两角和与差的正弦、余弦公式及其应用
3.1 两角和与差的正弦、余弦和正切公式
3.1 两角和与差的正弦、余弦和正切公式3.1.1 两角差的余弦公式课标要求1.熟悉用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用.2.熟记两角差的余弦公式,并能灵活运用.重点难点重点:两角差的余弦公式的推导及应用.难点:两角差的余弦公式的推导.两角差的余弦公式cos(α-β)= ,可简记为C(α-β),其中α,β是任意角.思考: (1)两角差的余弦公式是如何推导的?(一是利用三角函数线,二是利用向量数量积)(2)公式有何特点?(公式的特点:公式左边是差角的余弦,公式右边的式子是两组含有同名弦函数之积的和式,可用口诀“余余正正号相反”记忆)题型一 运用公式化简求值【例1】 化简求值:(1)cos 75°;(2)cos 63°sin 57°+sin 117°sin 33°;(3)cos(α+β)cos β+sin(α+β)sin β.名师导引:(2)(3)中所给式子不符合两角差的余弦公式,可先用诱导公式调整再计算.题后反思 (1)求非特殊角的余弦值时可将角转化为特殊角的差,正用公式直接求值.(2)在转化过程中,可利用诱导公式调整角和函数名称构造公式的结构形式然后逆用公式求值. 跟踪训练11:cos 15°cos 45°+cos 75°sin 45°的值为( )(A)12 (C)-12 题型二 条件求值【例2】 已知α,β∈(3π4,π),sin(α+β)=-35, sin (β-π4)=1213,求cos (α+π4)的值. 题后反思 (1)求解给值求值型问题,一般思路是:先看公式中的量,哪些是已知的,哪些是待求的,再利用已知条件结合同角三角函数的基本关系求出待求值.注意根据角的终边所在的象限确定符号.(2)注意角的配凑:如(α+β)-α=β,(α+β)-β=α,(2α+β)-α=α+β,(α+2β)-β=α+β等.跟踪训练21:(2014牡丹江一中期末)若α,β均为锐角,sin(α+β)=35,则cos β=()【例1】求cos 31π12+cos25π12的值.【例2】已知sin α+sin β,求(cos α+cos β)2的取值范围. 达标检测——反馈矫正及时总结1.cos 65°cos 35°+sin 65°sin 35°等于(C)(A)cos 100°(B)sin 100°(D)1 22.已知锐角α、β满足cos α=35,cos(α+β)=-513,则cos β等于(A)(A) 3365(B)-3365(C)5475(D)-54753.sin 75°=.4.°+12sin 75°= .课堂小结1.利用向量数量积、推导两角差的余弦公式.2.利用两角差的余弦公式可实现给式求值或给值求值问题,求解关键是“变式”或“变角”构造公式的结构形式.同时注意公式的正用和逆用及拆角、拼角等技巧.3.1.2两角和与差的正弦、余弦、正切公式1.能根据两角差的余弦公式推导出两角和与差的正弦、正切公式和两角和的余弦公式.2.熟练掌握两角和与差的正弦、余弦、正切公式的特征.3.能灵活运用公式进行化简和求值.重点:(1)两角和与差的正弦、余弦、正切公式的特征.(2)利用公式进行化简和求值.难点:两角和与差的正弦、余弦、正切公式的逆用和变形用.1.两角和的余弦公式cos(α+β)=,简记为C(α+β).思考1: C(α±β)公式有什么共同特征?(余弦在前,正弦在后,符号改变)2.两角和与差的正弦公式S(α+β):sin(α+β)=; S(α-β):sin(α-β)=.思考2: S(α±β)有何特征?(异名乘,符号同)拓展提升:辅角公式ϕ)(其中tan ϕ=ba,ϕ为辅助角);ϕ)(其中tan ϕ=ab,ϕ为辅助角).3.两角和与差的正切公式T(α+β):tan(α+β)=tan tan1tan tanαβαβ+-;T(α-β):tan(α-β)=tan tan1tan tanαβαβ-+.思考3:使用T(α±β)的条件是什么?(公式T(α±β)只有在α≠π2+k1π,β≠π2+k2π,α±β≠π2+k3π(k1,k2,k3∈Z)时才成立,否则就不成立,这是由正切函数的定义域所决定的)题型一三角函数式的化简求值【例1】(1)cos 105°;(2)sin 14°cos 16°+sin 76°cos 74°;(3)sinπ12cosπ12;(4)1tan751tan75+-.名师导引:(1)将105°转化为两个特殊角的和或差,直接利用公式求解.(2)先利用诱导公式统一角度再逆用两角和的正弦公式求解.(3)提取2后将12,逆用公式求解.(4)注意“1”的转化,逆用两角和的正切公式求解.题后反思三角函数式的化简与求值主要是诱导公式、同角三角函数基本关系、两角和差的正余弦、正切公式的正用、逆用和变形用,观察式子结构特点选取合适公式是解题的关键.转化过程中注意“1”与“tanπ4”、“”与“tan π3”、“12”与“cos π3”等特殊数与特殊角的函数值之间的转化.跟踪训练11:(1)求sin(θ+75°)+cos(θ+45°)cos(θ+15°)的值;(2)(2014遵义四中期末)求tan 20°+tan 40°tan 20° tan 40°的值.题型二三角函数的条件求值【例2】已知π2<β<α<34π,cos(α-β)= 1213,sin(α+β)=-35,求cos 2α的值.名师导引:(1)寻找角的关系2α=(α+β)+(α-β);(2)借助同角三角函数关系及两角和的余弦公式求解.题后反思(1)解决三角函数条件求值问题的关键是寻找已知角与所求角之间的关系,恰当地拆角凑角、合理地选用公式.(2)常见角的变换有α=(α+β)-β、α=β-(β-α)、2α=(α+β)+(α-β)等.跟踪训练21:(2014洛阳期末)已知tan (π4+α)=2,tan(α-β)= 12,α∈(0,π4),β∈(-π4,0). (1)求tan α的值;(2)求212sin cos cos ααα+的值;(3)求2α-β的值. 题型三 辅角公式的应用【例3】 当函数取得最大值时,x= .题后反思 辅角公式ϕ)(或ϕ))可以将形如asin x+bcos x(a,b 不同时为零)的三角函数式写成一个角的三角函数式.这样有利于三角函数式的化简求值,更有助于研究三角函数的性质.跟踪训练31:函数f(x)=sin x-cos (x+π6)的值域为( B )](C)[-1,1] ] 【例1】 已知sin(α+β)=12,sin(α-β)=13,求tan tan αβ的值.【例2】 已知α,β都是锐角,且,sin β=12,求α-β的值. 达标检测——反馈矫正 及时总结 .(2014清远期末)化简:sin 21°cos 81°-cos 21°sin 81°等于( D )(A)12 (B)-12 2.已知α是锐角,sin α=35,则cos (π4+α)等于( B )(D) 3.sin 255°= . 4.1tan12tan72tan12tan72--= . 5.已知α+β=45°,求(1+tan α)·(1+tan β)的值.1.两角和差公式可以看成是诱导公式的推广,诱导公式可以看成两角和差公式的特例.2.利用两角和与差的正、余弦、正切公式解决问题时常用到方程思想和整体思想.求解时注意角的变换,根据角的差异及式子的差异选择恰当公式,找准解题思路和方法.3.求值时注意角的范围引起的三角函数值符号的变化.。
两角和与差的正弦余弦正切公式
两角和与差的正弦余弦正切公式下面我们将分别介绍两角和与差的正弦、余弦和正切公式。
1.正弦的两角和与差公式:设角A和角B的正弦值分别为sinA和sinB,那么有:sin(A + B) = sinA * cosB + cosA * sinBsin(A - B) = sinA * cosB - cosA * sinB证明:我们考虑一个单位圆(半径为1),圆心为O,且角A对应的弧与x 轴的交点为点P,角B对应的弧与x轴的交点为点Q。
根据单位圆上的点的坐标表示,我们有:点P的坐标为(cosA, sinA)点Q的坐标为(cosB, sinB)以O为起点,连接OP和OQ,将其延长到圆的边缘,分别交于点M和点N。
由于所有的角度都是以弧度来表示的,因此我们可以使用三角函数的定义来表示OP和OQ的长度。
通过定义我们有:sinA = PMcosA = OMsinB = QNcosB = ON现在我们来计算sin(A + B)。
根据三角形的正弦定理,我们可以得到:sin(A + B) = PN(即三角形OPN的高)通过几何推导我们可以发现,三角形OPN的底边的长度为cosB * cosA。
同样地,通过几何推导我们可以发现,三角形OPN的高为sinA * cosB + cosA * sinB。
因此,我们得到sin(A + B) = sinA * cosB + cosA * sinB。
同理,可以推导得到sin(A - B) = sinA * cosB - cosA * sinB。
2.余弦的两角和与差公式:设角A和角B的余弦值分别为cosA和cosB,那么有:cos(A + B) = cosA * cosB - sinA * sinBcos(A - B) = cosA * cosB + sinA * sinB证明:我们考虑一个单位圆(半径为1),圆心为O,且角A对应的弧与x 轴的交点为点P,角B对应的弧与x轴的交点为点Q。
根据单位圆上的点的坐标表示,我们有:点P的坐标为(cosA, sinA)点Q的坐标为(cosB, sinB)以O为起点,连接OP和OQ,将其延长到圆的边缘,分别交于点M和点N。
(完整版)两角和与差的正弦、余弦、正切公式及变形
两角和与差的正弦、余弦、正切公式及变形1.两角和与差的正弦、余弦、正切公式 (1)公式①cos(α-β)=cos_αcos_β+sin_αsin_β(C (α-β)) ②cos(α+β)=cos_αcos_β-sin_αsin_β(C (α+β)) ③sin(α-β)=sin_αcos_β-cos_αsin_β(S (α-β)) ④sin(α+β)=sin_αcos_β+cos_αsin_β(S (α+β)) ⑤tan(α-β)=tan α-tan β1+tan αtan β(T (α-β))⑥tan(α+β)=tan α+tan β1-tan αtan β(T (α+β))(2)公式变形①tan α+tan β=tan(α+β)(1-tan αtan β). ②tan α-tan β=tan(α-β)(1+tan αtan β). 2.二倍角公式 (1)公式①sin 2α=2sin_αcos_α,②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α, ③tan 2α=2tan α1-tan 2α.(2)公式变形①cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;②1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin )4(πα±.3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)两角和与差的正弦、余弦公式中的角α,β是任意的.(√) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√) (3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.(×)(4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.(×)(5)二倍角的正弦、余弦、正切公式的适用范围是任意角.(×) (6)存在角α,使得sin 2α=2sin α成立.(√) (7)若α+β=π4,则(1+tan α)(1+tan β)=2.(√)(8)不存在实数α,β,使得cos(α+β)=sin α+cos β.(×) (9)存在实数α,使tan 2α=2tan α.(√) (10)y =1-2cos 2x 的x 无意义.(×)考点一 三角函数式的给角求值命题点1.已知非特殊角求函数式的值2.已知含参数的角化简函数或求值[例1] (1)求值:1+cos 20°2sin 20°-sin 10°)5tan 5tan 1(0-; 解:原式=2cos 210°2×2sin 10°cos 10°-sin 10°)5cos 5sin 5sin 5cos (0000- =cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32. (2)化简:sin 2α·sin 2β+cos 2α·cos 2β-12cos 2α·cos 2β. 解:法一:(复角→单角,从“角”入手)原式=sin 2α·sin 2β+cos 2α·cos 2β-12·(2cos 2α-1)·(2cos 2β-1) =sin 2α·sin 2β+cos 2α·cos 2β-12·(4cos 2α·cos 2β-2cos 2α-2cos 2β+1)=sin 2α·sin 2β-cos 2α·cos 2β+cos 2α+cos 2β-12 =sin 2α·sin 2β+cos 2α·sin 2β+cos 2β-12 =sin 2β+cos 2β-12=1-12=12. 