信号发生器设计书..

合集下载

DSP课程设计——信号发生器(方波)

DSP课程设计——信号发生器(方波)

成绩评定表课程设计任务书目录1 绪论 (1)1.1 设计背景 (1)1.2 设计目的 (2)1.3 设计任务 (2)2 设计过程 (3)2.1 设计原理 (3)2.2 XF引脚周期性变化 (3)2.3 子程序的调用 (4)3 程序代码 (5)3.1 源程序 (5)3.2SDRAM初始化程序 (7)3.3 方波程序连接命令文件 (9)4 调试仿真运行结果分析 (10)4.1 寄存器仿真结果 (10)4.2 模拟输出仿真 (12)5.设计总结 (13)参考文献 (13)信号发生器(方波)1 绪论1.1 设计背景数字信号处理是20世纪60年代,随着信息学科和计算机学科的高速发展而迅速发展起来的一门新兴学科。

它的重要性日益在各个领域的应用中表现出来。

其主要标志是两项重大进展,即快速傅里叶变换(FFT)算法的提出和数字滤波器设计方法的完善。

数字信号处理是把信号用数字或符号表示成序列,通过计算机或通用(专用)信号处理设备,用数值计算方法进行各种处理,达到提取有用信息便于应用的目的。

例如:滤波、检测、变换、增强、估计、识别、参数提取、频谱分析等。

数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。

因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。

而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。

数字信号处理的算法需要利用计算机或专用处理设备如数字信号处理器(DSP)和专用集成电路(ASIC)等。

数字信号处理的研究方向应该更加广泛、更加深入.特别是对于谱分析的本质研究,对于非平稳和非高斯随机信号的研究,对于多维信号处理的研究等,都具有广阔前景。

数字信号处理技术发展很快、应用很广、成果很多。

多数科学和工程中遇到的是模拟信号。

以前都是研究模拟信号处理的理论和实现。

模拟信号处理缺点:难以做到高精度,受环境影响较大,可靠性差,且不灵活等。

数字系统的优点:体积小、功耗低、精度高、可靠性高、灵活性大、易于大规模集成、可进行二维与多维处理。

MAX038的信号发生器的设计

MAX038的信号发生器的设计

MAX038的信号发生器的设计1.设计思路信号发生器是实验室的基本设备之一,目前广泛使用的是一些标准产品,虽然功能齐全、性能指标较高,但是价格较贵,而且许多功能却用不上。

MAX038是MAXIM公司生产的一个只需要很少外部元件的精密高频波形产生器,他能产生准确的高频正弦波、三角波、方波。

输出频率和占空比可以通过调整电流、电压或电阻来分别地控制。

所需的输出波形可由在A0和A1输入端设置适当的代码来选择.MAX038的引脚功能如下所示REF:2.50 V带隙基准电压输出端;6,9,11,18:GND地;A0:波形选择输入端,TTL/CMOS兼容;A1:波形选择输人端,TTL/CMOS兼容;COSC:外部电容连接端;DADJ:占空比调整输入端;FADJ:频率调整输入端;IIN:用于频率控制的电流输入端;PDO:相位检波器输出端。

如果不用相位检波器则接地;PDI:相位检波器基准时钟输入端。

如果不用相位检波器则接地;SYNC:TTL/CMOS兼容的同步输出端,可由DGND至DV+间的电压作为基准。

可以用一个外部信号来同步内部的振荡器。

如果不用则开路;DGND:数字地。

让他开路使SYNC无效,或是SYNC不用;DV+:数字+5 V电源。

如果SYNC不用则让他开路;V+:+5 V电源;OUT:正弦波、方波或三角波输出端;V-:-5 V电源。

图1 MAX038 信号发生器1表1 MAX038信号发生器管脚2.方案设计2.1信号产生电路该简易信号发生器可以输出三角波、方波、正弦波和阶跃波4种波形;3个固定频率选择;以及10个电压选择。

此外,为了更好的满足大多数实验与电路检测的要求,该信号发生器还可以输出电荷量。

该信号发生器电路主要由信号产生电路、电压电荷输出电路和电源模块三部分组成。

对于三角波、方波、正弦波3种信号,其信号产生电路的核心器件为MAX038,3种输出波形由波形设定端A0,A1控制,其编码如表2所示。

信号发生器课程设计报告完整版

信号发生器课程设计报告完整版

信号发生器课程设计报告HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】目录一、课题名称 (2)二、内容摘要 (2)三、设计目的 (2)四、设计内容及要求 (2)五、系统方案设计 (3)六、电路设计及原理分析 (4)七、电路仿真结果 (7)八、硬件设计及焊接测试 (8)九、故障的原因分析及解决方案 (11)十、课程设计总结及心得体会 (12)一、课题名称:函数信号发生器的设计二、内容摘要:函数信号发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。

在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。

信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。

它可以产生多种波形信号,如正弦波,三角波,方波等,因而此次课程设计旨在运用模拟电子技术知识来制作一个能同时输出正弦波、方波、三角波的信号发生器。

三、设计目的:1、进一步掌握模拟电子技术知识的理论知识,培养工程设计能力和综合分析能力、解决问题的能力。

2、基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力。

3、学会运用Multisim仿真软件对所做出来的理论设计进行仿真测试,并能进一步解决出现的基本问题,不断完善设计。

4、掌握常用元器件的识别和测试,熟悉万用表等常用仪表,了解电路调试的基本方法,提高实际电路的分析操作能力。

5、在仿真结果的基础上,实现实际电路。

四、设计内容及要求:1、要求完成原理设计并通过Multisim软件仿真部分(1)RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz、500KHz,输出幅值300mV~5V可调、负载1KΩ。

