苏教版七年级数学有理数知识点及习题

合集下载

苏教版七上 有理数2.1正数与负数 知识点+例题+练习(非常好)

苏教版七上 有理数2.1正数与负数 知识点+例题+练习(非常好)

姓名: 日期:第二章 有理数2.1正数与负数【学习目标】1.掌握用正负数表示实际问题中具有相反意义的量;2.理解正数、负数的概念;3. 掌握有理数的分类方法,初步建立分类讨论的思想.【要点梳理】要点一、正数与负数像+3、+1.5、、+584等大于0的数,叫做正数; 像-3、-1.5、、-584等在正数前面加“-”号的数,叫做负数.要点诠释:(1)一个数前面的“+”“-”是这个数的性质符号, “+”常省略,但 “-”不能省略.(2)用正数和负数表示具有相反意义的量时,哪种为正可任意选择,但习惯把“前进、上升”等规定为正,而把“后退、下降”等规定为负.(3)0既不是正数也不是负数,它是正数和负数的分界线.【典型例题】1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( )A .支出20元B .收入20元C .支出80元D .收入80元12+12-【基础巩固】1.如果上升3m 记作+3 m ,那么下降2m 记作_______m .2.如果时针顺时针方向旋转90。

记作-90°,那么逆时针方向旋转60°记作________.3.如果-50元表示支出50元,那么+100元表示_______.4.最大的负整数是________,最小的自然数是_______.5.一次军事训练中,一架直升机“停”在离海面180 m 的低空,—艘潜水艇潜在水下150 m 处,设海平面的高度为0m ,用正负数表示该直升机和潜水艇的高度为 ( )A .+180m ,-150 mB .+180 m ,+150 mC .-180 m ,+150mD .-180m ,+150m6.下列判断正确的是 ( )A .0,13,1,2.5是正数B .-1,0,1,2,3是自然数C .0,-3,-1,-,-13是负数D .0,-,-5,-4.1不是正数7.用正负数表示下列各题中具有相反意义的量:(1)如果用+15元表示收入15元,那么用去12元记作什么?(2)食堂购进100 kg 面粉记作+100 kg ,那么-20 kg 表示什么?(3)如果规定向东方向为正,那么-200 m 表示什么意义?-(-200)m 表示什么意义?12128.将下列各数填在相应的集合里:-3.8,-10,4.3,-207,4,0,+35整数集合:{ …);分数集合:{ …);正数集合:{ …);负数集合:{ …);非正数集合:{ …);非负数集合:{ …);9.数学测验中,规定得分90分以上(含90分)为优秀,超过90分的分数用正数表示,不足90分的分数用负数表示,小明这一组5名同学的成绩被记为:+8,-7,0,+2,-3.(1)这一小组的优秀率是多少?(2)这一小组5名同学的平均得分是多少?10.小明在超市买一食品,外包装上印有“总净含量(300±5)g”的字样.请问“±5g”表示什么意义?小明拿去称了一下,发现只有297 g.问食品生产厂家有没有欺诈行为?11.小聪和小明从同一点出发,小聪向南走了3 km,小明向北走了2 km.(1)请你用正数和负数表示小聪和小明走的距离;(2)小聪和小明这时相距多少千米?【拓展提优】12.下列四个数中,在-3到0之间的数是( )A .-2B .1C .-4D .313.下列说法中正确的是 ( )A .有最小的正数B .有最大的负数C .有最小的整数D .有最小的正整数14.大于-2.5而不大于4的整数有 ( )A .5个B .6个C .7个D .8个15.“一只闹钟,一昼夜误差不超过±10 s ”,这句话的含义是________.16.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .66D .7417.中午12时,水位低于标准水位0.5 m 记作 -0.5 m ,下午1时水位上涨了1m ,下午5时水位又上涨了0.5 m ,则(1)下午1时的水位可记录为________,下午5时的水位可记录为________.(2)下午5时的水位比中午12时的水位高_______.18.观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的三个数,并写出第100个数.(1)1,-,13,-14,15,-16,17,-18,_______,_______,________,第100个数是_______;(2)1,-,-13,-14,15,-16,-17,-18,_______,_______,________,第100个数是_______;(3)1,,-13,-14,1,,-13,-14,_______,_______,________,第100个数是_______.1212121219.某数学俱乐部有一种“神秘”的记账方式,当他们收入200元时,记为-180;当他们用去200元时,记为220.猜一猜,当他们用去100元时,可能记为多少?当他们收入100元时,可能记为多少?说说你的理由.20.实验中学对九年级男生进行引体向上测试,以7个为达标,超过的个数用正数表示,第二小组八名男生成绩依次为2,-1,0,3,-2,-3,1,0.(1)这八名学生的达标率为多少?(2)这八名学生一共做了多少个引体向上?课后练习一、填空题1.某地某日的最高温度是零上8℃,记作+8℃,那么当日最低温度零下6℃,应记作_______.2.请你写出一个比-1大的有理数_______.3.下列各数:1,-23,0,107,-213,-0.01,-4,5,0.532,-3.14,7,86,其中非正数有_______个.4.观察这一列数:3591733,,,,47101316---,依此规律下一个数是_______.5.在图纸上零件的加工尺寸为20±0.003(mm),甲工人加工出来的零件尺寸为20.002mm,乙工人加工出来的零件尺寸为19.995mm,_______工人加工出来的零件合格,加工出来的零件允许的最小尺寸是_______mm.二、选择题6.在数13,2011,-2,0,-3.14中,负分数有( )A.0个B.1个C.2个D.3个7.在数-5.2,0,23,2011,71,3. 14中,非负数的个数是( ) A.3 B.4 C.5 D.68.下列说法中,不正确的是( )A.-.2.14既是负数、分数,也是有理数B.0既不是正数,也不是负数,但是整数C.0是非正数D.-2011既是负数,也是整数,但不是有理数9.如果规定前进、收入为正,亏损、公元前为负,那么下列语句错误的是( )A.盈利的相反意义是亏损B.公元-100年的意义是公元后100年C.前进-10m的意义是后退10m D.收入-5万元的意义是亏损5万元10.下列说法中正确的是( )A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数D.整数和分数统称为有理数三、解答题11.在下表适当的空格里面画上“√”号.12.不改变下列语句所表达的实际意义,把它们改成使用正数的说法:(1)温度下降了-3℃;(2)现金支出了-80元;(3)长度减少了-7 cm.13.把下列各数分别填在相应的集合里:-113,500%,227,0.3,0,-1.7,21,-2,1.01001,+6(1)正数集合{ …}(2)负数集合{ …}(3)正整数集合{ …}(4)整数集合{ …}(5)分数集合{ …}(6)非负有理数集合{ …}(7)有理数集合{ …}14.某天,小华在一条东西方向的公路上行走,他从家里出发,如果把向东280米记作-280米,那么他折回来行走350米表示什么意思?这时,他停下来休息,休息的地方在他家的什么方向上?距家有多远?小华共走了多少米?15.已知有三个数集:},A{-1,3.1,-4,6,2.1),B{-4. 2,2.1,-1,10,-18C{2.1,-4.2,8,6).(1)请把每个数集中所含的数填入图中的相应部分;(2)把A,B,C三个数集中的负数写在横线上:_______;(3)有没有同时属于A,B,C三个数集的数?若有,请指出.预习:2.2有理数与无理数、2.3数轴1.请写出一个大于1且小于2的无理数:_______.2.在-1.313313331,-13,0,π,4中,无理数有_________个.3.把下列各数填在相应的集合中:-7,3.5,-3.14,π,0,1713,0.03%,-314,10.自然数集合:{ …};整数集合:{ …};负数集合:{ …};正分数集合:{ …};正有理数集合:{ …};无理数集合:{ …}.4.规定了________、________、________的直线叫做数轴.5.若数轴规定了原点向右的方向为正方向,则原点表示的数为________,负数所表示的点在原点的_________,正数所表示的点在原点的________.6.在数轴上,有理数-5与原点的距离为________个单位长度.7.下列图形中,不是数轴的是( )8.写出所有比-5大的负整数:_______.9.两个同号的数中,较大的负数所表示的点离原点较_______,较大的正数所表示的点离原点较________(填“近”或“远”).。

苏教版七年级数学有理数知识点及习题

苏教版七年级数学有理数知识点及习题

根据有理数的定义,有理数可以进行如下的分类
正整数
整数 零
有理数
负整数
正分数 分数
负分数
正整数 正有理数
正分数 或 有理数 零
负整数 负有理数
负分数
无理数 问一问:是不是所有的数都是有理数呢? ※ 如果大正方形的边长为 a,那么 a2= 2.a 是有理数吗?
无理数定义 : 无限不循环小数叫做无理数.
3、用“<”或“>”填空:
(1) 12.3
12 ; (2) ( 2.75)
( 2.67) ;
(3)} 8
8;
(4) 0.4
( 0.4) .
五、有理数的加法与减法 1、有理数的加法 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,绝对值相等时,和为 0;绝对值不等时,取绝对值较大的 加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与 0 相加,仍得这个数.
(1) (-23)+(+ 58)+(- 17)
(2)(- 2.8)+(- 3.6)+(- 1.5)+3.6
(3) 1+ - 2 + - 5 + + 5
6
7
6
7
2、有理数的减法 如果某天最高气温是 5℃,最低气温是- 3℃,那么这天的日温差记作 [5-(- 3)]℃,怎样计算 [5-(- 3) ] 呢?
例 2 化简:-(+ 2),-(+ 2. 7),-(- 3),-(- 3). 4
练一练: 1.写出下列各数的相反数:
0,58,-4,3.14,- 2. 3
2.在数轴上画出表示下列各数以及它们的相反数的点: -4,0.5 ,3,-2.
3.填空: (1) ( 7) 是_____的相反数, ( 7) =_______; (2) ( 4) 是_____的相反数, ( 4) =______.

