A解析:设O '为下底面圆的圆心,连接OO ',CO '和CO ,因为AP BP =,所以AB OP ⊥,又因为AB OO ⊥',OP OO O '= ,OP ,OO '⊂平面OO P ',所以AB ⊥平面OO P ',因为PC 是该圆台的一条母线,所以O ,O ',C ,P 四点共面,且//O C OP ',又AB ⊂平面ABC ,所以平面ABC ⊥平面POC ,又因为平面ABC 平面POC OC =,所以点P 在平面ABC 的射影在直线OC 上,则OP 与平面ABC 所成的角即为POC OCO ∠=∠',过点C 作CD OP ⊥于点D ,因为4cm OP =,2cm O C '=,所以tan tan 2OO POC OCO O C∠=''∠=='.故选:A.5.答案:C解析:设长方体的长、宽、高分别为a ,b ,2,所以长方体的体积为216V ab ==,解得:8ab =,设长方体的外接球的半径为R ,所以2R =22242420R a b ab =++≥+=,即R ≥b ==所以min R =所以其外接球表面积的最小值为24π20πS R ==.故选:C.6.答案:D解析:1//AE FC ,1FC ⊂/平面1AB E ,AE ⊂平面1AB E ,1//FC ∴平面1AB E ,因此直线1FC 到平面1AB E 的距离等于点1C 到平面1AB E 的距离,如图,以D 点为坐标原点,DA 所在的直线为x 轴,DC 所在的直线为y 轴,1DD 所在的直线为轴,建立直角坐标系.则(1,0,0)A ,1(1,1,1)B ,1(0,1,1)C ,10,0,2E ⎛⎫ ⎪⎝⎭,11,1,2F ⎛⎫ ⎪⎝⎭,,,,,设平面的法向量为,则,令,则设点到平面1AB E 的距离为d ,则1113n C B d n⋅==故直线1FC 到平面1ABE 故选:D.7.答案:B解析:如图:设三棱柱上,下底面中心分别为1O ,2O ,则12OO 的中点为O ,111,0,2FC ⎛⎫=- ⎪⎝⎭ 11,0,2AE ⎛⎫=- ⎪⎝⎭ 1(0,1,1)AB =11(1,0,0)C B = 1AB E (,,)n x y z =11020n AE x z n AB y z ⎧⋅=-+=⎪⎨⎪⋅=+=⎩2z =(1,2,2)n =- 1C设球O 的半径为R ,则OA R =,设AB BC AC a ===,1AA h =,则212OO h =,223O A AB ==,则在2Rt OO A △中,222222*********R OA OO O A h a h ==+=+≥⨯=,当且仅当h =时,等号成立,所以24π4πS R =≥球4πah =,所以ah =所以该三棱柱的侧面积为3ah =故选:B.8.答案:B解析:如图,设点O 为球心,点M 为三角形ABC 的中心,E 为AC 的中点,连接OB ,DM ,且DM 过球心O ,连接BE ,且BE 过点M ,当DM ⊥平面ABC 时,三棱锥D ABC -的体积最大.2ABC S AB == △6AB =.又 点M 为三角形ABC 的中心,23BM BE ∴==,在Rt OMB △中,2OM ==,426DM OD OM ∴=+=+=,∴三棱锥D ABC -体积的最大6=9.答案:ACD 解析:如图①,当60ADB ∠=︒且90DBA ∠=︒时,二面角D AB C --是直二面角,故平面ABD ⊥平面ABC ,且平面ABD 平面ABC AB =,DB ⊂平面ABD ,故DB ⊥平面ABC ,所以DB BC ⊥,因为tan AB DB ADB ==∠==同理可得,当30ADB ∠=︒且90DBA ∠=︒时,DB ⊥平面ABC ,所以DB BC ⊥,因为tan ABDB ADB==∠==当90ADB ∠=︒且30DAB ∠=︒时,如图②,过点D 作DE AB ⊥,垂足为E ,连接CE ,因为平面ABD ⊥平面ABC ,且平面ABD 平面ABC AB =,DE ⊂平面ABD ,故DE ⊥平面ABC ,所以DE CE ⊥,此时cos DA AB DAB =∠=,sin DE DA DAB =∠=cos AE AD DAB =∠===所以DC ==当90ADB ∠=︒且60DAB ∠=︒时,同理可得,sinDE DA DAB=∠====故选:ACD.10.