(2)占空比可调的矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。

简易函数信号发生器设计报告

简易函数信号发生器设计报告

简易函数信号发生器设计报告一、引言信号发生器作为一种测试设备,在工程领域具有重要的应用价值。

它可以产生不同的信号波形,用于测试和调试电子设备。

本设计报告将介绍一个简易的函数信号发生器的设计方案。

二、设计目标本次设计的目标是:设计一个能够产生正弦波、方波和三角波的函数信号发生器,且具有可调节频率和幅度的功能。

同时,为了简化设计和降低成本,我们选择使用数字模拟转换(DAC)芯片来实现信号的输出。

三、设计原理1.信号产生原理正弦波、方波和三角波是常见的函数波形,它们可以通过一系列周期性的振荡信号来产生。

在本设计中,我们选择使用集成电路芯片NE555来产生可调节的方波和三角波,并通过滤波电路将其转换为正弦波。

2.幅度调节原理为了实现信号的幅度调节功能,我们需要使用一个可变电阻,将其与输出信号的放大电路相连。

通过调节可变电阻的阻值,可以改变放大电路的放大倍数,从而改变信号的幅度。

3.频率调节原理为了实现信号的频率调节功能,我们选择使用一个可变电容和一个可变电阻,将其与NE555芯片的外部电路相连。

通过调节可变电容和可变电阻的阻值,可以改变NE555芯片的工作频率,从而改变信号的频率。

四、设计方案1.正弦波产生方案通过NE555芯片产生可调节的方波信号,并通过一个电容和一个电阻的RC滤波电路,将方波转换为正弦波信号。

2.方波产生方案直接使用NE555芯片产生可调节的方波信号即可。

3.三角波产生方案通过两个NE555芯片,一个产生可调节的方波信号,另一个使用一个电容和一个电阻的RC滤波电路,将方波转换为三角波信号。

五、电路图设计设计的电路图如下所示:[在此插入电路图]六、实现效果与测试通过实际搭建电路,并连接相应的调节电位器,我们成功地实现了信号的幅度和频率调节功能。

在不同的调节范围内,我们可以得到稳定、满足要求的正弦波、方波和三角波信号。

七、总结通过本次设计,我们成功地实现了一个简易的函数信号发生器,具有可调节频率和幅度的功能。

函数信号发生器设计报告

函数信号发生器设计报告

函数信号发生器设计报告目录一、设计要求 .......................................................................................... - 2 -二、设计的作用、目的 .......................................................................... - 2 -三、性能指标 .......................................................................................... - 2 -四、设计方案的选择及论证 .................................................................. - 3 -五、函数发生器的具体方案 .................................................................. - 4 -1. 总的原理框图及总方案 ................................................................. - 4 -2.各组成部分的工作原理 ................................................................... - 5 -2.1 方波发生电路 .......................................................................... - 5 -2.2三角波发生电路 .................................................................... - 6 -2.3正弦波发生电路 .................................................................. - 7 -2.4方波---三角波转换电路的工作原理 ................................ - 10 -2.5三角波—正弦波转换电路工作原理 .................................. - 13 -3. 总电路图 ....................................................................................... - 15 -六、实验结果分析 ................................................................................ - 16 -七、实验总结 ........................................................................................ - 17 -八、参考资料 ........................................................................................ - 18 -九、附录:元器件列表 ........................................................................ - 19 -函数信号发生器设计报告一、设计要求1. 用集成运放组成正弦波、方波和三角波发生器。

正弦波信号发生器设计(课设)

正弦波信号发生器设计(课设)

课程设计I(论文)说明书(正弦波信号发生器设计)2010年1月19日摘要正弦波是通过信号发生器,产生正弦信号得到的波形,方波是通过对原信号进行整形得到的波形。

本文主要介绍了基于op07和555芯片的正弦波-方波函数发生器。

以op07和555定时器构成正弦波和方波的发生系统。

Op07放大器可以用于设计正弦信号,而正弦波可以通过555定时器构成的斯密特触发器整形后产生方波信号。

正弦波方波可以通过示波器检验所产生的信号。

测量其波形的幅度和频率观察是否达到要求,观察波形是否失真。

关键词:正弦波方波 op07 555定时器目录引言 (2)1 发生器系统设计 (2)1.1系统设计目标 (2)1.2 总体设计 (2)1.3具体参数设计 (4)2 发生器系统的仿真论证 (4)3 系统硬件的制作 (4)4 系统调试 (5)5 结论 (5)参考文献 (6)附录 (7)1引言正弦波和方波是在教学中经常遇到的两种波形。

本文简单介绍正弦波和方波产生的一种方式。

在这种方式中具体包含信号发生器的设计、系统的论证、硬件的制作,发生器系统的调制。

1、发生器系统的设计1.1发生器系统的设计目标设计正弦波和方波发生器,性能指标要求如下:1)频率范围100Hz-1KHz ;2)输出电压p p V ->1V ;3)波形特性:非线性失真~γ<5%。

1.2总体设计(1)正弦波设计:正弦波振荡电路由基本放大电路、反馈网络、选频网络组成。

2图1.1正弦波振荡电路产生的条件是要满足振幅平衡和相位平衡,即AF=1;φa+φb=±2nπ;A=X。

/Xid; F=Xf/X。

;正弦波振荡电路必须有基本放大电路,本设计以op07芯片作为其基本放大电路。

基本放大电路的输出和基本放大电路的负极连接电阻作为反馈网络。

反馈网络中两个反向二极管起到稳压的作用。

振荡电路的振荡频率f0是由相位平衡条件决定的。

一个振荡电路只在一个频率下满足相位平衡条件,这要求AF环路中包含一个具有选频特性的选频网络。

设计序列信号发生器

设计序列信号发生器

数码电子学实验设计序列信号发生器报告人:XXX一.具体要求要求用D触发器和门电路设计一个产生1101001序列(序列左边先输出)的序列发生器。

二.实验目的1.熟悉原理图输出法;2.了解可编程器件的实际应用。

三.实验准备1.详解D 触发器 ①电路组成为了避免同步RS 触发器同时出现R 和S 都为1的情况,可在R 和S 之间接入非门G1,如图1所示,这种单输入的触发器称为D 触发器。