法二:(从“名”入手,异名化同名)原式=sin 2α·sin 2β+(1-sin 2α)·cos 2β-12cos 2α·cos 2β=cos 2β-sin 2α(cos 2β-sin 2β)-12cos 2α·cos 2β=cos 2β-sin 2α·cos 2β-12cos 2α·cos 2β=cos 2β-cos 2β·)2cos 21(sin 2αα+=1+cos 2β2-cos 2β·⎣⎢⎡⎦⎥⎤sin 2α+12(1-2sin 2α) =1+cos 2β2-12cos 2β=12.法三:(从“幂”入手,利用降幂公式先降次) 原式=1-cos 2α2·1-cos 2β2+1+cos 2α2·1+cos 2β2-12cos 2α·cos 2β =14(1+cos 2α·cos 2β-cos 2α-cos 2β)+14(1+cos 2α·cos 2β+cos 2α+cos 2β)-12·cos 2α·cos 2β=12.[方法引航] 给角求值问题往往给出的角是非特殊角,求值时要注意:(1)观察角,分析角之间的差异,巧用诱导公式或拆分.(2)观察名,尽可能使函数统一名称.(3)观察结构,利用公式,整体化简.1.求值sin 50°(1+3tan 10°).解:sin 50°(1+3tan 10°)=sin 50°(1+tan 60°·tan 10°) =sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·cos (60°-10°)cos 60°cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.2.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为________.解析:因为三个内角A ,B ,C 成等差数列,且A +B +C =π, 所以A +C =2π3,A +C 2=π3,tan A +C 2=3, 所以tan A 2+tan C 2+3tan A 2tan C2 =tan )22(C A +)2tan 2tan 1(CA -+3tan A 2tan C 2 =3)2tan 2tan1(CA -+3tan A 2tan C 2= 3. 考点二 三角函数式的给值求值[例2] (1)(2016·高考全国丙卷)若tan θ=-13,则cos 2θ=( ) A .-45 B .-15 C.15 D.45解析:法一:cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45.故选D. 法二:由tan θ=-13,可得sin θ=±110,因而cos 2θ=1-2sin 2θ=45.答案:D(2)已知tan )4(πα+=12,且-π2<α<0,则)4cos(2sin sin 22πααα-+等于( )A .-255B .-3510C .-31010 D.255 解析:由tan )4(πα+=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010. 故)4cos(2sin sin 22πααα-+=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.答案:A(3)已知α∈)2,0(π,且2sin 2α-sin α·cos α-3cos 2α=0,则12cos 2sin )4sin(+++ααπα=________.解析:2sin 2α-sin αcos α-3cos 2α=0则(2sin α-3cos α)(sin α+cos α)=0, 由于α∈)2,0(π,sin α+cos α≠0, 则2sin α=3cos α.又sin 2α+cos 2α=1,∴cos α=213, ∴12cos 2sin )4sin(+++ααπα=22(sin α+cos α)(sin α+cos α)2+(-sin 2α+cos 2α)=268.答案:268[方法引航] 三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍”的关系或“互余互补”的关系.(3)已知三角函数时,先化简三角函数式,再利用整体代入求值.1.在本例(1)中,已知条件不变,求tan )6(θπ+的值.解:tan )6(θπ+=tan π6+tan θ1-tan π6tan θ=33-131+33×13=53-613.2.在本例(1)中,已知条件不变,求2sin 2θ-sin θcos θ-3cos 2θ的值. 解:原式=2sin 2θ-sin θcos θ-3cos 2θsin 2θ+cos 2θ=2tan 2θ-tan θ-3tan 2θ+1=2×⎝ ⎛⎭⎪⎫-132+13-3⎝ ⎛⎭⎪⎫-132+1=-115.3.已知cos )2(απ-+sin )32(απ-=235,则cos )32(πα+=________.解析:由cos )2(απ-+sin )32(απ-=235,得sin α+sin 2π3cos α-cos 23πsin α=235∴32sin α+32cos α=235, 即3sin )6(πα+=235,∴sin )6(πα+=25,因此cos )32(πα+=1-2sin 2)6(πα+=1-2×2)52(=1725.答案:1725考点三 已知三角函数式的值求角[例3] (1)已知cos α=17,cos(α-β)=1314,0<β<α<π2,则β=________. 解析:∵cos α=17,0<α<π2.∴sin α=437.又cos(α-β)=1314,且0<β<α<π2.∴0<α-β<π2,则sin(α-β)=3314. 则cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=497×14=12,由于0<β<π2,所以β=π3.答案:π3(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.解析:∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,∴0<α<π2.又∵tan 2α=2tan α1-tan 2α=2)31(1312-⨯=34>0,∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1. ∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-34π. 答案:-34π[方法引航] 1.解决给值求角问题应遵循的原则 (1)已知正切函数值,选正切函数.(2)已知正、余弦函数值,选正弦函数或余弦函数,且①若角的范围是)2,0(π,选正、余弦皆可;②若角的范围是(0,π),选余弦较好;③若角的范围是)2,2(ππ-,选正弦较好. 2.解给值求角问题的一般步骤 (1)求角的某一个三角函数值. (2)确定角的范围.(3)根据角的范围写出所求的角.1.设α,β为钝角,且sin α=55,cos β=-31010,则α+β的值为( ) A.3π4 B.5π4 C.7π4 D.5π4或7π4 解析:选C.∵α,β为钝角,sin α=55,cos β=-31010, ∴cos α=-255,sin β=1010,∴cos(α+β)=cos αcos β-sin αsin β=22>0.又α+β∈(π,2π),∴α+β∈)2,23(ππ,∴α+β=7π4. 2.已知tan α=-13,cos β=55,α∈),2(ππ,β∈)2,0(π,求tan(α+β)的值,并求出α+β的值.解:由cos β=55,β∈)2,0(π,得sin β=255,tan β=2.∴tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1. ∵α∈),2(ππ,β∈)2,0(π,∴π2<α+β<3π2,∴α+β=5π4.[方法探究]三角恒等变换在化简、求值、证明中的综合应用三角恒等变换要重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[典例] 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: (1)sin 213°+cos 217°-sin 13°cos 17°; (2)sin 215°+cos 215°-sin 15°cos 15°; (3)sin 218°+cos 212°-sin 18°cos 12°; (4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°; (5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. [解] (Ⅰ)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34. (Ⅱ)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin α·cos α-12sin 2α=34sin 2α+34cos 2α=34.法二:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α=12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α)=1-14cos 2α-14+14cos 2α=34.[高考真题体验]1.(2016·高考全国甲卷)若cos )4(απ-=35,则sin 2α=( )A.725B.15 C .-15 D .-725解析:选D.因为cos )4(απ-=cos π4cos α+sin π4sin α=22(sin α+cos α)=35,所以sin α+cos α=325,所以1+sin 2α=1825,所以sin 2α=-725,故选D. 2.(2016·高考全国丙卷)若tan α=34,则cos 2α+2sin 2α=( ) A.6425 B.4825 C .1 D.1625 解析:选A.法一:由tan α=sin αcos α=34,cos 2α+sin 2α=1,得⎩⎪⎨⎪⎧sin α=35cos α=45或⎩⎪⎨⎪⎧sin α=-35cos α=-45,则sin 2α=2sin αcos α=2425,则cos 2α+2sin 2α=1625+4825=6425. 法二:cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=1+31+916=6425. 3.(2015·高考课标全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32 B.32C .-12 D.12解析:选D.sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=12.4.(2014·高考课标全国卷Ⅰ)设α∈)2,0(π,β∈)2,0(π,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2解析:选 B.由条件得sin αcos α=1+sin βcos β,即sin αcos β=cos α(1+sin β),sin(α-β)=cos α=sin )2(απ-,因为-π2<α-β<π2,0<π2-α<π2,所以α-β=π2-α,所以2α-β=π2,故选B.5.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________. 解析:由sin α+2cos α=0,得tan α=-2.所以2sin αcos α-cos 2α=2sin αcos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1=-4-14+1=-1.答案:-16.(2016·高考四川卷)cos 2π8-sin 2π8=________.解析:由二倍角公式,得cos 2π8-sin 2π8=cos )82(π⨯=22.答案:22课时规范训练 A 组 基础演练1.tan 15°+1tan 15°=( )A .2B .2+3C .4 D.433 解析:选C.法一:tan 15°+1tan 15°=sin 15°cos 15°+cos 15°sin 15° =1cos 15°sin 15°=2sin 30°=4.法二:tan 15°+1tan 15°=1-cos 30°sin 30°+1sin 30°1+cos 30°=1-cos 30°sin 30°+1+cos 30°sin 30°=2sin 30°=4.2.2cos 10°-sin 20°sin 70°的值是( ) A.12 B.32 C. 3 D. 2解析:选C.