答案:AB解析:矩形ABCD 的对角线AC 与BD 交于点O ,所以点O 为BD 的中点,在△PBD 中,因为点M 是PB 的中点,所以OM 是的中位线,,平面PCD ,平面PCD ,平面PCD ,故A 正确;PD ⊂平面PDA ,平面PDA ,平面PDA ,故B 正确;因为M ∈PB ,O ∉平面PBC ,O ∉平面PAB ,所以OM 与平面PAB ,平面PBC 相交,故CD 错误;故选:AB.11.答案:AD解析:当x ⎛∈⎝时,截面为等边三角形,如图:因为BP x =,所以EF =,所以:()L x =,()2S x x =,x ⎛∈ ⎝.此时()L x ,()S x 在上单调递增,且当时截面为六边形,如图:PBD △//OM PD PD ⊂OM ⊄//OM ∴OM⊄//OM ∴⎛ ⎝()L x ≤()x ≤x ∈设AE t =,则11AE AF CG CH B N B M t======所以六边形EFGHMN 的周长为:)1t +-=为定值;做1NN ⊥平面ABCD 于1N ,1MM ⊥平面ABCD 于1M .设平面EFGHMN 与平面ABCD 所成的角为α,则易求cos α=所以11cos EFDHMN FAN M CG S S α⋅=,所以()22111122EFDHMN S t t ⎡⎤=---⎢⎥⎣⎦212t t ⎫=+-⎪⎭,在10,2t ⎛⎤∈ ⎥⎝⎦上递增,在1,12t ⎡⎫∈⎪⎢⎣⎭上递减,111224⎫+-=⎪⎭=x =所以()S x 在上递增,在上递减.x =()x当x ∈时,易得:())L x x =,())2S x x=-此时()L x ,()S x 在上单调递减,()L x <()x <综上可知:AD 是正确的,BC 错误.故选:AD12.答案:300(4解析:由题设,一个底面的面积为21161010sin 602S =⨯⨯⨯⨯︒=,一个侧面矩形面积为22102020c 0m S =⨯=,所以茶叶盒的表面积为22126300(4c mS S +=+.故答案为:300(4解析:连结1A B ,交AE 于点M ,作1//MN BC ,交11A C 于点N ,连结EN ,异面直线AE 与1BC 所成的角为EMN ∠或其补角,因为1//A E AB ,且,所以1::1:2EM MA A M MB ==,所以113BC ==,EN ==中,222cos 2ME MN EN EMN ME MN +-∠==⋅14.答案:28=(44)6⨯⨯=(22)34⨯⨯=,所以棱台的体积为32428-=.112A E AB =13ME AE ==123A N =EMN △3(16428⨯++=.故答案为28.15.答案:(1)证明见解析(2)见解析解析:(1)证明:因为AB AC =,O 是BC 的中点,所以OA BC ⊥.又因为OA CD ⊥,BC CD C = ,,BC CD ⊂平面BCD ,所以OA ⊥平面BCD .因为OA ⊂平面ABC ,所以平面ABC ⊥平面BCD .(2)如图,连接OD .因为BCD △是边长为2的等边三角形,所以DO BC ⊥.由(1)知,OA ⊥平面BCD ,所以AO ,BC ,DO 两两互相垂直.以O 为坐标原点,分别以OB ,OD ,OA 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.设||(0)OA m m =>,则(0,0,0)O ,(0,0,)A m ,(1,0,0)B ,(1,0,0)C -,D .若选①②作为条件,证明③成立.因为2CE EA =,所以2CE EA = ,所以12,0,33m E ⎛⎫- ⎪⎝⎭.易知平面BCD 的一个法向量为(0,0,1)=n ,42,0,33m BE ⎛⎫=- ⎪⎝⎭,(BD =-.