图2为其逻辑符号。

D 为信号输入端。

图1:D 触发器逻辑图 图2:D 触发器逻辑符号②逻辑功能在CP=0时,G2,G3被封锁,都输出1,触发器保持原状态不变,不受D 端输入信号的控制。

在CP=1时,G2,G3解除封锁,可接收D 端输入的信号。

如1=D 时,0=D ,触发器翻到1状态,即Q n+1=1,如0=D 时,1=D ,触发器翻到0状态,即Q n+1=0,由此可列出表1所示同步D 触发器的特性表。

表1:同步D 触发器特性表D Q n Q n+1 说明0 0 0 输出状态和D 相同 0 1 0 输出状态和D 相同 1 0 1 输出状态和D 相同 111输出状态和D 相同由上述分析可知,同步D 触发器的逻辑功能如下:当CP 由0变为1后,触发器的状态翻到和D 的状态相同; 当CP 由1变为0后,触发器保持原状态不变。

③D 触发器的名词来源D 触发器不会发生RS 触发器不确定的情形(S=1,R=1),也不会发生JK 触发器的追跑情况(J=1,K=1),那么为什么成为D 触发器呢?因为输出Q 等于输入D ,但是要经过一个CLOCK触发之后才产生,在时间上意味着有延迟时间的作用,所以称为D 型(Delay )触发器。

2.确定移位寄存器的级数n (即需要用多少个寄存器来寄存状态)我们知道,一个D 触发器可以寄存“0”和“1”两种状态,若序列周期为P ,则信号发生器的级数n 应满足2≤P n 。

在本例中,要产生1101001这个序列,3=n 。

信号发生器中文说明书,4-20ma,0-10V,0-2ma,PWM信号,正弦波信号,多功能信号发生器

信号发生器中文说明书,4-20ma,0-10V,0-2ma,PWM信号,正弦波信号,多功能信号发生器

JLY-SG-01 信号发生器 JLY-SG-01信号发生器JLY-SG-01使用范围:信号发生器JLY-SG-01包含了电子设计、现场调试、调光调速、恒流驱动、正弦波信号等电子开发和调试过程中常用的信号。

PWM和0-10V信号可以用来对电机进行调速和对LED进行调光;正弦波发生器可以用来作为激励信号进行调制和解调;4-20ma和0-10V可以用来调试变送器和传感器;0-2ma可以用来驱动小信号传感器;Modbus 接口可以使该信号发生器与PLC和PC进行通信。

信号发生器包含:●2路0-10V信号 ●2路4-20ma信号 ●1路0-2ma信号 ●1路正弦波信号 ●4路PWM信号 ●1路Modbus信号。

每一路信号接口独立,互不影响。

即所有信号都可以同时工作。

系统开放校准接口,用户可自行校准,但须严格按照校准说明步骤进行JLY-SG-01信号发生器 JLY-SG-01JLY-SG-01主要特点:● 仪器小巧,告别笨重。

可手持、可桌面放置、可导轨安装亦可墙壁安装。

● 温度补偿,良好的稳定性,超高的精度 ● 工业化设计,响应速度快● 信号接口丰富且每路信号独立运行,互不干扰。

一机在手,调试无忧 ● 高亮度点阵屏,硅胶按键,手感颜值爆表 ● 模拟信号最低可以调整到0,使信号更完整技术指标:● 4-20ma:精度±0.5%,负载小于300Ω ● 0-2ma:精度±0.5%,负载小于3k Ω ● 0-10V: 精度±0.5%,负载大于5k Ω ● 正弦波信号:频率精度±0.5%,负载大于10K Ω,峰峰值:4.2V。

其频率可设置范围:50Hz ~ 999.999KHz ● PWM 信号:频率精度±0.5%,负载大于10K Ω,VH>2.4V,VL<0.6V,Vmax=5V。

其频率可设置范围:100Hz ~ 200KHz● 12~15VDC 供电,最大电流500ma ● 工作温度:0~50℃ ● 存储温度:-20~65℃ ● LCD12864显示屏,硅胶按键● 参数可通过MMI 按键设置亦可通过Modbus 设置 ● 预留用户校准接口,当仪表误差大时可自行校准(须严格按照校准操作章节进行操作)接线图:操作说明:●开机/关机操作关机状态下,短按“M”系统开机;开机状态下,长按“M”3s,待显示屏变暗后松开按键即可关机。

信号发生器设计(正弦,方波,三角,多用信号发生器)

信号发生器设计(正弦,方波,三角,多用信号发生器)

模拟电路课程设计报告设计课题:信号发生器设计班级:10通信工程三班学生姓名:陶冬波学号:2010550921指导教师:设计时间:目录一、信号发生器摘要--------------------3二、设计目的---------------------3三、设计内容和要求四、设计方案------------------------------------------34.1 RC桥式正弦波产生电路--------------------------------------3 4.2方波产生电路----------------------------------------------------6 4.3三角波产生电路-------------------------------------------------84.4多用信号发生器-------------------------------------------------9五、组装调试及元件清单---------------------------105.1 测试仪器---------------------------------------------------------10 5.2信号发生器元件清单-----------------------------------------------115.3调试中出现的故障、原因及排除方法----------------------11六、总结设计电路,改进措施----------------------116.1 正弦波产生电路改进措施--------------------------------------116.2多用信号发生器改进措施---------------------------------------11七、收获和体会-----------------------------------------12八、参考文献--------------------------------------------12信号发生器设计一、信号发生器设计摘要:本设计介绍了波形发生器的制作和设计过程,并根据输出波形特性研究该电路的可行性。