原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3.3.已知θ∈(0,π),且sin )4(πθ-=210,则tan 2θ=( ) A.43 B.34 C .-247 D.247解析:选C.由sin )4(πθ-=210,得22(sin θ-cos θ)=210,所以sin θ-cos θ=15. 解方程组⎩⎪⎨⎪⎧ sin θ-cos θ=15sin 2θ+cos 2θ=1,得⎩⎪⎨⎪⎧ sin θ=45cos θ=35或⎩⎪⎨⎪⎧ sin θ=-35cos θ=-45.因为θ∈(0,π),所以sin θ>0,所以⎩⎪⎨⎪⎧ sin θ=-35cos θ=-45不合题意,舍去,所以tan θ=43,所以tan 2θ=2tan θ1-tan 2θ=2×431-⎝ ⎛⎭⎪⎫432=-247,故选C. 4.若θ∈]2,4[ππ,sin 2θ=378,则sin θ等于( ) A.35 B.45 C.74 D.34解析:选D.由sin 2θ=387和sin 2θ+cos 2θ=1得(sin θ+cos θ)2=378+1=2)473(+,又θ∈]2,4[ππ,∴sin θ+cos θ=3+74. 同理,sin θ-cos θ=3-74,∴sin θ=34.5.已知sin 2(α+γ)=n sin 2β,则tan (α+β+γ)tan (α-β+γ)的值为( ) A.n -1n +1 B.n n +1 C.n n -1 D.n +1n -1解析:选D.由已知可得sin[(α+β+γ)+(α-β+γ)]=n sin[(α+β+γ)-(α-β+γ)],则sin(α+β+γ)·cos(α-β+γ)+cos(α+β+γ)sin(α-β+γ)=n [sin(α+β+γ)cos(α-β+γ)-cos(α+β+γ)sin(α-β+γ)],即(n +1)cos(α+β+γ)sin(α-β+γ)=(n -1)sin(α+β+γ)cos(α-β+γ),所以tan (α+β+γ)tan (α-β+γ)=n +1n -1,故选D. 6.若sin )2(θπ+=35,则cos 2θ=________. 解析:∵sin )2(θπ+=cos θ=35,∴cos 2θ=2cos 2θ-1=2×2)53(-1=-725. 答案:-7257.若点P (cos α,sin α)在直线y =-2x 上,则sin 2α+2cos 2α=________.解析:∵点P (cos α,sin α)在直线y =-2x 上∴sin α=-2cos α,于是sin 2α+2cos 2α=2sin αcos α+2(2cos 2α-1)=-4cos 2α+4cos 2α-2=-2.答案:-28.设sin 2α=-sin α,α∈),2(ππ,则tan 2α的值是________. 解析:∵sin 2α=-sin α,∴2sin αcos α=-sin α.∵α∈),2(ππ,sin α≠0,∴cos α=-12.又∵α∈),2(ππ,∴α=23π, ∴tan 2α=tan 43π=tan )3(ππ+=tan π3= 3. 答案: 39.化简:(1+sin θ+cos θ)⎝ ⎛⎭⎪⎫sin θ2-cos θ22+2cos θ(0<θ<π). 解:由θ∈(0,π),得0<θ2<π2,∴cos θ2>0, ∴2+2cos θ=4cos 2θ2=2cos θ2.又(1+sin θ+cos θ))2cos 2(sin θθ-=)2cos 2)(sin 2cos 22cos 2sin 2(2θθθθθ-+ =2cos θ2)2cos 2(sin 22θθ- =-2cos θ2cos θ.故原式=-2cos θ2cos θ2cos θ2=-cos θ. 10.已知α∈),2(ππ,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈),2(ππ,求cos β的值. 解:(1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos[α-(α-β)=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×)53(-=-43+310. B 组 能力突破 1.已知sin α+cos α=22,则1-2sin 2)4(απ-=( )A.12B.32 C .-12 D .-32解析:选C.由sin α+cos α=22,得1+2sin αcos α=12,∴sin 2α=-12.因此1-2sin 2)4(απ-=cos2)4(απ-=sin 2α=-12. 2.已知f (x )=2tan x -2sin 2x 2-1sin x 2cos x 2,则f )12(π的值为( )A .43 B.833 C .4 D .8解析:选D.∵f (x )=2)sin cos cos sin (2)sin cos (tan xx x x x x x +⨯=+=2×1cos x ·sin x =4sin 2x , ∴f )12(π=4sin π6=8. 3.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( )A.5π12B.π3C.π4D.π6解析:选C.∵α、β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010.又sin α=55,∴cos α=255,∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×)1010(-=22. ∴β=π4.4.若tan α=lg(10a ),tan β=lg 1a ,且α+β=π4,则实数a 的值为________.解析:tan α+tan β=lg(10a )+lg 1a =lg 10=1,∵α+β=π4,所以tan π4=tan(α+β)=tan α+tan β1-tan αtan β=11-tan αtan β, ∴tan αtan β=0,则有tan α=lg(10a )=0或tan β=lg 1a =0.所以10a =1或1a =1,即a =110或1.答案:110或15.已知tan(π+α)=-13,tan(α+β)=ααααπ2sincos10cos4)2(2sin22-+-.(1)求tan(α+β)的值;(2)求tan β的值.解:(1)∵tan(π+α)=-13,∴tan α=-13.∵tan(α+β)=ααααπ2sincos10cos4)2(2sin22-+-=sin 2α+4cos2α10cos2α-sin 2α=2sin αcos α+4cos2α10cos2α-2sin αcos α=2cosα(sin α+2cos α)2cos α(5cos α-sin α)=sin α+2cos α5cos α-sin α=tan α+25-tan α=-13+25-⎝⎛⎭⎪⎫-13=516.(2)tan β=tan[(α+β)-α]=tan(α+β)-tan α1+tan(α+β)tan α=516+131-516×13=3143.。
两角和与差的正余弦公式应用辅助角公式
举例说明:利用两角和与差的正余 弦公式和辅助角公式,可以化简复 杂的三角函数式,进而求出最值。
添加标题
添加标题
添加标题
添加标题
结合应用举例:求三角函数的最值、 化简三角函数式等。
结合应用举例:在物理、工程等领域 中,可以利用两角和与差的正余弦公 式与辅助角公式的结合应用,解决一 些实际问题。
感谢您的观看
汇报人:XX
公式推导:通过两角和与差的正余弦公式推导出辅助角公式 角度范围:确定两角和与差的正余弦公式和辅助角公式的适用角度范围 实例解析:结合具体实例,展示如何应用两角和与差的正余弦公式与辅助角公式解决实际问题 注意事项:强调在应用过程中需要注意的事项,如公式的适用条件、计算精度等
两角和与差的正余弦公式与辅助角 公式的结合应用,可以解决一些三 角函数问题。
注意事项:使用公 式时需要注意角度 的范围和特殊情况 的处理
公式形式:sin(x+y)=sinxcosy+cosxsiny,sin(x-y)=sinxcosy-cosxsiny 应用场景:解决三角函数问题,如求角度、求长度等
辅助角公式:将两角和与差的正弦公式中的x和y视为辅助角,可以简化计算过程
证明方法:利用三角函数的加法定理进行证明
三角函数图像的变换 求解最值问题 解决周期和对称性问题处理切线问题
公式形式:asinx+bcosx=sqrt(a^2+b^2)sin(x+φ),其中φ为辅助角 应用举例:求函数y=sinx+cosx的值域 应用举例:求函数y=sin2x+cos2x的最小正周期 应用举例:求函数y=sin(x+π/4)+cos(x-π/4)的最大值
两角和与差的正余 弦公式与辅助角公 式的结合应用
两角和与差的三角函数公式知识点
两角和与差的三角函数公式知识点两角和与差的三角函数公式属于高中数学的重要内容,主要通过利用三角函数的性质,研究两个角的和与差的三角函数值之间的关系。
在解决三角方程、证明恒等式等问题时,这些公式的应用非常广泛。
本文将从公式的定义、推导及应用方面进行详细解析。
一、两角和的三角函数公式1.余弦和公式:cos(A+B) = cosAcosB - sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。
我们知道,其对应的三条直角边分别是x、x'、x"和y、y'、y",根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个内角之和应该等于180°,即有:∠POR+∠POQ+∠QOR=180°∠A+∠B+∠(A+B)=180°2A+B=180°将以上结果代入三角函数的定义中,我们可以得到:cos(A+B) = x" = x'x - y'y = cosAcosB - sinAsinB2.正弦和公式:sin(A+B) = sinAcosB + cosAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。
同样,根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个边长之和应该等于2,即有:PR+PQ+QR=2∠POR+∠POQ+∠QOR=360°∠A+∠B+∠(A+B)=360°2A+B=360°将以上结果代入三角函数的定义中,我们可以得到:sin(A+B) = y" = xy' + yx' = sinAcosB + cosAsinB二、两角差的三角函数公式1.余弦差公式:cos(A-B) = cosAcosB + sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A-B。
两角和与差的正弦公式与余弦公式
两角和与差的正弦公式与余弦公式角的和与差的正弦公式正弦函数是三角函数中的一种,描述了一个角度与其对应弧的长度之间的关系。
在数学中,角的和与差的正弦公式可以帮助我们计算两个角的正弦值之和与差。
具体来说,我们有以下两个公式:1.两角和的正弦公式:sin(A + B) = sinA * cosB + cosA * sinB这个公式告诉我们,两个角A和B的正弦值之和等于第一个角的正弦乘以第二个角的余弦,再加上第一个角的余弦乘以第二个角的正弦。
2.两角差的正弦公式:sin(A - B) = sinA * cosB - cosA * sinB这个公式告诉我们,两个角A和B的正弦值之差等于第一个角的正弦乘以第二个角的余弦,再减去第一个角的余弦乘以第二个角的正弦。
例如,假设角A的正弦值是0.5,角B的余弦值是0.7,我们可以使用两角和的正弦公式计算两个角的和的正弦值:sin(A + B) = sinA * cosB + cosA * sinB= 0.5 * 0.7 + cosA * sinB= 0.35 + cosA * sinB这样,我们可以使用已知的角A和B的正弦和余弦值,计算出两个角的和的正弦值。
角的和与差的余弦公式除了正弦函数之外,余弦函数也是三角函数中的一种,描述了一个角度与其对应弧的长度之间的关系。
与角的和与差的正弦公式类似,我们也可以使用公式来计算两个角的余弦值之和与差。
具体来说,我们有以下两个公式:1.两角和的余弦公式:cos(A + B) = cosA * cosB - sinA * sinB这个公式告诉我们,两个角A和B的余弦值之和等于第一个角的余弦乘以第二个角的余弦,再减去第一个角的正弦乘以第二个角的正弦。
2.两角差的余弦公式:cos(A - B) = cosA * cosB + sinA * sinB这个公式告诉我们,两个角A和B的余弦值之差等于第一个角的余弦乘以第二个角的余弦,再加上第一个角的正弦乘以第二个角的正弦。
高中数学两角和与差的正弦、余弦、正切公式课件
Thanks.