苏教版七年级第二章有理数加减乘除

苏教版七年级第二章有理数加减乘除

《有理数加减和乘除》知识点回顾:1、加法法则:①同号两数相加,取相同的符号,并把绝对值相加;②异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;③一个数与0相加仍得这个数;减法法则:减去这个数等于加上这个数的相反数。

2、乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,0和任何数相乘仍得0. 3、 除法法则:除以一个不为0的数,等于乘以这个数的倒数。

课堂解析:题型一、有理数的加法和减法【例1】练习:(+5)+(+8)的和取 号,和的绝对值为 ,和为 。

(-5)+(-8)的和取 号,和的绝对值为 ,和为 。

(+5)+(-8)的和取 号,和的绝对值为 ,和为 。

题型二、看数轴判断大小【例1】若a<0,b<0,则a+b 0; 若a<0,b=0,则a+b 0; 若a>0,b<0,且∣a∣<∣b∣,则a+b 0 【例2】根据图中表示有理数a,b,c的点在数轴上的位置,试确定下列各式的符号:(1)、(-a)+b (2)、a+b (3)、(-b)练习:、①a、b在数轴上的位置如图所示,下列结论不正确的是() A.-a+b<0 B.-a-b>0C.a+b<0D.a-b<0 b 0 a题型三、有理数加减法解决实际问题【例1】检修小组从A地出发,在东西路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中行【例2】有5袋苹果,以每袋50千克为准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下:+4,-5,+3,-2,-6.则这5袋苹果的总重量是千克。

练习:小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程为正向左爬行的路程记为负,爬行过的各段路程依为(单位:厘米):+5,-3,+10,-8,-6,+12,-10.(1)小虫最后是否回到出发点O?说明理由;(2)在爬行过程中,如果每爬1cm奖励一粒芝麻,那么小虫一共能得多少粒芝麻?题型四、有理数加减法与绝对值【例1】已知∣a∣=3,∣b∣=5,则∣a+b∣= 。

七年级苏教版数学复习要点考点专题一:有理数有关概念专题测试(教师用,附答案分析)

七年级苏教版数学复习要点考点专题一:有理数有关概念专题测试(教师用,附答案分析)

七年级苏教版数学复习要点考点专题一:有理数有关概念专题测试姓名:___________班级:___________一、选择题(共8小题,每题5分,共计40分)1.一袋面粉的质量标识为“1000.25±千克”,则下列面粉质量中合格的是( )A .100.30千克B .99.51千克C .99.80千克D .100.70千克【解答】解:“1000.25±千克”的意义为一袋面粉的质量在1000.2599.75-=千克与1000.25100.25+=千克之间均为合格的,故选:C .2.下列各数是无理数的是( )A .2-B .23C .0.010010001D .π【解答】解:A 、2-是有理数,不合题意;B 、23是有理数,不合题意; C 、0.010010001是有理数,不合题意;D 、π是无理数,符合题意;故选:D .3.无论x 取什么值,下列代数式中值一定是正数的是( )A .2(21)x +B .|21|x +C .221x +D .221x -【解答】解:2(21)0x +;|21|0x +;2211x +;2211x --;故选:C .4.如果||a a =,则( )A .a 是正数B .a 是负数C .a 是零D .a 是正数或零【解答】解:根据绝对值的意义,若一个数的绝对值等于它本身,则这个数是非负数,即a 是正数或零. 故选:D .5.若(3)a +的值与4互为相反数,则a 的值为( )A .7-B .72-C .5-D .12【解答】解:(3)a +的值与4互为相反数,340a ∴++=,解得:7a =-.故选:A .6.数轴上,点A 、B 分别表示1-、7,则线段AB 的中点C 表示的数是( )A .2B .3C .4D .5【解答】解:线段AB 的中点C 表示的数为:1732-+=,故选:B . 7.已知,a ,b 是不为0的有理数,且||a a =-,||b b =,||||a b >,那么用数轴上的点来表示a ,b 时,正确的是( )A .B .C .D .【解答】解:||a a =-,||b b =,0a ∴,0b ,||||a b >,∴表示数a 的点到原点的距离比b 到原点的距离大,故选:C .8.数轴上标出若干个点,每相邻两点相距一个单位长度,点A 、B ,C ,D 分别表示整数a ,b ,c ,d ,且6a b c d +++=,则点D 表示的数为( )A .2-B .0C .3D .5【解答】解:设点D 表示的数为x ,则点C 表示的数为3x -,点B 表示的数为4x -,点A 表示的数为7x -, 由题意得,(3)(4)(7)6x x x x +-+-+-=,解得,5x =,故选:D .二、填空题(共6小题,每小题5分,共计30分)9.比较大小:(8)-+ |9|--; 23- 34-(填“>”、“ <”、或“=”符号). 【解答】解:①(8)8-+=-,|9|9-=-,89->-,(8)|9|∴-+>-; ②228||3312-==,339||4412-==,891212<,2334∴->-.故答案为:>;>. 10.绝对值不等于3的非负整数有 .【解答】解:根据绝对值的意义,绝对值不等于3的非负整数有0,1,2,以及大于4正整数. 故答案为:0,1,2,以及大于4正整数.11.如图,把半径为1的圆形纸片放在数轴上,圆形纸片上的A 点对应2,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A 到达点A '的位置,则点A '表示的数是 .【解答】解:半径为1个单位长度的圆形纸片从2沿数轴向左滚动一周,OA ∴'之间的距离为圆的周长2π=,A '点在2的左边,A ∴'点对应的数是22π-.故答案是:22π-.12.若||4a -=,则a = ;若x x -=,则x = .【解答】解:因为||4a -=,则4a =±;因为x x -=,则0x =;故答案为:4±;0.13.实数a ,b ,c 在数轴上的对应点的位置如图所示,化简||||||b c c a b -+--的结果是 .【解答】解:根据题意得:0a b c <<<,0b c ∴-<,0c a ->,则原式2c b c a b c a =-+-+=-. 故答案为:2c a -.14.在数轴上,点A 表示的数是4x +,点B 表示的数是22x -,且A ,B 两点的距离为8,则x = . 【解答】解:由题意得:|4(22)|8x x +--=|23|8x ∴+=238x ∴+=-或238x +=103x ∴=-或2x =故答案为:103-或2. 三、解答题(共3小题,每小题10分,共计30分)15.把下列各数填入相应的括号内.0.1515515551⋯,0,20||3--,0.4,2π-,24-, 5.6-. 正数集合:{ };无理数集合:{ };负分数集合:{ }.【解答】解:正数集合:{0.1515515551⋯,0.4,;无理数集合:{0.1515515551⋯,}2π-; 负分数集合:20{||3--, 5.6}-. 故答案为:0.1515515551⋯,0.4,0.1515515551⋯,2π-;20||3--, 5.6-. 16.足球比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果乙球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:):10m +,2-,5+,12+,6-,9-,4+,14-.(假定开始计时时,守门员正好在球门线上) (1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离达多少米?(3)如果守门员离开球门线的距离超过10m (不包括10)m ,则对方球员挑射极可能造成破门.问:在这一时间段内,对方球员有几次挑射破门的机会?简述理由.【解答】解:(1)根据题意得:102512694140-++--+-=,则守门员最后能回到球门线上;(2)10251225-++=,则守门员离开球门线的最远距离达25米;(3)根据题意得:10,8,13,25,19,10,14,0,则对方球员有4次挑射破门的机会.17.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为1-,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为2-,点N所表示的数为4.①在点M和点N中间,数所表示的点是【M,N】的好点;②在数轴上,数和数所表示的点都是【N,M】的好点.【解答】解:①设所求数为x,由题意得--=-,解得2(2)2(4)x xx=;故答案为:2;②设所求的数是y,由题意得,2(2)4--=-,解得:0y=或8+=-或2(2)4y yy y-,故数0和数8-所表示的点都是【N,M】的好点.故答案为:0,8-.。