设(,,)x y z =m 是平面BDE 的法向量,则0,0,BE BD ⎧⋅=⎪⎨⋅=⎪⎩m m 所以420,330.m x z x ⎧-+=⎪⎨⎪-=⎩令1x =,则y =z =2m ⎛⎫= ⎪ ⎪⎝⎭.由二面角EBD C --的大小为60||60||||⋅︒===m n m n 3m =.所以三棱锥A -1232⨯=若选①③作为条件,证明②成立.因为三棱锥A -122m ⨯=3=,即(0,0,3)A .又因为2CE EA =,所以1,0,23E ⎛⎫- ⎪⎝⎭.易知平面BCD 的一个法向量为(0,0,1)=n ,4,0,23BE ⎛⎫=- ⎪⎝⎭,(BD =-.设(,,)x y z =m 是平面BDE 的法向量,则0,0,BE BD ⎧⋅=⎪⎨⋅=⎪⎩ m m 即420,30.x z x ⎧-+=⎪⎨⎪-=⎩令1x =,则y =z =23⎛⎫= ⎪ ⎪⎝⎭.设二面角E BD C --的大小为θ,则|||cos |||||θ⋅===m n m n BD C --的大小为60︒.若选②③作为条件,证明①成立.又(1,0,0)C -,所以(1,0,3)AC =--.设(,,)E x y z .不妨设(01)AE AC λλ=≤≤,则(,,3)(1,0,3)x y z λ-=--,所以(,0,33)E λλ--+.易知平面BCD 的一个法向量为(0,0,1)=n ,(1,0,33)BE λλ=---+ ,(BD =-.设(,,)x y z =m 是平面BDE 的法向量,则0,0,BE BD ⎧⋅=⎪⎨⋅=⎪⎩ m m 即(1)(33)0,0.x z x λλ--+-=⎧⎪⎨-+=⎪⎩当1λ=时,二面角E BD C --的大小为0︒,不合题意,所以01λ≤<.令1x =,则y=z =133λλ⎛⎫+= ⎪ ⎪-⎝⎭.设二面角E BD C --的大小为θ,则|||cos |||||θ⋅===m n m n 解得3λ=(舍去)或λ=所以2CE EA =.16.答案:(1)证明见解析;;解析:(1)设CP DE G = ,连接, 四边形为矩形,∴G 为中点,又F 为PA 中点,,又FG ⊂平面,AC ⊄平面,//AC ∴平面.(2)以D 为坐标原点,DA ,,DP正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,FG PDCE PC //AC FG ∴DEF DEF DEF DC则,()1,1,0B ,,(P ,()1,1,0BC ∴=-,,(1,AE =-设平面BCP 的法向量,20BC n x y CP n y ⎧⋅=-+=⎪∴⎨⋅=-+=⎪⎩,令,解得:1x=,(n = ;设直线与平面BCP 所成角为,sin cos ,AE n AE n AE n θ⋅∴===⋅则直线与平面(3)(1,0,PA =,设,[]0,1λ∈由平面的法向量(n =,点F 到平面的距离2PF n d nλ⋅===解得,13PA = 解析:(1)设AC BD F = ,连接EF ,ABD △为底面圆O 的内接正三角形,2AC ∴==,F 为BD 中点,又AF ==322CF ∴=-=312AO AF ==;()1,0,0A ()0,2,0C (0,E (0,CP =- (),,n x y z =1y =z =AE θAE (),0,PF PA λλ==BCP BCP 13λ=AE = 1=,222AE CE AC ∴+=,AE EC ∴⊥,AF AE =AEF ACE ∽△△,AFE AEC ∠∠∴=,EF AC ∴⊥,;PO ⊥ 平面ABD ,PO ⊂平面PAC ,∴平面PAC ⊥平面ABD ,平面PAC 平面ABD AC =,EF ⊂平面PAC ,EF ∴⊥平面ABD ,又BD ⊆面ABD ,EF BD ⊥,又BD AC ⊥,EF AC F = ,BD ⊥面AEC ,又AE ⊂面AEC ,所以BD AE⊥又PO ⊥平面ABD ,//EF PO ∴,PO ⊄ 平面BDE ,EF ⊂平面BDE ,//PO ∴平面BDE ;F 为BD 