小结:
1.掌握C ( ) , C( ) 公式的推导,小心
它们的差别与联系;
2.注意角的拆分与组合,如:
( ) , 2 ( ) ,
2 ( ) ( ),
2 ( ) ( ),
( − ) = − .
公式五
( − ) = ,
( − ) = .
公式六
( + ) = ,
2
( + ) = − .
2
3.两点间的距离公式
平面上任取两点A(x 1 , y1 ), B(x 2 , y 2 )
2
2
sin cos cos sin
两角差的正弦公式
两角和的正弦公式:sin( ) sin cos cos sin
两角差的正弦公式:sin( ) sin cos cos sin
法一:
sin( )
sin[ ( )]
A(x 1 , y 1 )
y
| y1 y 2 |
B(x 2 , y 2 )
| x1 x 2 |
0
x
2
2
AB (x1 x2 ) (y 1 y 2 )
02
两角和与差的余弦公式
终边
两角差的余弦公式
y
P1 (cos , sin )
终边
A1 (cos , sin )源自,
2
2
2
3.注意整体代换思想的应用.
2
;
1
④ cos
高考数学两角和与差的正弦、余弦和正切公式
11 4 3 3 .已知 cos(2α - β) =- , sin(α - 2β) = , 14 7 π π 0<β< <α< .则 cos(α+β)的值为________. 4 2
11 π 解析:∵cos(2α-β)=- 且 <2α-β<π, 14 4 5 3 ∴sin(2α-β)= . 14 ∵sin(α-2β)= 4 3 π π 且- <α-2β< , 7 4 2
1 ∴cos(α-2β)= , 7 ∴cos(α+β)=cos[(2α-β)-(α-2β)] =cos(2α-β)cos(α-2β)+sin(2α-β)sin(α-2β) 11 1 5 3 4 3 1 =- × + × = . 14 7 14 7 2 1 答案: 2
考点一
三角函数公式的基本应用 基础送分型考点——自主练透
7 答案:- 9
2. 在△ABC 中, 若 tan Atan B= tan A+tan B+1, 则 cos C 的值为________.
解析: 由 tan Atan B= tan A+ tan B+ 1, tan A+ tan B 可得 =- 1, 1- tan Atan B 即 tan(A+ B)=- 1,又 A+ B∈ (0, π), 3π 所以 A+ B= , 4 π 2 则 C= , cos C= . 4 2 2 答案: 2
4. 已知
π 2 π 3 tanα- = , tan +β= , 则 6 7 6 5
tan(α+ β)= ________.
π π 解析: tan(α+ β)=tanα- + + β 6 6 π π 3 2 tan α- + tan + β + 6 6 7 5 = = = 1. 3 2 π π 1- tan α- · tan + β 1-7×5 6 6
两角和与差正弦公式与余弦公式
两角和与差正弦公式与余弦公式一、两角和与差正弦公式1.两角和正弦公式在三角函数中,两个角的和的正弦可以用这两个角的正弦和余弦来表示。
公式如下:sin(A+B) = sinA * cosB + cosA * sinB这个公式的意义在于,将一个角的正弦和余弦拆分为两个角的正弦和余弦的乘积之和。
这样可以简化计算过程。
2.两角差正弦公式同样地,两个角的差的正弦也可以用这两个角的正弦和余弦来表示。
公式如下:sin(A-B) = sinA * cosB - cosA * sinB这个公式也可以根据两个角的正弦和余弦的乘积之差来求解。
应用:两角和与差正弦公式在解决三角函数相关问题时非常有用。
比如,当我们需要求解一个角的正弦或余弦时,可以通过拆分成两个角的正弦或余弦的乘积来求解。
这样可以简化计算步骤,提高计算的准确性。
同时,在一些特殊角度的情况下,利用两角和与差正弦公式可以得到一些特定的数值关系,方便我们进行推导和证明。
二、两角和与差余弦公式1.两角和余弦公式和两角和与差正弦公式类似,两个角的和的余弦也可以用这两个角的余弦和正弦来表示。
公式如下:cos(A+B) = cosA * cosB - sinA * sinB这个公式的意义在于,将一个角的余弦和正弦拆分为两个角的余弦和正弦的乘积之差。
2.两角差余弦公式同样地,两个角的差的余弦也可以用这两个角的余弦和正弦来表示。
公式如下:cos(A-B) = cosA * cosB + sinA * sinB这个公式通过两个角的余弦和正弦的乘积之和来求解两个角的差的余弦。
应用:总结:两角和与差正弦公式与余弦公式在解决三角函数相关问题时非常有用。
它们可以帮助我们简化计算过程,得到更为准确的结果。
通过拆分一个角的正弦或余弦为两个角的正弦或余弦的乘积之和(差),可以减少计算步骤,提高计算的准确性。
同时,利用这些公式,我们还可以推导出一些特定的数值关系,帮助我们解决更为复杂的问题。
两角和差的正弦余弦正切公式
两角和差的正弦余弦正切公式两角和差的正弦、余弦、正切公式是解决三角函数的运算中的常用工具。
它们可以通过已知两个角的三角函数值来求解它们的和或差的三角函数值。
这些公式在数学、物理、工程等领域中都有广泛的应用。
下面将详细介绍这些公式,以及它们的推导和应用。
1.两角和差的正弦公式sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)其中A和B为任意两个角。
为了推导这个公式,我们可以使用三角函数的和差角公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)通过观察可以发现,两角和差的正弦公式可以通过将cos(A ± B)公式正负号变化得到。
2.两角和差的余弦公式cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)其中A和B为任意两个角。
可以看到,这个公式可以通过将sin(A ± B)的公式正负号变化得到。
3.两角和差的正切公式tan(A ± B) = (tan(A) ± tan(B))/(1 ∓ tan(A)tan(B))其中A和B为任意两个角。
这个公式可以通过两角和差的正弦公式和余弦公式相除得到。
使用公式sin(A)/cos(A) = tan(A)和cos(A)cos(B) -sin(A)sin(B)=cos(A+B)得到。
这些公式在解决三角函数运算中有着广泛的应用。
例如,我们可以将它们用于证明或求解三角恒等式。
以下是一些常见的应用示例:1.求两个特定角的正弦、余弦或正切值的和或差的问题。
例如,已知sin(A) = 0.6,cos(B) = 0.8,求sin(A+B)的值。
根据两角和差的正弦公式,我们可以有:sin(A+B) = sin(A)cos(B) + cos(A)sin(B)= 0.6*0.8 + cos(A)*sin(B)如果我们已经知道了cos(A)和sin(B)的值,就可以计算出sin(A+B)的值。
两角和与差正弦余弦公式课件
在数学竞赛中的应用
代数问题
在数学竞赛中,两角和与差的正弦、 余弦公式常与其他数学知识结合,用 于解决代数问题,例如求值、证明等 。
几何问题
在几何学中,两角和与差的正弦、余 弦公式常用于证明几何定理或解决几 何问题,例如角度计算、面积计算等 。
03
两角和与差正弦余弦公式的 扩展
案例三:数学竞赛中的应用
总结词
用于解决数学竞赛中的三角函数问题
详细描述
在数学竞赛中,两角和与差正弦余弦公式是解决三角函数问题的关键工具。通过这些公 式,可以快速求解复杂的三角函数表达式,解决诸如求三角函数的最值、判断三角函数 的单调性等问题。同时,这些公式也是数学竞赛中考察学生数学思维和解题能力的重要
两角和与差正弦余弦公式ppt课件
$number {01}
目录
• 两角和与差正弦余弦公式的基本 概念
• 两角和与差正弦余弦公式的应用 • 两角和与差正弦余弦公式的扩展 • 两角和与差正弦余弦公式的变种 • 两角和与差正弦余弦公式的实际
应用案例
01
两角和与差正弦余弦公式的 基本概念
定义
1 3
定义
两角和与差正弦余弦公式是三角函数中重要的公式之一,用 于计算两个角度的和或差的三角函数值。
利用扩展公式解决一些实 际问题,如测量、物理、 工程等领域的问题。
简化计算
扩展公式可以简化一些复 杂的三角函数计算,提高 计算的效率和准确性。
推广到其他领域
扩展公式可以推广到其他 领域,如复数、矩阵等领 域,促进数学和其他学科 的交叉融合。
扩展公式的证明
证明方法
利用三角函数的性质、三角恒等变换和代数运算等工具,证明扩展公式的正确 性。
两角和差的正弦余弦和正切公式
两角和差的正弦余弦和正切公式在三角函数中,两角的和差的正弦、余弦和正切公式是很重要的定理,用于计算角度的和与差的三角函数值。
这些公式不仅在数学中有广泛的应用,而且在物理、工程、计算机图形学等领域也经常被使用。
下面将详细介绍这些公式。
1.两角和差的正弦公式:设角A和角B是两个任意角,则有以下公式成立:sin(A + B) = sin A cos B + cos A sin Bsin(A - B) = sin A cos B - cos A sin B这些公式表明,两个角度的和或差的正弦值可以表示为这两个角度的正弦、余弦函数值的线性组合。
这个公式在计算三角函数值时非常有用,可以通过已知角度的正弦、余弦函数值计算出两个角度之和或差的正弦函数值。
2.两角和差的余弦公式:设角A和角B是两个任意角,则有以下公式成立:cos(A + B) = cos A cos B - sin A sin Bcos(A - B) = cos A cos B + sin A sin B这些公式表明,两个角度的和或差的余弦值可以表示为这两个角度的余弦、正弦函数值的线性组合。
这个公式在计算三角函数值时也非常有用,可以通过已知角度的余弦、正弦函数值计算出两个角度之和或差的余弦函数值。
3.两角和差的正切公式:设角A和角B是两个任意角,且cos A != 0,cos B != 0,则有以下公式成立:tan(A + B) = (tan A + tan B) / (1 - tan A tan B)tan(A - B) = (tan A - tan B) / (1 + tan A tan B)这些公式表明,两个角度的和或差的正切值可以表示为这两个角度的正切值的函数。
这个公式在计算三角函数值时也非常有用,可以通过已知角度的正切函数值计算出两个角度之和或差的正切函数值。
这些两角和差的公式可以通过三角函数的定义以及三角函数的诱导公式推导得出。
这些公式在三角学中是非常重要的,广泛应用于计算角度的和与差的三角函数值。
3.1.2两角和与差的正弦、余弦、正切公式
利用公式求值
π π 3π π 3 已知 <α< ,0<β< ,cos 4-α = , 4 4 4 5 3π 5 sin 4 +β = ,求 sin(α+β)的值. 13
3π π π 分析: 4 +β - 4-α = +(α+β). 2
π 3π π π 解析:∵ <α< ,∴- < -α<0, 4 4 2 4 π π 3 4 ∵cos 4-α = ,∴sin 4-α =- ; 5 5 π 3π 3π ∵0<β< ,∴ < +β<π, 4 4 4 3π 5 3π 12 ∵sin 4 +β = ,∴cos 4 +β =- ; 13 13
∴tan 23° +tan 37° = 3- 3tan 23° tan 37° , 故得 tan 23° +tan 37° + 3tan 23° tan 37° = 3.