(完整版)苏教版七年级数学-有理数整理、修订篇

(完整版)苏教版七年级数学-有理数整理、修订篇

苏教版七年级数学《有理数》1.1 正数和负数负数:从前学过的0 之外的数前方加上负号“-”的数叫做负数。

正数:从前学过的0之外的数叫做正数。

0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量拥有相反的意义注: -a 不必定是负数, +a 也不必定是正数;1.2.1 有理数:凡能写成q( p,q为整数且 p0) 形式的数,都是有理数。

p(1)正整数、 0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数 .正有理数正整数正整数正分数整数零(2) 有理数的分类 : ①有理数零② 有理数负整数负有理数负整数分数正分数负分数负分数注意:1)0 不是正数,也不是负数;2)不是有理数;无穷不循环小数不是有理数。

无穷循环小数是有理数;3)小数也归为分数。

4)自然数 0 和正整数;5) a>0 a 是正数; a< 0 a 是负数;6) a≥0 a 是正数或 0 a 是非负数;7) a≤ 0 a 是负数或 0 a 是非正数 .1.2.2 数轴:规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:全部的有理数都能够用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三因素,缺一不行。

⑵同一根数轴,单位长度不可以改变。

一般地,设 a 是一个正数,则数轴上表示a 的点在原点的右侧,与原点的距离是 a 个单位长度;表示数- a 的点在原点的左侧,与原点的距离是 a 个单位长度。

1.2.3 .相反数:只有符号不一样的两个数叫做相反数。

注意: (1) 一般地, a 和-a 互为相反数,特别地,0 的相反数仍是0;(2) a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 a+b=0 a 、b 互为相反数.一般地,设 a 是一个正数,数轴上与原点的距离是 a 的点有两个,它们分别在原点左右,表示 -a 和a,我们说这两点对于原点对称1.2.4. 绝对值:一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值。

苏教版七年级上册数学[《有理数》全章复习与巩固(提高)重点题型巩固练习]

苏教版七年级上册数学[《有理数》全章复习与巩固(提高)重点题型巩固练习]

苏教版七年级上册数学重难点突破知识点梳理及重点题型巩固练习【巩固练习】 一、选择题1.计算106×(102)3÷104之值为( ).A .108B .109C .1010D .10122. a b -与a 比较大小,必定为( ).A .a b a -<B .a b a ->C .a b a -≤D .这要取决于b 3.下列语句中,正确的个数是( ).①一个数与它的相反数的商为-1;②两个有理数之和大于其中任意一个加数;③若两数之和为正数,则这两个数一定都是正数;④若0m n <<,则mn n m <-. A .0 B .1 C .2 D .34.已知||5m =,||2n =,||m n n m -=-,则m n +的值是( ).A .-7B .-3C .-7或-3D .±7或±3 5.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm”、“15cm”分别对应数轴上的 3.6x -和,则( ).A .910x <<B .1011x <<C .1112x <<D .1213x << 6.(2015•莒县一模)甲、乙两队合做修一条1200米的路,甲队独做4小时可以完成,乙队独做6小时可以完成,问两人合做2小时能修多少米?( ) A .600米 B . 800 C . 1000米 D . 1200米 7.(2016•松江区三模)下列分数中,能化为有限小数的是( ) A .B .C .D .8.记12n n S a a a =+++…,令12nn S S S T n+++=…,称n T 为1a ,2a ,…,n a 这列数的“理想数”.已知1a ,2a ,…,500a 的“理想数”为2004,那么8,1a ,2a ,…,500a 的“理想数”为( )A .2004B .2006C .2008D .2010 二、填空题9.(2015•湖州)计算:23×()2= .10.2011年成市承接产业转移示范区建设成效明显,第一季度完成固定资产投资238亿元,用科学记数法可记作________元.11.把下列各数填在相应的表示集合的大括号内:-3,-0.4,π,-|-4|,-227,0,4.262262226…(两个6之间依次增加一个“2”).整 数{ …} 负分数{ …} 无理数{ …}.12.当a =________时,式子23(1)a --的值最大,这个最大值是________.13.如图,有理数,a b 对应数轴上两点A ,B ,判断下列各式的符号:a b +________0;a b -________0;()()________a b a b +-0; 2(1)ab ab +________0.14.已知,,a b c 满足()()()0,0a b b c c a abc +++=<,则代数式a b ca b c++的值是 15.某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,则此处的高度是 千米. 16.(2016•富顺县校级模拟)计算:1+2﹣3﹣4+5+6﹣7﹣8+9+…﹣2012+2013+2014﹣2015﹣2016+2017=______________.三、 解答题 17.计算:(1)22213151[4(4)]1417⎛⎫---⨯--⎪⎝⎭(2)323233351914321251943252⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯--⨯⨯-+⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(3)200820097887⎛⎫⎛⎫⨯- ⎪ ⎪⎝⎭⎝⎭(4)5231591736342--+- (5)111223++⨯⨯ (14950)+⨯ 18.(2015春•万州区期末)某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数19.已知三个互不相等的有理数,即可以表示为1,a+b ,a 的形式,又可表示为0,b a,b的形式,且x 的绝对值为2,求200820092()()()a b ab a b ab x ++-+-+的值.20.一粒米微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米约重10克.现在请你来计算 (1)一粒大米重约多少克?(2)按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(用科学记数法表示)(3)假若我们把一年节约的大米卖成钱,按2元∕千克计算,可卖得人民币多少元?(用科学记数法表示)(4)对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学?(5)经过以上计算,你有何感想和建议?【答案与解析】 一、选择题 1.【答案】 A【解析】126234664124841010(10)1010101010101010⨯÷=⨯÷=÷==. 2.【答案】 D【解析】当b 为0时,a b a -=;当b 为正数时,a b a -<;当b 为负数时,a b a -> 3.【答案】 B【解析】只有④正确,其他均错. 4.【答案】C【解析】n m ≥,2,5n m =±=-,所以7m n +=-或3- 5.【答案】C【解析】( 3.6)15,11.4x x --==6.【答案】C.【解析】根据题意得:2×(1200÷4+1200÷6)=2×(300+200)=1000(米),则两人合作2小时能修1000米.7.【答案】A 【解析】解:A 、=0.1235,故本选项正确;B 、=0.111111…,故本选项错误;C 、=0.083333…,故本选项错误;D 、=0.066666…,故本选项错误;故选A .8.【答案】C【解析】∵ 1a ,2a ,…,500a 的“理想数”为2004,∴125002004500S S S +++=,∴ 125002004500S S S +++=⨯.8,1a ,2a ,…,500a 中,18S '=;218S S '=+;328S S '=+;…,5005008S S '=+ ∴ 8,1a ,2a ,…,500a 的理想数为:12350012500501888888501501501S S S S S S S T +++++++++⨯++++==850120045002008501⨯+⨯== 二、填空题9.【答案】2.【解析】23×()2=8×=2. 10.【答案】102.3810⨯【解析】2(1)0a -≥,10a -=∴时,2(1)a -取到最小值,同时 23(1)a --取到最大值. 13.【答案】>, >, >, <【解析】由图可得:1,10a b >-<<,特殊值法或直接推理可得:0,0,ab a b <+>20,10a b ab ->+>.14.【答案】1【解析】()()()0,a b b c c a +++=又0abc <可得:三数必一负两正,不防设:0,0,0a b a c >=-<>,代入原式计算即可.15.【答案】10【解析】21-(-39)÷6×1=10(千米). 16.【答案】1.【解析】解:1+2﹣3﹣4+5+6﹣7﹣8+9+…﹣2012+2013+2014﹣2015﹣2016+2017=(1+2﹣3﹣4)+(5+6﹣7﹣8)+…+(2013﹣﹣2014﹣2015﹣2016)+2017=(﹣4)×(2016÷4)+2017=(﹣4)×504+2017=﹣2016+2017=1.三、解答题17.【解析】(1)原式13151(1616)1417⎛⎫=---⨯-⎪⎝⎭1315101011417⎛⎫=---⨯=--=-⎪⎝⎭(2)原式322 33431942519435⎡⎤⎛⎫⎛⎫⎛⎫=-⨯--⨯+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦33916122525⎛⎫⎛⎫=-⨯-+⎪ ⎪⎝⎭⎝⎭332⎛⎫=-⨯⎪⎝⎭=(3) 原式20082008788877⎛⎫⎛⎫⎛⎫=⨯-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2008788877⎡⎤⎛⎫⎛⎫=⨯-⨯-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦88177⎛⎫=⨯-=-⎪⎝⎭(4)原式5231 591736342=----++--5231 (59173)6342⎛⎫=--+-+--+-⎪⎝⎭11 01144 =-=-(5)原式1111223=-+-+…114950+-111112233⎛⎫⎛⎫=+-++-++ ⎪ ⎪⎝⎭⎝⎭…11114914949505050⎛⎫+-+-=-=⎪⎝⎭18.【解析】解:7×(100+5)+6×(100+1)+7×100+8×(100﹣2)+2×(100﹣5)=735+606+700+784+190=3015,30×82=2460(元),3015﹣2460=555(元),答:共赚了555元.19.【解析】由1,a+b,a与0,ba,b相同,由ba得:分母有0a≠,所以0a b+=又由三数互不相等,所以1b =,ba a= 化简得:1a =-,1b =,0a b +=,1ab =-∴ 200820092()()()01142a b ab a b ab x ++-+-+=--+=.20.【解析】(1)10÷500≈0.02(克) 答:一粒大米重约0.02克.(2)0.02×1×3×365×1300000000÷1000=2.847×107(千克)答:一年大约能节约大米2.847×107千克.(3)2×2.847×107=5.694×107(元)答:可卖得人民币5.694×107元.(4)5.694×107÷500=1.1388×105答:可供113880名失学儿童上一年学.(5)一粒米虽然微不足道,但是我们一年节约下来的钱数大的惊人.所以提倡节约,杜绝浪费,我们要行动起来.。