简易函数信号发生器的设计报告

简易函数信号发生器的设计报告

简易函数信号发生器的设计报告设计报告:简易函数信号发生器一、引言函数信号发生器是一种可以产生各种类型函数信号的设备。

在实际的电子实验中,函数信号发生器广泛应用于工程实践和科研领域,可以用于信号测试、测量、调试以及模拟等方面。

本文将着重介绍一种设计简易函数信号发生器的原理和方法。

二、设计目标本设计的目标是实现一个简易的函数信号发生器,能够产生包括正弦波、方波和三角波在内的基本函数信号,并能够调节频率和幅度。

同时,为了提高使用方便性,我们还计划增加一个显示屏,实时显示当前产生的信号波形。

三、设计原理1.信号源函数信号发生器的核心是信号发生电路,由振荡器和输出放大器组成。

振荡器产生所需的函数信号波形,输出放大器负责放大振荡器产生的信号。

2.振荡器为了实现多种函数波形的产生,可以采用集成电路作为振荡器。

例如,使用集成运算放大器构成的和差振荡器可以产生正弦波,使用施密特触发器可以产生方波,使用三角波发生器可以产生三角波。

根据实际需要,设计采用一种或多种振荡器来实现不同类型的函数信号。

3.输出放大器输出放大器负责将振荡器产生的信号放大到适当的电平以输出。

放大器的设计需要考虑到信号的频率范围和幅度调节的灵活性。

4.频率控制为了能够调节信号的频率,可以采用可变电容二极管或可变电阻等元件来实现。

通过调节这些元件的参数,可以改变振荡器中的RC时间常数或LC谐振电路的频率,从而实现频率的调节。

5.幅度控制为了能够调节信号的幅度,可以采用可变电阻作为放大电路的输入阻抗,通过调节电阻阻值来改变信号的幅度。

同时,也可以通过增加放大倍数或使用可变增益放大器来实现幅度的控制。

四、设计步骤1.确定电路结构和信号发生器的类型。

根据功能和性能需求,选择合适的振荡器和放大器电路,并将其组合在一起。

2.根据所选振荡器电路进行参数计算和元件的选择。

例如,根据需要的频率范围选择适合的振荡器电路和元件,并计算所需元件的数值。

3.设计输出放大器电路。

课程设计 方波信号发生器设计

课程设计 方波信号发生器设计

目录一、概述 (2)二、技术性能指标 (2)2.1设计内容及技术要求 (2)2.2设计目的 (3)2.3设计要求 (3)三、方案的选择 (3)3.1方案一 (4)3.2方案二 (5)3.3最终方案 (6)四、单元电路设计 (6)4.1矩形波产生电路 (6)4.2三角波产生电路 (9)4.3正弦波产生电路 (11)五、总电路图 (13)六、波形仿真结果 (13)6.1矩形波仿真结果 (13)6.2三角波仿真结果 (14)6.3正弦波仿真结果 (15)6.4三种波形同时仿真结果 (15)七、PCB版制作与调试 (16)结论 (17)总结与体会 (18)致谢 (18)附录1 元件清单 (19)附录2 参考文献 (20)函数信号发生器设计报告一、概述信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

各种波形曲线均可以用三角函数方程式来表示。

能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。

函数信号发生器在电路实验和设备检测中具有十分广泛的用途。

例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。

在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

二、技术性能指标2.1设计内容及技术要求设计并制作一个信号发生器,具体要求如下:1、能够输出正弦波、方波、三角波;2、输出信号频率范围为1——10Hz,10——100Hz;3、输出信号幅值:方波Up-p=24V,三角波Up-p=0——20V,正弦波U>1V;4、波形特征:方波Tr<10s(100Hz,最大输出时),三角波失真系数THD<2%,正弦波失真系数THD<5%;5、电源:±13V直流电源供电;按照以上技术完成要求设计出电路,绘制电路图,对设计的电路用Multisim进行必要的仿真,用PROTEL软件进行制板、焊接,然后对制作的电路完成调试,撰写设计报告测,通过答辩。

基于单片机的函数信号发生器毕业设计完整版

基于单片机的函数信号发生器毕业设计完整版

基于单片机的函数信号发生器毕业设计完整版本毕业设计旨在设计一个基于单片机的函数信号发生器,以满足工程实践需求。

设计的信号发生器将具有以下特点:能够输出多种波形、具备可调频率和幅度的功能、具备稳定性和高精度等。

首先,信号发生器的硬件设计包括信号源、滤波电路、放大电路和输出电路。

信号源负责产生基本的信号波形,可以通过设置单片机的IO口电平高低来控制信号的波形。

滤波电路和放大电路主要负责对信号进行滤波和放大处理,以确保输出的波形质量和幅度稳定性。

输出电路则是将放大后的信号输出到外部设备上。

其次,信号发生器的软件设计主要是通过编程控制单片机的IO口来实现波形的生成和调节。

编程方面,可以使用C语言或者汇编语言来编写程序,实现波形的输出、频率和幅度的调节等功能。

在程序的运行过程中,需要通过控制IO口电平的高低来控制信号的形状。

同时,可以使用按键或旋钮等外部输入设备来实现对频率和幅度的调节,以满足用户的实际需求。

最后,在设计的过程中需要注意信号发生器的稳定性和精度。

稳定性主要包括信号的频率稳定性和幅度稳定性。

频率稳定性可以通过使用高精度的时钟源和精确的频率分频电路来实现。

幅度稳定性可以通过使用高精度的放大电路和自动增益控制电路来实现。

精度方面,则可以通过使用高精度的模拟数字转换芯片和时钟源来实现。

总的来说,基于单片机的函数信号发生器在工程实践中具有重要意义。

本设计旨在结合硬件和软件技术,实现一个功能完善、稳定性好、精度高的信号发生器。

通过合理的设计和优化,该信号发生器能够满足工程实践的需求,为相关领域的研究提供信号源支持。

多功能信号发生器的设计

多功能信号发生器的设计

d l 2f _ + ) ea (ez 1; y r )

vi b0 od o0 f
u h ri ca ;
fr= ; P_; + o( 0i _ i ) i < P+ (
P1 i = >>1 :
d l 2f _ > 1; ea (e z> ) y r

