天津市和平区2013-2014学年高一下学期期末考试数学试题 Word版含答案(新人教A版)
2024-2025学年高一上学期期中模拟考试数学试题(天津专用,测试范围:人教A版2019)含解析
![2024-2025学年高一上学期期中模拟考试数学试题(天津专用,测试范围:人教A版2019)含解析](https://img.taocdn.com/s3/m/e7d2ab69f68a6529647d27284b73f242336c31dd.png)
2024-2025学年高一数学上学期期中模拟卷(天津)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教A版2019必修第一册第一章~第三章5.难度系数:0.6。
第Ⅰ卷一、单项选择题:本题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.B .()21x f x x-=【解析】由题意得:根据图像可得:函数为偶函数,当时,∵y=当时,易得:当时,易得第Ⅱ卷二、填空题:本题共6小题,每小题5分,共30分.7+在[]()1,1m m >上的最大值为,解得:133x =-,22x =,x 7+在[],21m m -上的最大值为,解得:3332m -≤≤.)1>上最大值()2A f m m ==-()()210f m f m A =->=>,3⎤⎥,故答案为:333,⎡⎤-⎢⎥.16.(14分)17.(15分)已知函数()()221R f x x mx m m =+-+∈.(1)若2m =,求函数()f x 在区间[]2,1-上的最大和最小值;(2)解不等式()21f x x <+.【解析】(1)解:当2m =时,可得()223f x x x =+-,则函数()y f x =表示开口向上的抛物线,且对称轴为1x =-,所以函数()y f x =在[]2,1--上单调递减,在[1,1]-上单调递增,所以,当1x =-时,函数()f x 取得最小值,最小值为()14f -=-,又因为()()23,10f f -=-=,所以函数的最大值为0,综上可得,函数()y f x =的最大值为0,最小值为4-.(7分)(2)解:由不等式()21f x x <+,即22121x mx m x +-+<+,即不等式2(2)2(0)(2)x m x m x m x +--=-<+,当2m =-时,不等式即为2(2)0x -<,此时不等式的解集为空集;当2m -<时,即2m >-时,不等式的解集为2m x -<<;当2m ->时,即2m <-时,不等式的解集为2x m <<-,综上可得:当2m =-时,不等式的解集为空集;当2m >-时,不等式的解集为(),2m -;当2m <-时,不等式的解集为()2,m -.(15分)18.(15分)19.(15分)某公司决定在公司仓库外借助一侧原有墙体,建造一间墙高为3米,底面积为24平方米,且背面靠墙的长方体形状的应急室,由于此应急室后背靠墙,无需建造费用,因此甲工程队给出的报价为:应急室正面墙体每平方米的报价400元,侧面墙体每平方米的报价均为300元,屋顶和地面及其他报价共20.(16分)10,。
江苏省苏州市2023-2024学年高一下学期6月期末考试 数学含答案
![江苏省苏州市2023-2024学年高一下学期6月期末考试 数学含答案](https://img.taocdn.com/s3/m/0a476f8832d4b14e852458fb770bf78a64293a7b.png)
苏州市2023~2024学年第二学期学业质量阳光指标调研卷高一数学(答案在最后)2024.6注意事项学生在答题前请认真阅读本注意事项及各题答题要求:1.本卷共4页,包含单项选择题(第1题~第8题)、多项选择题(第9题~第11题)、填空题(第12题~第14题)、解答题(第15题~第19题).本卷满分150分,答题时间为120分钟.答题结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、调研序列号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,已知复数11i z =+,则||z =()A.12B.2C.D.22.sin164sin 44cos16sin 46-= ()A.12-B.2C.12D.23.某射击运动员射击6次,命中的环数如下:7,9,6,9,10,7,则关于这组数据的说法正确的是()A.极差为10B.中位数为7.5C.平均数为8.5D.4.某科研单位对ChatGPT 的使用情况进行满意度调查,在一批用户的有效问卷(用户打分在50分到100分之间的问卷)中随机抽取了100份,按分数进行分组(每组为左闭右开的区间),得到如图所示的频率分布直方图,估计这批用户问卷的得分的第75百分位数为()A.78.5B.82.5C.85D.87.55.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若6b =,2c =,60B =︒,则A =()A.45︒B.60︒C.75︒D.105︒6.已知l ,m 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若//l m ,//l α,//m β,则//αβB.若l m ⊥,l α⊥,//m β,则//αβC.若//αβ,l ⊂α,m β⊂,则//l mD.若l m ⊥,l α⊥,m β⊥,则αβ⊥7.在ABC 中,已知2cos 2cos 22cos A B C +=,则ABC 的形状一定为()A .等腰三角形B.锐角三角形C.直角三角形D.钝角三角形8.长篇评弹《玉蜻蜓》在江南可谓家喻户晓,是苏州评弹的一颗明珠.为了让更多年轻人走近评弹、爱上经典,苏州市评弹团在保留原本精髓的基础上,打造了《玉蜻蜓》精简版,将长篇压缩至三场,分别是《子归》篇、《认母》篇、《归宗》篇.某班级开展对《玉蜻蜓》的研究,现有三位学生随机从三篇中任意选一篇研究,记“三人都没选择《子归》篇”为事件M ,“至少有两人选择的篇目一样”为事件N ,则下列说法正确的是()A.M 与N 互斥B.()()P M P MN = C.M 与N 相互独立D.()()1P M P N +<二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数2()sin 2233f x x x =+-,则()A.()f x 的最小正周期为2π B.()2f x ≥-C.()f x 的图象关于直线π6x=对称 D.()f x 在区间π,04⎛⎫- ⎪⎝⎭上单调递增10.已知复数1z ,2z ,3z ,则下列说法正确的有()A.1212||||||z z z z = B.若120z z ->,则12z z >C.若120z z =,则1212||||z z z z -=+ D.若1213z z z z =且10z ≠,则23z z =11.如图,已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G ,H 分别为AB ,1CC ,11A D ,1DD 的中点,则()A.1B D ⊥平面EFGB.//AH 平面EFGC.点1B ,D 到平面EFG 的距离相等D.平面EFG 截该正方体所得截面的面积为三、填空题:本题共3小题,每小题5分,共15分.12.设向量(1,3)m = ,(4,2)n =- ,p m n λ=+,若m p ⊥ ,则实数λ的值为___________.13.在直角三角形ABC 中,已知CH 为斜边AB 上的高,AC =2BC =,现将BCH V 沿着CH 折起,使得点B 到达点B ',且平面B CH '⊥平面ACH ,则三棱锥B ACH '-的外接球的表面积为___________.14.在ABC 中,已知cos 21sin 2cos 212C C C =++,则3sin 2sin A B +的最大值为___________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,PA ⊥底面ABCD ,PA AB =,E ,F ,G 分别为线段AD ,BC ,PB 的中点.(1)求证:AG ⊥平面PBC ;(2)求证://PE 平面AFG .16.一个袋子中有大小和质地均相同的四个球,其中有两个红球(标号为1和2),一个黑球(标号为3),一个白球(标号为4),从袋中不放回地依次随机摸出两个球.设事件A =“第一次摸到红球”,B =“第二次摸到黑球”,C =“摸到的两个球恰为一个红球和一个白球”.(1)用数组()12,x x 表示可能的结果,1x 是第一次摸到的球的标号,2x 是第二次摸到的球的标号,试用集合的形式写出试验的样本空间Ω;(2)分别求事件A ,B ,C 发生的概率;(3)求事件A ,B ,C 中至少有一个发生的概率.17.如图,在平面四边形ABCD 中,已知AC 与BD 交于点E ,且E 是线段BD 的中点,BCE 是边长为1的等边三角形.(1)若sin 14ABD ∠=,求线段AE 的长;(2)若:AB AD =AE BD <,求sin ADC ∠.18.如图,在平行四边形ABCD 中,已知3A π=,2AB =,1AD =,E 为线段AB 的中点,F 为线段BC 上的动点(不含端点).记BF mBC =.(1)若12m =,求线段EF 的长;(2)若14m =,设AB xCE yDF =+ ,求实数x 和y 的值;(3)若CE 与DF 交于点G ,AG EF ∥,求向量GE 与GF的夹角的余弦值.19.如图,在四棱柱1111ABCD A B C D -中,已知侧面11CDD C 为矩形,60BAD ABC ∠=∠=︒,3AB =,2AD =,1BC =,1AA =,12AE EA =uu u r uuu r ,2AF FB = .(1)求证:平面DEF 平面1A BC ;(2)求证:平面11ADD A ⊥平面ABCD ;(3)若三棱锥1E A BC -的体积为33,求平面1A BC 与平面ABCD 的夹角的余弦值.苏州市2023~2024学年第二学期学业质量阳光指标调研卷高一数学2024.6注意事项学生在答题前请认真阅读本注意事项及各题答题要求:1.本卷共4页,包含单项选择题(第1题~第8题)、多项选择题(第9题~第11题)、填空题(第12题~第14题)、解答题(第15题~第19题).本卷满分150分,答题时间为120分钟.答题结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、调研序列号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,已知复数11i z =+,则||z =()A.12B.2C.D.2【答案】B 【解析】【分析】利用复数的商的运算法则求得z ,进而可求||z .【详解】11i 1i 1i 1i (1i)(21i)z --====-++-,则2||2z ==.故选:B .2.sin164sin 44cos16sin 46-= ()A.12-B. C.12D.32【解析】【分析】利用诱导公式与两角差的正弦公式化简求值.【详解】()()sin164sin 44cos16sin 46sin 18016sin 9046cos16sin 46-=---()1sin16cos 46cos16sin 46sin 1646sin 302=-=-=-=-.故选:A.3.某射击运动员射击6次,命中的环数如下:7,9,6,9,10,7,则关于这组数据的说法正确的是()A.极差为10B.中位数为7.5C.平均数为8.5D.【答案】D 【解析】【分析】利用极差、中位数、平均数、标准差的定义,根据条件逐一对各个选项分析判断即可得出结果.【详解】某射击运动员射击6次,命中的环数从小到大排列如下:6,7,7,9,9,10,对A ,极差为1064-=,故A 错误;对B ,中位数为7982+=,故B 错误;对C ,平均数为677991086+++++=,故C 错误;对D ,标准差为=,故D 正确.故选:D4.某科研单位对ChatGPT 的使用情况进行满意度调查,在一批用户的有效问卷(用户打分在50分到100分之间的问卷)中随机抽取了100份,按分数进行分组(每组为左闭右开的区间),得到如图所示的频率分布直方图,估计这批用户问卷的得分的第75百分位数为()A.78.5B.82.5C.85D.87.5【答案】B【分析】根据百分位数计算规则计算可得.【详解】因为()0.010.0250.035100.70.75++⨯=<,()0.010.0250.0350.02100.90.75+++⨯=>,所以第75百分位数位于[)80,90,设为x ,则()()0.010.0250.035100.02800.75x ++⨯+-=,解得82.5x =.故选:B5.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c,若b =,2c =,60B =︒,则A =()A.45︒B.60︒C.75︒D.105︒【答案】C 【解析】【分析】利用正弦定理求出C ,即可求出A .【详解】由正弦定理sin sin c b C B=,则32sin 22sin 2c B C b ⨯===,又c b <,所以60C B <=︒,所以45C =︒,所以180604575A =︒-︒-︒=︒.故选:C6.已知l ,m 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若//l m ,//l α,//m β,则//αβB.若l m ⊥,l α⊥,//m β,则//αβC.若//αβ,l ⊂α,m β⊂,则//l mD.若l m ⊥,l α⊥,m β⊥,则αβ⊥【答案】D 【解析】【分析】根据空间中线线、线面、面面的位置关系一一判断即可.【详解】对于A :若//l m ,//l α,则//m α或m α⊂,又//m β,则//αβ或α与β相交,故A 错误;对于B :若l m ⊥,l α⊥,则//m α或m α⊂,又//m β,则//αβ或α与β相交,故B 错误;对于C :若//αβ,l ⊂α,则//l β,又m β⊂,则l 与m 平行或异面,故C 错误;对于D :若l m ⊥,l α⊥,则//m α或m α⊂,若//m α,则在平面α内存在直线c ,使得//m c ,又m β⊥,则c β⊥,又c α⊂,所以αβ⊥;若m α⊂,又m β⊥,所以αβ⊥;综上可得,由l m ⊥,l α⊥,m β⊥,可得αβ⊥,故D 正确.故选:D7.在ABC 中,已知2cos 2cos 22cos A B C +=,则ABC 的形状一定为()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形【答案】C 【解析】【分析】利用二倍角公式及正弦定理将角化边,即可判断.【详解】因为2cos 2cos 22cos A B C +=,所以22212sin 12sin 22sin A B C -+-=-,所以222sin sin sin A B C +=,由正弦定理可得222+=a b c ,所以ABC 为直角三角形.故选:C8.长篇评弹《玉蜻蜓》在江南可谓家喻户晓,是苏州评弹的一颗明珠.为了让更多年轻人走近评弹、爱上经典,苏州市评弹团在保留原本精髓的基础上,打造了《玉蜻蜓》精简版,将长篇压缩至三场,分别是《子归》篇、《认母》篇、《归宗》篇.某班级开展对《玉蜻蜓》的研究,现有三位学生随机从三篇中任意选一篇研究,记“三人都没选择《子归》篇”为事件M ,“至少有两人选择的篇目一样”为事件N ,则下列说法正确的是()A.M 与N 互斥B.()()P M P MN = C.M 与N 相互独立D.()()1P M P N +<【答案】B 【解析】【分析】计算事件M 和事件N 的概率,由互斥事件的性质和相互独立事件的定义,对选项进行判断即可.【详解】三个人随机选三篇文章研究,样本空间共33327⨯⨯=种,事件M :“三人都没选择《子归》篇”共有:2228⨯⨯=,所以()827P M =,事件N :“至少有两人选择的篇目一样”共有27621-=种,所以()1272P N =,()()1P M P N +>,所以M 与N 不互斥,A 错误,D 错误;事件MN 共有2338++=种,所以()782P MN =,B 正确;因为()()()P MN P M P N ≠,所以C 错误.故选:B.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数2()sin 2f x x x =+-,则()A.()f x 的最小正周期为2π B.()2f x ≥-C.()f x 的图象关于直线π6x =对称 D.()f x 在区间π,04⎛⎫-⎪⎝⎭上单调递增【答案】BD 【解析】【分析】利用二倍角公式及两角和的正弦公式化简,在根据正弦函数的性质计算可得.【详解】因为2()sin 2sin 22f x x x x x=+=+132sin 2cos 222x x ⎛⎫=+ ⎪ ⎪⎝⎭π2sin 23x ⎛⎫=+ ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==,故A 错误;因为π1sin 213⎛⎫-≤+≤ ⎪⎝⎭x ,所以()2f x ≥-,故B 正确;因为πππ2sin 2663f ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于直线π6x =对称,故C 错误;当π,04x ⎛⎫∈-⎪⎝⎭,则,ππ233π6x ⎛⎫-∈ ⎝+⎪⎭,又sin y x =在ππ,63⎛⎫- ⎪⎝⎭上单调递增,所以()f x 在区间π,04⎛⎫- ⎪⎝⎭上单调递增,故D 正确.故选:BD10.已知复数1z ,2z ,3z ,则下列说法正确的有()A .1212||||||z z z z = B.若120z z ->,则12z z >C.若120z z =,则1212||||z z z z -=+ D.若1213z z z z =且10z ≠,则23z z =【答案】ACD 【解析】【分析】A 项,表达出12||z z 和12||||z z ,即可得出相等;B 项,作出示意图即可得出结论;C 项,写出12||z z -和12||z z +的表达式,利用120z z =得出两复数的实部和虚部的关系,即可得出结论;D 项,对1213z z z z =进行化简即可得出结论.【详解】由题意,设12i,i,,,,Rz a b z c d a b c d =+=+∈A 项,()()()12i i i z z a b c d ac bd bc ad =++=-++=12z z ==∴1212||||||z z z z =,A 正确;B 项,当120z z ->时,若两复数是虚数1z ,2z 不能比较大小,B 错误;C 项,()()1212i,i z z a c b d z z a c b d -=-+-+=+++,12z z -==12z z +==,当120z z =时,12120z z z z ==0=,∴0,0a b ==,,c d 任取,或0,0c d ==,,a b 任取,即12,z z 至少有一个为0∴1212z z z z -=+=(其中至少有两项为0),C 正确;D 项,∵1213z z z z =,∴()1230z z z -=,∵10z ≠,∴230z z -=,即23z z =,D 正确;故选:ACD.11.如图,已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G ,H 分别为AB ,1CC ,11A D ,1DD 的中点,则()A.1B D ⊥平面EFGB.//AH 平面EFGC.点1B ,D 到平面EFG 的距离相等D.平面EFG 截该正方体所得截面的面积为【答案】ACD 【解析】【分析】取BC 的中点L ,11C D 的中点K ,1AA 的中点M ,即可得到正六边形LEMGKF 为平面EFG 截该正方体所得截面,求出截面面积,即可判断D ;根据线面垂直的判定定理说明A ,证明1//AD 平面EFG ,即可说明B ,根据正方体的性质判断D.【详解】如图,取BC 的中点L ,11C D 的中点K ,1AA 的中点M ,连接GK 、KF 、FL 、LE 、EM 、MG 、11A C 、MF 、AC 、1AD ,则11//GK A C ,//EL AC ,11////A C AC MF ,所以//GK MF ,所以G 、K 、F 、M 四点共面,又//EL MF ,所以L 、E 、F 、M 四点共面,同理可证//KF ME ,所以K 、E 、F 、M 四点共面,正六边形LEMGKF 为平面EFG 截该正方体所得截面,又12EL AC ===,所以216sin 602LEMGKF S =⨯⨯⨯︒=D 正确;因为AC ⊥平面11DBB D ,1DB ⊂平面11DBB D ,所以1AC DB ⊥,则1EL DB ⊥同理可证1FL DB ⊥,又EL FL L = ,,EL FL ⊂平面LEMGKF ,所以1DB ⊥平面LEMGKF ,即1B D ⊥平面EFG ,故A 正确;因为1//GM AD ,GM ⊂平面LEMGKF ,1AD ⊄平面LEMGKF ,所以1//AD 平面LEMGKF ,即1//AD 平面EFG ,又1AH AD A = ,1,AH AD ⊂平面11AD A A ,平面EFG ⋂平面11AD A A GM =,所以AH 不平行平面EFG ,故B 错误;设O 为正方体的中心,即O 为1DB 的中点,根据正方体的性质可知1EF DB O = ,即1DB 交平面LEMGKF 于点O ,所以点1B ,D 到平面LEMGKF 的距离相等,即点1B ,D 到平面EFG 的距离相等,故D 正确.故选:ACD三、填空题:本题共3小题,每小题5分,共15分.12.设向量(1,3)m = ,(4,2)n =- ,p m n λ=+,若m p ⊥ ,则实数λ的值为___________.【答案】15##0.2【解析】【分析】求出p,利用m p ⊥ ,即可求出实数λ的值.【详解】由题意,(1,3)m = ,(4,2)n =- ,p m n λ=+,∴()4,32p λλ=+-∵m p ⊥ ,∴()()143320λλ⨯++-=,解得:15λ=,故答案为:15.13.在直角三角形ABC 中,已知CH 为斜边AB 上的高,AC =2BC =,现将BCH V 沿着CH 折起,使得点B 到达点B ',且平面B CH '⊥平面ACH ,则三棱锥B ACH '-的外接球的表面积为___________.【答案】13π【解析】【分析】证明,,HA HB HC '两两垂直,由,,HA HB HC '的边长,求出外接球半径,求表面积即可.【详解】直角三角形ABC 中,AC =2BC =,则斜边4AB =,30A = ,CH 为斜边AB 上的高,则CH =3AH =,1HB =,平面B CH '⊥平面ACH ,平面B CH ' 平面ACH CH =,B H CH '⊥,B H '⊂平面B CH ',则B H '⊥平面ACH ,又AH CH ⊥,所以,,HA HB HC '两两垂直,HC =3HA =,1HB '=,则三棱锥B ACH '-的外接球半径1322R ==,所以三棱锥B ACH '-的外接球表面积为24π13πS R ==.故答案为:13π.14.在ABC 中,已知cos 21sin 2cos 212C C C =++,则3sin 2sin A B +的最大值为___________.【解析】【分析】利用二倍角公式化简,即可求出C ,从而得到π3A B +=,从而将3sin 2sin A B +转化为A 的三角函数,再利用辅助角公式计算可得.【详解】因为cos 21sin 2cos 212C C C +=++,所以222cos sin 12sin cos 2cos 112C C C C C -+=+-+,即()()()cos sin cos sin 132cos cos sin 2C C C C C C C -+=+,所以cos sin 1113tan 2cos 222C C C C -=-=,所以tan C =,又()0,πC ∈,所以2π3C =,则π3A B +=,所以π3sin 2sin 3sin 2sin 3A B A A ⎛⎫+=+-⎪⎝⎭()ππ3sin 2sin cos 2cos sin 2sin33A A A A A A ϕ=+-==+,取ϕ为锐角,其中sinϕ=,cos ϕ=1sin 2ϕ=>,所以π6ϕ>,所以当π2A ϕ+=时3sin 2sin AB +.【点睛】关键点点睛:本题关键是推导出C 的值,从而将3sin 2sin A B +转化为A 的三角函数,结合辅助角公式求出最大值.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,PA ⊥底面ABCD ,PA AB =,E ,F ,G 分别为线段AD ,BC ,PB 的中点.(1)求证:AG ⊥平面PBC ;(2)求证://PE 平面AFG .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)先证BC ⊥平面PAB ,有BC AG ⊥,再由AG PB ⊥,可证AG ⊥平面PBC ;(2)连接BE 交AF于点H ,由AHE FHB ≅ ,得H 为BE 中点,可得//GH PE ,线面平行的判定定理得//PE 平面AFG .【小问1详解】底面ABCD 为矩形,所以BC AB ⊥,PA ⊥底面ABCD ,BC ⊂底面ABCD ,则PA BC ⊥,AB PA A = ,,AB PA ⊂平面PAB ,则BC ⊥平面PAB ,AG ⊂平面PAB ,所以BC AG ⊥,又PA AB =,G 为PB 中点,则AG PB ⊥,,BC PB ⊂平面PBC ,BC PB B = ,所以AG ⊥平面PBC .