苏教版七年级数学上册 第2章《有理数》考点归纳(含答案)

苏教版七年级数学上册 第2章《有理数》考点归纳(含答案)

第2章《有理数》考点归纳知识梳理重难点分类解析考点1相反意义的量【考点解读】中考中对于相反意义的量的考查主要涉及用正负数表示相反意义的量,解此类题的关键是要深刻理解正数、负数的意义.例1一个物体做左右方向的运动,规定向右运动4m记作+4m,那么向左运动4m记作()A.-4mB.4mC.8mD.-8m分析:若向右运动4 m记作+4 m,则向左运动4 m记作-4 m.答案:A【规律·技法】解题时要抓住以下几点:①记住区分相反意义的量;②记住相反意义的量的表示方法.【反馈练习】1.某财务科为保密起见采取新的记账方式,以5万元为1个记数单位,并记100万元为0,少于100万元记为负,多于100万元记为正.例如:95万元记为-1,105万元记为1.依此类推,75万元应记为( )A. -3B. -4C. -5D. -6 点拨:每多5万元记为+1,每少5万元记为-1.2. (2017·苏州期末)一个物体做左右方向的运动,规定向右运动5m 记作+5m ,那么向左运 动5m 记作( )A. -5mB.5mC.10mD. -10 m 点拨:若向右为正,则向左为负. 考点2 数轴【考点解读】中考中对于数轴的考查主要涉及数轴的认识以及数形结合的思想.用数轴上的点来表示有理数,这是运用了数形结合的思想.利用数轴这一工具,加强数形结合的训练可沟通知识间的联系.例2 如图,四个有理数在数轴上的对应点分别为,,,M P N Q ,若点,M N 表示的有理数互 为相反数,则图中表示绝对值最小的数的点是( )A.点MB.点NC.点ND.点Q 分析:因为点,M N 表示的有理数互为相反数,所以原点的位置在线段MN 的中点,所以表示绝对值最小的数的点是点P . 答案:C【规律·技法】解答与数轴有关的问题时要抓住以下几点:①记住数轴上的点与有理数的对应关系;②相反数、点与点之间的距离在数轴上的表示方法;③数轴常常与相反数、距离、绝对值结合考查. 【反馈练习】3.有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0a b +<B. 0a b -<C. 0ab >D. 0a b -> 点拨:先判断,a b 的正负和大小关系.4. (2017·苏州期末)有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0ab >B. b a <C. 0b a <<D. 0a b +>点拨:先判断,a b的正负和大小关系.考点3绝对值、相反数、倒数【考点解读】中考中对于绝对值、相反数、倒数的考查主要涉及概念的理解,因此掌握基本概念是解题关键.例3(1)(2017·盐城)-2的绝对值是( )A. 2B. -2C. 12D.12-(2)-3的相反数是,-3的绝对值是.(3) 23的倒数是.分析:根据相反数、绝对值、倒数的定义解答.符号不同、绝对值相同的两个数互为相反数,0的相反数是0;正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;乘积为1的两个数互为倒数.答案:(1) A (2) 3 3 (3) 3 2【规律·技法】(1)正确理解相反数的概念是关健;(2)数a的绝对值要由字母a本身的取值来确定:①当a是正数时,a的绝对值是它本身;②当a是负数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零;(3)应熟练掌握倒数的定义,需要注意的是负数的倒数还是负数,正数的倒数还是正数,0没有倒数.【反馈练习】5.23-的相反数是( )A.23- B.23C.32- D.32点拨:符号相反、绝对值相同的两个数互为相反数.6.若a与1互为相反数,则1a+等于( )A.-1B. 0C.1D.2点拨:互为相反数的两个数的和为0.考点4有理数大小的比较【考点解读】比较有理数大小的基本方法:①绝对值法:两个正数,绝对值大的正数大;两个负数,绝对值大的负数小;②数轴法:在数轴上表示的两个有理数,右边的点表示的数总比左边的点表示的数大.例4 (1) (2017·扬州)下列各数中,比-2小的数是()A.-3B.-1C. 0D. 1(2)下列各式中,计算结果最大的是( )A. 25 X 132-152B. 16 X 172-182C. 9 X 212-132D. 4X312-122分析:(1)比-2小的数是负数,且绝对值大于2,故只有选项A符合.(2) 25X132-152=(5X13)2-152=4 000 ;16X172-182=(4X17)2-182=4 300;9X212-132=(3X21)2-132=3 800;4X312-122=(2X31)2-122=3700.因为4300>4000>3800>3700,所以计算结果最大的式子是16X172-182. 答案:(1) A (2) B【规律·技法】解答有关有理数大小的比较问题时要抓住以下几点:①比较有理数的大小时,正数大于0,负数小于0,两个负数比较大小,绝对值大的反而小;②比较两个有理数的大小有以下五种情况:正数与正数、正数与负数、0与正数、0与负数、负数与负数的比较. 【反馈练习】7. (2017·扬州期末)在-2,0,1,-4这四个数中,最小的数是()A. -4B. 0C. 1D. -2 点拨:负数小于0,正数大于0;两个负数,绝对值大的负数小.8. (2017·泰州期中)在数轴上把下列各数表示出来,并用“<”号连接各数: 2112.5,1,(2),(1),222----+--.点拨:先把需要化简计算的式子计算出结果,再来画数轴. 考点5 有理数的混合运算 【考点解读】 解答有关有理数运算的问题时要抓住以下几点:(1)符号的判断;(2)运算顺序的选择;(3)运算律的使用.有理数的运算在中考中一般不单独命题,常常与以后学习的实数结合命题考查.例5 (1)计算: 42201721(3)2(1)-÷---⨯-;(2)计算: 1133()33-⨯÷⨯-; (3)若2a ba b a+*=,则(42)(1)**-= . 分析:(1)先算乘方,再算乘除,最后算加减;(2)先将除法运算转化为乘法运算,再根据有理数乘法法则计算;(3)根据新定义计算. 4224224+⨯*==,22(1)(42)(1)2(1)02+⨯-**-=*-==. 解答:(1) 42201721(3)2(1)1682220-÷---⨯-=-÷+=-+=. (2) 111111()33()3()333339-⨯÷⨯-=-⨯⨯⨯-=. (3) 0【规律·技法】有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的. 【反馈练习】9. (2017·徐州期末)计算: 2018142(3)-+-+⨯-.点拨:注意运算顺序和符号. 10.计算: 517()(24)8612--+⨯-.点拨:运用乘法分配律计算.考点6 科学记数法【考点解读】 解答有关科学记数法的问题时要抓住以下几点:①对于大于10的数,在科学记数法的表示形式10na ⨯中,110a ≤<,n 为正整数;②小数点移动的位数与指数的关系;③理解近似数的意义. 例6 据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42 X 10n ,则n 的值是( )A. 4B. 5C. 6D. 7 分析:对于大于10的数,科学记数法的表示形式为10na ⨯,其中110a ≤<,n 为正整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.确定10na ⨯(110a ≤<,n 为整数)中n 的值时,由于9 420 000是七位数,所以可以确定n =7-1=6. 答案:C【规律·技法】用科学记数法表示大于10的数时,确定a 与n 的值是关健.其中110a ≤<,n等于原数的整数位数减1. 【反馈练习】11. (2017·庐州)“五一”期间,某市共接待海内外游客约567 000人次,将567 000用科学 记数法表示为( )A. 567 X 103B. 56.7 X 104C. 5.67 X 105D. 0.567 X 106 点拨: 110a ≤<.12. (2017·宁波)2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮— “泰欧”轮,其中45万吨用科学记数法表示为( )A. 0.45 X 106吨B. 4.5 X 105吨C. 45 X 104吨D. 4.5 X 1 04吨 点拨:单位要统一,万吨化为吨. 易错题辨析例1 给出下列各数: ①0.363 663 666 3…(每两个3之间依次多一个6);②2.121 121 112;③355113;④3π-.其中为无理数的是 .(填序号) 错误解答:①③④ 错因分析:把355113化成小数后,误以为是无限不循环小数,其实是循环小数. 正确解答:①④易错辨析:识别无理数时,要抓住其“无限不循环”的定义.本题若忽视无理数是无限小数,就会误认为有限小数2.121 121 112是无理数;若在把分数355113化成小数时,除了几位后,没有继续除下去,会错误的判断它不是循环小数,错误地认为它是无理数.实质上,所有的分数都是有理数,不是无理数. 易错点2 忽视分类讨论例2 在数轴上,点A 表示的数是-3,那么与点A 相距5个单位长度的点表示的数是多少? 它与132-相比较,大小关系如何? 错误解答:与点A 相距5个单位长度的点表不的数是-3+5=2,它与132-的大小关系为1322-<. 错因分析:考虑问题不全面.正确解答:如图,在数轴上,与点A 相距5个单位长度的点有,B C 两个.由点,B C 在数轴上的位置可知它们所表示的数分别为-8,2.在数轴上找到表示132-的点,观察点,B C 与表示132-的点在数轴上的位置,容易发现它们与132-之间的大小关系为13132,822>--<-. 易错辨析:一般地,在数轴上与某点相距一定单位长度的点有两个,分别位于该点的左、右两侧,不要遗漏.易错点3 乘法的分配律对除法不适用例3 计算:11(15)()53-÷- 错误解答:原式=11(15)(15)75453053-÷--÷=-+=-.错因分析:除法没有分配律. 