点评:化简三角函数式是为了更清楚地显示式中所含量 之间的关系,以便于应用.对于三角函数式的化简,要求: (1)能求出值的应求出值;(2)使三角函数的种数最少;(3)使 项数尽量少;(4)尽量使分母不含有三角函数式;(5)尽量使被 开方数不含有三角函数式.
tan α-tan β 1+tan αtan β 3 练习:5. 3
思考应用 3.两角和与差的正切公式的适用范围及公式的特 征有哪些?
解析:(1) 适用范围:限制条件:α、β、α+β 均不为 π kπ+ (k∈Z);可以是数、字母和代数式.从公式推导过程进 2 π 行说理:cos(α+β)≠0,则 α+β≠kπ+ ;同除 cos α、cos β, 2 π π 得 cos α≠0,cos β≠0,则 α≠kπ+ ,cos β≠kπ+ .cos x≠0, 2 2 保证了 tan x 有意义. (2)公式特征:同名;分子同号,分母异号;容易联想 到韦达定理.
第5课时 两角和与差的正弦、余弦和正切公式
3 1 4 2 2 8 2-3 =- × + × = . 5 3 5 3 15
工具
第三章
三角函数
栏目导引
1.理解和运用两角和与差的三角函数公式需注意的几个问题 (1)两角和与差的正弦、余弦、正切公式之间的内在联系 ①掌握好公式的内在联系及其推导过程,能帮助我们理解和记忆公 式,是学好这部分内容的关键. ②诱导公式是两角和与差的三角函数公式的特殊情况,α、β 中若有 π 的整数倍角时,使用诱导公式更灵活、简便. 2
(3)角的变换 α=(α+β)-β,β=(α+β)-α,2α=(α+β)+(α-β), 2β=(α+β)-(α-β).
工具
第三章
三角函数
栏目导引
2.理解和运用二倍角公式需注意的几个问题 (1)掌握二倍角公式与两角和公式之间的内在联系能帮助我们理解 与记忆公式. (2)公式的逆用及有关变形 1-cos 2α 1+cos 2α 2 sin α= ;cos α= (降幂公式); 2 2
工具
第三章
三角函数
栏目导引
5 又 β 为第一象限角,cos β= , 13 12 12 ∴sin β= 1-cos β= ,tan β= , 13 5
2
24 12 -7-5 204 ∴tan(2α-β)= = . 24 12 253 1+- 7 × 5
工具
第三章
三角函数
栏目导引
sin 50° 1+ 3tan 10° -cos 20° 求值: . cos 80° 1-cos 20°
1 2× 2 2tan α 4 解析: tan 2α= = = . 12 3 1-tan2α 1-2
π 4 ∵α∈0,2,2α∈(0,π),tan 2α=3>0, π , 0 , ∴2α∈ 2
两角和与差的正弦余弦和正切公式及二倍角公式
(1)计算
sin110sin 20 cos2155 sin2155
的值为
(
)
A.- 1 B. 1 C. 3 D.- 3
2
2
2
2
(2)在△ABC中,若tan Atan B=tan A+tan B+1,则cos C的值为 ( )
A.- 2 B. 2 C. 1 D.- 1
2
2
2
2
答案 (1)B (2)B
2
2
α= 4 3 ,
5
即 3 cos α+ 3 sin α= 4 3 ,
2
2
5
所以
3 sin
2
α+
1 2
cos
α=sin
α
6
=
4 5
,
所以sin α
7 6
=-sin
α
6
=-
4 5
.
夯基提能作业 栏目索引
第五节 两角和与差的正弦、余弦 和正切公式及二倍角公式
解析
(1)
sin110sin 20 cos2155 sin2155
=
sin 70sin 20 cos 310
=
cos
20sin
20
=
1 2
sin
40
=
1
.
cos 50
sin 40 2
(2)由tan Atan B=tan A+tan B+1,
可得 tan A tan B =-1,
1 tan Atan B
教材研读
总纲目录
总纲目录 栏目索引
1.两角和与差的正弦、余弦、正切公式 2.二倍角的正弦、余弦、正切公式 3.有关公式的逆用、变形
两角和与差的正弦余弦正切
在三角函数图象与性质中的应用
两角和与差的正弦、余弦、正切公式在研究三角函数的图象和性质时也起着重要作用。通过这些公式 ,可以推导出三角函数的周期性、奇偶性、单调性等性质,并进一步研究其图象特征。
例如,利用两角和的正弦公式,可以将sin(α+β)转化为sinαcosβ+cosαsinβ,从而简化表达式。同样地,余弦和正切公式也有类 似的作用。
在三角函数求值中的应用
两角和与差的正弦、余弦、正切公式 在三角函数求值中也有广泛应用。通 过这些公式,可以求解一些特定角度 的三角函数值,或者计算一些复杂三 角函数的值。
tan(α-β) = (tanα - tanβ) / (1 + tanαtanβ)
02 公式推导
两角和的公式推导
三角函数的加法公式
sin(x+y)=sinxcosy+cosxsiny,cos(x+y)=cosxcosy-sinxsiny, tan(x+y)=(tanx+tany)/(1-tanxtany)。
3 两角和的正切公式
tan(α+β) = (tanα + tanβ) / (1 - tanαtanβ)
两角差的的正弦、余弦、正切公式
两角差的正弦公式
sin(α-β) = sinαcosβ - cosαsinβ
两角差的余弦公式
cos(α-β) = cosαcosβ + sinαsinβ
两角差的正切公式
应用
在三角函数计算中,该公式常用于求解两角和的余弦、正切值。
两角和与差的三角函数公式应用
两角和与差的三角函数公式应用首先,我们来介绍两角和的公式:1. 正弦两角和公式:sin(x + y) = sin(x) * cos(y) + cos(x) * sin(y)这个公式可以用来求解两个角的正弦的和。
例如,求解sin(π/6 + π/4)的值。
根据公式,sin(π/6 + π/4) = sin(π/6) * cos(π/4) +cos(π/6) * sin(π/4) = (1/2) * (√2/2) + (√3/2) * (√2/2) = (√2 + √6)/42. 余弦两角和公式:cos(x + y) = cos(x) * cos(y) - sin(x) * sin(y)这个公式可以用来求解两个角的余弦的和。
例如,求解cos(π/3 + π/6)的值。
根据公式,cos(π/3 + π/6) = cos(π/3) * cos(π/6) -sin(π/3) * sin(π/6) = (√3/2) * (√3/2) - (1/2) * (1/2) = 3/43. 正切两角和公式:tan(x + y) = (tan(x) + tan(y)) / (1 - tan(x) * tan(y))这个公式可以用来求解两个角的正切的和。
例如,求解tan(π/4 + π/6)的值。
根据公式,tan(π/4 + π/6) = (tan(π/4) + tan(π/6)) / (1 - tan(π/4) * tan(π/6)) = (1 + (1/√3)) / (1 - 1/√3) = (√3 + 1) / (√3 - 1)接下来,我们来介绍两角差的公式:1. 正弦两角差公式:sin(x - y) = sin(x) * cos(y) - cos(x) * sin(y)这个公式可以用来求解两个角的正弦的差。
例如,求解sin(π/3 - π/6)的值。
根据公式,sin(π/3 - π/6) = sin(π/3) * cos(π/6) -cos(π/3) * sin(π/6) = (√3/2) * (√3/2) - (1/2) * (1/2) = (√3 - 1) / 22. 余弦两角差公式:cos(x - y) = cos(x) * cos(y) + sin(x) * sin(y)这个公式可以用来求解两个角的余弦的差。
两角和与差的正弦、余弦和正切公式
三角函数两角和与差及二倍角公式一、知识梳理1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β; cos(α∓β)=cos αcos β±sin αsin β; tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.注意:1.在使用两角和与差的余弦或正切公式时运算符号易错. 2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的. [试一试]1.sin 68°sin 67°-sin 23°cos 68°的值为( ) A .-22 B .22 C .32D .1 答案:B2.若sin α2=33,则cos α=( )A .-23B .-13C .13D .23答案:C解析:因为sin α2=33,所以cos α=1-2sin 2 α2=1-2×233⎛⎫ ⎪ ⎪⎝⎭=13二、方法归纳 1.公式的常用变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin 4πα⎛⎫± ⎪⎝⎭2.角的变换技巧2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=22βααβ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭3.三角公式关系[练一练]1.已知tan 6πα⎛⎫-⎪⎝⎭=37,tan 6πβ⎛⎫+ ⎪⎝⎭=25,则tan(α+β)的值为( ) A .2941 B .129 C .141 D .1答案:D2.已知sin 2α=23,则cos 24πα⎛⎫+ ⎪⎝⎭=( ) A .16 B .13 C .12 D .23答案:A解析:法一:cos 24πα⎛⎫+ ⎪⎝⎭=121cos 22πα⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦=12(1-sin 2α)=16. 法二:cos 4πα⎛⎫+ ⎪⎝⎭=22cos α-22sin α, 所以cos 24πα⎛⎫+ ⎪⎝⎭=12(cos α-sin α)2=12(1-2sin αcos α)=12(1-sin 2α)=16 三、考点精讲考点一 三角函数公式的基本应用1.已知sin α=35,α∈,2ππ⎛⎫⎪⎝⎭,则cos 22sin 4απα⎛⎫+ ⎪⎝⎭=________. 答案:-75解析:cos 22sin 4απα⎛⎫+ ⎪⎝⎭=22cos sin 222sin cos 22αααα-⎛⎫+ ⎪⎝⎭=cos α-sin α,∵sin α=35,α∈,2ππ⎛⎫⎪⎝⎭,∴cos α=-45,∴原式=-75.2.设sin 2α=-sin α,α∈,2ππ⎛⎫⎪⎝⎭,则tan 2α的值是________. 答案: 3解析:∵sin 2α=2sin αcos α=-sin α,∴cos α=-12,又α∈,2ππ⎛⎫⎪⎝⎭,∴sin α=32,tan α=-3,∴tan 2α=2tan α1-tan 2α=()223313-=--3.已知函数f (x )=2sin 136x π⎛⎫- ⎪⎝⎭,x ∈R . (1)求f 54π⎛⎫⎪⎝⎭的值; (2)设α,β∈0,2π⎡⎤⎢⎥⎣⎦,f 32πα⎛⎫+ ⎪⎝⎭=1013,f (3β+2π)=65,求cos(α+β)的值. 解:(1)∵f (x )=2sin 136x π⎛⎫-⎪⎝⎭,∴f 54π⎛⎫⎪⎝⎭=2sin 5126ππ⎛⎫- ⎪⎝⎭=2sin π4=2. (2)∵α,β∈0,2π⎡⎤⎢⎥⎣⎦,f 32πα⎛⎫+ ⎪⎝⎭=1013,f (3β+2π)=65, ∴2sin α=1013,2sin 2πβ⎛⎫+ ⎪⎝⎭=65,即sin α=513,cos β=35.∴cos α=1213,sin β=45∴cos(α+β)=cos αcos β-sin αsin β=1213×35-513×45=1665.[解题通法]两角和与差的三角函数公式可看作是诱导公式的推广,可用α、β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.考点二 三角函数公式的逆用与变形应用(1)在△ABC 中,若tan A ·tan B =tan A +tan B +1,则cos C 的值是( ) A .