【小问2详解】连接BE 交AF 于点H ,连接GH ,由四边形ABCD 为矩形,,E F 分别为,AD BC 中点,所以AHE FHB ≅ ,则BH HE =,即H 为BE 中点,又因为G 为BP 中点,有//GH PE ,GH Ì平面AFG ,PE ⊄平面AFG ,所以//PE 平面AFG .16.一个袋子中有大小和质地均相同的四个球,其中有两个红球(标号为1和2),一个黑球(标号为3),一个白球(标号为4),从袋中不放回地依次随机摸出两个球.设事件A =“第一次摸到红球”,B =“第二次摸到黑球”,C =“摸到的两个球恰为一个红球和一个白球”.(1)用数组()12,x x 表示可能的结果,1x 是第一次摸到的球的标号,2x 是第二次摸到的球的标号,试用集合的形式写出试验的样本空间Ω;(2)分别求事件A ,B ,C 发生的概率;(3)求事件A ,B ,C 中至少有一个发生的概率.【答案】(1)()()()()()()()()()()()(){}Ω1,2,1,3,1,4,2,1,2,3,2,4,3,1,3,2,3,4,4,1,4,2,4,3=(2)()12P A =,()14P B =,()13P C =(3)()34P A B C ⋃⋃=【解析】【分析】(1)根据事件的定义列出样本空间即可;(2)根据古典概型概率计算公式计算即可;(3)根据古典概型概率计算公式计算即可.【小问1详解】样本空间()()()()()()()()()()()(){}Ω1,2,1,3,1,4,2,1,2,3,2,4,3,1,3,2,3,4,4,1,4,2,4,3=,Ω共有12个基本事件;【小问2详解】事件A 的基本事件为:()()()()()(){}1,2,1,3,1,4,2,1,2,3,2,4共6个基本事件,所以()12P A =,事件B 的基本事件为:()()(){}1,3,2,3,4,3共3个基本事件,所以()14P B =,事件C 的基本事件为:()()()(){}1,42,4,4,1,4,2共4个基本事件,所以()13P C =,【小问3详解】事件A ,B ,C 中至少有一个发生的基本事件为:()()()()()()()()(){}1,2,1,3,1,4,2,1,2,3,2,44,1,4,2,4,3共9个基本事件,所以()34P A B C ⋃⋃=.17.如图,在平面四边形ABCD 中,已知AC 与BD 交于点E ,且E 是线段BD 的中点,BCE 是边长为1的等边三角形.(1)若sin 14ABD ∠=,求线段AE 的长;(2)若:AB AD =AE BD <,求sin ADC ∠.【答案】(1)12(2)7【解析】【分析】(1)由sin 14ABD ∠=,有cos 14ABD ∠=,又120AEB ∠= ,AEB △中,()sin sin BAE AEB ABD ∠=∠+∠,求值后由正弦定理求线段AE 的长;(2)在AED △和AEB △中,余弦定理得22222AB AD AE +=+,又:AB AD =解得13AE =,在ACD 中,由余弦定理求cos ADC ∠,再得sin ADC ∠.【小问1详解】因为BCE 为等边三角形,所以120AEB ∠= ,又sin 14ABD ∠=,所以cos 14ABD ∠=,在AEB △中,()()sin sin 180sin BAE AEB ABD AEB ABD ⎡⎤∠=-∠+∠=∠+∠⎣⎦,所以21sin sin cos cos sin 7BAE AEB ABD AEB ABD ∠=∠∠+∠∠=,由正弦定理得sin sin AE BEABD BAE =∠∠,21sin 114sin 2217BE ABD AE BAE ⋅∠===∠.【小问2详解】()cos cos 180cos AED AEB AEB ∠=-∠=-∠ ,1DE BE ==,在AED △中,由余弦定理,2222cos AD AE DE AE DE AED =+-⋅⋅∠,在AEB △中,由余弦定理,2222cos AB AE BE AE BE AEB =+-⋅⋅∠两式相加得222222222AB AD AE DE BE AE +=++=+,因为:AB AD =,所以设AB =,AD =,则AE =,在AEB △中,120AEB ∠= ,由余弦定理得,2222cos AB AE BE AE BE AEB =+-⋅⋅∠,得2211310112m m ⎛⎫=-+-- ⎪⎝⎭,化简得23m =由0m >,解得1m =或13m =,当1m =时,3AE BD =>,不合题意,舍去;当13m =时,13AE BD =<,符合题意,所以13AE =,43AC AE EC =+=,73AD ==,在DCE △中,1CE DE ==,120DEC ︒=∠,可得CD =,在ACD中,由余弦定理,222cos 2AD CD AC ADC AD CD+-∠==⋅,所以sin 7ADC ∠=.18.如图,在平行四边形ABCD 中,已知3A π=,2AB =,1AD =,E 为线段AB 的中点,F 为线段BC 上的动点(不含端点).记BF mBC =.(1)若12m =,求线段EF 的长;(2)若14m =,设AB xCE yDF =+ ,求实数x 和y 的值;(3)若CE 与DF 交于点G ,AG EF ∥,求向量GE 与GF的夹角的余弦值.【答案】(1)2(2)68,1111x y =-=(3)7-【解析】【分析】(1)由向量的线性运算可得1122EF AD AB =+,两边平方可求解;(2)由已知可得34DF DC CF AB AD =+=- ,12CE CB BE AD AB =+=--,可得结论;(3)利用向量的线性关系可得1255GE AB AD =-- ,933510GF AD AB =-+,计算可得结论.【小问1详解】若12m =,则1122BF BC AD == ,12BE AB =-,所以1122EF BF BE AD AB =-=+ ,两边平方可得22222211117()(2)(12122)44424EF AD AB AD AD AB AB =+=++=+⨯⨯⨯+= ,所以2EF =;【小问2详解】若14m =,则1144BF BC AD == ,所以34CF AD =-,34DF DC CF AB AD =+=- ①,12CE CB BE AD AB =+=-- ②,由①②可得681111AB CE DF =-+;【小问3详解】1122EF EB BF AB mBC AB mAD =+=+=+,1122EC EB BC AB BC AB AD =+=+=+ ,设2EG EC AB AD λλλ==+ ,又122AG AE EG AE AB AD AB AD λλλλ+=+=++=+,又AG EF ∥,所以1212m λλ=+①,由EG EC λ= ,可得GE CE λ= ,所以CE CG CE λ-=,所以(1)CG CE λ=- ,所以11(1)(1)()(1)22CG CE AB BC CB CD λλλλ-=-=---=-+ ,由BF mBC = ,可得(1)CF m CB =- ,11CB CF m=-所以11(1)12CG CE CF CD m λλλ--=-=+-,又,,D F G 三点共线,所以11112m λλ--+=-②,联立①②解11,23m λ==,所以1142EG AB AD =+ ,所以1142GE AB AD =--,111111242424CG CB CD BC DC AD AB =+=--=-- ,21111(32464GF CF CG AD AD AB AD AB =-=----=-+ ),所以2211111111····64422412168GE GF AD AB AB AD AD AB AD AB AD AB ⎛⎫⎛⎫=-+--=+-- ⎪ ⎪⎝⎭⎝⎭111112412484=+--=-,又2222111111113()4216444444GE AB AD AB AB AD AD =--=++=++=,所以||2GE =,同理可得||6GF = ,所以1214cos ,726GE GF -==-.【点睛】关键点点睛:本题第三问的关键是用基底表示向量后,求向量模或者夹角就可以利用公式直接计算.19.如图,在四棱柱1111ABCD A B C D -中,已知侧面11CDD C 为矩形,60BAD ABC ∠=∠=︒,3AB =,2AD =,1BC =,1AA =,12AE EA =uu u r uuu r ,2AF FB =.(1)求证:平面DEF 平面1A BC ;(2)求证:平面11ADD A ⊥平面ABCD ;(3)若三棱锥1E A BC -的体积为3,求平面1A BC 与平面ABCD 的夹角的余弦值.【答案】(1)证明见解析(2)证明见解析(3)19或7.【解析】【分析】(1)由已知可得//EF 平面1A BC ,//DF 平面1A BC ,从而可证结论;(2)由余弦定理可得23DC =,从而可证AD CD ⊥,进而结合已知可证CD ⊥平面11ADD A ,可证结论;(3)延长,AD BC 交于N ,过1A 作1A M AD ⊥于M ,过M 作MH BN ⊥于H ,连接1A H ,可得1A HM ∠为平面1A BC 与平面ABCD 所成二面角的平面角,求解即可.【小问1详解】因为12AE EA =uu u r uuu r ,2AF FB = ,所以1EF A B ∥,又1A B ⊂平面1A BC ,EF ⊄平面1A BC ,所以//EF 平面1A BC ,2AF FB = ,3AB =,可得2AF =,又2AD =,60BAD ∠=︒,所以ADF △是等边三角形,所以2DF =,60AFD ∠=︒,又60ABC ∠=︒,所以DF BC ∥,又BC ⊂平面1A BC ,DF ⊄平面1A BC ,//DF 平面1A BC ,又DF EF F = ,又,DF EF ⊂平面DEF ,所以平面DEF 平面1A BC ;【小问2详解】由侧面11CDD C 为矩形,可得1CD DD ⊥,连接CF ,可得BCF △是等边三角形,所以60BFC ∠=︒,所以60DFC ∠=︒,又2DF =,1CF =,由余弦定理可得22211221232DC =+-⨯⨯⨯=,所以222DC CF DF +=,所以90FCD ∠=︒,所以30FDC ∠=︒,所以90ADC ∠=︒,所以AD CD ⊥,又1AD DD D = ,1,AD DD ⊂平面11ADD A ,所以CD ⊥平面11ADD A ,又CD ⊂平面ABCD ,所以平面11ADD A ⊥平面ABCD ;【小问3详解】延长,AD BC 交于N ,可得ABN 是等边三角形,过1A 作1A M AD ⊥于M ,由(1)可知//EF 平面1A BC ,所以三棱锥1E A BC -的体积即为三棱锥1F A BC -的体积,又三棱锥1F A BC -的体积等于三棱锥1A BCF -的体积,由(2)可知平面11ADD A ⊥平面ABCD ,且两平面的交线为AD ,所以AM ⊥平面ABCD ,所以111111331133223B F BCF A C V S A M A M -==⨯⨯⨯⨯= ,解得14A M =,过M 作MH BN ⊥于H ,连接1A H ,AM ⊥平面ABCD ,BN ⊂平面ABCD ,所以AM BN ⊥,又1HM A M M ⋂=,1,HM A M ⊂平面1A MH ,所以BN ⊥平面1A MH ,又1A H ⊂平面1A MH ,1BN A H ⊥,所以1A HM ∠为平面1A BC 与平面ABCD 所成二面角的平面角,若12A AD π∠<,则点M 在线段AD 上,且为AD 中点,又117AA =,由勾股定理可得1AM =,所以2MN =,所以3MH =131619A H =+=,所以1357cos 1919A HM ∠==,所以平面1A BC 与平面ABCD 的夹角的余弦值为5719;若12A AD π∠>,则点M 在线段DA 延长线上,此时13,7MH A H ==,11321cos 727MH A HM A H ∠===.。
天津市和平区2020-2021学年八年级下学期期中考试数学试卷(word版 含答案)
![天津市和平区2020-2021学年八年级下学期期中考试数学试卷(word版 含答案)](https://img.taocdn.com/s3/m/280ff88b25c52cc58ad6be50.png)
2020-2021学年天津市和平区八年级(下)期中数学试卷一.选择题(共12小题)1.在实数范围内有意义,则x的取值范围是()A.x≥3B.x>3C.x≤3D.x<32.计算:+=()A.8B.C.8a D.153.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,234.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A.∠B=∠BCF B.∠B=∠F C.AC=CF D.AD=CF5.如图,在矩形ABCD中,对角线AC、BD相交于点O,若OA=2,则BD的长为()A.4B.3C.2D.16.如图,池塘边有两点A、B,点C是与BA方向成直角的AC方向上一点,测得CB=60m,AC=20m,则A,B两点间的距离是()A.200m B.20m C.40m D.50m7.已知菱形ABCD,AC=6,面积等于24,则菱形ABCD的周长等于()A.20B.25C.20D.15308.利用勾股定理,可以作出长为无理数的线段.如图,在数轴上找到点A,使OA=5,过点A作直线l垂直于OA,在1上取点B,使AB=2,以原点O为圆心,以OB长为半径作弧,弧与数轴的交点为C,那么点C表示的无理数是()A.B.C.7D.299.下列二次根式的运算正确的是()A.=﹣5B.C.D.10.如图,△ABC中,AD⊥BC于D,AB=5,BD=4,DC=2,则AC等于()A.13B.C.D.511.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=6,则图中阴影部分的面积为()A.10B.12C.16D.1812.如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP 的最小值是()A.1.2B.1.5C.2.4D.2.5二.填空题(共6小题)13.直角三角形的两个直角边分别为3和5,这个直角三角形的斜边长为.14.计算(﹣2)×(+2)的结果是.15.依次连接矩形中点得到的四边形一定是.16.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于.17.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是.18.如图,O为矩形ABCD对角线AC,BD的交点,AB=6,M,N是直线BC上的动点,且MN=2,则OM+ON的最小值是.三.解答题(共5小题)19.计算:(﹣)÷+.20.如图,在三角形纸片ABC中,∠ACB=90°,BC=5,AB=13,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,点A与BC延长线上的点D重合,求CE的长.21.如图,BE是△ABC的中线,BD∥AC,且BD=AC,连接AD、DE.(1)求证:BC=DE;(2)当∠ABC=90°时,判断四边形ADBE的形状,并说明理由.22.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.23.如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.(Ⅰ)若点A′落在矩形的对角线OB上时,OA′的长=;(Ⅱ)若点A′落在边AB的垂直平分线上时,求点D的坐标;(Ⅲ)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).2020-2021学年天津市和平区八年级(下)期中数学试卷参考答案与试题解析一.选择题(共12小题)1.在实数范围内有意义,则x的取值范围是()A.x≥3B.x>3C.x≤3D.x<3【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:3﹣x≥0解得:x≤3.故选:C.2.计算:+=()A.8B.C.8a D.15【分析】先把各根式化为最简二次根式,再合并同类项即可.【解答】解:原式=3+5=8.故选:A.3.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.4.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A.∠B=∠BCF B.∠B=∠F C.AC=CF D.AD=CF【分析】利用三角形中位线定理得到DE∥AC,DE=AC,结合平行四边形的判定定理对各个选项进行判断即可.【解答】解:∵D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE∥AC,DE=AC,A、∵∠B=∠BCF,∴CF∥AB,即CF∥AD,∴四边形ADFC为平行四边形,故本选项符合题意;B、根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;C、根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;D、根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项不符合题意;故选:A.5.如图,在矩形ABCD中,对角线AC、BD相交于点O,若OA=2,则BD的长为()A.4B.3C.2D.1【分析】因为矩形的对角线相等且互相平分,已知OA=2,则AC=2OA=4,又BD=AC,故可求.【解答】解:∵ABCD是矩形∴OC=OA,BD=AC又∵OA=2,∴AC=OA+OC=2OA=4∴BD=AC=4故选:A.6.如图,池塘边有两点A、B,点C是与BA方向成直角的AC方向上一点,测得CB=60m,AC=20m,则A,B两点间的距离是()A.200m B.20m C.40m D.50m【分析】在直角三角形中已知直角边和斜边的长,利用勾股定理求得另外一条直角边的长即可.【解答】解:∵CB=60m,AC=20m,AC⊥AB,∴AB==40(m).故选:C.7.已知菱形ABCD,AC=6,面积等于24,则菱形ABCD的周长等于()A.20B.25C.20D.1530【分析】先利用菱形的面积公式计算出BD=8,然后根据菱形的性质和勾股定理可计算出菱形的边长=10,从而得到菱形的周长.【解答】解:∵菱形ABCD的面积是24,即×AC×BD=24,∴BD==8,∴菱形的边长==5,∴菱形ABCD的周长=4×5=20.故选:A.8.利用勾股定理,可以作出长为无理数的线段.如图,在数轴上找到点A,使OA=5,过点A作直线l垂直于OA,在1上取点B,使AB=2,以原点O为圆心,以OB长为半径作弧,弧与数轴的交点为C,那么点C表示的无理数是()A.B.C.7D.29【分析】利用勾股定理列式求出OB判断即可.【解答】解:由勾股定理得,OB==,∴点C表示的无理数是.故选:B.9.下列二次根式的运算正确的是()A.=﹣5B.C.D.【分析】根据二次根式的性质对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的加减法对C进行判断;根据二次根式的乘法法则对D进行判断.【解答】解:A、原式=5,所以A选项错误;B、原式==,所以B选项正确;C、原式=4,所以C选项错误;D、原式=10×3=30,所以D选项错误.故选:B.10.如图,△ABC中,AD⊥BC于D,AB=5,BD=4,DC=2,则AC等于()A.13B.C.D.5【分析】在Rt△ABD中,由勾股定理可求得AD,则在Rt△ACD中,由勾股定理可求得AC.【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,由勾股定理可得AD===3,在Rt△ACD中,由勾股定理可得AC===,故选:B.11.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=6,则图中阴影部分的面积为()A.10B.12C.16D.18【分析】由矩形的性质可证明S△PEB=S△PFD,即可求解.【解答】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∵MP=AE=2∴S△DFP=S△PBE=×2×6=6,∴S阴=6+6=12,故选:B.12.如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP 的最小值是()A.1.2B.1.5C.2.4D.2.5【分析】先由勾股定理求出AB=5,再证四边形CEMF是矩形,得EF=CM,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,然后由三角形面积求出CM=2.4,即可得出答案.【解答】解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=AB×CM=AC×BC,∴CM===2.4,∴CP=EF=CM=1.2,故选:A.二.填空题(共6小题)13.直角三角形的两个直角边分别为3和5,这个直角三角形的斜边长为.【分析】直接利用勾股定理计算即可.【解答】解:∵直角三角形的两个直角边分别为3和5,∴这个直角三角形的斜边长为=.故答案为.14.计算(﹣2)×(+2)的结果是﹣1.【分析】利用平方差公式计算.【解答】解:原式=()2﹣22=3﹣4=﹣1.故答案为﹣1.15.依次连接矩形中点得到的四边形一定是菱形.【分析】连接矩形对角线.利用矩形对角线相等、三角形中位线定理证得四边形EFGH 是平行四边形,且EF=FH=HG=EG;然后由四条边相等的平行四边形是菱形推知四边形EFGH是菱形.【解答】解:如图E、F、G、H是矩形ABCD各边的中点.连接AC、BD.∵AC=BD(矩形的对角线相等),EF AC,HG AC,∴EF∥HG,且EF=HG=AC;同理HE∥GF,且HE=GF=BD,∴四边形EFGH是平行四边形,且EF=FH=HG=EG,∴四边形EFGH是菱形.故答案是:菱形.16.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于6cm.【分析】由菱形ABCD的周长为48cm,根据菱形的性质,可求得AD的长,AC⊥BD,又由E是AD的中点,根据直角三角形斜边的中线等于斜边的一半,即可求得线段OE 的长.【解答】解:∵菱形ABCD的周长为48cm,∴AD=12cm,AC⊥BD,∵E是AD的中点,∴OE=AD=6(cm).故答案是:6cm.17.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是3.【分析】分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH 中点,则G的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.【解答】解:如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EP A=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10﹣2﹣2=6,∴MN=3,即G的移动路径长为3.18.如图,O为矩形ABCD对角线AC,BD的交点,AB=6,M,N是直线BC上的动点,且MN=2,则OM+ON的最小值是2.【分析】利用轴对称变换以及平移变换,作辅助线构造平行四边形,依据平行四边形的性质以及轴对称的性质,可得当O,N,Q在同一直线上时,OM+ON的最小值等于OQ 长,利用勾股定理进行计算,即可得到OQ的长,进而得出OM+ON的最小值.【解答】解:如图所示,作点O关于BC的对称点P,连接PM,将MP沿着MN的方向平移MN长的距离,得到NQ,连接PQ,则四边形MNQP是平行四边形,∴MN=PQ=2,PM=NQ=MO,∴OM+ON=QN+ON,当O,N,Q在同一直线上时,OM+ON的最小值等于OQ长,连接PO,交BC于E,由轴对称的性质,可得BC垂直平分OP,又∵矩形ABCD中,OB=OC,∴E是BC的中点,∴OE是△ABC的中位线,∴OE=AB=3,∴OP=2×3=6,又∵PQ∥MN,∴PQ⊥OP,∴Rt△OPQ中,OQ===2,∴OM+ON的最小值是2,故答案为:2.三.解答题(共5小题)19.计算:(﹣)÷+.【分析】先根据二次根式的除法法则运算,然后化简后合并即可.【解答】解:原式=﹣+=2﹣+=.20.如图,在三角形纸片ABC中,∠ACB=90°,BC=5,AB=13,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,点A与BC延长线上的点D重合,求CE的长.【分析】结合已知条件可知AC=4,利用三角形面积推出S△ABC=S△BCE+S△BDE,即可推出CE的长度.【解答】解:∵∠ACB=90°,BC=5,AB=13,∴AC=12,根据将其三角形纸片ABC对折后点A落在BC的延长线上,则AB=BD=13,∵S△ABC=S△BCE+S△BDE,∴×5×12=BC×EC+EC×BD,∴30=×EC(5+13),∴CE=.21.如图,BE是△ABC的中线,BD∥AC,且BD=AC,连接AD、DE.(1)求证:BC=DE;(2)当∠ABC=90°时,判断四边形ADBE的形状,并说明理由.【分析】(1)首先判定四边形DBCE是平行四边形,然后即可证得BC=DE;(2)首先证得四边形ADBE是平行四边形,然后利用对角线互相垂直的平行四边形是平行四边形判定菱形即可.【解答】解:(1)证明:∵BE是△ABC的中线,∴EC=AC,∵BD=AC,∴BD=CE,∵BD∥AC,∴四边形DBCE是平行四边形,∴BC=DE;(2)四边形ADBE是菱形,理由如下:∵BE是△ABC的中线,∴EA=AC,∵BD=AC,∴BD=AE,∵BD∥AC,∴四边形ADBE是平行四边形,∵∠ABC=90°,∴AB⊥DE,∴四边形ADBE是菱形.22.