正确解答:原式=215225(15)()(15)()1522-÷-=-⨯-=. 易错辨析:有的同学会错误地认为除法也有分配律,其实除法没有分配律.易错点4 幂的底数识别不清例4 计算:(1) 4(2)-= , 42-= ; (2) 32()3= , 323= .错误解答:(1)-16 -16 (2)827 827错因分析:负数的偶次幂的运算结果是正数,计算分数的幂时,注意分子、分母应分别乘方.在323中,注意是2的3次方,而不是23的3次方.(1) 4(2)-表示4个-2相乘,即它是底数为-2,指数为4的幂,所以4(2)-=16;42-表示42的相反数,即-2不是底数,所以42-=-16.(2)因为32()3表示3个23相乘,即它是底数为23,指数为3的幂,所以322228()333327=⨯⨯=.因为323表示3个2相乘的积与3的商,所以23不是底数,所以322228333⨯⨯==. 正确解答:(1) 16 -16 (2)827 83易错辨析:在进行幂的运算时,首先要区分底数和指数,然后根据幂的意义计算,得出正确结果.易错点5 混合运算顺序不清例5 计算: 23272(2)()83-÷⨯-. 错误解答:原式=2784()4(1)4827÷⨯-=÷-=-. 错因分析:易知328()327-=-,勿将“278”与“827-”结合运算,导致出错.实际上,本题中只有乘、除运算,故应从左往右按步计算. 正确解答:原式=278882564()4()8272727729÷⨯-=⨯⨯-=-. 易错辨析:乘、除是同级运算,应遵循从左往右的计算顺序.【反馈练习】1. (2016·宜昌)给出下列各数:1.414,1.732 050 8…,13-,0,其中为无理数的是( ) A. 1.414 B. 1.732 050 8… C . 13- D. 0 点拨:无理数即为无限不循环小数.2.已知数轴上有,A B 两点,点A 与原点的距离为2, ,A B 两点间的距离为1,则满足条件的 点B 所表示的数为 . 点拨:注意分类讨论.3.计算:(1) 23(2)(1)4-⨯-; (2) 22439-÷;(3) 2225(3)[()](6)439-⨯-+---÷; (4) 2017231(1)[2(1)(3)]6--⨯⨯---;点拨:注意有理数混合运算的顺序. 4.阅读下面的材料,并完成下列问题.计算: 12112()()3031065-÷-+-. 解法一:原式=12111112()()()()3033010306305-÷--÷+-÷-÷-=1111203512-+-+=16.解法二:原式=12112()[()()]3036105-÷+-+=151()()3062-÷-=1330-⨯ 110-.解法三:原式的倒数=21121()()3106530-+-÷- =2112()(30)31065-+-⨯- =203512-+-+ =10-.综上所述,原式=110-(1)上述三种解法得出的结果不同,肯定有错误的解法,解法 是错误的; (2)在正确的解法中,解法 最简便; (3)利用最简便的解法计算: 11322()()4261437-÷-+-.点拨:可以转化为先求原式的倒数. 探究与应用探究1 复杂的有理数混合运算 例1 计算:(1) 86[47(18.751)2]0.461525--÷⨯÷; (2) 32017201723(0.2)(50)(1)()35-⨯-+-⨯-. 点拨:按照有理数的运算法则进行计算即可. 解答:(1)原式=31556100[47(181)]482546--⨯⨯⨯=751556100[47()]482546--⨯⨯=13556100(47)82546-⨯⨯=4610020546⨯=(2)原式=20172017153()(50)()()12535-⨯-+-⨯-=2017253[()()]535+-⨯-=27155+=.规律·提示在有理数的混合运算过程中,要善于观察与思考,在正常运算较繁琐时,要根据算式的特点,灵活选择正确而简洁的解法(如运算律的运用等).对于复杂运算,更要保持不急不躁的态度,切不可跳步,欲速则不达. 【举一反三】 1.计算:(1) 222353()34()8()3532-⨯-÷-⨯+⨯-;(2) 321116(0.5)[2(3)]0.52338---÷⨯-----.探究2 错位相减法巧算例2 求23201712222S =++++⋅⋅⋅+的值.点拨:观察和式,不难发现:后面一个数是它前面一个数的2倍.为此,在和式两边同乘一个常数2后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为23201712222S =++++⋅⋅⋅+①, 所以2342018222222S =++++⋅⋅⋅+②,所以②-①,得201821S =-.规律·提示:当一和式乘一个恰当的常数后,得到的新和式与原和式中绝大部分数相同时,应用错位相减法可以简化计算. 【举一反三】2.求23201613333++++⋅⋅⋅+的值.例3 求232017111112222S =++++⋅⋅⋅+的值. 点拨:观察和式,不难发现:后面一个数是它前面一个数的12.那么类似例2,在和式两边同乘一个常数12后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为232017111112222S =++++⋅⋅⋅+①,所以2342018111111222222S =++++⋅⋅⋅+②.①-②,得201811122S =-,所以2017122S =-.规律·提示应用错位相减法时,一定要选择一个合适的常数. 【举一反三】 3.计算: 11112481024+++⋅⋅⋅+.探究3 拆项分解法巧算例4 计算: 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+. 点拨:因为(1)1232n n n ++++⋅⋅⋅+=,所以11222(1)123(1)12n n n n n n n ===-++++⋅⋅⋅+++,所以 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+可转化为 222222123341001001+-+-+⋅⋅⋅+-+.进一步通过加法的结合律计算,得22121001+-+,至此问题解决. 解答:原式=22222229912123341001001101101+-+-+⋅⋅⋅+-=-=+. 规律·提示(1)12342n n n +++++⋅⋅⋅+=. 这是初中数学计算中的一条重要公式. 再进一步拆分,得1111111,()(1)1()n n n n n n m m n n m=-=-++++.也可以类推三个及三个以上的数的积的拆项. 【举一反三】 4.求111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯的值.探究4 整体换元法巧算例5 计算: 7737121738(172711)(1385)271739172739+-÷+-. 点拨: 73472437761716,2726,1110272717173939===,通过观察可以发现,这3个数分别是第2个括号内3个数的2倍.解答:令1217381385172739A =+-. 因为77373424761727111626102271739271739A +-=+-=, 所以原式=22A A ÷=. 规律·提示把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫做换元法.换元法是常用的解题方法,它能化复杂为简单,明确题目的结构特征,丰富解题思路.【举一反三】5.已知33331231514400+++⋅⋅⋅+=,求333324630+++⋅⋅⋅+的值.探究5 配对、分组巧算例6 计算:11212312341235859()()()()23344455556060606060++++++++++⋅⋅⋅++++⋅⋅⋅++. 点拨:观察每个括号内式子的特点,依特征求解;也可用一个符号表示所求的式子,将式子进行整体变形,寻找内在关系,简化运算.解答:解法一:原式=(0.529.5)590.51 1.5229.58852+⨯++++⋅⋅⋅+==. 解法二:原式=0.51 1.5229.5++++⋅⋅⋅+=(0.51 1.5229.5)(1229)++++⋅⋅⋅++++⋅⋅⋅+ (0.529.5)30(129)2988522+⨯+⨯=+= 解法三:设原式之和为S ,对每个括号内的各项都交换位置再相加,显然其和不变, 即121321432159585721()()()()23344455556060606060S =++++++++++⋅⋅⋅++++⋅⋅⋅++. 将原序和倒序相加,其相应两项之和为1,则有 (159)59212345930592S +⨯=++++⋅⋅⋅+==⨯, 所以1559885S =⨯=.规律·提示计算时需要观察规律,本例三种解法分别从三个角度着眼:解法一是配成59个“对子”;解法二是分组计算; 解法三是倒序与正序的综合运用.上述三种解法在计算中的运用都十分广泛.【举一反三】6.计算:(1234)(5678)(9101112)(2013201420152016)+--++--++--+⋅⋅⋅++--.参考答知识梳理负数 分数 不循环 正方向 单位长度 距离 本身 相反数0 绝对值1 异号 相反数 正 负 不等于0 倒数 相同 幂 正整数重难点分类解析【反馈练习】1.C2.A3.B4.C5.B6.B7.A8. 2112 2.5(1)1(2)22-<--<+-<<--9.原式=―310.原式=511.C 12.B易错题辨析1.B2. 3或1或―1或―33. (1) 原式=1;(2) 原式=38-;(3) 原式=―20;(4) 原式= 356-;4.(1)一 (2) 三(3)原式=114-探究与应用【举一反三】1.(1) 原式=7279;(2) 原式=―3.895.2.23201613333++++⋅⋅⋅+= 201713-12(). 3.11112481024+++⋅⋅⋅+= 102310244.111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯= 10082017. 5. 333324630+++⋅⋅⋅+=115200.6. 原式=―2016。