, / 调节频率 以 1 为分度值
1 1~ 2 2. 7 0
f ( 0iP Pi+ oi ; — ; ) r= < +

P1 i >1 => :
dly (e s> ) e 2 r—> 1; a f

P1 0: =
, / 调节频率 以 1 为分度值
浅 谈 建 筇 施 工 【 混 凝 土 二 次 振 捣 旋 工技 术 l 】
宁夏 建设职 业技 术 学院材料 工程 系 张 波
[ 摘 要] 本文就 建筑施 工领域的一个热点 问题一 如何提 高混凝 土的性 能, 介绍一种 简单 高效 的方法一 混凝土二次振捣 工艺。文章
就 混凝土二 次振捣的时 间、 施工方法及注意事项进行 了详 细的介 绍, 并对二 次振捣的机理进行 了分析。 [ 关键词 ] 混凝土二 次振捣 振 捣方法 机理
Pl i =;
本文基于单 片机设计 了~个低频 的信号发生器 , 计 中巧妙地 应 设 用了一个典 型的控制方法。通过单 片机控 制一个模数转换器—— 电阻 分压 网络产生 所需 要的 电流 , 然后 使用运算放大器 L 3 8 M 5 将其 电流 输 出线性地转换成电压输出 , 再将电压经过运算放大器放大 , 得到足够幅 度的输出信 号。通 过程序的控制 , 可以产生一 系列有 规律 的波形 , 这样 个 信号发 生装置在控制领域有着潜在的应用价值 。

课程设计-----脉冲信号发生器说明书

课程设计-----脉冲信号发生器说明书

电子技术综合训练设计报告题目:脉冲信号发生器姓名:学号:班级:同组成员:指导教师:日期:2011年12月29日内容摘要脉冲信号发生器主要用来作为各种电子设备的信号源,此电路要求达到:设计并制作一个信号发生器,基本要求如下:1、能够输出1KHZ正弦波信号;2、由该1KHZ脉冲信号产生100HZ脉冲信号;3、由100HZ脉冲信号产生10KHZ脉冲信号;4、输出信号能够在这三种信号中通过电子开关进行选择,电子开关由按键控制,并且能够对选择的信号用发光二极管指示;实现方法:RC文氏振荡器产生正弦波﹑通过过零比较器转化为脉冲信号﹑经过分频倍频电路实现脉冲宽度的调节﹑由模拟开关﹑四进制计数器﹑译码器实现三种波形之间的转化。

本次设计的要点在于电路的线路的连接及焊接,通过设计体会理论与实际结合的重要性。

关键词:脉冲信号发生器﹑正弦波﹑脉冲信号、电子开关。

目录一﹑设计任务及其要求要求: (4)1.1设计并制作一个信号发生器, (4)1.2 基本要求如下: (4)1.3 发挥部分: (4)二﹑系统设计 (5)2.1 系统要求 (5)2.2 方案设计 (5)2.3 方案的选择和确定 (5)2.3.1正弦波的产生 (5)2.3.2波形变换 (6)2.3.3分频倍频 (6)2.3.4电子开关 (6)2.4 设计指标 (7)2.5 系统组成及其工作原理 (7)三﹑单元电路设计 (9)3.1 单元电路A(RC振荡电路) (9)3.1.1 RC低频桥式正弦波振荡电路 (9)3.1.2 参数计算 (12)3.2单元电路B(过零比较器) (13)3.3 单元电路C﹙分频电路﹚ (15)3.4 单元电路D(倍频电路) (17)3.5 单元电路E(模拟开关) (19)3.6 单元电路F(74LS112型双JK触发器) (21)3.7 单元电路G(74LS139) (23)3.8 直流稳压电源电路 (24)四、系统仿真 (25)五﹑电路安装与调试 (26)5.1电路安装 (26)5.2 电路调试 (27)5.3 系统功能及性能测试 (27)六﹑结论 (28)七﹑参考文献 (30)八、总结、体会及建议 (31)一﹑设计任务及其要求要求:1.1设计并制作一个信号发生器,1.2 基本要求如下:1.能够输出1KHZ正弦波信号;2、由该1KHZ脉冲信号产生100HZ脉冲信号;3、由100HZ脉冲信号产生10KHZ脉冲信号;4、输出信号能够在这三种信号中通过电子开关进行选择,电子开关由按键控制,并且能够对选择的信号用发光二极管指示;5、电源:220V/50HZ的工频交流电供电;(注:直流电源部分仅完成设计即可,不需制作,用实验室提供的稳压电源调试,但要求设计的直流电源能够满足电路要求)6、按照以上技术要求设计电路,绘制电路图,对设计的电路用Multisim 或OrCAD/PspiceAD9.2进行仿真,用万用板焊接元器件,制作电路,完成调试、测试,撰写设计报告。