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.【分析】(1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利用“角角边”证明△BEC和△FCD全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可;(2)分①BC=BD时,利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得解;②BC=CD时,过点C作CG⊥AF于G,判断出四边形AGCB是矩形,再根据矩形的对边相等可得AG=BC=3,然后求出DG=2,利用勾股定理列式求出CG,然后利用平行四边形的面积列式计算即可得解;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾.【解答】(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,在△BEC与△FED中,,∴△BEC≌△FED,∴BE=FE,又∵E是边CD的中点,∴CE=DE,∴四边形BDFC是平行四边形;(2)①BC=BD=3时,由勾股定理得,AB===2,所以,四边形BDFC的面积=3×2=6;②BC=CD=3时,过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG﹣AD=3﹣1=2,由勾股定理得,CG===,所以,四边形BDFC的面积=3×=3;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是6或3.23.如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.(Ⅰ)若点A′落在矩形的对角线OB上时,OA′的长=4;(Ⅱ)若点A′落在边AB的垂直平分线上时,求点D的坐标;(Ⅲ)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).【分析】(Ⅰ)由点B的坐标知OA=8、AB=6、OB=10,根据折叠性质可得BA=BA′=6,据此可得答案;(Ⅱ)连接AA′,利用折叠的性质和中垂线的性质证△BAA′是等边三角形,可得∠A′BD=∠ABD=30°,据此知AD=AB tan∠ABD=2,继而可得答案;(Ⅲ)分点D在OA上和点D在AO延长线上这两种情况,利用相似三角形的判定和性质分别求解可得.【解答】解:(Ⅰ)如图1,由题意知OA=8、AB=6,∴OB=10,由折叠知,BA=BA′=6,∴OA′=4,故答案为:4;(Ⅱ)如图2,连接AA′,∵点A′落在线段AB的中垂线上,∴BA=AA′,∵△BDA′是由△BDA折叠得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等边三角形,∴∠A′BA=60°,∴∠A′BD=∠ABD=30°,∴AD=AB tan∠ABD=6tan30°=2,∴OD=OA﹣AD=8﹣2,∴点D(8﹣2,0).(Ⅲ)①如图3,当点D在OA上时,由旋转知△BDA′≌△BDA,∴BA=BA′=6,∠BAD=∠BA′D=90°,∵点A′在线段OA的中垂线上,∴BM=AN=OA=4,∴A′M===2,∴A′N=MN﹣A′M=AB﹣A′M=6﹣2,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,则=,即=,解得:DN=3﹣5,则OD=ON+DN=4+3﹣5=3﹣1,∴D(3﹣1,0);②如图4,当点D在AO延长线上时,过点A′作x轴的平行线交y轴于点M,延长AB 交所作直线于点N,则BN=CM,MN=BC=OA=8,由旋转知△BDA′≌△BDA,∴BA=BA′=6,∠BAD=∠BA′D=90°,∵点A′在线段OA的中垂线上,∴A′M=A′N=MN=4,则MC=BN==2,∴MO=MC+OC=2+6,由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,则=,即=,解得:ME=,则OE=MO﹣ME=6+,∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴=,即=,解得:DO=3+1,则点D的坐标为(﹣3﹣1,0),综上,点D的坐标为(3﹣1,0)或(﹣3﹣1,0).。
天津市和平区2013-2014年高一上期末数学试卷(有答案)(必修4)AwPqnn
![天津市和平区2013-2014年高一上期末数学试卷(有答案)(必修4)AwPqnn](https://img.taocdn.com/s3/m/2ff0646f0066f5335a81216d.png)
温馨提示:本试卷包括第I 卷(选择题)、第Ⅱ卷(非选择题)两部分,共100分。
考试时间100分钟,祝同学们考试顺利!第I 卷选择题(共24分)一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有—项是符合题目要求的,请将题中正确选项的代号填在下列表格中.1.sin 420o的值是A .12B .2C .2D .2- 2..与456-o 角终边相同的角的集合是A.{}|360264,a k k Z ⋅+∈o o B .{}|360264,a k k Z ⋅-∈o o C.{}|36096,a k k Z ⋅+∈o o D. {}|360456,a k k Z ⋅+∈o o3.在四边形ABCD 中,给出下列四个结论,其中一定正确的是 A .AB BC CA +=u u u r u u u r u u u r B . BC CD BD +=u u u r u u u r u u u r C .AB AD AC +=u u u r u u u r u u u r D . AB AD BD -=u u u r u u u r u u u r 4.已知向量(2,3)(4,7)BA CA ==u u u r u u u r ,则向量BC =u u u rA .(2,4)--B . (2,4)C. (6,10) D . (6,10)--5.直线3y =与函数tan (0)y x ωω=>的‘图象相交,则相邻两交点间的距离是A .π B. 2πωC .2πωD .πω6.下列各组中的两个三角函数值的大小关系正确的是A. sin508sin144>o oB.cos760cos(770)<-o oC.7tantan 86ππ> D.4744cos()cos()109ππ->- 7.已知向量(2,1),(1,3)a b ==-r r ,若存在向量c r ;使得4,9a c b c ⋅=⋅=-r r r r ,则向量c r 为A .(3,2)-B . (4,3)C .(3,2)-D . (2,5)- 8.函数[]sin 2sin ,0,2y x x x π=+∈的图象与曹线y=k 有且只有两个不同的交点,则k 的取值范围是A .0<k<lB .1<k<3C .1≤k ≤3D .0<k<3第Ⅱ卷非选择题(共76分)二、填空题:本大题共6小题,每小题4分,共24分.请将答案直接填在题中的横线上9.△ABC 的三个顶点分别是A(4,6),B(7,6),C(1,8),D 为BC 的中点,则向量AD u u u r 的坐标为__________.10.函数cos 2cos 1x y x -=-的值域为___________. 11.已知不共线向量,a b r r ,(),AB ta b t R AC a b =-∈=+u u u r r r u u u r r r ,若A 、B 、C 三点共线,则实数,t 等于_________. 12..已知向量,a b r r满足2,a b a b a ==-⊥r r r r r ,则向量a r 与b r 的夹角为__________. 1 3.函数()sin()(0,0,,)22f x A x A x R ππωϕωϕ=+>>-<<∈的部分图象如图所示,则函数()y f x =的解析式为__________,14.函数11sin sin ,cos cos 35x y x y +=-=,则cos()x y +的值为_________. 三、解答题:本大题共6小题,共52分,解答题应写出文字说明,演算步骤1 5.(本题满分8分)已知角α的顶点在原点,始边与x轴的非负半轴重合,终边经过点(P -.(I)求tan()sin()2cos()sin()πααπαπα-++---的值: (Ⅱ)求tan2α的值. 1 6.(本题满分8分) 已知1tan()43πα-=. (I)求tan α的值;(II)求6sin cos 3sin 2cos αααα+-的值. 1 7.(本题满分8分) 已知O 为坐标原点,(1,1),(3,1),(,)OA OB OC a b ==-=u u u r u u u r u u u r (I)若2AC AB =u u u r u u u r ,求点C 的坐标;(II)若A ,B ,C 三点共线,求a+b 的值.1 8.(本题满分9分)已知函数2()cos cos f x x x x a =++,(I)求()f x 的最小正周期及单调递增区间;(II)若()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值的和为32,求a 的值。
天津市和平区2023-2024学年九年级上学期期中数学试题(含解析)
![天津市和平区2023-2024学年九年级上学期期中数学试题(含解析)](https://img.taocdn.com/s3/m/cab5c30ace84b9d528ea81c758f5f61fb73628bf.png)
. .. ..若,是一元二次方程的两个根,则的值为(..二次函数的开口方向、对称轴和顶点坐标分别为(αβαβ+4-3-(5y x =-A .C .8.如图,是A .9.如图,是,则A .B ()(204306x --()(206304x --AB O 43DEC ABC 12DCB ∠=︒AFD ∠33︒....A .C .12.已知抛物线①图象的对称轴为直线2AB BC=ACB BOC ∠=∠2y a bx =+x15.飞机着陆后滑行的距离滑行米才能停下来.16.若方程x2-408444117.如图,在四边形18.如图,在每个小正方形的边长为AB(Ⅰ)线段的长等于;(Ⅱ)请用无刻度的直尺,在如图所示的网格中,在圆上画出点迹)三、解答题(本大题共(1)在位置①处,当时,(2)有一个计时点的计时装置出现了故障,编号可能是______;(3)利用函数图象推测当此滑雪者滑行距离为(4)求s 与t 的函数关系式,并求出滑雪者在故障位置的滑行距离.(1)求的大小;0=t BDC ∠(2)如图②,连接并延长交的延长线于点,若,求的大小.23.2023年杭州亚运会胜利闭幕.本次亚运会中国代表团共获得383枚奖牌,位居奖牌榜第一,创造了新的历史.在亚运会期间,买一件印有亚运会元素的T 恤去看比赛,成为了体育迷们的“仪式感”.某商店以每件40元的价格购进一批这样的T 恤,以每件60元的价格出售.经统计,4月份的销售量为192件,6月份的销售量为300件.(1)求该款T 恤4月份到6月份销售量的月平均增长率;(2)从7月份起,商场决定采用降价促销回馈顾客,销售利润不超过30%.经试验,发现该款T 恤在6月份销售量的基础上,每降价1元,月销售量就会增加20件.如何定价才能使利润最大?并求出最大利润是多少元?24.已知矩形,,,将矩形绕A 顺时针旋转,得到矩形,点B 的对应点是点E ,点C 的对应点是点F ,点D 的对应点是点G .(1)如图①;当时,连接,求的长;(2)如图②,当边经过点D 时,延长交于点P ,求的长;(3)连接,点M 是的中点,连接,在旋转过程中,线段的最大值______.25.已知抛物线(,,是常数,)的顶点为,与轴相交于,两点(点在点的左侧),与轴相交于点.(1)若点,求点和点的坐标;(2)将点绕点逆时针方向旋转,点的对应点为,若,两点关于点中心对称,求点的坐标和抛物线解析式:(3)在(1)的条件下,点为直线下方抛物线上的一个动点,过点作轴,与相交于点,过点作轴,与轴相交于点,求的最大值及此时点的坐标.DC AB P 10CAB ∠=︒P ∠ABCD 3AB =5BC =ABCD ()0180αα︒<<︒AEFG 90α=︒CF CF 'EF FE BC EP CF CF BM BM 2y ax bx c =++a b c 0a ≠()1,4M -x A B A B y C ()0,3C -A B A B 90︒A 1A A 1A M 1A P BC P PD x ∥BC D P PE y x E PD PE +P由作图可知:垂直平分∵,∴,∴∵,∵,∴∵∴CD 4AB =11124OM OB AB ===22CM OC OM =-=CD OB ⊥45ACB ∠=︒12DCB ∠=︒45ACD ACB DCB ∠=∠-∠=DMF AMC∠=∠D AFD A ACD ∠+∠=∠+∠∵,∴,∴ ,∴,∵,2AOB BOC ∠=∠ 2AB BC= AD BDBC ==AD BD BC ==AB AD BD <+∵,∴,∴,∵,∴,∴点F 在以为直径的半圆上运动,∴当点F 运动到与的交点90ABC BAD ∠=∠=︒AD BC ∥DAE AEB ∠=∠ADF BAE =∠∠90DFA ABE ==︒∠∠AD OB O F【点睛】本题考查的是勾股定理与勾股定理的逆定理的应用,垂径定理的应用,三角形的外接圆的圆心的确定,熟练的利用垂径定理应用于作图是解本题的关键.19.(Ⅰ),;(Ⅱ【分析】(Ⅰ)利用公式法解一元二次方程即可解题;(Ⅱ)①根据一元二次方程根的判别式求解即可;11x =215x =-②由题可得,,当选择①时,,解得:或(舍去);当选择②时,,解得:;当选择③时,则,即,解得:;【点睛】本题考查一元二次方程的解法,根的判别式,根与系数的关系,,熟练掌握一元二次方程根的判别式与根的情况的关系,以及根与系数关系并能灵活运用是解答的关键.20.(1)(2)平滑曲线见详解,③(3)(4)(),【分析】(1)将,代入函数解析式,即可求解;(2)画出图象,观察图象即可求解;(3)根据图象可找出当时,对应的近似值,即可求解;(4)图象经过,,可求,验证,是否在抛物线上,从而可以确定s 与t 的函数关系式,再当即可求解.【详解】(1)解:当时,,,,故答案:.(2)解:画图如下,观察图象可知,除了③号点,其它各点都在同一个抛物线上,故这个计时点的位置编号可能是③.故答案为:③;(3)解:如图,1221x x k +=+2121x x k =+212k +=1k =1k =-213k +=1k =()2121x x -=()()()2221212421411x x x x k k +-=+-+=1k =03.122.52s t t =+0t ≥10.625m0=t 0s =30s =t ()1,4.5()2,1422.52s t t =+()3,28.5()4,481.5t =0=t 0s =∴000c ++=0c ∴=0由图象得:当此滑雪者滑行距离为30m 时,用时约为,故答案:.(4)解:由题意得,图象经过,,则有,解得:,,当时,当时,,,在抛物线上,s 与t 的函数关系式(),当时,(),答:s 与t 的函数关系式(),滑雪者在故障位置的滑行距离.【点睛】本题考查了二次函数在实际问题中的应用,数形结合是解题的关键.21.(1)(2)【分析】(1)直接利用圆周角定理得出的度数,再利用等弧所对的圆周角相等得到求出答案;(2)连接,,首先求出的度数,得到为等边三角形,再根据等边三角形的性质求出答案.【详解】(1)∵四边形内接于,∴,3.1s 3.1()1,4.5()2,144.54214a b a b +=⎧⎨+=⎩2.52a b =⎧⎨=⎩∴22.52s t t =+3t =22.532328.5s =⨯+⨯=4t =22.542448s =⨯+⨯=()3,28.5∴()4,4822.52s t t =+∴22.52s t t =+0t ≥1.5t =22.5 1.52 1.5s =⨯+⨯10.625=m 22.52s t t =+0t ≥10.625m 30︒3DCB ∠DCB DBC ∠=∠OB OC BOC ∠OBC ABCD O 180DCB BAD ∠+∠=︒【点睛】本题考查的是圆内接四边形的性质、圆周角定理的推论、等边三角形的判定和性质,掌握圆内接四边形的对角互补是解题的关键.22.(1),(2).26D ∠=︒DBC ∠30P ∠=︒(2)如图,连接,由题意可知,在根据勾股定理得∵,∴,又∵,PA Rt AED ED AD =90PEA PBA ∠=∠=︒EPA BPA ∠=∠BC AD【点睛】本题考查了矩形的性质,三角形中位线,勾股定理,圆的性质,掌握这些知识点灵活运用是解题关键.25.(1),(2),(3)取得最大值()1,0A -()3,0B ()5,8A '-()2114y x =-PD PE +498将点代入得,解得:()30A -,()214y a x =--1640a -=14a =。
天津市和平区天津市第一中学2024-2025学年高一上学期11月期中质量调查生物试题
![天津市和平区天津市第一中学2024-2025学年高一上学期11月期中质量调查生物试题](https://img.taocdn.com/s3/m/fd93bd0e571252d380eb6294dd88d0d233d43c8f.png)
天津一中2024-2025-1 高一年级生物学学科期中质量调查试卷本试卷分为第Ⅰ卷(单项选择题)、第Ⅱ卷(非选择题)两部分,共100分,考试用时60分钟。
第Ⅰ卷 1至2页,第Ⅱ卷3至4页。
考生务必将答案写在答题卡规定的位置上,答在试卷上的无效。
祝各位考生考试顺利!第Ⅰ卷(本卷共25道题,每题2分,共50分)1. “竹外桃花三两枝,春江水暖鸭先知。
”这一千古名句生动形象地勾画出早春的秀丽景色。
下列与其相关的生命系统的叙述正确的是( )A. 桃花属于生命系统的器官层次B. 一片江水中的所有鱼构成一个种群C. 地球上最大的生态系统是海洋生态系统D. 江水等无机环境不参与生命系统的组成2. 下列叙述正确的是( )A. 没有细胞核的细胞一定是原核细胞B. 原核生物是单细胞生物,真核生物中既有单细胞生物也有多细胞生物C. 水绵、发菜、蘑菇、黑藻都是自养型生物,都有叶绿体D. 金黄色葡萄球菌、酵母菌、霉菌、乳酸菌都是细菌3.下列物质的鉴定实验中所用试剂与现象对应关系错误的是 ( )A. 还原糖-斐林试剂-砖红色B. 蛋白质-双缩脲试剂-蓝色C. 脂肪-苏丹Ⅲ染液-橘黄色D. 淀粉-碘液-蓝色4.水是生命的源泉,节约用水是每个人应尽的责任,下列有关水在生命活动中作用的叙述,错误的是( )A. 水是酶促反应的环境B. 参与血液中缓冲体系的形成C. 可作为维生素D等物质的溶剂D. 可作为反应物参与生物化学反应过程5.香蕉可作为人们运动时的补给品,所含以下成分中,不能被吸收利用的是( )A.纤维素B.钾离子C.葡萄糖D.水6. 苯丙酮尿症患者早期确诊后,可及时采取严格限制高蛋白食物摄入的饮食策略辅助治疗。
为验证该策略的有效性进行了相关研究,下表为研究过程中患者体内几种矿质元素含量的检测结果。
下列分析正确的是( )组别锌(μmol/L)铁(μmol/L)钙( mmol/L)镁 ( mmol/L)铜(μmo/L)实验组70.58±1.537.38±1.20 1.68±0.17 1.65±0.1721.77±3.97对照组78.61±0.907.75±0.95 1.72±0.17 1.48±0.2020.04±5.29A. 表中检测的5种元素均为微量元素B. 实验组不限制高蛋白食物摄入,对照组限制高蛋白食物摄入C. 表中结果说明高蛋白食物的摄入会影响患者体内矿质元素的含量D. 人体血液中必须含有一定量的Ca²⁺,但Ca²⁺的含量过高会引起抽搐7.组成下列多聚体的单体的种类最多的是 ( )A.血红蛋白B. DNAC.淀粉D.纤维素8. 下列选项中,均含磷元素的一组是( )A. DNA 和磷脂B. 脂质和血红蛋白C. 纤维素和核糖D. 葡萄糖和氨基酸9.范仲淹的《江上渔者》云:“江上往来人,但爱鲈鱼美。
天津市和平区2013-2014学年高一上学期期末考试数学Word版含答案
![天津市和平区2013-2014学年高一上学期期末考试数学Word版含答案](https://img.taocdn.com/s3/m/7f66f1c5770bf78a65295484.png)
温馨提示:本试卷包括第I 卷(选择题)、第Ⅱ卷(非选择题)两部分,共100分。
考试时间100分钟,祝同学们考试顺利!第I 卷选择题(共24分)一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有—项是符合题目要求的,请将题中正确选项的代号填在下列表格中.1.sin 420的值是A .12BC D . 2..与456-角终边相同的角的集合是A.{}|360264,a k k Z ⋅+∈ B .{}|360264,a k k Z ⋅-∈C.{}|36096,a k k Z ⋅+∈D. {}|360456,a k k Z ⋅+∈3.在四边形ABCD 中,给出下列四个结论,其中一定正确的是A .AB BC CA += B . BC CD BD +=C .AB AD AC += D . AB AD BD -=4.已知向量(2,3)(4,7)BA CA ==,则向量BC =A .(2,4)--B . (2,4)C. (6,10) D . (6,10)--5.直线3y =与函数tan (0)y x ωω=>的‘图象相交,则相邻两交点间的距离是A .π B. 2πωC .2πωD .πω 6.下列各组中的两个三角函数值的大小关系正确的是A. sin508sin144>B.cos760cos(770)<-C.7tan tan 86ππ>D.4744cos()cos()109ππ->-7.已知向量(2,1),(1,3)a b ==-,若存在向量c ;使得4,9a c b c ⋅=⋅=-,则向量c 为A .(3,2)-B . (4,3)C .(3,2)-D . (2,5)-8.函数[]sin 2sin ,0,2y x x x π=+∈的图象与曹线y=k 有且只有两个不同的交点,则k 的取值范围是A .0<k<lB .1<k<3C .1≤k ≤3D .0<k<3第Ⅱ卷非选择题(共76分)二、填空题:本大题共6小题,每小题4分,共24分.请将答案直接填在题中的横线上9.△ABC 的三个顶点分别是A(4,6),B(7,6),C(1,8),D 为BC 的中点,则向量AD 的 坐标为__________.10.函数cos 2cos 1x y x -=-的值域为___________. 11.已知不共线向量,a b ,(),AB ta b t R AC a b =-∈=+,若A 、B 、C 三点共线,则实数,t 等于_________.12..已知向量,a b 满足2,2,a b a b a ==-⊥,则向量a 与b 的夹角为__________. 1 3.函数()sin()(0,0,,)22f x A x A x R ππωϕωϕ=+>>-<<∈的部分图象如图所示,则函数()y f x =的解析式为__________,14.函数11sin sin ,cos cos 35x y x y +=-=,则cos()x y +的值为_________. 三、解答题:本大题共6小题,共52分,解答题应写出文字说明,演算步骤1 5.(本题满分8分)已知角α的顶点在原点,始边与x 轴的非负半轴重合,终边经过点(P -. (I)求tan()sin()2cos()sin()πααπαπα-++---的值: (Ⅱ)求tan 2α的值.1 6.(本题满分8分)已知1tan()43πα-=. (I)求tan α的值;(II)求6sin cos 3sin 2cos αααα+-的值. 1 7.(本题满分8分)已知O 为坐标原点,(1,1),(3,1),(,)OA OB OC a b ==-=(I)若2AC AB =,求点C 的坐标;(II)若A ,B ,C 三点共线,求a+b 的值.1 8.(本题满分9分)已知函数2()cos cos f x x x x a =++,(I)求()f x 的最小正周期及单调递增区间;(II)若()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值的和为32,求a 的值。
2024-2025学年高一上学期期中模拟考试数学试题01(人教A版2019必修第一册)含解析
![2024-2025学年高一上学期期中模拟考试数学试题01(人教A版2019必修第一册)含解析](https://img.taocdn.com/s3/m/fbbacb4fe3bd960590c69ec3d5bbfd0a7956d5e8.png)
2024-2025学年高一数学上学期期中模拟卷01
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教A版2019必修第一册第一章~第三章。
5.难度系数:0.65。
第一部分(选择题共58分)
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
或C或D
由图知:()040f x x >⇒-<<.故选D.
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部
选对的得6分,部分选对的得部分分,有选错的得0分.
第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。
四、解答题:本题共5小题,共77分。
解答应写出文字说明、证明过程或演算步骤。
15.(13分)
的取值范围为.