-22 B .22 C .12 D .-12(2)sin 110°sin 20°cos 2155°-sin 2155°的值为( ) A .-12 B .12 C .32 D .-32答案:(1)B (2)B解析:(1)由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B=-1,即tan(A +B )=-1,所以A +B =3π4,则C =π4,cos C =22,故选B .(2)sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310°=cos 20°sin 20°cos 50°=12sin 40°sin 40°=12. [解题通法]运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等. [针对训练] 1.已知sin 6πα⎛⎫+⎪⎝⎭+cos α=435,则sin 3πα⎛⎫+ ⎪⎝⎭的值为( ) A .45 B .35 C .32 D .35答案:A 解析:由条件得32sin α+32cos α=435, 即12sin α+32cos α=45,∴sin 3πα⎛⎫+ ⎪⎝⎭=45. 2.若α+β=3π4,则(1-tan α)(1-tan β)的值是________.答案:2解析:-1=tan 3π4=tan(α+β)=tan α+tan β1-tan αtan β,∴tan αtan β-1=tan α+tan β.∴1-tan α-tan β+tan αtan β=2,即(1-tan α)(1-tan β)=2. 考点三 角的变换已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值. 解:(1)∵α,β∈0,2π⎛⎫⎪⎝⎭,从而-π2<α-β<π2 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45,∴cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β)=45×31010+35×1010⎛⎫- ⎪ ⎪⎝⎭=91050变式练习:在本例条件下,求sin(α-2β)的值 解:∵sin(α-β)=-1010,cos(α-β)=31010, cos β=91050,sin β=131050.∴sin(α-2β)=sin[(α-β)-β]=sin(α-β)cos β-cos(α-β)sin β=-2425.[解题通法]1.当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式; 2.当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”;3.注意角变换技巧. [针对训练]1.设tan ()α+β=25,tan 4πβ⎛⎫- ⎪⎝⎭=14,则tan 4πα⎛⎫+ ⎪⎝⎭=( )A .1318B .1322C .322D .16答案:C解析:tan 4πα⎛⎫+ ⎪⎝⎭=()tan 4παββ⎡⎤⎛⎫+-- ⎪⎢⎥⎝⎭⎣⎦=()()tan tan 34221tan tan 4παββπαββ⎛⎫+-- ⎪⎝⎭=⎛⎫++- ⎪⎝⎭2.设α为锐角,若cos 6πα⎛⎫+ ⎪⎝⎭=45,则sin 212πα⎛⎫+ ⎪⎝⎭的值为________. 答案:17250解析:因为α为锐角,cos 6πα⎛⎫+⎪⎝⎭=45, 所以sin 6πα⎛⎫+ ⎪⎝⎭=35,sin 26πα⎛⎫+ ⎪⎝⎭=2425, cos 26πα⎛⎫+⎪⎝⎭=725, 所以sin 212πα⎛⎫+⎪⎝⎭=sin 264ππα⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦=2425×22-725×22=17250. 考点四 三角函数式的化简1.化简:2sin 22cos sin 4ααπα-⎛⎫- ⎪⎝⎭=________.答案:22cos α解析:原式=2sin αcos α-2cos 2α22α-cos α=22cos α.2.化简:42212cos 2cos 22tan sin 44x x x x ππ-+⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭解:原式=()222221112sin cos 1sin 2cos 22222sin cos 2sin cos sin 244442cos 4x x x x x x x x x x ππππππ-+-==⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫- ⎪⎝⎭=1cos 22x 3.化简:1tan 1tan tan 22tan 2αααα⎛⎫ ⎪⎛⎫-⋅+⋅ ⎪ ⎪⎝⎭ ⎪⎝⎭.解:1tan 1tan tan 22tan 2αααα⎛⎫⎪⎛⎫-⋅+⋅ ⎪ ⎪⎝⎭ ⎪⎝⎭=cos sin sin sin 2221cos sin cos cos222αααααααα⎛⎫⎛⎫ ⎪ ⎪-⋅+⋅⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=cos 2α2-sin 2α2sin α2cos α2⋅cos αcos α2+sin αsinα2cos αcos α2=2cos αsin α⋅cos α2cos αcosα2=2sin α[解题通法]三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”; (3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.考点五 三角函数式的求值研究三角函数式的求值,解题的关键都是找出条件中的角与结论中的角的联系,依据函数名称的变换特点,选择合适的公式求解.归纳起来常见的命题角度有:给值求值; 给角求值; 给值求角. 角度一 给值求值1.已知函数f (x )=2cos 12x π⎛⎫- ⎪⎝⎭,x ∈R . (1)求f 3π⎛⎫⎪⎝⎭的值; (2)若cos θ=35,θ∈3,22ππ⎛⎫⎪⎝⎭,求f 6πθ⎛⎫- ⎪⎝⎭. 解:(1)因为f (x )=2cos 12x π⎛⎫-⎪⎝⎭, 所以f 3π⎛⎫⎪⎝⎭=2cos 312ππ⎛⎫- ⎪⎝⎭=2cos π4=2×22=1. (2)因为θ∈3,22ππ⎛⎫⎪⎝⎭,cos θ=35, 所以2234sin 1cos 155θθ⎛⎫=--=--=- ⎪⎝⎭.所以f 6πθ⎛⎫-⎪⎝⎭=2cos 612ππθ⎛⎫--⎪⎝⎭=2cos 4πθ⎛⎫-⎪⎝⎭=2×22cos sin 22θθ⎛⎫+⎪ ⎪⎝⎭=cos θ+sin θ=35-45=-15.角度二 给角求值2.(1)4cos 50°-tan 40°=( ) A . 2 B .2+32C . 3D .22-1 答案:C解析:4cos 50°-tan 40°=4cos 50°-sin 40°cos 40°=4sin 40°·cos 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2cos 10°-sin 40°cos 40°=2cos 10°-+cos 40°=32cos 10°-32sin 10°cos 40°=330°cos 10°-cos 40°=3cos 40°cos 40°=3.(2)化简:sin 50°(1+3tan 10°)=________. 答案:1解析:sin 50°(1+3tan 10°)=sin 50°00sin1013cos10⎛⎫+ ⎪⎝⎭ =sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×000132cos10sin1022cos10⎛⎫+ ⎪⎝⎭ =2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.角度三 给值求角3.已知α,β为锐角,sin α=35,cos ()α+β=-45,求2α+β.解:∵sin α=35,α∈0,2π⎛⎫⎪⎝⎭,∴cos α=45,∵cos(α+β)=-45,α+β∈(0,π),∴sin(α+β)=35,∴sin(2α+β)=sin[α+(α+β)]=sin αcos(α+β)+cos αsin(α+β)=35×45⎛⎫- ⎪⎝⎭+45×35=0.又2α+β∈30,2π⎛⎫⎪⎝⎭,∴2α+β=π. 4.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.解:∵tan α=tan[(α-β)+β]=α-β+tan β1-α-ββ=12-171+12×17=13>0,∴0<α<π2,又∵tan 2α=2tan α1-tan 2α=2123113⨯⎛⎫- ⎪⎝⎭=34>0,∴0<2α<π2, ∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.[解题通法]三角函数求值有三类(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.考点六 三角恒等变换的综合应用 已知函数f (x )=sin 6x π⎛⎫-⎪⎝⎭+cos 3x π⎛⎫-⎪⎝⎭,g (x )=2sin 2x 2. (1)若α是第一象限角,且f (α)=335,求g (α)的值; (2)求使f (x )≥g (x )成立的x 的取值集合. 解:f (x )=sin 6x π⎛⎫-⎪⎝⎭+cos 3x π⎛⎫-⎪⎝⎭=32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x .(1)由f (α)=335得sin α=35.又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1,于是sin 6x π⎛⎫+ ⎪⎝⎭≥12, 从而522666k x k πππππ+≤+≤+,k ∈Z , 即2223k x k πππ≤≤+,k ∈Z . 故使f (x )≥g (x )成立的x 的取值集合为222,3x k x k k Z πππ⎧⎫≤≤+∈⎨⎬⎩⎭. [解题通法]三角变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =A sin(ωx +φ)的形式再研究性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题. [针对训练]设函数f (x )=sin 23x π⎛⎫+⎪⎝⎭+33sin 2x -33cos 2x . (1)求f (x )的最小正周期及其图像的对称轴方程;(2)将函数f (x )的图像向右平移π3个单位长度,得到函数g (x )的图像,求g (x )在区间,63ππ⎡⎤-⎢⎥⎣⎦上的值域.解:(1)f (x )=12sin 2x +32cos 2x -33cos 2x =12sin 2x +36cos 2x =33sin 26x π⎛⎫+ ⎪⎝⎭,所以f (x )的最小正周期为T =2π2=π. 令2x +π6=k π+π2(k ∈Z ),得对称轴方程为x =k π2+π6(k ∈Z ).(2)将函数f (x )的图像向右平移π3个单位长度,得到函数g (x )=33sin 236x ππ⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦=-33cos 2x 的图像. 即g (x )=-33cos 2x . 当x ∈,63ππ⎡⎤-⎢⎥⎣⎦时,2x ∈2,33ππ⎡⎤-⎢⎥⎣⎦,得cos 2x ∈1,12⎡⎤-⎢⎥⎣⎦所以-33cos 2x ∈33,36⎡⎤-⎢⎥⎣⎦,即函数g (x )在区间,63ππ⎡⎤-⎢⎥⎣⎦上的值域是33,36⎡⎤-⎢⎥⎣⎦课后作业课后练习一、选择题1.已知sin3πα⎛⎫+⎪⎝⎭+sin α=-435,则cos23πα⎛⎫+⎪⎝⎭等于()A.-45B.-35C.35D.45答案:D2.已知cos6πα⎛⎫+⎪⎝⎭-sin α=233,则sin76πα⎛⎫-⎪⎝⎭的值是()A.-233B.233C.-23D.23答案:D3.