模电课程函数信号发生器设计

模电课程函数信号发生器设计

齐鲁理工学院课程设计说明书题目函数信号发生器的设计课程名称模拟电子技术基础二级学院机电工程学院专业自动化班级 2015级学生姓名周福青学号 201510532082指导教师臧红岩范卉青设计起止时间:2016年12 月19 日至2016年12 月22 日目录摘要 (2)1课程设计的目的和设计的任务 01.1课程设计目的 01.2设计任务 01.3课程设计的要求及技术指标 02函数发生器的总方案及结构 02.1函数发生器的总方案及总电路 02.2结构图 (2)3各组成部分的工作原理及仿真 (2)3.1方波发生电路的工作原理 (2)3.2方波-三角波转换电路工作原理 (4)3.3三角波-正弦波转换电路工作原理 (6)4电路的计算 (7)4.1电路的计算 (7)4.2电路参数选择 (8)5.结论 (9)参考文献: (11)致谢 (12)附录Ⅰ元器件的选用规格 (13)函数信号发生器摘要:信号发生器,是一种在科研和生产中经常用到的基本波形产生器,也是常用的测试仪器,常用的信号源有正弦波,方波,三角波,等。

随着大规模集成电路的迅速发展,多功能信号发生器已经被制成专业集成电路,可以产生精确度较高的正弦波,方波,三角波等多种信号。

各种信号的频率可以通过调节外接电阻和电容的参数值进行调节,为快速而准确的得到并利用这些基本波形提供了很大的方便。

在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

各种波形曲线均可以用三角函数方程式来表示。

其中它能产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波。

产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。

函数信号发生器课程设计说明书正文

函数信号发生器课程设计说明书正文

函数信号发生器课程设计说明书正文西华大学课程设计说明书1前言函数信号发生器的应用非常广泛,种类繁多。

首先,信号发生器可以分通用和专用两大类,专用信号发生器主要为了某种特殊的测量目的而研制的,如电视信号发生器、脉冲编码信号发生器等。

这种发生器的特性是受测量对象的要求所制约的。

其次,信号发生器按输出波形又可分为正弦波信号发生器、脉冲波信号发生器、函数发生器和任意波发生器等。

在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器;随着集成电路的迅速发展,用集成电路可很方便地构成各种信号波形发生器。

用集成电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。

本次设计中用到了多块集成芯片包括:NE555、OPA2228、74HC161?..函数发生器是现代电子系统的重要组成部分,是决定电子系统性能的关键设备之一。

随着现代通信技术的发展,系统对频率合成器提出了越来越高的要求。

低相位噪声、高频谱纯度、高捷变速率和高频率分辨率的频率合成器已经成为频率合成技术发展的主要趋势。

本次设计是通过分立元件的方法实现方波、三角波、正弦波的产生用户可分别调节该函数发生器产生的正弦波、矩形波、三角波等波形的频率和波幅,该函数发生器应具有一定的带负载能力,发生器能测量仪器产生的波形的频率,用五位十进制数字显示。

本次设计采用分立元件的方法实现各个波形的产生,这样对于所产生的波形的高频率部分和各个电子元件的工作频率就存在选取的问题,而且所输出的函数信号还要求具备一定的带载能力;对于本次的设计采用的方法是分离元件法将方波产生电路、三角波产生电路、正弦波产生电路三个模块有序搭建,将所产生的波形通过示波器显示出来,这样可以方便用户对所产生的波形进行观察,对于所产生的波形的频率部分则是采用5个共阴极的7段数码管来显示的,这样用户可以方便读取波形的频率值;本次设计最终达到预期的要求和条件,能够实现对所产生的波形进行频率和幅度的调节,并且本次的函数信号发生器所产生的函数信号也到达了要求所规定的带负载能力;通过分立元件法实现函数信号的产生使得电路的模块化程度更高,更高的减少了各个信号发生模块相互间的干扰,这样电路的应用性和可移植性更强。

AD9834信号发生器设计报告

AD9834信号发生器设计报告

制作一个方波、三角波、正弦波发生器。

要求如下:1、频率在20Hz~20kHz之间,以20Hz为基准,每次10%递增可调。

由按键设定。

要求在不同频率下,波形输出质量近似。

2、峰峰值由按键设定:以0.1V为基准,在0.1V~1V之内,每次10%递增可调。

当峰峰值大于1V后,以0.1V递增可调。

最大峰峰值大于10V。

3、三种信号具有完全相同的频率,具有约定的相位关系:以方波为准,方波的高电平期间,对应于三角波和正弦波的上升进程,方波的低电平期间,对应于三角波和正弦波的下降进程。

4、提高设计一:三种信号的占空比可以在0.1~0.9之间变化,当占空比不为0.5时,三角波将变为锯齿波,正弦波将不再是正弦波——仅在半个周期内满足正弦规律。

5、提高设计二:可以通过旋钮调节三种信号各自的直流偏移量,在 5V范围内全程调节。

6、提高设计三:可以实现上述3种信号的加减运算输出。

7、提高设计四:设输出信号频率为fOUT,给正弦波信号输出设计一个低通滤波器,其截止频率为2fOUT。

目录1.方案论证 (4)1.1总体方案论证 (4)1.2幅度控制方案论证 (6)1.3键盘显示方案论证 (6)1.4最终方案论证 (7)2.硬件设计 (9)3.软件设计 (10)4.理论分析 (11)5.测试方法 (14)6.测试结果分析 (15)7.结论 (27)8.参考文献 (27)9.附录 (28)摘要:高精度测量往往需采用高精度、高稳定性、高分辨率的频率信号源。

采用多个锁相环构成的频率合成器,电路复杂、价格昂贵,且信号建立时间长、动态特性较差。

近年来发展起来的直接数字式频率合成器(DDS)采用高速数字电路和高速D/A 转换技术,具有以往频率合成器难以达到的优点,如频率转换时间短(<20ns)、频率分辨率高(0.01Hz )、频率稳定度高、输出信号频率和相位可快速程控切换等,因此可以很容易地对信号实现全数字式调制。