苏教版七年级上册数学[《有理数》全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学[《有理数》全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学重难点突破知识点梳理及重点题型巩固练习《有理数》全章复习与巩固(基础)【学习目标】1.理解有理数及其运算的意义,发展运算能力;了解无理数的概念,会判断无理数.2.能用数轴上的点表示有理数,会比较有理数的大小;借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.3.体会转化、归纳等思想;掌握有理数的加、减、乘、除、乘方及混合运算并能解决简单的实际问题.4.会用科学记数法表示较大的数,能对含有较大数字的信息作出合理的解释和推断,发展数感.【知识网络】【要点梳理】要点一、有理数与无理数1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:作用举例表示数的性质0是自然数、是有理数表示没有3个苹果用+3表示,没有苹果用0表示表示某种状态0C表示冰点表示正数与负数的界点0非正非负,是一个中性数2.无理数:无限不循环小数叫做无理数.要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)目前常见的无理数有两种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111……(相邻两个3之间1的个数逐渐增加).3.数轴:规定了原点、正方向和单位长度的直线.要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.4.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可.(3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负.5.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.数a的绝对值记作a.(2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.要点二、有理数的运算1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a÷b=a·1b(b≠0) .(5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0.(6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36.(3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-. 2.运算律:(1)交换律: ①加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ;(2)结合律: ①加法结合律:(a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc)(3)分配律:a(b+c)=ab+ac要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.要点四、科学记数法把一个大于10的数表示成10na ⨯的形式(其中110a ≤<,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯.【典型例题】 类型一、有理数与无理数的相关概念1.若一个有理数的:(1)相反数;(2)倒数;(3)绝对值;(4)平方;(5)立方,等于它本身.则这个数分别为(1)________;(2)________;(3)________;(4)________;(5)________.【答案】(1)0; (2)1和-1;(3)正数和0;(4)1和0;(5)-1、0和1【解析】根据定义,把符合条件的有理数写全.【总结升华】要全面正确地理解倒数,绝对值,相反数等概念.举一反三:【有理数专题复习 357133 概念的理解与应用】【变式】(1)321-的倒数是 ;321-的相反数是 ;321-的绝对值是 ; -(-8)的相反数是 ;21-的相反数的倒数是_____. (2)某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 _ ;如果这种油的原价是76元,那么现在的卖价是 .(3) 上海浦东磁悬浮铁路全长30km ,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 m /min .(4) 若a 、b 互为相反数,c 、d 互为倒数,则=++)(323b a cd ____ . (5)下列各数:2π,0, 0.23,227,0.3000333…,中无理数个数为 个. 【答案】(1)35-; 213; 213;-8;2 (2)降价5.8元,70.2 元;(3)33.7510⨯;(4)3;(5)2.2.(2015春•射洪县月考)如果|x+3|+|y ﹣4|=0,求x+2y 的值.【思路点拨】根据非负数的性质,可求出x 、y 的值,然后将x 、y 的值代入代数式化简计算即可.【答案与解析】解:∵|x+3|+|y ﹣4|=0,∴x+3=0,y ﹣y=0,解得,x=﹣3,y=4,x+2y=﹣3+4×2=5.【总结升华】本题考查了绝对值的性质和非负数的性质,掌握有限个非负数的和为零,那么每一个加数也必为零是解题的关键.3.在下列两数之间填上适当的不等号:20052006________20062007. 【思路点拨】根据“a-b >0,a-b =0,a-b <0分别得到a >b ,a =b ,a <b ”来比较两数的大小.【答案】 <【解析】法一:作差法由于20052006200520072006200610200620072006200720062007⨯-⨯-==-<⨯⨯,所以2005200620062007< 法二:倒数比较法:因为2006112007112005200520062006=+>+= 所以2005200620062007< 【总结升华】比较大小常用的有五种方法,要根据数的特征选择使用. 举一反三:【变式】比较大小:(1)199-________0.001; (2)23-________-0.68 【答案】(1)< (2)>类型二、有理数的运算4.(2016•厦门)计算:.【思路点拨】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【答案与解析】解:原式=10+8×﹣2×5=10+2﹣10=2.【总结升华】有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.举一反三:【变式】计算:(1)11(2)(2)22-⨯÷⨯- (2)()20064261031-+--⨯- 【答案】(1)111(2)(2)(1)(2)(1)2(2)4222-⨯÷⨯-=-÷⨯-=-⨯⨯-= (2)()20064261031-+--⨯-=-16+4-3×1 =-15类型三、数学思想在本章中的应用5.(1)数形结合思想:有理数a 在数轴上对应的点如图所示,则a ,-a ,1的大小关系.A .-a <a <1B .1<-a <aC .1<-a <aD .a <1<-a(2)分类讨论思想:已知|x|=5,|y|=3.求x-y 的值.(3)转化思想:计算:3135()147⎛⎫-÷- ⎪⎝⎭ 【答案与解析】(1)将-a 在数轴上标出,如图所示,得到a <1<-a ,所以大小关系为:a <1<-a . 所以正确选项为:D .(2)因为| x|=5,所以x 为-5或5因为|y|=3,所以y 为3或-3.当x =5,y =3时,x-y =5-3=2当x =5,y =-3时,x-y =5-(-3)=8当x =-5,y =3时,x-y =-5-3=-8当x =-5,y =-3时,x-y =-5-(-3)=-2故(x-y )的值为±2或±8(3)原式=33135(7)357724614142⎛⎫--⨯-=⨯+⨯= ⎪⎝⎭【总结升华】在解题中合理利用数学思想,是解决问题的有效手段.数形结合——“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知”.举一反三:【变式】(2015•宁德)有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0 B.a﹣b<0 C.a•b>0 D.>0【答案】B.类型四、规律探索6.将1,12-,13,14-,15,16-,…,按一定规律排列如下:请你写出第20行从左至右第10个数是________.【思路点拨】通过观察题目所给的图形、表格或一段语言叙述,然后归纳总结,寻找规律.【答案】1 200 -【解析】认真观察可知,第1行有1个数,第2行有2个数,第3行有3个数,……,所以第20行有20个数,从第1行到第20行共有1+2+3+…+20=210个数,所以第20行最后一个数的绝对值应是1210;又由表中可知,凡是分母是偶数的分数是负数,故第20行最后一个数是1210-,以此类推向前10个,则得到第20行第10个数是1 200 -.【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并将规律表示出来.。