中点,AF BD ∴⊥,即OF BD ⊥,又EF ⊥平面ABD ,平面,,OF BD ⊂平面ABD ,EF OF ∴⊥,EF BD ⊥,EF BD F = ,,EF BD ⊂平面BDE ,OF ∴⊥平面BDE ,EF === BD ⊥,1122BDE S BD EF ∴=⋅==△又12OF AF ==//平面BDE ,11313342P BDE O BDE BDE V V S OF --∴==⋅=⨯⨯=△(2)OF CF ==F 为OC 中点,又//PO EF ,∴E 为PC 中点,2PO EF =,PO ∴=2=,以F 为坐标原点,FB ,FC ,FE正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,则30,,02A ⎛⎫-⎪⎝⎭,B ⎫⎪⎪⎭,E ⎛⎝,D ⎛⎫ ⎪ ⎪⎝⎭,10,,02O ⎛⎫- ⎪⎝⎭,10,2P ⎛-⎝,3,02AB ⎫∴=⎪⎪⎭ ,30,2AE ⎛=⎝ ,(OP =,1,02DO ⎫=-⎪⎪⎭ ,3,02DA ⎫=-⎪⎪⎭ ,设()()01OMOP λλ==≤≤,12DM DO OM ⎫∴=+=-⎪⎪⎭ ;设平面ABE 的法向量(),,n x y z =,则302ABn x y ⋅=+= 则302AE n y z ⋅=+=令1y =-,解得:x =z =n =-,设直线DM 与平面ABE 所成角为θ,sin DM n DM n θ⋅∴===⋅令32t λ=+,则[]2,5t ∈,λ∴=2222222(2)1314717431(32)33t t t t t t t λλ-++-+⎛⎫∴===-+ ⎪+⎝⎭,111,52t⎡⎤∈⎢⎥⎣⎦,∴=即λ=22min 3131449(32)4λλ+⎤+==⎥+⎦max (sin )1θ∴==,此时12DM =- ,0,1,MA DA DM ⎛∴=-=- ⎝,∴点M 到平面ABE的距离MA n d n ⋅=== 18.答案:(1)证明见解析;(2)解析:(1)如图,设AC 与BD 交于点O .因为四边形ABCD 是菱形,所以AC BD ⊥.因为AF ⊥平面ABCD ,BD ⊂平面ABCD ,所以AF BD ⊥.因为AF AC A = ,AF AC ⊂、平面ACF ,所以BD ⊥平面ACF.又因为BD ⊂平面BDE ,所以平面BDE ⊥平面ACF .(2)因为AF ⊥平面ABCD ,//DE AF ,所以DE ⊥平面ABCD ,因为AC ⊂平面ABCD ,所以DE AC ⊥.又因为AC BD ⊥,DE BD D = ,,DE BD ⊂平面BDE ,所以AC ⊥平面BDE .连接OE ,AEO ∠即为AE 与平面BDE 所成的角,所以sin AO AEO AE ∠==因为4AD =,3DE =,所以5AE =,所以2AO =,所以24AC AO ==,所以ACD △是等边三角形.因为//DE AF ,DE ⊂平面BDE ,AF ⊄平面BDE ,所以//AF 平面BDE,所以111443332F CDE A CDE E ACD ACD V V V S DE ---===⋅=⨯⨯⨯=△19.答案:(1)见解析;(2)见解析解析:(1)建立如图所示的空间直角坐标系,设AC BD N = ,连结NE .则N ⎫⎪⎪⎭,()0,0,1E ,)A,M ⎫⎪⎪⎭.∴NE ⎛⎫ ⎪ ⎪⎝=⎭,AM ⎛⎫ =⎪ ⎪⎝⎭ .∴//AM NE 且NE 与AM 不共线.∴//NE AM . NE ⊂平面BDE ,AM ⊄平面BDE ,∴//AM 平面BDE .(2)由(1)知AM ⎛⎫ =⎪⎪⎝⎭ ,)D,)F ,∴()DF = ,∴0DF AM ⋅= ,∴AM DF ⊥.同理.又,平面.AM BF ⊥DF BF F = ∴AM ⊥BDF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何基本概念选择三十题姓名:_________________ 正确个数:_________________选择题(共30小题)1.