而且,由于DDS 是数字化高密度集成电路产品,芯片体积小、功耗低,因此可以用DDS构成高性能频率合成信号源而取代传统频率信号源产品。

EDA课设报告--信号发生器的方案设计书

EDA课设报告--信号发生器的方案设计书

封面作者:PanHongliang仅供个人学习目录摘要 (2)Abstract (3)绪论 (4)1.V H D L简介 (5)1.1 VHDL的特点 (5)1.2 VHDL发展史 (5)2.设计的方案确定 (6)2.1.AD558工作原理 (6)2.2设计方案 (7)3.设计流程 (8)4.结束语 (14)5.参考文献 (15)附录 (16)摘要本说明书首先介绍了VHDL语言的特点及发展史;接着简要说明了D/A接口(函数发生器)的工作原理及设计思想和设计方案的确定;然后着重解释了使用VHDL语言设计D/A接口(函数发生器)的具体操作步骤及主要流程。

为了更加详细的解释清楚主要流程在本课程设计说明书中还附加了相应的图片。

最后还附加了实现设计的VHDL源程序。

关键词:VHDLD/A接口设计AbstractThis manual introduces the VHDL language features and development history。

followed by a brief description of the D/A interface and the working principle and design ideas and the way that the design program was confirmed。

and then I explain the emphasis on the use of VHDL language to design D/A interface and the specific steps and the main process. In order to explain in more details of the main process I also attached the corresponding pictures. Finally I added the VHDL design source codes in the addendum.Keywords: VHDL D/A Interface Design绪论EDA是电子设计自动化(Electronic Design Automation)的缩写。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图34所示:
图34信号幅度可调
方波占空比可调:
通常将方波为高电平的持续时间与振荡周期的比称为占空比。如需改变方波占空比,只需适当改变电容C的正、反向充电时间常数即可。在图22中,当比较器输出端为高电平时,D4导通而D3截止,正向充电时间常数为(R7+R8下部分)C1;当比较器输出端为低电平时,D3导通而D4截止,反向充电时间常数为(R7+R8上部分)C1。故调节电位器R8即可改变占空比。
三、设计要求及主要技术指标
设计要求:设计并仿真能产生方波、三角波及正弦波等多种波形信号输出的波形发生器。
1、方案论证,确定总体电路原理方框图。
2、单元电路设计,元器件选择。
3、仿真调试及测量结果。
主要技术指标
1、正弦波信号源:信号频率范围20Hz~20kHz连续可调;频率稳定度较高。信号幅度可以在一定范围内连续可调;
方案三较方案二将差分电路换成了RC桥式正弦波振荡电路,RC桥式正弦波振荡电路具有电路简单,波形失真小,频率调节方便等优点,迟滞比较器是采用最为广泛的电压比较器,具有抗干扰性强的优点。
综上所述,本设计选择方案三。
第2章
2.1
系统功能:
产生频率在一定范围内的正弦波、方波、三角波,频率稳定度较高,并且频率幅度连续可调,输出波形连续可调,占空比可调。
如图35所示:
图35方波占空比可调
3.3
频率上限:如图36所示,往小调节R、C串、并联选频网络上的R与C的值,直到输出波形不失真的情况下频率最大,该频率即为频率上限。
图36频率上限及此刻输出波形
频率下限:与调节频率上限差不多,只是R、C的值应该往大调,使得f最小。
如图37所示:
图37频率下限及此刻输出波形
正弦波方波三角波
RC桥式迟滞比较器积分器
振荡器
直流电源
1.2
方案一为开环电路,结构简单,产生的正弦波和方波失真较小。但它对于三角波的产生有一定的麻烦,设计要求频率连续可调,故幅度稳定性难以达到要求。
方案二由于采用运算放大器组成的积分电路,因此可实现恒流充电,使三角波线性大为改善。但它的差分电路比较复杂,并且在运行过程中容易导致信号的失真,对元件的要求较高。
2.2
本设计采用方案一,设计框图如下:
直流电源
RC桥式迟滞比较器积分器
振荡器
正弦波方波三角波
总体设计方案:
首先,由RC桥式振荡器产生正弦波信号,再经过迟滞比较器将正弦波信号转化为方波信号,而迟滞比较器和积分器首尾相接形成正反馈闭环系统,则比较器输出的方波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成方波。
曹泰斌电工电子技术实验清华大学出版社,2012年
RC桥式正弦波振荡电路具有电路简单,波形失真小,频率调节方便等优点;迟滞比较器是采用最为广泛的电压比较器,具有抗干扰性强的优点,且该比较器只要使电容的正向和反向充电时间常数不同则占空比可调;积分电路由运放组成,因此可实现恒流充电,使三角波线性大为改善。
2.3
图21RC桥式振荡器
R、C串、并联电路构成正反馈支路,同时兼作选频网络,R1、R2、R3、R6及二极管等元件构成负反馈和稳幅环节。调节电位器R6可以改变负反馈深度,以满足振荡的振幅条件和改善波形。利用两个反相并联二极管D1、D2正向电阻的非线性特性来实现稳幅。调整负反馈电阻使电路起振且波形失真最小。改变选频网络的参数C或R即可调节振荡频率。如图21所示。