16.(15分)
17.(15分)
18.(17分)
19.(17分)。
2020-2021学年天津市和平区高二(上)期末数学试卷(含答案解析)
![2020-2021学年天津市和平区高二(上)期末数学试卷(含答案解析)](https://img.taocdn.com/s3/m/cdd6e73b0a4c2e3f5727a5e9856a561252d32187.png)
2020-2021学年天津市和平区高二(上)期末数学试卷一、选择题:本卷共9小题,每小题4分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)圆心为(1,﹣1),半径为2的圆的方程为()A.(x+1)2+(y﹣1)2=4B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y+1)2=4D.(x+1)2+(y﹣1)2=22.(4分)已知数列{a n},满足a n+1=,若a1=,则a10=()A.B.2C.1D.﹣13.(4分)已知双曲线的一个焦点在直线x+2y=5上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 4.(4分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0平行,则a=()A.2B.1C.D.5.(4分)已知等差数列{a n}、{b n}的前n项和分别为S n、T n,且有,则=()A.B.C.D.6.(4分)等比数列{a n}中,若a2、a4是方程2x2﹣11x+8=0的两根,则a3的值为()A.2B.±2C.D.±7.(4分)抛物线x2=4y上一点A的纵坐标为4,则点A与抛物线焦点的距离为()A.2B.3C.4D.58.(4分)已知圆C1:x2+y2=4和圆C2:x2+y2+2ay﹣6=0(a>0)的公共弦长为2,则实数a的值为()A.B.C.D.9.(4分)设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.B.C.D.二、填空题:本大题共5小题.每小题4分,共20分.10.(4分)抛物线y2=﹣8x的焦点坐标是.11.(4分)设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,若l1⊥l2,则实数m =.12.(4分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,则点B到平面D1EC的距离为.13.(4分)已知数列{a n},a1=1,a n+1=a n+2n﹣1(n∈N*),则a n=.14.(4分)若直线y=x+b与曲线y=3﹣有公共点,则b的取值范围是.三、解答题:本大题共4题,共44分,要求写出文字说明,解答过程或演算步骤.15.(10分)已知等差数列{a n}满足:a4=7,a10=19,其前n项和为S n.(1)求数列{a n}的通项公式a n及S n;(2)若b n=,求数列{b n}的前n项和为T n.16.(10分)如图,四棱锥P﹣ABCD中,ABCD为正方形,PD⊥平面ABCD,PD=DC=2,E是PC的中点.(1)证明:P A∥平面BDE;(2)求平面BDE与平面DEC的夹角的余弦值.17.(12分)已知椭圆C:+=1(a>b>0)的离心率为e=,过点(2,0).(Ⅰ)求椭圆C的标准方程;(Ⅱ)设左、右焦点分别为F1,F2,经过右焦点F2的直线l与椭圆C相交于A、B两点,若⊥,求直线l方程.18.(12分)已知数列{a n}的前n项和S n=1﹣a n(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n,并证明:T n<2.2020-2021学年天津市和平区高二(上)期末数学试卷参考答案与试题解析一、选择题:本卷共9小题,每小题4分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)圆心为(1,﹣1),半径为2的圆的方程为()A.(x+1)2+(y﹣1)2=4B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y+1)2=4D.(x+1)2+(y﹣1)2=2【解答】解:圆心为(1,﹣1),半径为2的圆的标准方程是:(x﹣1)2+(y+1)2=4.故选:C.2.(4分)已知数列{a n},满足a n+1=,若a1=,则a10=()A.B.2C.1D.﹣1【解答】解:数列{a n},满足a n+1=,当a1=时,解得a2=2,当n=2,解得,当n=3时,解得,所以数列的周期为3.故.故选:A.3.(4分)已知双曲线的一个焦点在直线x+2y=5上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 【解答】解:根据题意,双曲线的焦点在x轴上,而直线x+2y=5与x轴交点为(5,0),则c=5,进而有9+a2=25,解可得a2=16,则双曲线的方程为:,其渐近线方程为:y=±x;故选:A.4.(4分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0平行,则a=()A.2B.1C.D.【解答】解:已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,将点P(2,2)代入圆(x﹣1)2+y2=5恒成立,则点P在圆上.即过点P(2,2)的直线与圆(x﹣1)2+y2=5相切的切线只有一条,令过点P(2,2)的切线的方程为y﹣2=k(x﹣2),即kx﹣y﹣2k+2=0,由此切线与ax﹣y+1=0平行,两直线的斜率相等且y轴截距不等,可得k=a且﹣2k+2≠1;由圆心到切线的距离等于圆的半径,可得圆的半径r==,k=﹣,即a=﹣;故选:C.5.(4分)已知等差数列{a n}、{b n}的前n项和分别为S n、T n,且有,则=()A.B.C.D.【解答】解:由等差数列的性质可得:====.故选:C.6.(4分)等比数列{a n}中,若a2、a4是方程2x2﹣11x+8=0的两根,则a3的值为()A.2B.±2C.D.±【解答】解:由题意a2、a4是方程2x2﹣11x+8=0的两根,故有a2a4=4又{a n}为等比数列∴a2a4=a32,∴a3=±2.故选:B.7.(4分)抛物线x2=4y上一点A的纵坐标为4,则点A与抛物线焦点的距离为()A.2B.3C.4D.5【解答】解:依题意可知抛物线的准线方程为y=﹣1,∴点A到准线的距离为4+1=5,根据抛物线的定义可知点A与抛物线焦点的距离就是点A与抛物线准线的距离,∴点A与抛物线焦点的距离为5,故选:D.8.(4分)已知圆C1:x2+y2=4和圆C2:x2+y2+2ay﹣6=0(a>0)的公共弦长为2,则实数a的值为()A.B.C.D.【解答】解:根据题意,圆C1:x2+y2=4和圆C2:x2+y2+2ay﹣6=0(a>0),则有,联立可得:y=,即两圆公共弦所在直线的方程为y=,圆C1:x2+y2=4,其圆心为(0,0),半径r=2,若公共弦的弦长为2,则圆C1的圆心C1到公共弦的距离d==,又由a>0,则有=,解可得a=,故选:A.9.(4分)设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.B.C.D.【解答】解:设点P在x轴上方,坐标为,∵△F1PF2为等腰直角三角形∴|PF2|=|F1F2|,即,即故椭圆的离心率e=故选:D.二、填空题:本大题共5小题.每小题4分,共20分.10.(4分)抛物线y2=﹣8x的焦点坐标是(﹣2,0).【解答】解:∵抛物线方程y2=﹣8x,∴焦点在x轴,p=4,∴焦点坐标为(﹣2,0)故答案为(﹣2,0).11.(4分)设直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,若l1⊥l2,则实数m=.【解答】解:直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,由l1⊥l2,得3m+(m﹣2)=0,即4m=2,解得m=.故答案为:.12.(4分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,则点B到平面D1EC的距离为.【解答】解:∵在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,以D为原点,建立空间直角坐标系,如图∴B(1,2,0),C(0,2,0)E(1,1,0),D1(0,0,1),=(0,1,0),=(﹣1,1,0),=(﹣1,﹣1,1),设平面D1EC的法向量=(x,y,z),则,取x=1,得=(1,1,2),∴点B到平面D1EC的距离:d===.故答案为:.13.(4分)已知数列{a n},a1=1,a n+1=a n+2n﹣1(n∈N*),则a n=2n﹣1.【解答】解:数列{a n},a1=1,a n+1=a n+2n﹣1(n∈N*),所以,,…,,所以=,所以.故答案为:2n﹣1.14.(4分)若直线y=x+b与曲线y=3﹣有公共点,则b的取值范围是[1﹣,3].【解答】解:如图所示:曲线y=3﹣,即y﹣3=﹣,平方可得(x﹣2)2+(y﹣3)2=4(1≤y≤3,0≤x≤4),表示以A(2,3)为圆心,以2为半径的一个半圆.由圆心到直线y=x+b的距离等于半径2,可得=2,∴b=1+,或b=1﹣.结合图象可得1﹣≤b≤3,故答案为:[1﹣,3].三、解答题:本大题共4题,共44分,要求写出文字说明,解答过程或演算步骤.15.(10分)已知等差数列{a n}满足:a4=7,a10=19,其前n项和为S n.(1)求数列{a n}的通项公式a n及S n;(2)若b n=,求数列{b n}的前n项和为T n.【解答】解:(1)设等差数列{a n}的公差为d,则,解得:a1=1,d=2,∴a n=1+2(n﹣1)=2n﹣1,S n==n2.(2)b n===,∴数列{b n}的前n项和为T n=+…+==.16.(10分)如图,四棱锥P﹣ABCD中,ABCD为正方形,PD⊥平面ABCD,PD=DC=2,E是PC的中点.(1)证明:P A∥平面BDE;(2)求平面BDE与平面DEC的夹角的余弦值.【解答】解:(1)证明:连接AC,交BD于点O,连接OE,∵ABCD为正方形,∴O是AC的中点,∵E是PC的中点,∴OE∥P A,∵P A⊄平面BDE,OE⊂平面BDE,∴P A∥平面BDE.(2)以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,则B(2,2,0),D(0,0,0),E(0,1,1),C(0,2,0),=(2,2,0),=(0,1,1),设平面BDE的法向量=(x,y,z),则,设x=1,则=(1,﹣1,1),平面DEC的法向量=(1,0,0),设平面BDE与平面DEC的夹角为θ,则cosθ===,∴平面BDE与平面DEC的夹角的余弦值为.17.(12分)已知椭圆C:+=1(a>b>0)的离心率为e=,过点(2,0).(Ⅰ)求椭圆C的标准方程;(Ⅱ)设左、右焦点分别为F1,F2,经过右焦点F2的直线l与椭圆C相交于A、B两点,若⊥,求直线l方程.【解答】解:(Ⅰ)由e==,且a=2,则c=1,b==,故椭圆C的方程为+=1;(Ⅱ)F1(﹣1,0),F2(1,0),设经过右焦点F2的直线l的方程为x=my+1,与椭圆方程3x2+4y2=12联立,可得(4+3m2)y2+6my﹣9=0,设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=﹣,由⊥,即AF1⊥BF1,k•k=•=﹣1,即有(x1+1)(x2+1)+y1y2=(my1+2)(my2+2)+y1y2=(1+m2)y1y2+2m(y1+y2)+4=(1+m2)•(﹣)+2m•(﹣)+4=0,解得m=±,则直线l的方程为x=±y+1,即为y=±(x﹣1).18.(12分)已知数列{a n}的前n项和S n=1﹣a n(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n,并证明:T n<2.【解答】解:(1)数列{a n}的前n项和S n=1﹣a n①.所以当n=1时,.当n≥2时,S n﹣1=1﹣a n﹣1②,①﹣②得:a n=S n﹣S n﹣1=a n﹣1﹣a n,整理得2a n=a n﹣1,故(常数),所以数列{a n}是以为首项,为公比的等比数列;所以,首项符合通项,所以.证明:(2)设,所以①,②,①﹣②得:=,所以.。
北京市2023-2024学年高一下学期期中考试数学试题含答案
![北京市2023-2024学年高一下学期期中考试数学试题含答案](https://img.taocdn.com/s3/m/08a4621a68eae009581b6bd97f1922791788be57.png)
北京2023—2024学年第二学期期中练习高一数学(答案在最后)2024.04说明:本试卷共4页,共120分.考试时长90分钟.一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin120︒的值等于()A.12-B.12C.2D.2【答案】D 【解析】【分析】根据特殊角的三角函数值得到2,从而可求解.【详解】由题意可得sin1202︒=,故D 正确.故选:D.2.若角α的终边过点()4,3,则πsin 2α⎛⎫+= ⎪⎝⎭()A.45B.45-C.35D.35-【答案】A 【解析】【分析】根据余弦函数定义结合诱导公式计算求解即可.【详解】因为角α的终边过点()4,3,所以4cos 5α==,所以π4sin cos 25αα⎛⎫+== ⎪⎝⎭.故选:A3.已知扇形的弧长为4cm ,圆心角为2rad ,则此扇形的面积是()A.22cmB.24cm C.26cm D.28cm 【答案】B【解析】【分析】由条件结合弧长公式l R α=求出圆的半径,然后结合扇形的面积公式12S lR =可得答案.【详解】因为扇形的圆心角2rad α=,它所对的弧长4cm l =,所以根据弧长公式l R α=可得,圆的半径2R =,所以扇形的面积211424cm 22S lR ==⨯⨯=;故选:B .4.向量a ,b ,c在正方形网格中的位置如图所示,若向量c a b λ=+,则实数λ=()A.2-B.1-C.1D.2【答案】D 【解析】【分析】将3个向量的起点归于原点,根据题设得到它们的坐标,从而可求λ的值.【详解】如图,将,,a b c的起点平移到原点,则()()()1,1,0,1,2,1a b c ==-= ,由c a b λ=+可得()()()2,11,10,1λ=+-,解得2λ=,故选:D.5.下列四个函数中以π为最小正周期且为奇函数的是()A.()cos2f x x =B.()tan2x f x =C.()()tan f x x =- D.()sin f x x=【答案】C 【解析】【分析】根据三角函数的周期性和奇偶性对选项逐一分析,由此确定正确选项.【详解】对于A ,函数()cos2f x x =的最小正周期为π,因为()()()cos 2cos 2f x x x f x -=-==,所以()cos2f x x =为偶函数,A 错误,对于B ,函数()tan 2xf x =的最小正周期为2π,因为()()tan tan 22x x f x f x ⎛⎫-=-=-=- ⎪⎝⎭,所以函数()tan 2x f x =为奇函数,B 错误,对于C ,函数()()tan f x x =-的最小正周期为π,因为()()()tan tan f x x x f x -==--=-,所以函数()()tan f x x =-为奇函数,C 正确,对于D ,函数()sin f x x =的图象如下:所以函数()sin f x x =不是周期函数,且函数()sin f x x =为偶函数,D 错误,6.在ABC 中,4AB =,3AC =,且AB AC AB AC +=- ,则AB BC ⋅= ()A.16B.16- C.20D.20-【答案】B 【解析】【分析】将AB AC AB AC +=- 两边平方,即可得到0AB AC ⋅=,再由数量积的运算律计算可得.【详解】因为AB AC AB AC +=- ,所以()()22AB ACAB AC +=-,即222222AB AB AC AC AB AB AC AC +⋅+=-⋅+uu u r uu u r uuu r uuu r uu u r uu u r uuu r uuu r ,所以0AB AC ⋅= ,即AB AC ⊥ ,所以()220416AB BC AB AC AB AB AC AB ⋅=⋅-=⋅-=-=- .故选:B7.函数cos tan y x x =⋅在区间3,22ππ⎛⎫⎪⎝⎭上的图像为()A.B.C.D.【答案】C 【解析】【分析】分别讨论x 在3,,[,)22ππππ⎛⎫⎪⎝⎭上tan x 的符号,然后切化弦将函数化简,作出图像即可.【详解】因为3,22x ππ⎛⎫∈ ⎪⎝⎭,所以sin ,,23sin ,.2x x y x x πππ⎧-<<⎪⎪=⎨⎪≤<⎪⎩故选:C.8.已知函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭,则“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】【分析】首先求出()f x α+、()f x α-的解析式,再根据正弦函数的性质求出使()f x α+是偶函数且()f x α-是奇函数时α的取值,再根据充分条件、必要条件的定义判断即可.【详解】因为()sin 24f x x π⎛⎫=+⎪⎝⎭,则()sin 224f x x ααπ⎛⎫+=++ ⎪⎝⎭,()sin 224f x x ααπ⎛⎫-=-+ ⎪⎝⎭,若()f x α-是奇函数,则112π,Z 4k k απ-+=∈,解得11π,Z 82k k απ=-∈,若()f x α+是偶函数,则222π,Z 42k k αππ+=+∈,解得22π,Z 82k k απ=+∈,所以若()f x α+是偶函数且()f x α-是奇函数,则π,Z 82k k απ=+∈,所以由()ππ8k k α=+∈Z 推得出()f x α+是偶函数,且()f x α-是奇函数,故充分性成立;由()f x α+是偶函数,且()f x α-是奇函数推不出()ππ8k k α=+∈Z ,故必要性不成立,所以“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的充分不必要条件.故选:A9.已知向量,,a b c 共面,且均为单位向量,0a b ⋅= ,则a b c ++ 的最大值是()A.1+ B.C.D.1-【答案】A 【解析】【分析】根据题意,可设出向量,,a b c 的坐标,由于这三个向量都是单位向量,则向量,,a b c的终点都落在以坐标原点为圆心的单位圆上,作出示意图,由向量的性质可知,只有当c 与a b +同向时,a b c ++ 有最大值,求解即可.【详解】因为向量,,a b c 共面,且均为单位向量,0a b ⋅= ,可设()1,0a =,()0,1b = ,(),c x y = ,如图,所以2a b += ,当c 与a b +同向时,此时a b c ++ 有最大值,为21+.故选:A .10.窗花是贴在窗户玻璃上的贴纸,它是中国古老的传统民间艺术之一在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均为正方形ABCD 各边的中点(如图2),若P 为 BC 的中点,则()PO PA PB ⋅+=()A .4B.6C.8D.10【答案】C 【解析】【分析】根据平面向量的线性运算将()PO PA PB ⋅+ 化为OA 、OB 、OP表示,再根据平面向量数量积的运算律可求出结果.【详解】依题意得||||2OA OB ==,||2OP =,3π4AOP =Ð,π4BOP =Ð,所以3π2||||cos 22(242OA OP OA OP ⋅=⋅=⨯-=- ,π2||||cos 22242OB OP OB OP ⋅=⋅=⨯= ,所以()PO PA PB ⋅+= ()OP OA OP OB OP -⋅-+- 22||OA OP OB OP OP =-⋅-⋅+ 222228=-+⨯=.故选:C二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)11.写出一个与向量()3,4a =-共线的单位向量_____________.【答案】34,55⎛⎫- ⎪⎝⎭(答案不唯一)【解析】【分析】先求出a r ,则aa±即为所求.【详解】5a ==所以与向量()3,4a =- 共线的单位向量为34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭.故答案为:34,55⎛⎫- ⎪⎝⎭(答案不唯一)12.已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图,则π3f ⎛⎫= ⎪⎝⎭__________.【解析】【分析】根据图象可得函数()f x 的最大值,最小值,周期,由此可求,A ω,再由5π212f ⎛⎫=⎪⎝⎭求ϕ,由此求得的解析式,然后求得π3f ⎛⎫⎪⎝⎭.【详解】由图可知,函数()f x 的最大值为2,最小值为2-,35ππ3π41234T =+=,当5π12x =时,函数()f x 取最大值2,又()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭所以2A =,32π3π44ω⨯=,所以2ω=,所以()()2sin 2f x x ϕ=+,又5π212f ⎛⎫=⎪⎝⎭,所以5π5π2sin 2126f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ5π4π,22363ϕϕ-<<<+<,所以5πππ,623ϕϕ+==-,所以()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,ππ2sin 33f ⎛⎫== ⎪⎝⎭.13.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象过点10,2⎛⎫ ⎪⎝⎭,则ϕ=__________.,若将函数()f x 图象仅向左平移π4个单位长度和仅向右平移π2个单位长度都能得到同一个函数的图象,则ω的最小值为__________.【答案】①.π6##1π6②.83##223【解析】【分析】由条件列方程求ϕ,再利用平移变换分别得到变换后的函数解析式,并根据相位差为2π,Z k k ∈求解;【详解】因为函数()()sin f x x ωϕ=+的图象过点10,2⎛⎫ ⎪⎝⎭,所以1sin 2ϕ=,又π2ϕ<,所以π6ϕ=,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向左平移π4个单位长度得到函数ππππsin sin 4646y x x ωωω⎡⎛⎫⎤⎛⎫=++=++ ⎪ ⎢⎥⎝⎭⎦⎝⎭⎣的图象,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向右平移π2个单位长度得到ππππsin sin 2626y x x ωωω⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,则ππππ2π4626k ωω⎛⎫⎛⎫+--+=⎪ ⎪⎝⎭⎝⎭(Z k ∈),化简得3π2π4k ω=(Z k ∈),解得83k ω=(Z k ∈),由于0ω>,所以当1k =时,ω取得最小值83,故答案为:π8,63.14.已知边长为2的菱形ABCD 中,π3DAB ∠=,点E 满足3BE EC = ,点F 为线段BD 上一动点,则AF BE ⋅的最大值为______.【答案】3【解析】【分析】建立如图平面直角坐标系,设BF BD λ= ,利用平面向量线性运算与数量积的坐标表示可得AF BE⋅关于λ的表达式,从而得解.【详解】如图,以A为原点建立平面直角坐标系,则(0,0),(2,0),A B C D ,因为3BE EC =,所以(33333,4444BE BC ⎛⎫=== ⎪ ⎪⎝⎭,由题意,设()01BF BD λλ=≤≤,则(()BF λλ=-=- ,则()()()2,02,AF AB BF λλ=+=+-=-,所以()3333324422AF BE λλ⋅=-+=+,因为01λ≤≤,所以当1λ=时,AF BE ⋅的最大值为3.故答案为:3.15.声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A t ω=.音有四要素,音调、响度、音长和音色.它们都与函数sin y A t ω=及其参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖锐.我们平时听到的乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音对应的函数是111sin sin 2sin 3sin 4234y x x x x =++++⋯..给出下列四个结论:①函数1111sin sin 2sin 3sin 4sin1023410y x x x x x =++++⋯+不具有奇偶性;②函数()111sin sin2sin3sin4234f x x x x x =+++在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增;③若某声音甲对应的函数近似为()11sin sin 2sin 323g x x x x =++,则声音甲的响度一定比纯音()1sin22h x x =的响度小;④若某声音乙对应的函数近似为()1sin sin 22x x x ϕ=+,则声音乙一定比纯音()1sin22h x x =更低沉.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】对①,结合奇偶性的定义判断即可;对②,利用正弦型函数的单调性作出判断;对③,分别判断()(),g x h x 的振幅大小可得;对④,求出周期,可得频率,即可得出结论.【详解】对于①,令()1111sin sin2sin3sin4sin1023410F x x x x x x =++++⋯+,所以()()()()()()1111sin sin 2sin 3sin 4sin 1023410F x x x x x x -=-+-+-+-+⋯+-,所以()1111sin sin2sin3sin4sin1023410F x x x x x x -=-----⋅⋅⋅-,所以()()F x F x -=-,所以()F x 是奇函数,①错误;对于②,由ππ88x -≤≤可得,ππ244x -≤≤,3π3π388x -≤≤,ππ422x -≤≤,所以111sin ,sin2,sin3,234x x x x 都在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以()111sin sin2sin3sin4234f x x x x x =+++在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以函数()f x 在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,②正确;对于③.