(2012•浙江)设l是直线,α,β是两个不同的平面()A .若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥β.若α⊥β,l∥α,则l⊥β2.(2011•浙江)若直线l不平行于平面α,且l⊄α,则()A .α内存在直线与l异面B.α内存在与l平行的直线C .α内存在唯一的直线与l平行D.α内的直线与l都相交3.(2011•浙江)下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β4.(2010•浙江)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A若l⊥m,m⊂α,则l⊥α B若l⊥α,l∥m,则m⊥α C若l∥α,m⊂α,则l∥m D若l∥α,m∥α,则l∥m5.(2010•江西)如图,M是正方体ABCD﹣A1B1C1D1的棱DD1的中点,给出下列命题①过M点有且只有一条直线与直线 AB、B1C1都相交;②过M点有且只有一条直线与直线AB、B1C1都垂直;③过M点有且只有一个平面与直线AB、B1C1都相交;④过M点有且只有一个平面与直线AB、B1C1都平行.其中真命题是()A .②③④B.①③④C.①②④D.①②③6.(2008•江西)设直线m与平面α相交但不垂直,则下列说法中正确的是()A.在平面α内有且只有一条直线与直线m垂直B.过直线m有且只有一个平面与平面α垂直C与直线m垂直的直线不可能与平面α平行.D.与直线m平行的平面不可能与平面α垂直7.(2008•湖南)设有直线m、n和平面α、β,下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥β D.若α⊥β,m⊥β,m⊄α,则m∥α8.(2008•湖南)已知直线m、n和平面α、β满足m⊥n,m⊥α,α⊥β,则()A .n⊥βB.n∥β,或n⊂βC.n⊥αD.n∥α,或n⊂α9.(2008•海南)已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m ∥β,则下列四种位置关系中,不一定成立的是()A .AB∥m B.AC⊥m C.AB∥βD.AC⊥β10.(2008•安徽)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的为()A若α⊥γ,β⊥γ,则α∥βB.若m∥α,m∥β,则α∥βC若m∥α,n∥α,则m∥nD若m⊥α,n⊥α,则m∥n11.设a,b为两条直线,α,β为两个平面,下列四个命题中,正确的命题是()A .若a,b与α所成的角相等,则α∥b B.若a∥α,b∥β,α∥β,则a∥bC .若a⊂α,b⊂β,α∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,是a⊥b12.若m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中为真命题的是()A .若m⊂β,α⊥β,则m⊥αB.若α∩γ=m,β∩γ=n,m∥n,则α∥βC .若α⊥γ,α⊥β,则β∥γD.若m⊥β,m∥α,则α⊥β13.已知两条直线m,n,两个平面α,β,给出下面四个命题:①m∥n,m⊥α⇒n⊥α②α∥β,m⊂α,n⊂β⇒m∥n③m∥n,m∥α⇒n∥α④α∥β,m∥n,m⊥α⇒n⊥β其中正确命题的序号是()A .①③B.②④C.①④D.②③14.平面α外有两条直线m和n,如果m和n在平面α内的射影分别是m′和n′,给出下列四个命题:①m′⊥n′⇒m⊥n;②m⊥n⇒m′⊥n′;③m′与n′相交⇒m与n相交或重合;④m′与n′平行⇒m与n平行或重合.其中不正确的命题个数是()A1B2C3D4....15.已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是()A .m⊂α,n⊂α,m∥β,n∥β⇒α∥βB.