已知向量a=sin,16πα⎛⎫⎛⎫+⎪⎪⎝⎭⎝⎭,b=(4,4cos α-3),若a⊥b,则sin43πα⎛⎫+⎪⎝⎭等于() A.-34B.-14C.34D.14答案:B4.函数y=sin x+cos x图象的一条对称轴方程是()A.x=5π4B.x=3π4C.x=-π4D.x=-π2答案:A5.在△ABC中,3sin A+4cos B=6,4sin B+3cos A=1,则C的大小为()A.π6B.56πC.π6或56πD.π3或23π答案:A6.已知0<α<π,3sin 2α=sin α,则cos(α-π)等于()A.13B.-13C.16D.-16答案:D解析:∵0<α<π,3sin 2α=sin α,∴6sin αcos α=sin α,又∵sin α≠0,∴cos α=16,cos(α-π)=cos(π-α)=-cos α=-167.已知tan(α+β)=25,tan4πβ⎛⎫-⎪⎝⎭=14,那么tan4πα⎛⎫+⎪⎝⎭等于()A .1318B .1322C .322D .16答案:C解析:因为α+π4+β-π4=α+β,所以α+π4=(α+β)-4πβ⎛⎫- ⎪⎝⎭.所以tan 4πα⎛⎫+ ⎪⎝⎭=tan ()()()tan tan 344221tan tan 4παββπαββπαββ⎛⎫+-- ⎪⎡⎤⎛⎫⎝⎭+--== ⎪⎢⎥⎛⎫⎝⎭⎣⎦++- ⎪⎝⎭8.已知cos 2α=12 (其中α∈,04π⎛⎫- ⎪⎝⎭),则sin α的值为 ( )A .12B .-12C .32D .-32答案:B解析:∵12=cos 2α=1-2sin 2α,∴sin 2α=14.又∵α∈,04π⎛⎫- ⎪⎝⎭,∴sin α=-129.若f (x )=2tan x -2sin 2x2-1sin x 2cosx2,则f 12π⎛⎫⎪⎝⎭的值为 ( )A .-433B .8C .4 3D .-4 3 答案:B解析:f (x )=2tan x +1-2sin 2x212sin x =2tan x +2cos x sin x =2sin x cos x =4sin 2x∴f 12π⎛⎫⎪⎝⎭=4sinπ6=8 10.在△ABC 中,若cos 2B +3cos(A +C )+2=0,则sin B 的值是 ( ) A .12B .22C .32D .1答案:C解析:由cos 2B +3cos(A +C )+2=0化简变形,得2cos 2B -3cos B +1=0,∴cos B =12或cos B =1(舍).∴sin B =32二、填空题 1.如图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等.设第i 段弧所对的圆心角为αi (i =1,2,3),则cos α13cos α2+α33- sinα13·sin α2+α33=________ 答案:-122.设sin α=352παπ⎛⎫<< ⎪⎝⎭,tan(π-β)=12,则tan(α-β)=________答案:-2113.已知tan α、tan β是方程x 2+33x +4=0的两根,且α、β∈,22ππ⎛⎫- ⎪⎝⎭,则tan(α+β)=__________,α+β的值为________. 答案:3 -23π4.已知α为第二象限的角,且sin α=35,则tan 2α=________.答案:-247解析:因为α为第二象限的角,又sin α=35,所以cos α=-45,tan α=sin αcos α=-34,所以tan 2α=2tan α1-tan 2α=-247. 5.函数y =2cos 2x +sin 2x 的最小值是________. 答案:1- 2解析:∵y =2cos 2x +sin 2x =sin 2x +1+cos 2x=sin 2x +cos 2x +1=2sin 24x π⎛⎫+⎪⎝⎭+1, ∴当sin(2x +π4)=-1时,函数取得最小值1- 26.若cos 2sin 4απα⎛⎫- ⎪⎝⎭=-22,则cos α+sin α的值为________.答案:12解析:∵cos 2sin 4απα⎛⎫- ⎪⎝⎭=cos 2α-sin 2α22α-cos α=-2(sin α+cos α)=-22,∴cos α+sin α=12.三、解答题 1.(1)已知α∈0,2π⎛⎫⎪⎝⎭,β∈,2ππ⎛⎫⎪⎝⎭且sin(α+β)=3365,cos β=-513.求sin α; (2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.解:(1)∵β∈,2ππ⎛⎫⎪⎝⎭,cos β=-513,∴sin β=1213又∵0<α<π2,π2<β<π,∴π2<α+β<3π2,又sin(α+β)=3365,∴cos(α+β)=-1-sin 2α+β=233165⎛⎫-- ⎪⎝⎭=-5665 ∴sin α=sin[(α+β)-β]=sin(α+β)cos β-cos(α+β)sin β =33556123651365135⎛⎫⎛⎫⋅---⋅= ⎪ ⎪⎝⎭⎝⎭ (2)∵tan α=tan[(α-β)+β]=α-β+tan β1-α-ββ=12-171+12×17=13∴tan(2α-β)=tan[α+(α-β)]=tan α+α-β1-tan αα-β=13+121-13×12=1∵α,β∈(0,π),tan α=13<1,tan β=-17<0,∴0<α<π4,π2<β<π,∴-π<2α-β<0,∴2α-β=-3π42.(1)①证明两角和的余弦公式C (α+β):cos(α+β)=cos αcos β-sin αsin β; ②由C (α+β)推导两角和的正弦公式S (α+β):sin(α+β)=sin αcos β+cos αsin β. (2)已知△ABC 的面积S =12,AB →·AC →=3,且cos B =35,求cos C解:(1)①证明:如上图,在直角坐标系xOy 内作单位圆O ,并作出角α、β与-β,使角α的始边为Ox ,交⊙O 于点P 1,终边交⊙O 于点P 2;角β的始边为OP 2,终边交⊙O 于点P 3;角-β的始边为OP 1,终边交⊙O 于点P 4.则P 1(1,0),P 2(cos α,sin α),P 3(cos(α+β),sin(α+β)),P 4(cos(-β),sin(-β)), 由|P 1P 3|=|P 2P 4|及两点间的距离公式,得[cos(α+β)-1]2+sin 2(α+β)=[cos(-β)-cos α]2+[sin(-β)-sin α]2, 展开并整理得:2-2cos(α+β)=2-2(cos αcos β-sin αsin β), ∴cos(α+β)=cos αcos β-sin αsin β ②解 由①易得,cos 2πα⎛⎫- ⎪⎝⎭=sin α, sin 2πα⎛⎫-⎪⎝⎭=cos α. sin(α+β)=cos ()2παβ⎡⎤-+⎢⎥⎣⎦=cos ()2παβ⎡⎤⎛⎫-+- ⎪⎢⎥⎝⎭⎣⎦=cos 2πα⎛⎫-⎪⎝⎭cos(-β)-sin 2πα⎛⎫- ⎪⎝⎭sin(-β) =sin αcos β+cos αsin β. ∴sin(α+β)=sin αcos β+cos αsin β(2)解:由题意,设△ABC 的角B 、C 的对边分别为b 、c . 则S =12bc sin A =12,AB →·AC →=bc cos A =3>0,∴A ∈0,2π⎛⎫⎪⎝⎭,cos A =3sin A ,又sin 2A +cos 2A =1, ∴sin A =1010,cos A =31010, 由cos B =35,得sin B =45,∴cos(A +B )=cos A cos B -sin A sin B =1010.故cos C =cos[π-(A +B )]=-cos(A +B )=-10103.设函数f (x )=a·b ,其中向量a =(2cos x,1),b =(cos x ,3sin 2x ),x ∈R .(1)若函数f (x )=1-3,且x ∈,33ππ⎡⎤-⎢⎥⎣⎦,求x ; (2)求函数y =f (x )的单调增区间,并在给出的坐标系中画出y =f (x )在区间[0,π]上的图象.解:(1)依题设得f (x )=2cos 2x +3sin 2x =1+cos 2x +3sin 2x =2sin 26x π⎛⎫+⎪⎝⎭+1. 由2sin 26x π⎛⎫+ ⎪⎝⎭+1=1-3, 得sin 26x π⎛⎫+⎪⎝⎭=-32∵-π3≤x ≤π3,∴-π2≤2x +π6≤5π6.∴2x +π6=-π3,即x =-π4(2)-π2+2k π≤2x +π6≤π2+2k π (k ∈Z ),即36k x k ππππ-+≤≤+ (k ∈Z ),得函数单调增区间为,36k k ππππ⎡⎤-++⎢⎥⎣⎦(k ∈Z ). 列表:x 0 π6 π3 π2 2π3 5π6 π y232-12描点连线,得函数图象如图所示:4.设函数f (x )=3sin x cos x -cos x sin 2x π⎛⎫+ ⎪⎝⎭-12. (1)求f (x )的最小正周期; (2)当x ∈0,2π⎡⎤⎢⎥⎣⎦时,求函数f (x )的最大值和最小值. 解:f (x )=3sin x cos x -cos x sin 2x π⎛⎫+⎪⎝⎭-12 =32sin 2x -12cos 2x -1 =sin 26x π⎛⎫-⎪⎝⎭-1 (1)T =2π2=π,故f (x )的最小正周期为π(2)因为0≤x ≤π2,所以-π6≤2x -π6≤5π6.所以当2x -π6=π2,即x =π3时,f (x )有最大值0,当2x -π6=-π6,即x =0时,f (x )有最小值-32.6.已知函数f (x )=2cos 2x +sin 2x -4cos x . (1)求f (π3)的值;(2)求f (x )的最大值和最小值.解:(1)f (π3)=2cos 2π3+sin 2π3-4cos π3=-1+34-2=-94(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1 =3(cos x -23)2-73,x ∈R因为cos x ∈[-1,1],所以,当cos x =-1时,f (x )取得最大值6; 当cos x =23时,f (x )取得最小值-73.。
两角和与差的正弦、余弦和正切公式及二倍角公式考点与提醒归纳
两角和与差的正弦、余弦和正切公式及二倍角公式考点与提醒归纳一、基础知识1.两角和与差的正弦、余弦、正切公式 S (α±β):sin(α±β)=sin αcos β±cos αsin β. C (α±β):cos(α±β)=cos αcos β∓sin αsin β. T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α,β,α±β≠π2+k π,k ∈Z .两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.考点一 三角函数公式的直接应用[典例] (1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan β=-12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( )A .-229B .-429C.229D.429[解析] (1)因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.[答案] (1)A (2)B[解题技法] 应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用. [题组训练]1.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫2α+π3的值为________. 解析:因为sin α=45,且α∈⎝⎛⎭⎫π2,3π2,所以α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫452=-35. 因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=-24+7350. 