因为()11sin sin 2sin 323g x x x x =++,所以π223g ⎛⎫= ⎪⎝⎭,所以()max 23g x ≥,即()g x 的振幅比()1sin22h x x =的振幅大,所以声音甲的响度一定比纯音()1sin22h x x =的响度大,所以③错误;对于④,因为()()()()112πsin 2πsin 24πsin sin 222x x x x x x ϕϕ+=+++=+=,所以函数()x ϕ为周期函数,2π为其周期,若存在02πα<<,使()()x x ϕϕα=+恒成立,则必有()()0ϕϕα=,()()110sin 0sin 00sin sin 222ϕϕααα∴=+===+,()sin 1cos 0αα∴+=,因为02πα<<,πα∴=,又()()()11πsin πsin 2πsin sin 222x x x x x ϕ+=+++=-+与()1sin sin 22x x x ϕ=+不恒相等,所以函数()1sin sin22x x x ϕ=+的最小正周期是2π,所以频率1112πf T ==而()h x 的周期为π,频率21πf =,12f f <,所以声音乙一定比纯音()1sin22h x x =更低沉,所以④正确.故答案为:②④.三、解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤)16.如图,在ABC 中,2BD DC = ,E 是AD 的中点,设AB a = ,AC b = .(1)试用a ,b 表示AD ,BE ;(2)若1a b == ,a 与b 的夹角为60︒,求AD BE ⋅ .【答案】(1)1233AD a b =+ ,5163BE a b =-+ (2)518-【解析】【分析】(1)利用向量加法减法的三角形法则及数乘运算即可求解;(2)根据(1)的结论,利用向量的数量积运算法则即可求解.【小问1详解】因为2BD DC = ,所以23BD BC = ,所以221)212(333333AB AC AB AB AC a b AD AB BD AB BC +-=+=+=+=+= .因为E 是AD 的中点,所以()11211()22323BE BA BD AB BC AB AC AB ⎛⎫=+=-+=-+- ⎪⎝⎭ 51516363AB AC a b =-+=-+ .【小问2详解】因为1a b == ,a 与b 的夹角为60︒,所以11cos ,1122a b a b a b ⋅==⨯⨯= ,由(1)知,1233AD a b =+ ,5163BE a b =-+ ,所以22125154233631899AD BE a b a b a a b b ⎛⎫⎛⎫⋅=+⋅-+=--⋅+ ⎪ ⎪⎝⎭⎝⎭541251892918=--⨯+=-.17.已知函数()π3sin 24f x x ⎛⎫=+⎪⎝⎭(1)求()f x 的最小正周期;(2)求函数()f x 的单调递增区间;(3)若函数()f x 在区间[]0,a 内只有一个零点,直接写出实数a 的取值范围.【答案】(1)()f x 的最小正周期为π,(2)函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;(3)a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.【解析】【分析】(1)根据正弦型函数的周期公式求解即可;(2)利用正弦函数的单调区间结论求解;(3)求出()0f x =的解后可得a 的范围.【小问1详解】因为()π3sin 24f x x ⎛⎫=+ ⎪⎝⎭,所以函数()f x 的最小正周期2ππ2T ==;【小问2详解】由πππ2π22π242k x k -≤+≤+,Z k ∈,可得3ππππ88k x k -≤≤+,Z k ∈,所以函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;【小问3详解】由π()3sin(204f x x =+=可得,π2π4x k +=,Z k ∈所以ππ28k x =-,Z k ∈,因为函数()f x 在区间[]0,a 上有且只有一个零点,所以3π7π88a ≤<,所以实数a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.18.已知()()()4,0,0,4,cos ,sin ,(0π)A B C ααα<<.(1)若OA OC += (O 为坐标原点),求OB 与OC 的夹角;(2)若⊥ AC BC ,求sin cos αα-的值.【答案】(1)OB 与OC 的夹角为π6,(2)sin cos 4αα-=【解析】【分析】(1)根据向量模长以及夹角的坐标公式计算即可;(2)由向量垂直得到数量积为0,进而得到1sin cos 4αα+=,通过平方得到2sin cos αα,进而可得()2sin cos αα-,再根据α的范围确定正负,开方得解.【小问1详解】因为()()()4,0,0,4,cos ,sin A B C αα,所以()()()4,0,0,4,cos ,sin OA OB OC αα=== ,所以()4cos ,sin OA OC αα+=+ ,由OA OC += ()224+cos sin 21αα+=,所以1cos 2α=,又0πα<<,,所以π3α=,13,22C ⎛⎫ ⎪ ⎪⎝⎭,设OB 与OC 的夹角为β()0πβ≤≤,则cos OB OC OB OC β⋅= 23342==,又0πβ≤≤,故OB 与OC 的夹角为π6,【小问2详解】由⊥ AC BC 得0AC BC ⋅= ,又()cos 4,sin AC αα=- ,()cos ,sin 4BC αα=- ,所以()()cos 4cos sin sin 40αααα-+-=,所以1sin cos 4αα+=,所以152sin cos 016αα-=<,又0πα<<,所以ππ2α<<,所以()21531sin cos 11616αα--=-=,所以sin cos 4αα-=.19.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭,且()f x 图像的相邻两条对称轴之间的距离为π2,再从条件①、条件②、条件③中选择两个作为一组已知条件.(1)确定()f x 的解析式;(2)设函数()π24g x x ⎛⎫=+ ⎪⎝⎭,则是否存在实数m ,使得对于任意1π0,2x ⎡⎤∈⎢⎥⎣⎦,存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,()()12m g x f x =-成立?若存在,求实数m 的取值范围:若不存在,请说明理由.条件①:()f x 的最小值为2-;条件②:()f x 图像的一个对称中心为5π,012⎛⎫ ⎪⎝⎭;条件③:()f x 的图像经过点5π,16⎛⎫- ⎪⎝⎭.注:如果选择多组条件分别解答,按第一个解答计分.【答案】(1)选①②,②③,①③答案都为()2sin(2)6f x x π=+,(2)存在m 满足条件,m 的取值范围为2,0⎤⎦.【解析】【分析】(1)先根据已知求出()f x 的最小正周期,即可求解ω,选条件①②:可得()f x 的最小值为A -,可求A .根据对称中心可求ϕ,即可得解函数解析式;选条件①③:可得()f x 的最小值为A -,可求A .根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求ϕ,可得函数解析式;选条件②③:根据对称中心可求ϕ,再根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求A 的值,即可得解函数解析式.(2)求出函数()f x ,()g x 在π0,2⎡⎤⎢⎥⎣⎦上的值域,再结合恒成立、能成立列式求解作答.【小问1详解】由于函数()f x 图像上两相邻对称轴之间的距离为π2,所以()f x 的最小正周期π2π2T =⨯=,所以2π2T ω==,此时()()sin 2f x A x ϕ=+.选条件①②:因为()f x 的最小值为A -,所以2A =.因为()f x 图象的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以56k ϕπ=π-,()k ∈Z ,因为||2ϕπ<,所以π6ϕ=,此时1k =,所以()2sin(2)6f x x π=+.选条件①③:因为()f x 的最小值为A -,所以2A =.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,则5π()16f =-,所以5π2sin()13ϕ+=-,即5π1sin()32ϕ+=-.因为||2ϕπ<,所以7π5π13π636ϕ<+<,所以5π11π36ϕ+=,所以π6ϕ=,所以()2sin(2)6f x x π=+.选条件②③:因为函数()f x 的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以5ππ(Z)6k k ϕ=-∈.因为||2ϕπ<,所以π6ϕ=,此时1k =.所以π()sin(26f x A x =+.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,所以5π(16f =-,所以5ππsin 136A ⎛⎫+=-⎪⎝⎭,11πsin 16A =-,所以2A =,所以()2sin(2)6f x x π=+.综上,不论选哪两个条件,()2sin(2)6f x x π=+.【小问2详解】由(1)知,()2sin(2)6f x x π=+,由20,2x π⎡⎤∈⎢⎥⎣⎦得:2ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,2π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,因此[]2()1,2f x ∈-,由10,2x π⎡⎤∈⎢⎥⎣⎦得:1ππ5π2,444x ⎡⎤+∈⎢⎥⎣⎦,1πsin 2,142x ⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦,因此1()g x ⎡∈-⎣,从而1()1,g x m m m ⎡-∈---+⎣,由()()12m g x f x =-得:()()21f x g x m =-,假定存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,即存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()21f x g x m =-成立,则[]1,1,2m m ⎡---+⊆-⎣,于是得112m m --≥-⎧⎪⎨-+≤⎪⎩,解得20m -≤≤,因此存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,所以实数m的取值范围是2,0⎤⎦.20.对于定义在R 上的函数()f x 和正实数T 若对任意x ∈R ,有()()f x T f x T +-=,则()f x 为T -阶梯函数.(1)分别判断下列函数是否为1-阶梯函数(直接写出结论):①()2f x x =;②()1f x x =+.(2)若()sin f x x x =+为T -阶梯函数,求T 的所有可能取值;(3)已知()f x 为T -阶梯函数,满足:()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,且对任意x ∈R ,有()()2f T x f x T x --=-.若函数()()F x f x ax b =--有无穷多个零点,记其中正的零点从小到大依次为123,,,x x x ⋅⋅⋅;若1a =时,证明:存在b ∈R ,使得()F x 在[]0,2023T 上有4046个零点,且213240464045x x x x x x -=-=⋅⋅⋅=-.【答案】(1)①否;②是(2)2πT k =,*k ∈N (3)证明见解析【解析】【分析】(1)利用T -阶梯函数的定义进行检验即可判断;(2)利用T -阶梯函数的定义,结合正弦函数的性质即可得解;(3)根据题意得到()()F x T F x +=,()()F T x F x -=,从而取3344TT b f ⎛⎫=- ⎪⎝⎭,结合零点存在定理可知()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +,从而得解.【小问1详解】()2f x x =,则22(1)()(1)211f x f x x x x +-=+-=+≠;()1f x x =+,则(1)()11f x f x x x +-=+-=,故①否;②是.【小问2详解】因为()f x 为T -阶梯函数,所以对任意x ∈R 有:()()()()()sin sin sin sin f x T f x x T x T x x x T x T T +-=+++-+=+-+=⎡⎤⎣⎦.所以对任意x ∈R ,()sin sin x T x +=,因为sin y x =是最小正周期为2π的周期函数,又因为0T >,所以2πT k =,*k ∈N .【小问3详解】因为1a =,所以函数()()F x f x x b =--,则()()()()()()()F x T f x T x T b f x T x T b f x x b F x +=+-+-=+-+-=--=,()()()()()()()2F T x f T x T x b f x T x T x b f x x b F x -=----=+----=--=.取3344TT b f ⎛⎫=- ⎪⎝⎭,则有3330444TT T F f b ⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭,30444T T T F F T F ⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由于()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,因此()()F x f x x b =--在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,结合()()F T x F x -=,则有()F x 在0,2T ⎡⎤⎢⎥⎣⎦上有唯一零点4T ,在,2T T ⎡⎤⎢⎥⎣⎦上有唯一零点34T .又由于()()F x T F x +=,则对任意k ∈Ζ,有044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,33044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,因此,对任意m ∈Z ,()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +.综上所述,存在3344TT b f ⎛⎫=- ⎪⎝⎭,使得()F x 在[]0,2023T 上有4046个零点,且14T x =,234T x =,354T x =,474T x =,L ,404580894T x =,404680914T x =,其中,2132404640452T x x x x x x -=-=⋅⋅⋅=-=.【点睛】关键点睛:本题解决的关键是充分理解新定义T -阶梯函数,从而在第3小问推得()()F x T F x +=,()()F T x F x -=,由此得解.。
山东省济南市2023-2024学年高一上学期1月期末考试数学试题含答案
![山东省济南市2023-2024学年高一上学期1月期末考试数学试题含答案](https://img.taocdn.com/s3/m/fed416bf534de518964bcf84b9d528ea81c72f3a.png)
济南市2024年高一学情检测数学试题(答案在最后)本试卷共6页,满分150分.考试时间为120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号、座号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,用0.5mm 黑色签字笔将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.据教育部统计,2024届全国普通高校毕业生规模达1179万人,将数字11790000用科学记数法表示为()A.71.17910⨯B.81.17910⨯C.611.7910⨯ D.80.117910⨯【答案】A【解析】【分析】由科学记数法要求可得.【详解】711790000 1.17910=⨯,故选:A .2.下列运算正确的是()A.232a a a -=B.222()a b a b +=+C.322a b a a÷= D.2224()a b a b =【答案】D【解析】【分析】举例说明判断ABC ;利用幂的运算法则判断D.【详解】对于A ,()233a a a a -=-,A 错误;对于B ,()2222a b a ab b +=++,B 错误;对于C ,3222a b a ab ÷=,C 错误;对于D ,2222242()()a b a b a b ==,D 正确.故选:D3.小刚同学一周的跳绳训练成绩(单位:次/分钟)如下:156,158,158,160,162,165,169.这组数据的众数和中位数分别是()A.160,162B.158,162C.160,160D.158,160【答案】D【解析】【分析】根据众数和中位数的定义易得.【详解】因在156,158,158,160,162,165,169这组数据中,158出现了2次,次数最多,故众数是158;根据中位数的定义知,按照从小到大排列的七个数据中,第四个数160为这组数据的中位数.故选:D.4.某几何体是由四个大小相同的小立方块搭成,其俯视图如图所示,图中数字表示该位置上的小立方块个数,则这个几何体的主视图是()A. B.C. D.【答案】A【解析】【分析】利用三视图的相关概念分析即可.【详解】由题意可知从前方看第一排有3个正方体,且从左到右依次有2个、1个,第二排有1个正方体在左侧,故A 正确.故选:A5.已知点()13,A y -,()2,3B -,()21,C y -,()32,D y 都在反比例函数k y x=0k ≠)的图象上,则1y ,2y ,3y 的大小关系为()A.213y y y << B.312y y y <<C.231y y y << D.132y y y <<【答案】B【解析】【分析】首先代入点B 的坐标,得到函数的解析式,再代入其他点的坐标,即可判断.【详解】将点()2,3B -代入反比例函数32k =-,得6k =-,即反比例函数的解析式是6y x -=,将点,,A C D 的坐标代入函数解析式,得12y =,26y =,33y =-,即312y y y <<.故选:B6.如图,在矩形ABCD 中,6AB =,8AD =,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足为E ,F ,则PE PF +的值为()A.125 B.245 C.5 D.285【答案】B【解析】【分析】连接OP ,利用勾股定理列式求出BD ,再根据矩形的对角线相等且相互平分求出,OA OD ,然后根据AOD AOP DOP S S S =+△△△列式求解即可.【详解】如图,连接OP ,四边形ABCD 为矩形,6AB =,8AD =,10BD ∴===,11052OA OD ∴==⨯=,AOD AOP DOP S S S =+ ,11112222AD AB AO PE OD PF ∴⨯⨯=⨯⋅+⨯⋅,111168552222PE PF ∴⨯⨯⨯=⨯⋅+⨯⋅,解得245PE PF +=,故选:B.7.如图,在ABCD 中,2AB =,3AD =,60ABC ∠= ,在AB 和AD 上分别截取()AE AE AB <,AF ,使AE AF =,分别以,E F 为圆心,以大于12EF 的长为半径作弧,两弧在DAB ∠内交于点G ,作射线AG 交BC 于点H ,连接DH ,分别以,D H 为圆心,以大于12DH 的长为半径作弧,两弧相交于点M 和N ,作直线MN 交CD 于点K ,则CK 的长为()A.34 B.23 C.35 D.12【答案】C【解析】【分析】利用角平分线、垂直平分线的作法与性质确定相应线段长度,利用全等三角形、相似三角形的判定与性质计算即可.【详解】如图所示,设直线MN 分别交直线,,BC AD HD 于,,P Q S ,作HR AD ⊥,垂足为R ,根据题意易知,AG MN 分别为BAD ∠的角平分线,线段DH 的垂直平分线,所以60BAH ABC ∠=∠= ,所以ABH 为正三角形,则2,1,2,AH BH AR CH DR HR ======,所以2DH SD ==,而3tan 2QS ADH SD ∠==,则217,44QS DQ ==,易证HSP DSQ ≅ ,故73,44DQ HP CP HP CH ===-=,易知CKP DKQ ,故372CP CK CK QD KD CK =⇒=-,解之得35CK =.故选:C 8.如图,抛物线24y x x =-+,顶点为A ,抛物线与x 轴正半轴的交点为B ,连接AB ,C 为线段OB 上一点(不与O ,B 重合),过点C 作//CD AB 交y 轴于点D ,连接AD 交抛物线于点E ,连接OE 交CD 于点F ,若34DOF DEF S S =△△,则点C 的横坐标为()A.43 B.65 C.76 D.87【答案】A【解析】【分析】根据给定条件,求出点,A B 坐标,设点0(,0)C x 并表示点,,D E F 的坐标,再利用三角形面积关系列式计算即得.【详解】抛物线2(2)4y x =--+的顶点(2,4)A ,由0,0y x =>,得4x =,即点(4,0)B ,设直线AB 方程为y kx b =+,由4204k b k b=+⎧⎨=+⎩,解得2,8k b =-=,则直线:28AB y x =-+,设点00(,0),04C x x <<,由//CD AB ,设直线CD 方程为2y x c =-+,由0x x =,得02c x =,由0x =,得02y c x ==,即点0(0,2)D x ,直线0:22CD y x x =-+,设直线AD 的方程为y mx n =+,则0242x n m n=⎧⎨=+⎩,解得002,2m x n x =-=,即直线00:(2)2AD y x x x =-+,由002(2)24y x x x y x x =-+⎧⎨=-+⎩,解得02004x x y x x =⎧⎨=-+⎩,即点2000(,4)E x x x -+,显然DOE DOC S S = ,由34DOF DEF S S =△△,得37DOF DOE S S = ,则37DOF DOC S S = ,因此点0038(,)77F x x ,由37DOF DOE S S = ,得||3||7OF OE =,因此020083747x x x =-+,解得043x =,所以点C 的横坐标为43.故选:A 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.小明周六从家出发沿一条路匀速步行去图书馆查阅资料,资料查阅完毕后沿原路匀速返回,速度与来时相同,途中遇到同学小亮,交谈一段时间后以相同速度继续行进,直至返回家中,如图是小明离家距离y (km )与时间x (h )的关系,则()A.小明家与图书馆的距离为2kmB.小明的匀速步行速度是3km/hC.小明在图书馆查阅资料的时间为1.5hD.小明与小亮交谈的时间为0.4h【答案】AD【解析】【分析】由图象可判断A 选项;结合图象可求小明的匀速步行速度,可判断B 选项;通过计算点C 到D 所需的时间,可判断C 选项;通过计算点E 到F 所需的时间,可判断D 选项.【详解】对于A :由图象可知小明家与图书馆的距离为2km ,故A 正确;对于B :因为小明沿一条路匀速步行去图书馆查阅资料,所以小明的匀速步行速度是()24km /h 0.5=,故B 错误;对于C :小明返回的路上走()20.8 1.2km -=后遇到小亮,则走1.2km 所需的时间为()1.20.3h 4=,所以小明在图书馆查阅资料的时间为()2.60.50.3 1.8h --=,故C 错误;对于D :走0.8km 所需的时间为()0.80.2h 4=,所以小明与小亮交谈的时间为()3.2 2.60.20.4h --=,故D 正确.故选:AD.10.如图,点B 在线段AD 上,分别以线段AB 和线段BD 为边在线段AD 的同侧作等边三角形ABC 和等边三角形BDE ,连接AE ,AE 与BC 相交于点G ,连接CD ,CD 与AE ,BE 分别相交于点F ,H ,连接BF ,GH ,则()A.//GH ADB.FB 平分GFH ∠C.GE BD= D.ABE CBD≅△△【答案】ABD【解析】【分析】结合图形和题设条件,易得ABE CBD ≅△△,可推得D 项;由此得到ABE CBD ∠=∠,可证GBE HBD ≅ ,可得GB HB =,从而得到正三角形BGH ,由60GHB HBD ∠==∠ 易得A 正确;再由全等三角形的对应边上的高相等,易得点B 到AFD ∠的两边距离相等,故得B 项正确;对于C 项,可采用反向推理,假设结论正确,经过推理产生矛盾,即得原命题不成立,排除C 项.【详解】因ABC V 和BFD △都是正三角形,故,,60AB BC BE BD ABC EBD ==∠=∠= ,则ABC CBE FBD CBE ∠+∠=∠+∠,即ABE CBD ∠=∠,由AB BC ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩可得ABE CBD ≅△△,故D 正确;由ABE CBD ≅△△可得,AEB CDB ∠=∠,因18026060CBE ∠=-⨯= ,由GBE HBD BE BD GEB HDB ∠=∠⎧⎪=⎨⎪∠=∠⎩可得,GBE HBD ≅ ,则有GB HB =,故BGH V 为正三角形,则60GHB HBD ∠==∠ ,故//GH AD ,即A正确;如图,分别作,BM AE BN CD ⊥⊥,垂足分别是,M N ,由上知,ABE CBD ≅△△,故BM BN =,由角平分线的性质定理,可得FB 平分GFH ∠,故B 正确;对于C 项,假设GE BD =,则GE BE =,故60EGB EBG ∠=∠= ,而在ACG 中,60,60ACG CAG CAB ∠=∠<∠= ,故60CGA EGB ∠=∠>产生矛盾,故假设不成立,即C 错误.故选:ABD .11.如图1,在Rt ABC △中,90ABC ∠=︒,4BC =,动点D 从点A 开始沿AB 边以每秒0.5个单位长度的速度运动,同时,动点E 从点B 开始沿BC 边以相同速度运动,当其中一点停止运动时,另一点同时停止运动,连接DE ,F 为DE 中点,连接AF ,CF ,设时间为t (s ),2DE 为y ,y 关于t 的函数图象如图2所示,则()A.