方波三角波正弦波
迟滞积分器差分
比较器放大器
直流电源
方案三:
(将方案二中产生正弦波的差分放大器换成RC桥式正弦波振荡器。)首先,由RC桥式振荡器产生正弦波信号,再经过迟滞比较器将正弦波信号转化为方波信号,而迟滞比较器和积分器首尾相接形成正反馈闭环系统,则比较器输出的方波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成方波。
要求:
设计并仿真能产生方波、三角波及正弦波等多种波形信号输出的波形。
技术指标:
1、正弦波信号源:信号频率范围20Hz~20kHz连续可调;频率稳定度较高。信号幅度可以在一定范围内连续可调;
2、各种输出波形幅值均连续可调,方波占空比可调;
3、设计完成后可以利用示波测量出其输出频率的上限和下限,还可以进一步测出其输出电压的范围。
正弦波输出电压:
在波形不失真的情况下调节电位器,待波形稳定后,得到正弦波输出电压峰值约为4.5V。
如图38所示:
图38正弦波输出电压峰值
方波-三角波输出电压:
在波形不失真的情况下调节电位器,待波形稳定后,得到方波输出电压峰值约为9V,三角波输出电压峰值约为6V。
如图39所示:
图39方波-三角波输出电压峰值
第4章
在本设计方案中,起振要在稳幅环节中调节电位器改变负反馈深度以满足起振条件,频率范围在180HZ~5KHZ,频率的调节主要是依靠R、C串、并联选频网络的调整来实现的,可变R、C的范围不一样,调出来的频率范围也不一样。输出电压可调,但在峰值上时电压值和波形都最稳定,其他值上电压值和波形不稳定。占空比主要是依靠改变电位器的上下部分的比值来调节电路中电容正、反向充电时间常数,从而调整了占空比。RC桥式振荡电路、方波-三角波电路互相影响,每一个环节都要处理好,否则很容易出现各种各样的问题。
2、各种输出波形幅值均连续可调,方波占空比可调;
3、设计完成后可以利用示波器测量出其输出频率的上限和下限,还可以进一步测出其输出电压的范围。
四、仿真需要的主要电子元器件
1、运算放大电路2、滑线变阻器3、电阻器、电容器等
五、设计报告总结(要求自己独立完成,不允许抄袭)。
1、对所测结果(如:输出频率的上限和下限,输出电压的范围等)进行全面分析,总结振荡电路的振荡条件、波形稳定等的条件。
2、分析讨论仿真测试中出现的故障及其排除方法。
3、给出完整的电路仿真图。
4、体会与收获。
第1章
1.1
方案一:
首先由RC桥式正弦波振荡器产生正弦波信号,然后用迟滞比较器将正弦波信号转换为方波信号,最后经过积分器将方波信号转换为三角波信号。
正弦波方波三角波
RC桥式迟滞
正弦波比较器积分器
振荡器
方案二:
首先,(比较器和积分器组成方波-三角波产生电路)把迟滞比较器和积分器首尾相接形成正反馈闭环系统,则比较器输出的方波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成方波,最后通过差分放大器将三角波信号转换为正弦波信号。
由于本设计方案中方波电路与三角波电路形成了一个正反馈,所以正弦波电路最好不要与方波-三角波电路的输入端相连,并且若是与地端相连,因在地与正弦波电路输出端之间串一个适当阻止的电阻,以免正弦波输出端直接接地,读不出波形。方波占空比的调节需要依靠原理建立出一个电容充电时间常数可变的电路来实现。当波形输出不正常或主要指标不达标时,应尝试着调节相关电位器来改善电路。
题目名称:信号发生器(一)
姓名:姚添珣
班级:电气N112班
学号:201145679204
日期:2013/7/4
模拟电子技术课程设计任务书
适用专业:电气工程及自动化专业
设计周期:一周
一、设计题目:信号发生器(一)
二、设计目的
1、研究正弦波等振荡电路的振荡条件。
2、学习波形产生、变换电路的应用及设计方法以及主要技术指标的测试方法。
在这次课程设计当中,我们不仅学习到了一个新软件的操作,还对波形发生器和模电有了更深层次更加全面的理解,更加增强了我们对电气学习的耐心热情与信心以及对未来的工作有了更贴切的领悟。希望以后有更多这样的机会让我们去证明自己,去爱上学习,爱上实践。
第5章
康华光电子技术基础模拟部分(第五版)高等教育出版社,2012年
起初,波形出不来,就反复想着起振条件,然后去调试每个线路上元件的值,调整了2、3个小时终于把波形弄出来了,之后因为要去测试主要指标是否达到,所以不断地在调试电路,改变元件数值,甚至是大幅度改变电路去构想一个新电路来提高性能,发现调试也有手感这回事,越熟练调试时间越短。随着调试时间的越来越短,调试范围的越来越广,也越来越有成就感,这是一次很有趣很有收获的课程设计,更是一个毕生难忘的第一次。
具体显示如图32,图33所示:
图32正弦波起振时和稳定振荡时的电压波形
图33方波-三角波
频率可调:
该电路中振荡电路的选频网络由R、C元件组成,f=f0=1/(2πRC),调节R、C的值即可改变频率。一般采用改变电容C作频率量程切换,而调节R作量程内的频率细调。
信号幅度/输出波形幅值可调:
通过调节RC桥式振荡器中的电位器R6可以调节信号幅度,调节电位器还能调节输出波形幅值。
图22方波-三角波发生器
把迟滞比较器和积分器首尾相接形成正反馈闭环系统。在比较器上调节R8即可改变方波占空比,而由于采用运放组成的积分电路。因此可实现恒流充电,使三角波线性大大改善。如图22所示。
第3章
3.1
图31信号发生器仿真
3.2
所有波形正常:
开始时,调整RC桥式振荡器反馈电阻使电路起振,且波形失真最小,产生的正弦波信号的Av=1+Rf/R1略大于3,达到稳定平衡状态时,Av=3,Fv=1/3。由RC桥式振荡器产生的正弦波信号,再经过迟滞比较器将正弦波信号转化为方波信号,而迟滞比较器和积分器首尾相接形成正反馈闭环系统,则比较器输出的方波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成方波。
相关文档
最新文档