α∥β,m⊂α,n⊂β,⇒m∥nC .m⊥α,m⊥n⇒n∥αD.n∥m,n⊥α⇒m⊥α16.对于任意的直线l与平面α,在平面α内必有直线m,使m与l()A .平行B.相交C.垂直D.互为异面直线17.给出下列四个命题:①垂直于同一直线的两条直线互相平行.②垂直于同一平面的两个平面互相平行.③若直线l1,l2与同一平面所成的角相等,则l1,l2互相平行.④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线.其中假命题的个数是()A .1B.2C.3D.418.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上19.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α,β都平行于γ②存在平面γ,使得α,β都垂直于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l,m,使得l∥α,l∥β,m∥α,m∥β.其中,可以判定α与β平行的条件有()A .1个B.2个C.3个D.4个20.已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若m⊥α,m⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若m∥α,n∥β,m∥n,则α∥β;④若m、n是异面直线,m⊥α,m∥β,n⊥β,n∥α,则α⊥β其中真命题是()A .①和②B.①和③C.③和④D.①和④21.已知a、b、c是三条直线,β是平面,给出下列命题:①若a⊥b,b⊥c,则a∥c;②若a∥b,b⊥c,则a⊥c;③若a∥β,b⊂β,则a∥b;④若a与b异面,且a∥β,则b与β相交;⑤若a与b异面,则至多有一条直线与a,b都垂直.其中真命题的个数是()A .1B.2C.3D.422.已知直线m、n与平面α,β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中真命题的个数是()A .0B.1C.2D.323.不同直线m,n和不同平面α,β,给出下列命题:①,②,③,④其中假命题有:()A .0个B.1个C.2个D.3个24.在下列关于直线l、m与平面α、β的命题中,真命题是()A .若l⊂β,且α⊥β,则l⊥αB.若l⊥β,且α∥β,则l⊥αC .若α∩β=m,且l⊥m,则l∥αD.若l⊥β,且α⊥β,则l∥α25.(2004•湖北)如图是正方体的平面展开图.在这个正方形中,①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.以上四个命题中,正确命题的序号是()A .①②③B.②④C.③④D.②③④26.设m、n是两条不同的直线,α、β、γ是三个不同的平面.给出下列四个命题,其中正确命题的序号是()①若m⊥α,n∥α,则m⊥n ②若α∥β,β∥γ,m⊥α,则m⊥γ ③若m∥α,n∥α,则m∥n ④若α⊥γ,β⊥γ,则α∥βA .①②B.②③C.③④D.①④27.已知三条直线m、n、l,三个平面α、β、γ,下列四个命题中,正确的是()A .B.C.D.28.在下列条件中,可判断平面α与β平行的是()A.α、β都垂直于平面rB.α内存在不共线的三点到β的距离相等C.l,m是α内两条直线,且l∥β,m∥βD.l,m是两条异面直线,且l∥α,m∥α,l∥β,m∥β29.已知m,n为异面直线,m⊂平面α,n⊂平面β,α∩β=l,则l()A .与m,n都相交B.与m,n中至少一条相交C .与m,n都不相交D.至多与m,n中的一条相交30.已知直线l、m,平面α、β,且l⊥a,m⊥β,给出下列四个命题;(1)若α∥β,则l⊥m.(2)若l⊥m,则α∥β.(3)若α⊥β,则l∥m.(4)若l∥m,则α//β.其中正确命题的个数是()A .1个B.2个C.3个D.4个。