答案:-24+7350考点二 三角函数公式的逆用与变形用[典例] (1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________. [解析] (1)∵sin α+cos β=1,① cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+ 3 t an 25°·tan 35°= 3 (1-tan 25°tan 35°)+3tan 25°tan 35°= 3. [答案] (1)-12 (2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)公式的一些常用变形: sin αsin β+cos(α+β)=cos αcos β; cos αsin β+sin(α-β)=sin αcos β; 1±sin α=⎝⎛⎭⎫sin α2±cos α22; sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32, 3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22 (sin 56°-cos 56°)=22 s in 56°-22 c os 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, ∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45. 答案:453.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换考法(一) 三角公式中角的变换[典例] (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________. [解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45, 得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.[答案] -5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. 考法(二) 三角公式中名的变换[典例] (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.[解] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α .因为sin 2α+cos 2α=1, 所以cos 2α=925,所以cos 2α=2cos 2α-1=-725.(2)因为α,β 为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π. 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2. 因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法] 三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( ) A.12 B.13C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14.2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210,∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4=sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45. 3.已知sin α=-45,α∈⎣⎡⎦⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136C .-613D .-136解析:选A ∵sin α=-45,α∈⎣⎡⎦⎤3π2,2π, ∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos [(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +cos ⎝⎛⎭⎫π2-x =1,则cos 2x =( ) A .-89B .-79C.79D .-725解析:选C 因为2sin x +cos ⎝⎛⎭⎫π2-x =1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( ) A .-223B .±223C .-1D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1.4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A.3 B.2 C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33. 5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118B.118C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin2α=-1718.6.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13C .-23D.23解析:选D cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=12+12sin 2α=12+12×13=23. 7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-1 11.已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:(1)tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1. 12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13. (1)求sin(α-β)的值;(2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0. ∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45. ∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. B 级1.(2019·广东五校联考)若tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),|θ|<π2,则tan 2θ=________. 解析:∵tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),∴cos θsin θ=4cos θ, 又∵|θ|<π2,∴sin θ=14, ∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115,从而tan 2θ=2tan θ1-tan 2θ=157. 答案:157 2.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35,则cos ⎝⎛⎭⎫A -π3=________. 解析:因为A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35, 所以π2<A +B <π,π2<B +π3<π, 所以sin(A +B )=1-cos 2(A +B )=725,cos ⎝⎛⎭⎫B +π3=- 1-sin 2⎝⎛⎭⎫B +π3=-45, 可得cos ⎝⎛⎭⎫A -π3=cos ⎣⎡⎦⎤(A +B )-⎝⎛⎭⎫B +π3=-2425×⎝⎛⎭⎫-45+725×35=117125. 答案:1171253.(2019·石家庄质检)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、知识回顾 1、填表:(表一) 角α
︒0 ︒30 ︒45 ︒60 ︒90 ︒120 ︒135
︒150
︒180
角α的弧度制
αsin αcos
2、两角和与差的正余弦公式 (
1
)
差
角
的
正
余
弦
:
s
i
n
(
= ;)cos(βα-= ; (2)和角的正余弦 :s in((
= ;cos (
= ; 3、牛刀小试(不查表求下列式子的值) (1)sin15; (2)cos 75;
(3)sin 75
问题1:你能由两角差的余弦公式推出两角和的余弦公式吗?
[]
cos()cos ()cos cos()sin sin()cos cos sin sin αβαβαβαβαβαβ
+=--=-+-=-
cos()cos cos sin sin αβαβαβ∴+=- C αβ+
问题2 :你能由两角和与差的余弦公式推出两角和与差的正弦公式吗?
sin()cos ()cos ()22cos(
)cos sin()sin 22sin cos cos sin ππαβαβαβππ
αβαβ
αβαβ
⎡⎤⎡⎤
+=-+=-+⎢⎥⎢⎥
⎣⎦⎣⎦
=-+-=+
sin()sin cos cos sin αβαβαβ∴+=+ S αβ+
[]sin()sin ()sin cos()cos sin()sin cos cos sin αβαβαβαβαβαβ-=+-=-+-=-
sin()sin cos cos sin αβαβαβ∴-=- S αβ- 二、知识应用 1. 已知3cos 5α=-,(,)2παπ∈,求cos()4
π
α-的值。
2. 已知sin α=\f(2,3),α∈(错误!,π),cos β=-错误!,β∈(π,错误!).求si n(α-β),cos(α+β),t an(α+β).
3. 已知
4π<α<4π3,0<β<4π,cos(4π+α)=-53,s in (4π3+β)=13
5, 求si n(α+β)的值.
4. 已知2π<α<β<4π3,cos(α-β)=1312,si n(α+β)=-5
3,求sin2α的值.
1.c os(-15°)的值为( )
A.错误! B.错误! C.错误! ﻩD.错误!
2.计算si n43°cos13°-c os43°sin13°的结果等于( )
A.1
2 B.\f(\r(3),3) C .\f(2,2) ﻩ D.
错误!
3.函数y =sin x +c os x 的最小值和最小正周期分别是( )
A .-错误!,2π B.-2,2π C.-错误!,π ﻩ D .-2,π 4.已知cos 错误!=m ,则co sx +cos 错误!=( )
A .2m ﻩ
ﻩB .±2m C .错误!m
D.±错误!m 5.已知向量a =(co s75°,s in75°),b =(cos15°,si n15°),那么|a -b |等于( )
A.错误! ﻩ
B .错误! C.错误!
D.1
6.若函数f (x )=(1+错误!tan x )cos x,0≤x <错误!,则f (x )的最大值为( )
A.1 ﻩB .2 C.错误!+1
ﻩD.错误!+2
7.函数f (x)=(1+错误!tan x)co sx 的最小正周期为( )
A .2π ﻩB.\f(3π,2) C.π ﻩ D.π
2
8.函数f (x )=s in 错误!+a s in 错误!的一条对称轴方程为x=错误!,则a =( )
A.1
ﻩB.错误! C .2 ﻩD.3
9.1
2
si n75°+错误!si n15°的值等于__________. 10.已知s in θ=-\f(5,13),θ∈错误!,那么cos 错误!=__________. 11.已知cos 错误!=错误!,x ∈(0,π),则si nx的值为__________. 12.已知函数f(x)=2sin(错误!x-错误!),x ∈R. (1)求f(5π
4
)的值;
(2)设α,β∈[0,π2],f (3α+π
2)=错误!,f(3β+2π)=错误!,
求c os(α+β)的值.。