当1t =时, 2.5DE = B.2AB =C.DE 有最小值,最小值为2 D.AF CF +【答案】BD【解析】【分析】设AB a =,列出y 关于t 的函数式,结合图2,列方程求出a 的值,判断B 项,继而代值检验A 项;利用二次函数的图象性质,即可得到DE 的最小值,判断C 项;最后通过建系,将AF CF +转化为14+,利用距离的几何意义,借助于点的对称即可求得其最小值.【详解】设AB a =,则0.5,0.5,0.5AD t BD a t BE t ==-=,则22222(0.5)(0.5)0.5y DE a t t t at a ==-+=-+(*),由图2知,函数220.5y t at a =-+经过点(1,2.5),整理得,220a a --=,解得2a =或1a =-(舍去),故B 正确;由B 项知,20.524y t t =-+,当1t =时,0.524 2.5y =-+=,即2 2.5DE =,故A 错误;对于C ,由题意易得,04t ≤≤,由220.524=0.5(2)2y t t t =-+-+可得,当2t =时,min 2y =,即DE 故C 错误;对于D ,如图,以点B 为原点,,OA OC 所在直线分别为,x y 轴建立直角坐标系.则(2,0),(0,4),(20.5,0),(0,0.5)A C D t E t -,因F 为DE 中点,故11(1,)44F t t -,于是AF CF +=+14=+结合此式特点,设(,),(4,0),(4,16)P t t M N -,则1()4AF CF PM PN +=+,作出图形如下.作出点(4,0)M -关于直线y x =的对称点1(0,4)M -,连接1M N ,交直线y x =于点P ,则点P 即为使PM PN +取得最小值的点.(理由:可在直线y x =上任取点(,)P t t ''',利用对称性特点,即可证明P M P N PM PN ''+>+,即得),此时22min 1()4(164)426PM PN M N +==++=即AF CF +的最小值为26.故选:BD.三、填空题:本题共3小题,每小题5分,共15分.12.在平面直角坐标系中有五个点,分别是()1,3A ,()3,4B -,()2,3C --,()4,3D ,()3,5E -,从中任选一个点,选到的这个点恰好在第一象限的概率是______.【答案】25##0.4【解析】【分析】利用概率公式求解即可求得答案.【详解】五个点中在第一象限的点有A 和D 两个,从中任选一个点共有5种等可能的结果,这个点恰好在第一象限有2种结果,所以从中任选一个点恰好在第一象限的概率是25.故答案为:25.13.在Rt ABC △中,90ACB ∠=︒,6AB =,ABC V 的周长为14,则AB 边上的高为________.【答案】73##123【解析】【分析】利用勾股定理和完全平方公式以及三角形面积可得结果.【详解】根据题意可设,BC a AC b ==,所以146BC C AB A a b =++++=,可得8a b +=,又90ACB ∠=︒,利用勾股定理可得222226BC AC a b ++==;可得2236a b +=;所以()222228236a b a b ab ab +=+-=-=,即14ab =;设AB 边上的高为h ,由三角形面积可得6ab AB h h =⋅=,解得14763h ==.故答案为:7314.如图,在矩形纸片ABCD 中,4AB =,6AD =,E 为AD 中点,F 为边CD 上一点,连接EF ,将DEF 沿EF 翻折,点D 的对应点为D ¢,G 为边BC 上一点,连接AG ,将ABG 沿AG 翻折,点B 的对应点恰好也为D ¢,则BG =________.【答案】6-【解析】【分析】过D ¢作SU AD ⊥,交AD 于S ,交BC 于U ,过E 作EH AD '⊥,利用等积法可求3D S '=,再根据Rt D GU '△可求BG 的长度.【详解】由题设3,4AE D E AD AB ==='=',过D ¢作SU AD ⊥,交AD 于S ,交BC 于U ,过E 作EH AD '⊥,则2AH HD ='=,则EH ==,故1122AD AE D S '=⨯',所以3D S '=,故83AS ==,故83BU =,设BG x =,则D G x '=,故222845433x x ⎛⎛⎫-+-= ⎪ ⎝⎭⎝⎭,故6x =-故答案为:6-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.先化简再求值:(1)求22111244x x x x x x x ---÷+--+的值,其中3x =;(2)求222x y y x y x y x y---+-的值,其中2x y =.【答案】(1)12(2)43【解析】【分析】(1)先因式分解进行化简,进而代入3x =即可求解;(2)先同分母进行化简并转化x y 的表达式,进而代入2x y=即可求解.【小问1详解】()()()2222111=12441211x x x x x x x x x x x x x x -----÷-⋅+--++--+121x x x x --++=()21x x x --=+21x =+.即3x =代入可得21312=+.【小问2详解】()()()()222222x x y y x y x y y y x y x y x y x y x y x y +----=--+--+-22222x xy xy y y x y +-+-=-222x x y =-221x y x y ⎛⎫ ⎪⎝⎭=⎛⎫- ⎪⎝⎭.即2x y =代入可得2224213=-.16.某超市销售,A B 两种品牌的牛奶,购买3箱A 种品牌的牛奶和2箱B 种品牌的牛奶共需285元;购买2箱A 种品牌的牛奶和5箱B 种品牌的牛奶共需410元.(1)求A 种品牌的牛奶,B 种品牌的牛奶每箱价格分别是多少元?(2)若某公司购买,A B 两种品牌的牛奶共20箱,且A 种品牌牛奶的数量至少比B 种品牌牛奶的数量多6箱,又不超过B 种品牌牛奶的3倍,购买,A B 两种品牌的牛奶各多少箱才能使总费用最少?最少总费用为多少元?【答案】(1)A 种品牌的牛奶,B 种品牌的牛奶每箱价格分别是55元、60元.(2)最小费用为12005151125-⨯=(元),此时购买,A B 两种品牌的牛奶分别为15箱、5箱.【解析】【分析】(1)设A 种品牌的牛奶,B 种品牌的牛奶每箱价格分别是,x y 元,根据题设列方程组后可求各自的单价;(2)购买A 品牌的牛奶a 箱,则购买总费用12005C a =-,由题设条件可得a 可为13,14,15中的某个数,故可求最小费用及相应的箱数.【小问1详解】设A 种品牌的牛奶,B 种品牌的牛奶每箱价格分别是,x y 元,则3228525410x y x y +=⎧⎨+=⎩,故5560x y =⎧⎨=⎩.故A 种品牌的牛奶,B 种品牌的牛奶每箱价格分别是55元、60元.【小问2详解】设购买A 品牌的牛奶a 箱,则购买B 品牌的牛奶20a -箱,此时总费用()55602012005C a a a =+-=-,而()206320a a a a ≥-+⎧⎨≤-⎩,故1315a ≤≤,而a 为整数,故a 可为13,14,15中的某个数,故C 的最小费用为12005151125-⨯=(元),此时购买,A B 两种品牌的牛奶分别为15箱、5箱.17.如图,在O 中,AB 是直径,点C 是O 上一点,9AC =,3BC =,点E 在AB 上,2AE BE =,连接CE 并延长交O 于点D ,连接AD ,AF CD ⊥,垂足为F .(1)求证:ADF ABC △△;(2)求DF 的长.【答案】(1)证明见解析(2【解析】【分析】(1)利用直径所对的圆周角为直角可判断90AFD ACB ︒∠=∠=,再利用同弧所对的圆周角相等,可得ADF ABC ∠=∠,从而证明ADF ABC △△;(2)在Rt ABC △中,求出tan 3ABC ∠=,AB =利用tan tan 3ABC ADF ∠=∠=,设DF x =,把Rt ADF 的三边表示出来,再利用CBE ADE 求出103DE x =,最后在Rt AEF 中求出x 的值,也即是DF 的长.【小问1详解】AB 是O 的直径,BC AB ∴⊥,90AFD ACB ︒∴∠=∠=,又ADF ABC ∠=∠ ,ADF ABC ∴ .【小问2详解】在Rt ABC △中,9tan 33AC ABC BC ∠===,AB ==又2AE BE =,则AE =BE =,又ABC ADF ∠=∠,tan tan 3ABC ADF ∴∠=∠=,在Rt ADF 中,设DF x =,则3AF x =,故AD ==,又CEB AED ∠=∠,CBE ADE ∴ ,BC BE DA DE ∴=10DE=,解得103DE x =,10733EF DE DF x x x ∴=-=-=,在Rt AEF 中,222AF EF AE +=,即()(222733x x ⎛⎫+= ⎪⎝⎭,解得x =,即DF =.18.已知抛物线223y mx mx =--(0m >),根据以上材料解答下列问题:(1)若该抛物线经过点(3,0)A ,求m 的值;(2)在(1)的条件下,B ,C 为该抛物线上两点,线段BC 的中点为D ,若点(2,1)D ,求直线BC 的表达式;以下是解决问题的一种思路,仅供大家参考:设直线BC 的表达式为:y kx b =+,(,),(,)B B C C B x y C x y ,则有223B B B y mx mx =--①,223C C C y mx mx =--②.①-②得:()()()()()2222B C B C B C B C B C B C y y m x x m x x m x x x x m x x -=---=+---,两边同除以()B C x x -,得()2B C B C B Cy y k m x x m x x -==+--……;(3)该抛物线上两点E ,F ,直线EF的表达式为:()2y mx n =+(0n ≥).(ⅰ).请说明线段EF 的中点在一条定直线1l 上;(ⅱ).将ⅰ中的定直线1l 绕原点O 顺时针旋转45°得到直线2l ,当13x <<时,该抛物线与2l 只有一个交点,求m 的取值范围.【答案】(1)1m =(2)23y x =-(3)ⅰ.线段EF的中点在定直线1:2l x =上;ⅱ.1m ≥或12m =或103m <≤.【解析】【分析】(1)将点坐标代入函数解析式,计算即得m 的值;(2)按照题中的思路先求出2B C k x x =-+,再由线段BC 的中点为(2,1)D 求得k 的值,利用直线BC 经过点(2,1)D 即可求得直线BC 的表达式;(3)(ⅰ)由22)23y mx n y mx mx ⎧=+⎪⎨=--⎪⎩消去y ,利用韦达定理即可得到线段EF的中点在定直线1:2l x =上;(ⅱ)根据题意,作出图形,利用平面几何知识即可求得2:5l y x =-;根据函数223y mx mx =--与2:5l y x =-在13x <<时的图象特点,依题意可得34332m m --<-⎧⎨->-⎩,解之即得.【小问1详解】因223y mx mx =--经过点(3,0)A ,则9306m m --=,解得,1m =;【小问2详解】1m =时,2223(1)4y x x x =--=--,设直线BC 的表达式为:y kx b =+,(,),(,)B B C C B x y C x y ,则223B B B y mx mx =--①,223C C C y mx mx =--②.由①-②:222((2))()B C B C B C B C B C y y x x x x x x x x -=---=--+,两边同除以()B C x x -,则2B C B C B Cy y k x x x x -=+--=,因线段BC 的中点为(2,1)D ,则22C B x x +=,即2222k =⨯-=,则2y x b =+,将点(2,1)D 代入解得,3b =-,故直线BC 的表达式为:23y x =-;【小问3详解】(i)由22)23y mx n y mx mx ⎧=+⎪⎨=--⎪⎩消去y,整理得,230mx n ---=,依题意,设(,),(,)E E F F E x y F x y ,EF 的中点为(,)M M M x y ,则E F x x +=22F M E x x x =+=,即线段EF的中点在定直线1:2l x =上;(ⅱ)如图,将定直线1:2l x =绕原点O 顺时针旋转45°得到直线2l ,则点(,0)2A 转到了点1A ,则1522OA OA ==,设点111(,)A x y ,2(,0)B x 则11525525cos45,sin 45,2222x y ===-=-oo 215x ==,即155(,)22A -,(5,0)B ,设2:l y mx n =+,则得,505522m n m n +=⎧⎪⎨+=-⎪⎩,解得,15m n =⎧⎨=-⎩,即得2:5l y x =-;因抛物线2223(1)3y mx mx m x m =--=---的对称轴为1x =,故该函数在13x <<时,y 随着x 的增大而增大,且1x =时,3y m =--,3x =时,33y m =-,要使抛物线与2:5l y x =-只有一个交点,可分以下种情况讨论:①当抛物线顶点在直线下方时,如上图可得,34332m m --<-⎧⎨->-⎩,解得1m >;②抛物线顶点在直线上,如上图,即1m =时,由2235y x x y x ⎧=--⎨=-⎩,解得1x =或2x =,因13x <<,故符合题意;③抛物线与直线相切,且切点横坐标满足13x <<,如上图,由2235y mx mx y x ⎧=--⎨=-⎩消去y ,可得2(21)20mx m x -++=,由2(21)80m m ∆=+-=解得,12m =,代入方程可得2440x x -+=,解得2x =,符合题意;④如上图,抛物线顶点在直线上方,但在13x <<内只有一个交点,须使34332m m -->-⎧⎨-≤-⎩,又0m >,解得103m <≤.综上可得m 的取值范围为:1m ≥或12m =或103m <≤.19.在Rt ABC △中,90ACB ∠=︒,60ABC ∠=︒.(1)如图1,在ACE △中,120CAE ∠=︒,2AE AC =,F 是AE 中点,连接BF .若1BC =,求线段BF 的长;(2)如图2,在BCD △中,120BDC ∠=︒,2BD CD =,F 是AB 中点,连接DF ,求BF DF的值;(3)如图3,在CDE 中,120CDE ∠=︒,2DE CD =,E 是AB 中点,F 是AE 中点,连接BD ,DF ,求DF BD的值.【答案】(17(221(3)32【解析】【分析】(1)由90BAF ∠=︒,2AB =,3AF =,可求BF 的长;(2)将BCD △绕点C 顺时针旋转60︒得FCD '△,证明,,B D D '三点共线,FD BD '⊥,设1CD DD '==,勾股定理求出FD 和BF 即可;(3)将CDE 绕点C 顺时针旋转60︒,得CD B '△,证明,,B D D '三点共线,ED BD '⊥,//ED FD ',设1CD =,求出BD 和FD 即可.【小问1详解】在Rt ABC △中,90ACB ∠=︒,60ABC ∠=︒.若1BC =,则2AB =,AC =,如图1,在ACE △中,120CAE ∠=︒,由30BAC ∠=︒,得90BAF ∠=︒2AE AC =,F 是AE 中点,则AF AC ==Rt ABF中,BF ==.【小问2详解】在Rt ABC △中,90ACB ∠=︒,60ABC ∠=︒,F 是AB 中点,连接FC ,则BFC △为等边三角形,如图所示,将BCD △绕点C 顺时针旋转60︒,得FCD '△,CD CD '=,60DCD '∠=︒,则CDD '△为等边三角形,60CDD '∠=︒,又120BDC ∠=︒,则,,B D D '三点共线,120FD C BDC '∠=∠=︒,60CD D '∠=︒,则60FD D '∠=︒,2BD CD =,则2FD D D ''=,FDD '△中,60FD D '∠=︒,2FD D D ''=,H 为FD '中点,连接DH ,则有DD HD ''=,DHD ' 为等边三角形,DH FH HD '==,60DHD ︒'∠=,30HFD HDF =︒∠=∠,所以FDD '△为直角三角形,FD BD '⊥,不妨设1CD DD '==,则2FD BD '==,223FD FD D D ''=-=227BF FD BD =+=所以72133BF DF ==;【小问3详解】在Rt ABC △中,90ACB ∠=︒,60ABC ∠=︒,CDE 中,120CDE ∠=︒,2DE CD =,E 是AB 中点,F 是AE 中点,将CDE 绕点C 逆时针旋转60︒,得CD B '△,如图所示,由(2)同理可得CDD '△为等边三角形,,,B D D '三点共线,ED BD '⊥,由2DE CD =,有2BD D D ''=,又2BE EF =,则有//ED FD ',得FD BD ⊥,不妨设1CD DD CD ''===,则2BD ED '==,3BD =。
浙江省余姚2023-2024学年高一下学期期中考试数学试题含答案
![浙江省余姚2023-2024学年高一下学期期中考试数学试题含答案](https://img.taocdn.com/s3/m/dcbcf3b05ff7ba0d4a7302768e9951e79b8969df.png)
余姚2023学年第二学期期中检测高一数学试卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知1i22i z -=+,则z z -=()A .i- B.iC.0D.1【答案】A 【解析】【分析】根据复数的除法运算求出z ,再由共轭复数的概念得到z ,从而解出.【详解】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.故选:A .2.如图,一个水平放置的平面图形的斜二测直观图是直角梯形O A B C '''',且//O A B C '''',242O A B C A B '''''='==,,则该平面图形的高为()A. B.2C.D.【答案】C 【解析】【分析】由题意计算可得O C '',还原图形后可得原图形中各边长,即可得其高.【详解】在直角梯形O A B C ''''中,//O A B C '''',24,2O A B C A B ''''='==',则O C ==''直角梯形O A B C ''''对应的原平面图形为如图中直角梯形OABC ,则有//,,24,242BC OA OC OA OA BC OC O C ''⊥====,所以该平面图形的高为42.故选:C.3.在平行四边形ABCD 中,,AC BD 相交于点O ,点E 在线段BD 上,且3BE ED = ,则AE =()A.1142AD AC + B.1124AD AC +C.3144AD AC +D.1344AD AC +【答案】B 【解析】【分析】利用平面向量基本定理即可得到答案.【详解】因为O 是AC 的中点,12AO AC ∴= ,又由3BE ED =可得E 是DO 的中点,11112224AE AD AO AD AC ∴=+=+ .故选:B.4.某小组有2名男生和3名女生,从中任选2名学生去参加唱歌比赛,在下列各组事件中,是互斥事件的是()A.恰有1名女生和恰有2名女生B.至少有1名男生和至少有1名女生C.至少有1名女生和全是女生D.至少有1名女生和至多有1名男生【答案】A 【解析】【分析】根据互斥事件的定义判断即可.【详解】依题意可能出现2名男生、1名男生1名女生、2名女生;对于A :恰有1名女生即选出的两名学生中有一名男生一名女生和恰有2名女生,他们不可能同时发生,故是互斥事件,故A 正确;对于B :当选出的两名学生中有一名男生一名女生,则至少有1名男生和至少有1名女生都发生了,故不是互斥事件,故B 错误;对于C :至少有1名女生包含有一名男生一名女生与全是女生,所以当全是女生时,至少有1名女生和全是女生都发生了,故不是互斥事件,故C 错误;对于D :至少有1名女生包含有一名男生一名女生与全是女生,至多有1名男生包含有一名男生一名女生与全是女生,故至少有1名女生和至多有1名男生是相等事件,故D 错误.故选:A5.已知点()1,1A ,()0,2B ,()1,1C --.则AB 在BC上的投影向量为()A.10310,55⎛ ⎝⎭B.10310,55⎛⎫-- ⎪ ⎪⎝⎭C.13,55⎛⎫⎪⎝⎭ D.13,55⎛⎫-- ⎪⎝⎭【答案】C 【解析】【分析】根据向量的坐标公式,结合投影向量的定义进行求解即可.【详解】因为()1,1A ,()0,2B ,()1,1C --.所以()1,1AB =-uu u r,()1,3BC =--,5cos ,5AB BC AB BC AB BC⋅〈〉==-⋅,所以向量AB 与BC的夹角为钝角,因此量AB 在BC上的投影向量与BC 方向相反,而cos ,55AB AB BC ⋅〈〉==,155BC == ,所以AB 在BC 上的投影向量为()11131,3,5555BC ⎛⎫-⋅=-⋅--= ⎪⎝⎭,故选:C6.秦九韶是我国南宋时期的著名数学家,他在著作《数书九章》中提出,已知三角形三边长计算三角形面积的一种方法“三斜求积术”,即在ABC 中,,,a b c 分别为内角,,A B C 所对应的边,其公式为:ABCS ==若22sin sin C c A =,3cos 5B =,a b c >>,则利用“三斜求积术”求ABC 的面积为()A.54B.34 C.35D.45【答案】D 【解析】【分析】由正弦定理可得2ac =,由余弦定理可得222625a cb +-=,在结合已知“三斜求积术”即可求ABC 的面积.【详解】解:因为22sin sin C c A =,由正弦定理sin sin a c A C=得:22c c a =,则2ac =又由余弦定理2223cos 25a cb B ac +-==得:22236255a c b ac +-==则由“三斜求积术”得45ABC S == .故选:D.7.已知某样本的容量为50,平均数为36,方差为48,现发现在收集这些数据时,其中的两个数据记录有误,一个错将24记录为34,另一个错将48记录为38.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则()A.236,48s x =<B.236,48s x =>C.236,48s x ><D.236,48s x <>【答案】B 【解析】【分析】根据数据总和不变,则平均数不变,根据方差的定义得()()()2221248148363636850x x x ⎡⎤=-+-++-+⎣⎦ ,而()()()4221222813628843668035s x x x +⎡-⎤=-+>⎣⎦-+ .【详解】设收集的48个准确数据为1248,,x x x ,所以124834383650x x x +++++= ,所以12481728x x x +++= ,所以124824483650x x x x +++++== ,又()()()222221248148363636(3436)(3836)50x x x ⎡⎤=-+-++-+-+-⎣⎦ ()()()22212481363636850x x x ⎡⎤=-+-++-+⎣⎦ ,()()()42222222183636(2436)(48136536)0s x x x ⎡⎤=-+⎣⎦-++-+-+- ()()()222281413628848365360x x x ⎡⎤=+-+-+->⎣⎦ ,故选:B.8.在ABC 中,π6A =,π2B =,1BC =,D 为AC 中点,若将BCD △沿着直线BD 翻折至BC D '△,使得四面体C ABD '-的外接球半径为1,则直线BC '与平面ABD 所成角的正弦值是()A.3B.23C.3D.3【答案】D 【解析】【分析】由直角三角形性质和翻折关系可确定BC D '△为等边三角形,利用正弦定理可确定ABD △外接圆半径,由此可知ABD △外接圆圆心O 即为四面体C ABD '-外接球球心,由球的性质可知OG ⊥平面BC D ',利用C OBD O C BD V V ''--=可求得点C '到平面ABD 的距离,由此可求得线面角的正弦值.【详解】π6A =,π2B =,1BC =,2AC ∴=,又D 为AC 中点,1AD CD BD ∴===,则1BC C D BD ''===,即BC D '△为等边三角形,设BC D '△的外接圆圆心为G ,ABD △的外接圆圆心为O ,取BD 中点H ,连接,,,,,C H OH OG OB OC OD '',π6A =,1BD =,112sin BDOB A∴=⋅=,即ABD △外接圆半径为1,又四面体C ABD '-的外接球半径为1,O ∴为四面体C ABD '-外接球的球心,由球的性质可知:OG ⊥平面BC D ',又C H '⊂平面BC D ',OG C H '∴⊥,22333C G CH '===,1OC '=,3OG ∴=;设点C '到平面ABD 的距离为d ,由C OBD O C BD V V ''--=得:1133OBD C BD S d S OG '⋅=⋅ ,又OBD 与C BD ' 均为边长为1的等边三角形,3d OG ∴==,直线BC '与平面ABD 所成角的正弦值为3d BC ='.故选:D.【点睛】关键点点睛;本题考查几何体的外接球、线面角问题的求解;本题求解线面角的关键是能够确定外接球球心的位置,结合球的性质,利用体积桥的方式构造方程求得点到面的距离,进而得到线面角的正弦值.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.数据1,2,3,3,4,5的平均数和中位数相同B.数据6,5,4,3,3,3,2,2,1的众数为3C.有甲、乙、丙三种个体按3:1:2的比例分层抽样调查,如果抽取的甲个体数为9,则样本容量为30D.甲组数据的方差为4,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是乙组【答案】AB 【解析】【分析】根据已知条件,结合平均数、方差公式,众数、中位数的定义,以及分层抽样的定义,即可求解.【详解】对于A ,平均数为12334536+++++=,将数据从小到大排列为1,2,3,3,4,5,所以中位数为3332+=,A 正确;对于B ,数据6,5,4,3,3,3,2,2,1的众数为3,B 正确;对于C ,根据样本的抽样比等于各层的抽样比知,样本容量为3918312÷=++,C 错误;对于D ,乙数据的平均数为56910575++++=,乙数据的方差为()()()()()22222157679710757 4.445⎡⎤-+-+-+-+-=>⎣⎦,所以这两组数据中较稳定的是甲组,D 错误.故选:AB.10.在ABC 中,内角A 、B 、C 所对的边分别a 、b 、c ,22sin a bc A =,下列说法正确的是()A.若1a =,则14ABC S =△B.ABC 外接圆的半径为bc aC.c b b c+取得最小值时,π3A =D.π4A =时,c b b c+值为【答案】ABD 【解析】【分析】对A ,由正弦定理化简2sin a b C =可得1sin 2C b=,再根据三角形面积公式判断即可;对B ,根据2sin a b C =结合正弦定理判断即可;对C ,根据正弦定理与余弦定理化简sin 2sin sin A B C =可得π4b c A c b ⎛⎫+=+ ⎪⎝⎭,再根据基本不等式与三角函数性质判断即可;对D ,根据三角函数值域求解即可.