苏科版七年级数学第2章有理数知识点对应练习

苏科版七年级数学第2章有理数知识点对应练习

第2章有理数知识点专题练习看课本复习回顾把相应的知识点写在对应位置2. 1正数与负数1.下列关于负数的说法正确的是( )A.把某个数的前面加上“-”号就是负数B.负数是不大于0的数C.除去正数的其他数都是负数D.在正数的前面加上“-”号的数就是负数2下列说法正确的是 .(填序号)① 0是正数和负数的分界点;② 0只表示没有;③ 0可以表示特定的意义,如0℃等;④ 0是正数,不是负数;⑤不是正数的数一定是负数,不是负数的数一定是正数.3七年级(1)班学生数学成绩的平均分是85分,老师把85分作为基准分,超过的部分用正数表示,不足的部分用负数表示,第二小组的6名学生的成绩记录如下(单位:分):10+,8-,8+,4-,0,8-,那么这6名学生的成绩分别是多少?整数与分数4下列说法正确的是( )A.整数包括正整数和负整B.零是整数,但不是正数,也不是负数C.分数包括正分数、负分数和零D 一个数不是正数就是负数5把6-,0.3,15,9,65-分成两类,使两类数具有不同的特征,请写出你的一种分法.2. 2 有理数与无理数1. 下列说法不正确的是( )A.有最小的正整数,没有最小的负整数 B 一个整数不是奇数就是偶数C.无限循环小数不是有理数D.1-和0之间没有负整数2. 关于107.987-有以下说法:①这个数不是分数,但是有理数;②这个数是负数,也是分数;③这个数与π一样,不是有理数;④这个数是一个负小数,也是负分数.其中正确的是 .(填序号)3. 已知下列各数:8-,50,9+,13-,0.8其中既是正有理数,又是整数的数有( ) A. 0个 B. 1个 C. 2个 D.3个4. 下列说法:①有理数就是有限小数;②无限小数是无理数;③无限不循环小数是无理数;④3π是分数.其中正确的有( )A.1个B. 2个C. 3个D.4个5. 写出一个比3小的正无理数: . 7下列七个数:6,0.123, 1.5-,3.1415,227,2π-,0.1020020002…,若其中无理数的个数为x ,整数的个数为y ,非负数的个数为z ,则x y z ++= .2. 3 数轴1. 下面说法正确的是( )A.数轴是一条规定了原点、正方向和长度单位的射线B.数轴是一条规定了原点、正方向和长度单位的直线C.数轴是一条规定了原点、正方向和单位长度的直线D.数轴是一条规定了原点、正方向和单位长度的线段2. 下列所画数轴对吗?如果不对,请指出错在哪里.有理数和无理数与数轴上点之间的关系1下列说法中正确的是( )A.无理数和有理数都能用数轴上的点来表示B.数轴上所有的点都表示有理数C.数轴上找不到既不表示正数也不表示负数的D.数轴上表示2-的点一定在原点的右边3. 数轴上有两个点A ,B ,分别表示有理数a ,b ,已知它们到原点的距离分别是1和4,则A ,B 两点间的距离是 .1. 一个点从数轴上表示2-的点开始,按下列条件移动,画图表示移动过程,并写出终点所表示的数.(1)先向右移动3个单位长度,再向右移动2个单位长度;(2)先向左移动5个单位长度,再向右移动3个单位长度;(3)先向左移动3. 5个单位长度,再向右移动1. 5个单位长度;(4)先向右移动2个单位长度,再向左移动5. 5个单位长度.课时2 利用数轴比较数的大小1. 如图,在数轴上点A ,B ,C 所表示的数分别为a ,b ,c ,则a ,b ,c 的大小顺序是( )A.a b c <<B.a c b <<C.b a c <<D.c b a <<2. 下列说法正确的是( )A.没有最大的正数,但有最大的负数B.数轴上离原点越远的点,表示的数越大C. 0大于一切非负数D.在原点左边离原点越远的点,表示的数越小3. 下列说法正确的是( )A. 1是最小的正有理数B.1-是最大的负有理数C. 0是最大的非正整数D.有最小的正整数和最小的正有理数2. 4 绝对值与相反数绝对值的定义1. 下列说法正确的是( ) A. 1-表示1-在数轴上对应的点 B. 1-表示的意义是数轴上表示1-的点到原点的距离C. 1-表示一1对应的点到原点的距离是1-D.以上都不对2. 有理数的绝对值一定是( )A.正数B.整数C.正数或0D.自然数3. 计算下列各式:(1)253-+- (2)97---(3)51.53-⨯-(4)0.04(0.2)+÷--课时2 相反数知识点1 相反数的几何意义1. 数轴上与原点的距离是5的点有 个,这些点表示的数是 .2. 若数轴上的两点A ,B 所表示的数互为相反数,点A 在原点的左侧,并且点A ,B 之间的距离是8,则点B 所表示的数为 .知识点2 相反数的代数意义3. 3的相反数是( ) A.13 B.13- C.3 D.3- 4. 一个数的相反数是非负数,这个数一定是( )A.正数或零B.非零的数C.负数或零D.零5. 下列说法中,正确的有( )①5-是相反数;②114是324-的相反数;③122与12-互为相反数;④ 2.5-与122互为相反数 A. 1个 B. 2个 C. 3个 D.4个6. 下列说法中正确的是( )A.正数和负数互为相反数B.任何一个数的相反数都与它本身不相同C.因为相反数是成对出现的,所以0没有相反数D.相反数等于它本身的数是0课时3 有理数的大小比较绝对值的性质1. 比较下列各数的大小(要有解答过程):(1)1324-与58- (2)32--与2[()]3-+- (3)56-,67-与1721-1. 已知0a b c d -<<-<<-,且d c <,试将,,,,0a b c d 按由小到大的顺序排列.倒数1. 如果一个数的相反数的倒数是38-,那么这个数是 . 2. 倒数等于它本身的有理数是 .2. 7 有理数的乘方 有理数的乘方的概念1 (2)5(2)-中,底数是 ,指数是 ,读作 ;(3)42-中,底数是 ,指数是 ,读作 .2把222555⨯⨯写成乘方形式为 . 科学记数法1. 用科学记数法表示下列各数:(1)4 002 000;(2)40.8910⨯;(3)-10 600;(4)49:(5)412310-⨯.2. 写出下列用科学记数法表示的数的原数(1)3.45610⨯; (2)44.04010⨯; (3)32.5810-⨯; (4)71.0010⨯1. 为了求2310013333+++++…值,可令2313333M =+++++…,则234101333333M =+++++…,因此101331M M -=-,所以101312M -=,即1012310031133332-+++++=…,仿照以上方法,求2342017155555++++++…的值.有理数中的规律探究题1. 如图,在数轴上,点A 表示的数是1,现将点A 沿数轴做如下移动:第一次点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ……按照这种规律移动下去,第n 次移动到点n A ,如果点n A 与原点的距离不小于20,那么n 的最小值是 .。

苏教版七上 有理数2.2有理数 知识点+例题+练习(非常好)

苏教版七上 有理数2.2有理数  知识点+例题+练习(非常好)