【详解】对A ,因为22sin a bc A =,由正弦定理可得sin 2sin sin a A b A C =,因为()0,πA ∈,则sin 0A >,则2sin a b C =,又因为1a =,故1sin 2C b =,故三角形面积为1111sin 12224ABC S ab C b b ==⨯⨯⨯=△,故A 正确;对B ,2sin a b C =,则sin 2aC b=,设ABC 外接圆的半径为R ,则2sin cR C=,故22c bc R a a b==⨯,故B 正确;对C ,因为22sin a bc A =,由余弦定理222sin 2cos b c c A b bc A =+-,即()222sin cos bc A A b c +=+,化简可得π4b c A c b⎛⎫+=+ ⎪⎝⎭,由基本不等式得2b c c b +≥=,当且仅当b c =时取等号,此时πsin 42A ⎛⎫+= ⎪⎝⎭,故当π2A =,π4B C ==时,b c c b +取得最小值2,故C 错误;对D ,由C,π4b c A c b ⎛⎫+=+ ⎪⎝⎭,当π4A =时,b c c b+的值为,故D 正确;故选:ABD.11.如图,在棱长为4的正方体1111ABCD A B C D -中,E ,F ,G 分别为棱,,AD AB BC 的中点,点P 为线段1D F 上的动点(包含端点),则()A.存在点P ,使得1//C G 平面BEPB.对任意点P ,平面1FCC ⊥平面BEPC.两条异面直线1D C 和1BC 所成的角为45︒D.点1B 到直线1D F 的距离为4【答案】ABD 【解析】【分析】A 选项当P 与1D 重合时,用线面平行可得出11//C G D E ,进而可得;B 选项证明BE ⊥平面1FCC 即可得出;选项C 由正方体的性质和画图直接得出;选项D 由余弦定理确定1145B D F ∠=︒,之后求距离即可.【详解】A :当P 与1D 重合时,由题可知,11111111//,,//,,//,EG DC EG DC D C DC D C DC EG D C EG D C ==∴=,四边形11EGC D 为平行四边形,故11//C G D E ,又1C G ⊄平面BEP ,1D E ⊂平面BEP ,则1//C G 平面BEP ,故A 正确;B :连接CF ,1CC ⊥ 平面ABCD ,BE ⊂平面ABCD ,1CC BE ∴⊥,又,,,AE BF AB BC A CBF BAF CBF ==∠=∠∴ ≌,故90,AEB BFC EBA BFC CF BE ∠=∠⇒∠+∠=︒∴⊥,又11,,CF CC C CF CC =⊂ 平面1FCC ,BE ∴⊥平面1FCC ,又BE ⊂平面BEP ,故对任意点P ,平面1FCC ⊥平面BEP ,故B 正确;C:由正方体的结构特征可知11//BC AD ,异面直线1D C 和1BC 所成的角即为1AD 和1D C 所成的角,由图可知为60︒,故C 错误;D :由正方体的特征可得1111B D FD B F =====,222222111111111116cos ,4522B D FD B FB D F B D F B D FD +-+-∴∠===∴∠=︒⋅,所以点1B 到直线1D F 的距离1111sin 42d B D B D F =∠==,故D 正确;故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12.为培养学生“爱读书、读好书、普读书”的良好习惯,某校创建了人文社科类、文学类、自然科学类三个读书社团.甲、乙、丙三位同学各自参加其中一个社团,每位同学参加各个社团的可能性相同,则三人恰好参加同一个社团的概率为______.【答案】19【解析】【分析】根据题意,得到基本事件的总数为27n =,以及所求事件中包含的基本事件个数为3m =,结合古典摡型的概率计算公式,即可求解.【详解】由人文社科类、文学类、自然科学类三个读书社团,甲、乙、丙三位同学各自参加其中一个社团,每位同学参加各个社团的可能性相同,基本事件的总数为3327n ==,三人恰好参加同一个社团包含的基本事件个数为3m =,则三人恰好参加同一个社团的概率为31279m P n ===.故答案为:19.13.如图,在ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足()12AP mAC AB m =+∈R ,若2AC =,4AB =,则AP CD ⋅的值为______.【答案】3【解析】【分析】利用//CP CD ,结合已知条件可把m 求出,由平面向量基本定理把AP 、CD 用已知向量AB 、AC表示,再利用数量积的运算法则可求数量积.【详解】 2AD DB =,∴23AD AB = ,//CP CD,∴存在实数k ,使得CP kCD = ,即()AP AC k AD AC -=- ,又 12AP mAC AB =+ ,则()12123m AC AB k AB AC ⎛⎫-+=- ⎪⎝⎭,∴11223m kk -=-⎧⎪⎨=⎪⎩,34k ∴=,14m =,则()112423AP CD AP AD AC AC AB AB AC ⎛⎫⎛⎫⋅=⋅-=+⋅- ⎪⎪⎝⎭⎝⎭2221111611π242cos 33433433AB AC AB AC =--⋅=--⨯⨯ ,故答案为:3.14.已知正方体1111ABCD A B C D -的棱长为3,动点P 在1AB C V 内,满足1D P =,则点P 的轨迹长度为______.【解析】【分析】确定正方体1111ABCD A B C D -对角线1BD 与1AB C V 的交点E ,求出EP 确定轨迹形状,再求出轨迹长度作答.【详解】在正方体1111ABCD A B C D -中,如图,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,则1DD AC ⊥,而BD AC ⊥,1DD BD D =I ,1DD ,BD ⊂平面1BDD ,于是AC ⊥平面1BDD ,又1BD ⊂平面1BDD ,则1AC BD ⊥,同理11⊥AB BD ,而1AC AB A ⋂=,AC ,1AB ⊂平面1AB C ,因此1BD ⊥平面1AB C ,令1BD 交平面1AB C 于点E ,由11B AB C B ABC V V --=,得111133AB C ABC S BE S BB ⋅=⋅ ,即)23142BE AB ⋅⋅=,解得BE AB ==而1BD ==1D E =,因为点P 在1AB C V 内,满足1D P =,则EP ==因此点P 的轨迹是以点E 为半径的圆在1AB C V 内的圆弧,而1AB C V 为正三角形,则三棱锥1B AB C -必为正三棱锥,E 为正1AB C V 的中心,于是正1AB C V 的内切圆半径111323232EH AB =⨯⨯=⨯=,则cos 2HEF ∠=,即π6HEF ∠=,π3FEG ∠=,所以圆在1AB C V 内的圆弧为圆周长的12,即点P 的轨迹长度为12π2⋅=【点睛】方法点睛:涉及立体图形中的轨迹问题,若动点在某个平面内,利用给定条件,借助线面、面面平行、垂直等性质,确定动点与所在平面内的定点或定直线关系,结合有关平面轨迹定义判断求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知z 为复数,2i z +为实数,且(12i)z -为纯虚数,其中i 是虚数单位.(1)求||z ;(2)若复数2(i)z m +在复平面上对应的点在第一象限,求实数m 的取值范围.【答案】(1)(2)()2,2-【解析】【分析】(1)设=+i ,R z a b a b ∈,,根据复数代数形式的乘法法则化简2i z +与(12i)z -,根据复数为实数和纯虚数的条件,即可求出a b ,,利用复数模长公式,即可求得到复数的模长;(2)由(1)知,求出复数的共轭复数,再根据复数代数形式的除法与乘方运算化简复数,再根据复数的几何意义得到不等式组,解得即可.【小问1详解】设=+i ,R z a b a b ∈,,()2i=2i z a b +++,因为2i z +为实数,所以20b +=,即2b =-所以(12i)(2i)(12i)42(1)i z a a a -=--=--+,又因为(12i)z -为纯虚数,所以40a -=即4a =,所以42z i =-,所以z ==.【小问2详解】由(1)知,42iz =+所以222(i)(42i i)16(2)8(2)i m m z m m +=++=-+++,又因为2(i)z m +在复平面上所对应的点在第一象限,所以216(2)08(2)0m m ⎧-+>⎨+>⎩,解得:22m -<<所以,实数m 的取值范围为()2,2-.16.某校为了提高学生对数学学习的兴趣,举办了一场数学趣味知识答题比赛活动,共有1000名学生参加了此次答题活动.为了解本次比赛的成绩,从中抽取100名学生的得分(得分均为整数,满分为100分)进行统计.所有学生的得分都不低于60分,将这100名学生的得分进行分组,第一组[)60,70,第二组[)70,80,第三组[)80,90,第四组[]90,100(单位:分),得到如下的频率分布直方图.(1)求图中m 的值,并估计此次答题活动学生得分的中位数;(2)根据频率分布直方图,估计此次答题活动得分的平均值.若对得分不低于平均值的同学进行奖励,请估计参赛的学生中有多少名学生获奖.(以每组中点作为该组数据的代表)【答案】(1)0.01m =,中位数为82.5.(2)82x =,有520名学生获奖.【解析】【分析】(1)利用频率分布直方图中所有频率之和等于1和中位数左边和右边的直方图的面积应该相等即可求解;(2)利用频率分布直方图中平均数等于每个小矩形底边的中点的横坐标与小矩形的面积的乘积之和及不低于平均值的学生人数为总数500乘以不低于平均值的频率即可.【小问1详解】由频率分布直方图知:()0.030.040.02101m ++++⨯=,解得0.01m =,设此次竞赛活动学生得分的中位数为0x ,因数据落在[)60,80内的频率为0.4,落在[)60,90内的频率为0.8,从而可得08090x <<,由()0800.040.1x -⨯=,得082.5x =,所以估计此次竞赛活动学生得分的中位数为82.5.【小问2详解】由频率分布直方图及(1)知:数据落在[)60,70,[)70,80,[)80,90,[]90,100的频率分别为0.1,0.3,0.4,0.2,650.1750.3850.4950.282x =⨯+⨯+⨯+⨯=,此次竞赛活动学生得分不低于82的频率为90820.20.40.5210-+⨯=,则10000.52520⨯=,所以估计此次竞赛活动得分的平均值为82,在参赛的1000名学生中估计有520名学生获奖17.在①()(sin sin )(sin sin )a c A C b A B +-=-;②2cos 0cos b a A c C--=;③向量()m c = 与(cos ,sin )n C B = 平行,这三个条件中任选一个,补充在下面题干中,然后解答问题.已知ABC 内角,,A B C 的对边分别为,,a b c ,且满足______.(1)求角C ;(2)若ABC 为锐角三角形,且2c =,求ABC 周长的取值范围;(3)在(2)条件下,若AB 边中点为D ,求中线CD 的取值范围.(注:如果选择多个条件分别解答,按第一个解答计分)【答案】(1)条件选择见解析,3π(2)2,6]+(3)3CD <≤【解析】【分析】(1)选①根据正弦定理化简,然后转化成余弦值即可;选②根据正弦定理化简即可求到余弦值,然后求出角度;选③先根据向量条件得到等式,然后根据正弦定理即可求到正切值,最后求出角度.(2)根据(1)中结果和2c =,把ABC 周长转化成π4sin 26A ⎛⎫++ ⎪⎝⎭,然后再求解范围.(3)根据中线公式和正弦定理,把CD 转化成三角函数求解即可.【小问1详解】选①:因为()(sin sin )(sin sin )a c A C b A B +-=-,()()()a c a c b a b ∴+-=-,即222c a b ab =+-,1cos 2C ∴=,()0,πC ∈ ,π3C ∴=.选②:2cos 0cos b a A c C--=,2sin sin cos sin cos B A A C C-∴=,2sin cos sin cos sin cos B C A C C A ∴-=,1cos 2C ∴=,()0,πC ∈ ,π3C ∴=.选③:向量()m c = 与(cos ,sin )n C B =平行,sin cos c B C ∴=,sin sin cos C B B C ∴=,tan C ∴=()0,πC ∈ ,π3C ∴=.【小问2详解】π,23C c == ,sin sin sin a b c A B C==,23sin )2sin())2sin )232a b c A B A A A A π∴++=++=+-+=+4sin(26A π=++. ABC 为锐角三角形,π022ππ032A B A ⎧<<⎪⎪∴⎨⎪<=-<⎪⎩,ππ62A ∴<<,πsin ,162A ⎛⎤⎛⎫∴+∈ ⎥ ⎪ ⎝⎭⎝⎦.ABC ∴周长的取值范围为2,6]+.【小问3详解】224a b ab =+- ,又由中线公式可得222(2)42()2(4)CD a b ab +=+=+,21624442·sin sin 33CD B A A π⎛⎫∴=+=+- ⎪⎝⎭2161161142·sin cos sin 42·sin 23223426A A A A π⎛⎫⎡⎤⎛⎫=++=++- ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭.即254πsin 2336CD A ⎛⎫=+- ⎪⎝⎭, ABC 为锐角三角形,π022ππ032A B A ⎧<<⎪⎪∴⎨⎪<=-<⎪⎩,ππ62A ∴<<,ππ5π2666A ∴<-<.3CD <≤.18.三棱台111ABC A B C -中,若1A A ⊥面ABC ,ABAC ⊥,12AB AC AA ===,111A C =,M ,N 分别是BC ,BA 中点.(1)求1A N 与1CC 所成角的余弦值;(2)求平面1C MA 与平面11ACC A 所成成角的余弦值;(3)求1CC 与平面1C MA 所成角的正弦值.【答案】(1)45(2)23(3)15【解析】【分析】(1)根据题意,证得11//MN A C 和11//A N MC ,得到1CC M ∠为1A N 与1CC 所成角,在1CC M △中,利用余弦定理,即可求解;(2)过M 作ME AC ⊥,过E 作1EF AC ⊥,连接1,MF C E ,证得ME ⊥平面11ACC A ,进而证得1AC ⊥平面MEF ,得到平面1C MA 与11ACC A 所成角即MFE ∠,在直角MEF 中,即可求解;(3)过1C 作1C P AC ⊥,作1C Q AM ⊥,连接,PQ PM ,由1C P ⊥平面AMC ,得到1C P AM ⊥和1C Q AM ⊥,得到AM ⊥平面1C PQ 和PR ⊥平面1C MA ,在直角1C PQ 中,求得23PR =,求得C 到平面1C MA 的距离是43,进而求得1CC 与平面1C MA 所成角.【小问1详解】解:连接1,MN C A .由,M N 分别是,BC BA 的中点,根据中位线性质,得//MN AC ,且12AC MN ==,在三棱台111ABC A B C -中,可得11//A C AC ,所以11//MN A C ,由111MN A C ==,可得四边形11MNAC 是平行四边形,则11//A N MC ,所以1CC M ∠为1A N 与1CC 所成角,在1CC M △中,由111CC A N C M CM ====,可得14cos5CC M ∠=.【小问2详解】解:过M 作ME AC ⊥,垂足为E ,过E 作1EF AC ⊥,垂足为F ,连接1,MF C E .由ME ⊂面ABC ,1A A ⊥面ABC ,故1AA ME ⊥,又因为ME AC ⊥,1AC AA A =∩,1,AC AA ⊂平面11ACC A ,则ME ⊥平面11ACC A .由1AC ⊂平面11ACC A ,故1ME AC ⊥,因为1EF AC ⊥,ME EF E ⋂=,且,ME EF ⊂平面MEF ,于是1AC ⊥平面MEF ,由MF ⊂平面MEF ,可得1AC MF ⊥,所以平面1C MA 与平面11ACC A 所成角即MFE ∠,又因为12AB ME ==,1cos CAC ∠=,则1sin CAC ∠=所以11sin EF CAC =⨯∠=,在直角MEF 中,90MEF ∠=,则MF ==2cos 3EF MFE MF ∠==.【小问3详解】解:过1C 作1C P AC ⊥,垂足为P ,作1C Q AM ⊥,垂足为Q ,连接,PQ PM ,过P 作1PR C Q ⊥,垂足为R ,由11C A C C ==,1C M ==12C Q ==,由1C P ⊥平面AMC ,AM ⊂平面AMC ,则1C P AM ⊥,因为1C Q AM ⊥,111C Q C P C = ,11,C Q C P ⊂平面1C PQ ,于是AM ⊥平面1C PQ ,又因为PR ⊂平面1C PQ ,则PR AM ⊥,因为1PR C Q ⊥,1C Q AM Q = ,1,C Q AM ⊂平面1C MA ,所以PR ⊥平面1C MA ,在直角1C PQ 中,1122223322PC PQ PR QC ⋅⋅==,因为2CA PA =,故点C 到平面1C MA 的距离是P 到平面1C MA 的距离的两倍,即点C 到平面1C MA 的距离是43,设所求角为θ,则43sin 15θ==.19.如图①,在矩形ABCD 中,2AB AD ==E 为CD 的中点,如图②,将AED △沿AE 折起,点M 在线段CD 上.(1)若2DM MC =,求证AD ∥平面MEB ;(2)若平面AED ⊥平面BCEA ,是否存在点M ,使得平面DEB 与平面MEB 垂直?若存在,求此时三棱锥B DEM -的体积,若不存在,说明理由.【答案】(1)证明见解析(2)存在,169【解析】【分析】(1)根据已知条件及平行线分线段成比例定理,结合线面平行的判定定理即可求解;(2)根据(1)的结论及矩形的性质,利用面面垂直的性质定理及线面垂直的性质定理,结合线面垂直的判定定理及面面垂直的判定定理,再利用等体积法及棱锥的体积公式即可求解.【小问1详解】如图,连AC ,交EB 于G ,在矩形ABCD 中,E 为DC 中点,AB EC ∴∥,且2AB EC =,2AG GC ∴=,又2DM MC =,AD MG ∴∥,又MG ⊂平面MEB ,AD ⊄平面MEB ,AD ∴∥平面MEB .【小问2详解】存在点M ,使得平面DEB 与平面MEB 垂直.在矩形ABCD 中,12DE DA AB ==,45DEA BEC ∴∠=∠=︒,90AEB ∴∠=︒,即AE EB ⊥,已知平面AED ⊥平面BCEA ,又平面AED 平面BCEA AE =,BE ∴⊥平面AED ,DE ⊂平面AED ,BE DE ∴⊥.①取AE 中点O ,则DO AE ⊥,平面AED ⊥平面BCEA ,平面AED 平面BCEA AE =,DO ∴⊥平面BCEA ,由(1)知当2DM MC =时,AD MG ∥,AD DE ⊥ ,MG DE ∴⊥.②而BE MG G ⋂=,,⊂BE MG 平面MEB ,DE ∴⊥平面MEB ,又DE ⊂平面DEB ,∴平面DEB ⊥平面MEB .即当2DM MC =时,平面DEB 与平面MEB 垂直.依题意有DE AD ==4AE =,2DO =,(2222121116233333329B DEM B DEC D BEC BEC V V V DO S ---∴===⨯⨯⨯=⨯⨯⨯⨯=△.。
广西桂林市2023-2024学年高一下学期期末考试 数学含答案
![广西桂林市2023-2024学年高一下学期期末考试 数学含答案](https://img.taocdn.com/s3/m/1b6c1330a55177232f60ddccda38376baf1fe0f1.png)
桂林市2023~2024学年度下学期期末质量检测高一年级数学(答案在最后)(考试用时120分钟,满分150分)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的校名、姓名、班级、学号和准考证号填写在答题卡上.将条形码横贴在答题卡的“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i -+在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.把2π3弧度化成角度是()A.30︒B.60︒C.90︒D.120︒3.已知向量(),1a m = ,()4,2b =- ,且2b a =-r r ,则m =()A .2B.2- C.12D.12-4.已知平面α,β和直线a ,b ,且αβ∥,a α⊂,b β⊂,则a 与b 的位置关系是()A.平行或异面B.平行C.异面D.相交5.已知3cos 5α=-,且α为第二象限角,则tan α=()A.34-B.34 C.43- D.436.已知圆锥的高为8,底面圆的半径为4,顶点与底面的圆周在同一个球的球面上,则该球的表面积为()A.100πB.68πC.52πD.50π7.“桂林山水甲天下”,如图,为测量桂林市某公园内一山的高MN ,选择公园内某点A 和另一座山的山顶C 为测量观测点.从A 点测得M 的仰角45MAN ∠=︒,C 点的仰角30CAB ∠=︒以及75MAC ∠=︒,从C点测得60MCA ∠=︒,已知山高50m BC =,则山高MN =()m .A. B. C.D.8.已知圆心角为30︒的扇形AOB 的半径为1,点C 是 AB 上的一点,点D 是线段OA 上的一点,点E 、F 是线段OB 上的两点,且四边形CDEF 为矩形,则该矩形的最大面积为()A.2B.2+C.12-D.12+二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数11i z =+,21i z =-,则下列说法正确的有()A .12z z = B.12=z z C.12i z z =- D.在复平面内1z ,2z 对应的点关于虚轴对称10.函数()()sin f x A x ωϕ=+(0A >,0ω>,π2ϕ<)在一个周期内的图象如图所示,则()A.2A =B.2ω=C.π6ϕ=-D.将函数()f x 图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到的函数图象关于y 轴对称11.如图,向透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,水是定量的(定体积为V ).固定容器底面一边BC 于地面上,1BC =,再将容器倾斜,随着倾斜度的不同,有下面四个结论,其中正确的是()A.水面EFGH 所在四边形的面积为定值B.没有水的部分始终呈棱柱形C.棱11A D 一定与平面EFGH 平行D .当容器倾斜如图所示时,2BE BF V ⋅=(定值)三、填空题:本题共3小题,每小题5分,共15分.12.计算()()1i 2i +-=_________(其中i 为虚数单位).13.在正方体1111ABCD A B C D -中,M 为AB 的中点,则直线1AM 与CD 所成角的余弦值为_________.14.已知O 为ABC 内一点,且4850OA OB OC ++=,点M 在OBC △内(不含边界),若AM AB AC λμ=+,则λμ+的取值范围是_________.四、解答题:本题共5小题,共77分.解答应给出文字说明、证明过程及演算步骤.15.已知向量()1,3a =,()2,1b =- .(1)求向量a 与b夹角的余弦值;(2)若向量a b + 与a kb -互相垂直,求k 的值.16.已知函数()π3cos 23f x x ⎛⎫=+ ⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 的最大值以及取得最大值时x 的集合.(3)求()f x 的单调递减区间.17.已知正方体1111ABCD A B C D -的棱长为2.(1)证明:1AC BD ⊥.(2)求三棱锥1A C BD -的体积.18.在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin cos sin cos 3cos a A B b A A a C +=.(1)求角C 的大小;(2)若3a =,且1AB AC ⋅=,求ABC 的面积.19.如图,已知直线12l l ∥,A 是1l ,2l 之间的一点,且1AE l ⊥于点E ,2AF l ⊥于点F ,AE m =,AF n=(m ,n 为常数),点B 、C 分别为直线1l 、2l 上的动点,且AB AC ⊥,设ACF α∠=.(1)若π3α=,求ABC 的面积;(2)当A 恰好EF 中点时,求ABC 的周长的最小值.桂林市2023~2024学年度下学期期末质量检测高一年级数学(考试用时120分钟,满分150分)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的校名、姓名、班级、学号和准考证号填写在答题卡上.将条形码横贴在答题卡的“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i -+在复平面内对应的点所在的象限为()A.第一象限 B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】由坐标判断象限即可.【详解】复数12i -+在复平面内对应的点的坐标为()1,2-,在第二象限.故选:B2.把2π3弧度化成角度是()A.30︒B.60︒C.90︒D.120︒【答案】D 【解析】【分析】利用弧度制与角度制的转化可得解.【详解】因为π180=︒,所以22π18012033=⨯︒=︒.故选:D.3.已知向量(),1a m = ,()4,2b =- ,且2b a =-r r ,则m =()A.2B.2- C.12D.12-【答案】B 【解析】【分析】将向量坐标代入等式,列出方程,求解即得.【详解】由2b a =-r r 可得(4,2)2(,1)m -=-,解得,2m =-.故选:B .4.已知平面α,β和直线a ,b ,且αβ∥,a α⊂,b β⊂,则a 与b 的位置关系是()A.平行或异面B.平行C.异面D.相交【答案】A 【解析】【分析】结合两平面平行的位置关系,判断两直线没有公共点即得.【详解】因αβ∥,a α⊂,b β⊂,则a 与b 没有公共点,即a 与b 平行或异面.故选:A .5.已知3cos 5α=-,且α为第二象限角,则tan α=()A.34-B.34 C.43- D.43【答案】C 【解析】【分析】应用同角三角函数关系计算求解即可.【详解】因为α为第二象限角,又因为3cos ,5α=-4sin 5α==,所以4sin 45tan 3cos 35ααα===--.故选:C.6.已知圆锥的高为8,底面圆的半径为4,顶点与底面的圆周在同一个球的球面上,则该球的表面积为()A.100πB.68πC.52πD.50π【答案】A 【解析】【分析】根据题意,由条件可得球的半径=5r ,再由球的表面积公式,即可得到结果.【详解】设球的半径为r ,则()22284r r =-+,解得=5r ,所以球的表面积为24π100πr =,故选:A.7.“桂林山水甲天下”,如图,为测量桂林市某公园内一山的高MN ,选择公园内某点A 和另一座山的山顶C 为测量观测点.从A 点测得M 的仰角45MAN ∠=︒,C 点的仰角30CAB ∠=︒以及75MAC ∠=︒,从C 点测得60MCA ∠=︒,已知山高50m BC =,则山高MN =()m .A. B. C.D.【答案】B 【解析】【分析】先由条件求得AC 长,再利用正弦定理求得MA 长,最后在Rt MAN 中求得MN .【详解】在Rt ABC △中,由sin CAB BCAC∠=可得;在MAC △中,由正弦定理,sin sin MA ACMCA AMC =∠∠,即得100sin 60sin(1807560)MA ⨯==--在Rt MAN 中,sin MNMAN AM=∠,则45MN == 故选:B .8.已知圆心角为30︒的扇形AOB 的半径为1,点C 是 AB 上的一点,点D 是线段OA 上的一点,点E 、F 是线段OB 上的两点,且四边形CDEF 为矩形,则该矩形的最大面积为()A.2B.2+C.312-D.12+【答案】C 【解析】【分析】结合图形,设COB θ∠=,将CF ,CD 用θ的三角函数式表示,利用三角恒等变换将矩形面积化成sin(260)2θ+-,利用θ的范围,结合正弦函数的图象特点即可求得其最大值.【详解】如图,设COB θ∠=,则30COA θ∠=- ,(0,30)θ∈ ,sin ,CF θ=由正弦定理,1sin(30)sin150CD θ=- ,解得2sin(30)CD θ=-,故矩形CDEF 的面积为:132sin(30)sin 2(cos sin )sin 22S θθθθθ=-=-213sin cos 3sin 2cos 2)22θθθθθ=-=--3sin(260)2θ=+-,因030θ<< ,则得60260120θ<+< ,故当26090θ+= 时,即15θ= 时,max 312S =-.故选:C.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数11i z =+,21i z =-,则下列说法正确的有()A.12z z =B.12=z z C.12i z z =- D.在复平面内1z ,2z 对应的点关于虚轴对称【答案】AB 【解析】【分析】分别应用共轭复数、复数的模、复数的除法法则和复数的几何意义进行求解.【详解】对于选项A ,121i=z z =-,故选项A 正确;对于选项B ,1112z =+=,221(1)2z =+-=12=z z ,故选项B 正确;对于选项C ,2121i (1i)2i i 1i (1i)(1i)2z z ++====--+,故选项C 错误;对于选项D ,在复平面内1z 对应的点为1(1,1)Z ,2z 对应的点为2(1,1)Z -,点12,Z Z 关于实轴对称,故选项D 错误.故选:AB.10.函数()()sin f x A x ωϕ=+(0A >,0ω>,π2ϕ<)在一个周期内的图象如图所示,则()A.2A =B.2ω=C.π6ϕ=-D.将函数()f x 图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到的函数图象关于y 轴对称【答案】AC 【解析】【分析】对于A ,由图易得;对于B ,利用周期公式即可求得;对于C ,代入特殊点计算即得;对于D ,利用平移变换求得函数式,再利用函数奇偶性即可判定.【详解】对于A ,因()()sin f x A x ωϕ=+,由图知max min22y y A -==,故A 正确;对于B ,设函数的最小正周期为T ,由图知35πππ49182T =-=,解得2π3T =,则2π2π3ω=,解得3ω=,故B 错误;对于C ,由图知函数图象经过点π(,0)18,则得π2sin(3)018ϕ⨯+=,解得π2π,Z 6k k ϕ=-+∈,因π2ϕ<,故得π6ϕ=-,故C 正确;对于D ,将函数()π2sin(36f x x =-图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到函数为:ππ7ππ2sin[3(]2sin(3)2sin(33666y x x x =--=-=--,不是偶函数,故D 错误.故选:AC.11.如图,向透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,水是定量的(定体积为V ).固定容器底面一边BC 于地面上,1BC =,再将容器倾斜,随着倾斜度的不同,有下面四个结论,其中正确的是()A.水面EFGH 所在四边形的面积为定值B.没有水的部分始终呈棱柱形C.棱11A D 一定与平面EFGH 平行D.当容器倾斜如图所示时,2BE BF V ⋅=(定值)【答案】BCD 【解析】【分析】画出随着倾斜度得到的图形,根据线面平行的性质及棱柱的定义判断A ,B ,C ,再根据柱体的体积公式判断D.【详解】依题意将容器倾斜,随着倾斜度的不同可得如下三种情形,对于A :水面EFGH 是矩形,线段FG 的长一定,从图1到图2,再到图3的过程中,线段EF 长逐渐增大,则水面EFGH 所在四边形的面积逐渐增大,故A 错误;对于B :依题意,//BC 水面EFGH ,而平面11BCC B 平面EFGH FG =,BC ⊂平面11BCC B ,则//BC FG ,同理//BC EH ,而//BC AD ,BC FG EH AD ===,又BC ⊥平面11ABB A ,平面11//ABB A 平面11CDD C ,因此有水的部分的几何体是直棱柱,长方体去掉有水部分的棱柱,没有水的部分始终呈棱柱形,故B 正确;对于C :因为11////A D BC FG ,FG ⊂平面EFGH ,11A D ⊄平面EFGH ,因此11//A D 平面EFGH ,即棱11A D 一定与平面EFGH 平行,故C 正确;对于D :当容器倾斜如图3所示时,有水部分的几何体是直三棱柱,其高为1BC =,体积为V ,又12BEF S BE BF =⋅ ,BEF V S BC =⋅ ,所以22V BE BF V BC ⋅==,故D 正确.故选:BCD三、填空题:本题共3小题,每小题5分,共15分.12.计算()()1i 2i +-=_________(其中i 为虚数单位).【答案】3i +##i 3+【解析】【分析】把复数应用乘法化简即可.【详解】()()21i 2i 2i 2i i 3i +-=-+-=+.故答案为:3i+13.在正方体1111ABCD A B C D -中,M 为AB 的中点,则直线1AM 与CD 所成角的余弦值为_________.【答案】5【解析】【分析】利用平移得到异面直线所成角,借助于直角三角形求解即得.【详解】在正方体1111ABCD A B C D -中,因//CD AB ,故直线1A M 与AB 所成角即直线1A M 与CD 所成角,即1AMA ∠.设正方体棱长为2,因M 为AB 的中点,则1A M =,于是1cos5AMA ∠==,即直线1A M 与CD 所成角的余弦值为5.故答案为:5.14.已知O 为ABC 内一点,且4850OA OB OC ++= ,点M 在OBC △内(不含边界),若AM AB AC λμ=+ ,则λμ+的取值范围是_________.【答案】13,117⎛⎫⎪⎝⎭【解析】【分析】设AO mAB nAC =+ ,根据题意结合平面向量基本定理可得851717AO AB AC =+uuu r uu u r uuu r ,设OM xOB yOC =+uuu r uu u r uuu r ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,整理可得8985512171717171717AM x y AB x y AC ⎛⎫⎛⎫=+-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uu u r uuu r ,进而可得结果.【详解】设,,AO mAB nAC m n =+∈R uuu r uu u r uuu r ,即OA AO mAB nAC =-=--uu r uuu r uu u r uuu r ,可得()()1,1OB OA AB m AB nAC OC OA AC mAB n AC =+=--=+=-+-uu u r uu r uu u r uu u r uuu r uuu r uu r uuu r uu u r uuu r,因为4850OA OB OC ++=,即()()()481510mAB nAC m AB nAC mAB n AC ⎡⎤⎡⎤--+--+-+-=⎣⎦⎣⎦ ,整理可得()()8175170m AB n AC -+-= ,且,AB AC 不共线,则8175170m n -=-=,解得85,1717m n ==,即851717AO AB AC =+uuu r uu u r uuu r ,95812,17171717OB AB AC OC AB AC =-=-+uu u r uu u r uuu r uuu r uu u r uuu r ,又因为点M 在OBC △内(不含边界),设,,OM xOB yOC x y =+∈R ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,可得9851217171717OM x y AB x y AC ⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uu u r uuu r ,则8985512171717171717AM AO OM x y AB x y AC ⎛⎫⎛⎫=+=+-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uuu r uuu r uu u r uuu r ,可得8981717175512171717x y x y λμ⎧=+-⎪⎪⎨⎪=-+⎪⎩,可得()1341717x y λμ+=++,且01x y <+<,可得()13413,1171717x y λμ⎛⎫+=++∈ ⎪⎝⎭,所以λμ+的取值范围是13,117⎛⎫ ⎪⎝⎭.故答案为:13,117⎛⎫ ⎪⎝⎭.【点睛】关键点点睛:1.设AO mAB nAC =+ ,根据题意结合平面向量基本定理可得85,1717m n ==;2.根据三角形可设OM xOB yOC =+uuu r uu u r uuu r ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,用,x y 表示,λμ,即可得结果.四、解答题:本题共5小题,共77分.解答应给出文字说明、证明过程及演算步骤.15.已知向量()1,3a = ,()2,1b =- .(1)求向量a 与b 夹角的余弦值;(2)若向量a b + 与a kb - 互相垂直,求k 的值.【答案】(1)10.(2)116k =.【解析】【分析】(1)利用平面向量的数量积即可求得结果.(2)利用两向量垂直的条件即可求得结果.【小问1详解】由()1,3a = ,()2,1b =- ,所以1(2)31231a b ⋅=⨯-+⨯=-+=,||a ==b == ,设向量a 与b 的夹角为θ,则cos 10||||a b a b θ⋅=== .【小问2详解】若向量a b + 与a kb - 互相垂直,则22()()(1)10510a b a kb a kb k a b k k +⋅-=-+-⋅=-+-=,所以116k =.16.已知函数()π3cos 23f x x ⎛⎫=+⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 的最大值以及取得最大值时x 的集合.(3)求()f x 的单调递减区间.【答案】(1)π;(2)最大值为3,π{|π,Z}6x x k k =-+∈;(3)πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .【解析】【分析】(1)利用周期公式计算即得;(2)将π23x +看成整体角,结合余弦函数的图象,即可求得;(3)将π23x +看成整体角,结合余弦函数的递减区间,计算即得.【小问1详解】2ππ2T ==,故()f x 的最小正周期为π;【小问2详解】当π22π3x k +=,k ∈Z 时,即ππ6x k =-+,k ∈Z 时,πcos 213x ⎛⎫+= ⎪⎝⎭,得()max 3f x =,即()f x 最大值为3.则()f x 的最大值为3,取得最大值时x 的集合为π{|π,Z}6x x k k =-+∈;【小问3详解】由ππ2π22π3k x k ≤+≤+,k ∈Z 得ππππ63k x k -+≤≤+,k ∈Z 所以函数()f x 的单调递减区间是πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .17.已知正方体1111ABCD A B C D -的棱长为2.(1)证明:1AC BD ⊥.(2)求三棱锥1A C BD -的体积.【答案】(1)证明见解析(2)43【解析】【分析】(1)先证BD ⊥平面1ACC ,则可得1AC BD ⊥;(2)利用等体积转化即可求得.【小问1详解】在正方体1111ABCD A B C D -中,BD AC ⊥,1C C ⊥Q 平面ABD ,BD ⊂平面ABD ,1C C BD ∴⊥.又1C C AC C = ,1C C 、AC ⊂平面1ACC ,BD ∴⊥平面1ACC .又1AC ⊂平面1ACC ,1AC BD ∴⊥.【小问2详解】在正方体1111ABCD A B C D -中,1C C ⊥平面ABD ,1111111332A C BD C ABD ABD V V S CC AD AB CC --∴==⨯=⨯⨯⨯⨯ 114222323=⨯⨯⨯⨯=.18.在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin cos sin cos 3cos a A B b A A a C +=.(1)求角C 的大小;(2)若3a =,且1AB AC ⋅= ,求ABC 的面积.【答案】(1)π3(2)2【解析】【分析】(1)根据题意,由正弦定理边化角,代入计算,即可得到结果;(2)根据题意,由余弦定理结合三角形的面积公式代入计算,即可得到结果.【小问1详解】因为sin cos sin cos cos a A B b A A C +=,所以根据正弦定理得sin sin cos sin sin cos cos A A B A B A A C +=,因为sin 0A ≠,所以sin cos sin cos A B B A C +=,即()sin A B C +=,即sin C C =.因为cos 0C ≠,所以tan C =.因为0πC <<,所以π3C =.【小问2详解】cos 1AB AC bc A ⋅== .因为2222cos a b c bc A =+-,所以2292cos 11b c bc A +=+=①.因为2222cos c a b ab C =+-,所以2222π2cos 23cos 3393b c ab C a b b -=-=⨯⨯⨯-=-②.联立①②可得22320b b --=,解得2b =(负根舍去),故ABC 的面积为11333sin 322222ab C =⨯⨯⨯=.19.如图,已知直线12l l ∥,A 是1l ,2l 之间的一点,且1AE l ⊥于点E ,2AF l ⊥于点F ,AE m =,AF n=(m ,n 为常数),点B 、C 分别为直线1l 、2l 上的动点,且AB AC ⊥,设ACF α∠=.(1)若π3α=,求ABC 的面积;(2)当A 恰好EF 中点时,求ABC 的周长的最小值.【答案】(1)33mn (2))221m+.【解析】【分析】(1)由3πBAE α∠==,结合锐角三角函数求出,AB AC ,进而得出三角形面积;(2)由直角三角形的边角关系结合勾股定理得出BC ,进而表示周长,再利用sin cos αα+与sin cos αα的关系,换元并由反比例函数性质得出周长最小值.【小问1详解】由题意,易得3πBAE α∠==,1AE l ⊥ ,2AF l ⊥,且AE m =,AF n =,2co πs 3mAB m ∴==,33sin 3πnAC ==,又AB AC ⊥ ,11232322233ABC S AB AC m n mn ∴=⋅=⨯⨯=△.【小问2详解】由题意有0m n =>,sin m AB α=,cos m AC α=,22222211sin cos sin cos sin cos m m m BC αααααα=+=+,所以ABC 的周长()111sin cos 1sin cos sin cos sin cos f m m ααααααααα++⎛⎫⎛⎫=++= ⎪⎝⎭⎝⎭,其中π0,2α⎛⎫∈ ⎪⎝⎭.设sin cos t αα=+,则πsin cos 4t ααα⎛⎫=+=+ ⎪⎝⎭,ππ3,444πα⎛⎫+∈ ⎪⎝⎭,所以πsin ,142α⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,即(π4t α⎛⎫=+∈ ⎪⎝⎭,所以21sin cos 2t αα-=.所以212112t m y m t t +=⋅=--,(t ∈,于是当t =时,())min 21f m α==+,因此,周长的最小值为)21m +.。
河南省南阳市金科新未来2023-2024学年高一下学期7月期末考试物理试题含答案
![河南省南阳市金科新未来2023-2024学年高一下学期7月期末考试物理试题含答案](https://img.taocdn.com/s3/m/80786c78fbd6195f312b3169a45177232f60e4a3.png)
金科・新未来2023~2024学年度下学期期末质量检测高一物理(答案在最后)全卷满分100分,考试时间75分钟。
主意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置。
2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚。
4.考试结束后,请将试卷和答题卡一并上交。
一、选择题:本题共7小题,每小题4分,共28分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列关于功、能量、动量、冲量的说法正确的是()A.功是标量,故115J W =-、23J W =、30W =,其中最大的是2W B.物体位于参考平面以上重力势能为正值,在参考平面以下为负值,故重力势能的正负表示方向C.质量一定的物体的动能发生变化,则动量一定变化;它的动量发生变化,但动能不一定变化D.冲量反映了力的作用对时间的累积效应,故为标量【答案】C【解析】【详解】A .功是标量,但正负不代表大小,故115J W =-、23J W =、30W =,其中最大的是1W ,A 错误;B .重力势能是标量,其正负不代表方向,B 错误;C .动能是标量,质量一定,则动能发生变化时,速度的大小一定变化,故动量一定变化,但动量变化也可能仅为速度的方向变化,故动能不一定变化,C 正确;D .冲量反映了力的作用对时间的累积效应,冲量是矢量,D 错误。
故选C 。
2.在一场公路自行车比赛中,一名运动员正减速向左转通过一转弯处,则下列关于该运动员此刻的运动的加速度与速度的矢量关系图可能正确的是()A. B. C. D.【答案】B【解析】【详解】曲线运动合外力指向轨迹凹侧,一名运动员正减速向左转通过一转弯处;A.根据曲线运动规律可知,运动员减速向右侧转动,故A错误;B.根据曲线运动规律可知,运动员减速向左侧转动,故B正确;C.根据曲线运动规律可知,运动员加速向右侧转动,故C错误;D.根据曲线运动规律可知,运动员加速向左侧转动,故D错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-2014学年天津市和平区高一(下)期末数学试
卷
一、选择题(本大题共8小题,每小题3分,共24分)
1.某班的40位同学已编号1,2,3,…,40,为了解该班同学的作业情况,老师收取了号码能被5整除的8名同学的作业本,这里运用的抽样方法是()
A.简单随机抽样B.抽签法C.系统抽样D.分层抽样
2.若程序框图如图所示,则该程序运行后输出k的值是()
A. 4 B. 5 C. 6 D. 7
3.抛掷一枚骰子,记事件A为“落地时向上的数是奇数”,记事件B为“落地时向上的数是偶数”,事件C为“落地时向上的数是2的倍数”,事件D为“落地时向上的数是2或4”,则下列每对事件是互斥事件但不是对立事件的是()
A. A与D B. A与B C. B与C D. B与D 4.不在3x+2y<6表示的平面区域内的一个点是()
A.(0,0)B.(1,1)C.(0,2)D.(2,0)5.统计某校1000名学生的数学水平测试成绩,得到样本频率分布直方图如图所示,若满分为100分,规定不低于60分为及格,则及格率是()
A. 20% B. 25% C. 6% D. 80%
6.用秦九韶算法计算多项式f(x)=3x6+4x5+5x4+6x3+7x2+8x+1,当x=0.4时的值时,需要做乘法和加法的次数分别是()
A. 6,6 B. 5,6 C. 5,5 D. 6,5
7.已知x>0,y>0,且x+y=4,则使不等式+≥m恒成立的实数m的取值范围是()A. [,+∞)B.(﹣∞,] C. [,+∞)D.(﹣∞,]
8.甲、乙两人约定某天晚上7:00~8:00之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待即可离去,那么两人能会面的概率是()
A.B.C.D.
二、填空题(本大题共6小题,每小题4分,共24分)
9.(4分)用辗转相除法求得459和357的最大公约数是_________.
10.(4分)当x=2时,如图所示程序运行后输出的结果为_________.
11.(4分)为了解某校教师使用多媒体辅助教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了解他们上学期使用多媒体辅助教学的次数,结果用茎叶图表示(如图所示),据此可估计该校上学期200名教师中,使用多媒体辅助教学的次数在[15,25)内的人数为_________.
12.(4分)在平面直角坐标系中,△ABC的三个顶点为A(3,﹣1),B(﹣1,1),C(1,3),则由△ABC围成的区域所表示的二元一次不等式组为_________.
13.(4分)在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率是_________(结果用数值表示).
14.(4分)有一块半径为R,圆心角为60°(∠AOB=60°)的扇形木板,现欲按如图所示锯出一矩形(矩形EFGN)桌面,则此桌面的最大面积为_________.
三、解答题(共6小题,共52分)
15.(8分)袋中又大小相同的红球和白球各1个,每次任取1个,有放回地摸三次.(Ⅰ)写出所有基本事件‘
(Ⅱ)求三次摸到的球恰有两次颜色相同的概率;
(Ⅲ)求三次摸到的球至少有1个白球的概率.
16.(8分)某公路段在某一时刻内监测到的车速频率分布直方图如图所示.
(Ⅰ)求纵坐标中参数h的值及第三个小长方形的面积;
(Ⅱ)求车速的众数v1,中位数v2的估计值;
(Ⅲ)求平均车速的估计值.
17.(8分)已知x,y满足约束条件,求目标函数z=x+2y+2的最大值和最小值.
18.(9分)已知x>0,y>0,且x+8y﹣xy=0.求:
(Ⅰ)xy的最小值;
(Ⅱ)x+y的最小值.
19.(9分)x的取值范围为[0,10],给出如图所示程序框图,输入一个数x.求:
(Ⅰ)输出的x(x<6)的概率;
(Ⅱ)输出的x(6<x≤8)的概率.
20.(10分)某汽车厂生产的A,B,C三类轿车,每类轿车均有舒适性和标准型两种型号,
的值;
(Ⅱ)在C类轿车中,用分层抽样的方法抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少1辆舒适性轿车的概率;
(Ⅲ)用随机抽样的方法从A类舒适性轿车中抽取10辆,经检测它们的得分如下:,8.7,9.3,8.2,9.4,8.6,9.2,9.6,9.0,8.4,8.6,把这10辆轿车的得分看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过0.6的概率.
16. 解:(Ⅰ)∵所有小长形面积之和为1,
∴10h+10×3h+10×4h+10×2h=1,
解得h=0.01,
∴第三个小长方形的面积为:10×4h=10×0.04=0.4.
(Ⅱ)车速的众数v1==65,
车速的中位数是两边直方图的面积相等,
于是得:10×0.01+10×0.03+(v2﹣60)×0.04=0.5,
解得v2=62.5.
(Ⅲ)平均车速=0.01×10×45+0.03×10×55+0.04×10×65+0.02×10×75=62.
17. 解:作出不等式组对应的平面区域,
由z=x+2y+2,得y=﹣1,平移直线y=﹣1,由图象可知当直线经过点A 时,
直线y=﹣1的截距最小,此时z最小,
由,得,即A(﹣2,﹣3).
此时z=﹣2+2×(﹣3)+2=﹣6.
由图象可知当直线与x+2y﹣4=0重合时,
直线y=﹣1的截距最大,此时z最大,
此时x+2y=4,z=x+2y+2=4+2=6.
故答案为:﹣6≤z≤6.
18. 解:(I)∵x>0,y>0,且x+8y﹣xy=0,
∴xy=x+8y,化为xy≥32,当且仅当x=8y=16时取等号.
∴xy的最小值为32;
(II)∵x>0,y>0,且x+8y﹣xy=0.
∴,
∴x+y==9+≥=9+4,当且仅当x=2y=2+8时取
等号.
故x+y的最小值为9+4
19. 解:(Ⅰ)由已知中的程序框图可得
该程序的功能是计算并输出分段函数y=的值,
当x<6时,输出x+1,此时输出的结果满足x+1<6,所以x<5,
所以输出的x(x<6)的概率为=;
(Ⅱ)当x≤7时,输出x+1,此时输出的结果满足6<x+1≤8
解得5<x≤7;
当x>7时,输出x﹣1,此时输出的结果满足6<x﹣1≤8
解得7<x≤9;
综上,输出的x的范围中5<x≤9.
则使得输出的x满足6<x≤8的概率为=.
20.解:(Ⅰ)由题意得,轿车的总数为800+100+450+150+200+300=2000,,解得n=100,
(Ⅱ)设听取的样本中有m辆舒适型轿车,则,解得m=2,也就是抽取了2辆
舒适型轿车,3辆标准型轿车,分别记作S1,S2;B1,B2,B3,
则从中任取2辆的所有基本事件为(S1,B1),(S1,B2),(S1,B3)(S2,B1),(S2,B2),(S2,B3),(S1,S2),(B1,B2),(B2,B3),(B1,B3)共10个,
其中至少有1辆舒适型轿车的基本事件有7个基本事件:(S1,B1),(S1,B2),(S1,B3)(S2,B1),(S2,B2),(S2,B3),(S1,S2),
所以从中任取2辆,至少有1辆舒适型轿车的概率为P=,
(Ⅲ)总体平均数为=(8.7+9.3+8.2+9.4+8.6+9.2+9.6+9.0+8.4+8.6)=8.9,
那么与,
故该数与总体平均数之差的绝对值超过0.6的概率。