姓名:日期:2.2有理数与无理数【学习目标】1、理解有理数的意义,知道无理数是客观存在的,了解无理数的概念.2、会判断一个数是有理数还是无理数.【要点梳理】要点一、有理数我们把能够写成分数形式mn(m,n是整数,n≠0)的数叫做有理数.要点诠释:(1)有限小数和循环小数都可以化为分数,他们都是有理数.(2)所有整数都可以写成分母是1的分数,因此可以理解为整数和分数统称为有理数.要点二、无理数1.定义:无限不循环小数叫做无理数.要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)目前常见的无理数有两种形式:①含 类.②看似循环而实质不循环的数,如:1.313113111…….2.有理数与无理数的区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化为分数的形式,而无理数则不能.【典型例题】类型一、有理数例1.下列说法正确的是()A.整数就是正整数和负整数 B.分数包括正分数、负分数C.正有理数和负有理数统称有理数 D.无限小数叫做无理数类型二、无理数例2.下列实数中,是无理数的为()A.﹣4 B.0.101001 C. D.【基础巩固】1. 下列是无理数的是 ( )A .0.020*******…B .πC .15D .0 2.0是 ( )A .最小的正数B .最大的负数C .最小的有理数D .整数 3.下列判断中,你认为正确的是 ( ) A .0的倒数是0 B .2是分数 C .-1.2大于1 D .0.555…是分数 4.下列各数是正整数的是 ( )A .-1B .2C .0.5D .π 5.下列分数中,能化为有限小数的是 ( )A .13B .15C .17D .196.在0,1,1.010010001…,3.1415 926中,无理数的个数为 ( ) A .0个 B .1个 C . 2个 D .3个 7.根据下图所示,对a 、b 、c 三种物体的质量判断正确的是 ( )A .a<cB .a<bC . a>cD .b<c 8.在下表适当的空格里画上“√”.9.请写出一个大于1且小于2的无理数:_______.10.在-1.313313331…,-17,1.010010001…,π,4中,无理数有_________个.【拓展提优】11.“十一”黄金周期间,某市在7天中外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).(1) 若9月30日外出旅游人数约为0.5万人,求10月2日外出旅游的人数.(2) 请判断七天内外出旅游人数最多的是哪天? 最少的是哪天? 它们相差多少万人?(3) 如果最多一天有出游人数3万人,问9月30日出去旅游的人数有多少?12.某原料仓库一天的原料进出记录如下表(运进用正数表示,运出用负数表示):(1) 这天仓库的原料比原来增加了还是减少了? 请说明理由;(2) 根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案比较合适.(3) 在(2)的条件下,设运进原料共a吨,运出原料共b吨,a,b之间满足怎样的关系时,两种方案的运费相同.课后练习 一、选择 1.π是 ( )A .整数B .分数C .有理数D .无理数 2.在数0,13,2π,-(-14),223,0.3,0.141 041 004…(相邻两个1,4之间的0的个数逐次加1),227中,有理数的个数为 ( )A .3B .4C .5D .6 3.下列语句正确的是 ( )A .0是最小的数B .最大的负数是-1C .比0大的数是正数D .最小的自然数是1 4.下列各数中无理数的个数是 ( )227,0.123 456 789 101 1…,0,2π.A .1B .2C .3D .4 5.下列说法中,正确的是 ( )A .有理数就是正数和负数的统称B .零不是自然数,但是正数C .一个有理数不是整数就是分数D .正分数、零、负分数统称分数 6.在2π,3.14,0,0.313 113 111.…,0.43五个数中分数有( )个.A .1B .2C .3D .4 二、填空7.最小的正整数是 ,最大的负整数是 ,最小的非负整数是 . 8.有理数中,是整数而不是正数的数是 ;是整数而不是负数的数是 .9.若一个正方形的面积为5,则其边长可能是 数. 10.给出下列数:-18,227,3.141 6,0,2 001,-35π,-0.14,95%,其中负数有 ,整数有 ,负分数有 .11.有六个数:0.123,-1.5,3.141 6,227,-2π,0.102 002 000 2…,若其中无理数的个数为x,整数的个数为y,非负数的个数为z,则x + y + z= .12.观察下面依次排列的一列数,根据你发现的规律在各列的后面填上三个数.(1) 1,-2,4,-8,16,-32.,,…(2) 4,3,2,1,0,-1,-2.,,…(3) 1,2,-3,4,5,-6,7,8,-9,,,…三、解答11.把下列各数填在相应的大括号内:3 5,0,3,314,-23,227,49,-0.55,8,1.121 221 222 1…(两个1之间依次多一个2),0.211 1,201,999.正数集合:{ …};负数集合:{ …};有理数集合:{ …};无理数集合:{ …}.12.已知有A,B,C三个数集,每个数集中所包含的数都写在各自的大括号内,A={-2,-3,-8,6,7},B={-3,-5,1,2,6},C={-1,-3,-8,2,5},请把这些数填在图中相应的位置.预习:2.2 数轴1.下列所画的直线中,能正确反映数轴三要素的是( )2.如图,在数轴上表示到原点的距离为3个单位的点有( )A.点D B.点A C.点A和点D D.点B和点C3.下列结论中,不正确的是( )A.-4<0 B.14.7542->-C.-5>-8 D.1153<4.下列结论中,不正确的是( )A.-4>-3>-2 B.-1<0<2.3C.123 3.13->->-D.3>-3.5>-55.下列说法中,正确的是( )A.原点在数轴的正中位置B.数轴上没有表示32的点C.数轴上与原点相距7个单位的点有2个D.数轴上能表示出的有理数是有限的6.在数轴上,通过观察可以发现,表示与原点相距3个长度单位以内(包括3个长度单位)的整数点共有( )A.4个B.5个C.6个D.7个7.在数轴上,原点及原点右边的点表示的是( )A .有理数B .不是负数(非负数)C .正数D .整数 8.在数轴上,一个点从原点开始,先向左移动5个单位,再向右移动7个单位,这个终点表示的数是( )A .12B .-12C .2D .-2 9.如图,若A 是实数a 在数轴上对应的点,则关于a ,-a ,1的大小关系表示正确的是 ( )A .a <1<-aB .a <-a <1C .1<-a <aD .-a <a <110.在数轴上,表示数a 的点A 在表示数b 的点B 的右边,那么数a 与数b 的差 ( )A .小于0B .大于0C .等于0D .都有可能1A(第9题图)。

苏教版七上 有理数2.4绝对值和相反数 知识点+例题+练习(非常好)

苏教版七上 有理数2.4绝对值和相反数 知识点+例题+练习(非常好)

2.4绝对值与相反数【学习目标】1.借助数轴理解绝对值和相反数的概念;2.知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系;3.会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小;4.通过应用绝对值解决实际问题,体会绝对值的意义和作用.【要点梳理】要点一、相反数1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点二、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.要点三、绝对值1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. (3)一个有理数是由符号和绝对值两个方面来确定的. 2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数. (2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0. 要点四、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b . 2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:两数同号 同为正号:绝对值大的数大 同为负号:绝对值大的反而小 两数异号 正数大于负数 -数为0正数与0:正数大于0 负数与0:负数小于0要点诠释:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩利用绝对值比较两个负数的大小的步骤: (1) 分别计算两数的绝对值; (2)比较绝对值的大小: (3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立. 4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1ab<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反. 5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小. 【典型例题】类型一、相反数的概念 例1.的相反数是( )A .2016B .﹣2016C .D .类型二、多重符号的化简 例2.化简:(1)﹣{+[﹣(+3)]};(2)﹣{﹣[﹣(﹣|﹣3|)]}.类型三、绝对值的概念 例3.求下列各数的绝对值.112-,-0.3,0,132⎛⎫-- ⎪⎝⎭类型四、比较大小例4.比较下列有理数大小:(1)-1和0; (2)-2和|-3| ;(3)13⎛⎫-- ⎪⎝⎭和12-;(4)1--______0.1--类型五、绝对值非负性的应用例5.已知|2-m|+|n-3|=0,试求m-2n的值.【基础巩固】1.-6的绝对值是( )A.6 B.-6 C.+16D.-162.在数轴上表示-2的点离原点的距离等于( )A.2 B.-2 C.±2 D.43.已知在数轴上,0为原点,A、B两点的坐标分别为a、b,利用下列A、B、0三点在数轴上的位置关系,判断哪一个选项中的a<b? ( )4.-3 =( )A.-3 B.-13C.13D.35.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )6.下列各数中,相反数等于5的数是( )A.-5 B.5 C.-15D.157.-(-2)的相反数是( )A.2 B.12C.-12D.-28.下列叙述不正确的是( )A.正数的相反数是负数,负数的相反数是正数B.-个正数和一个负数互为相反数C.互为相反数的两个数有可能相等D.数轴上与原点距离相等的两个点所表示的数一定互为相反数9.如果a+b=0,那么有理数a、b的取值一定是( )A.都是0 B.至少有一个是0 C.a为正数,b为负数D.互为相反数10.下列各对数中,互为相反数的有( )①(-1)与+1;②+(+1)与-1;③-(-2)与+(-2);④-(-12)与+(+12);⑤+[-(+1)]与-[+(-1)];⑥-(+2)与-(-2);A .6对B .5对C .4对D .3对 11.如果a 与1互为相反数,则a 等于 ( )A .2B .2C .1D .-1 12.3.14π-的值为 ( )A .0B .3.14-πC .π-3.14D .0.14 13.下列说法错误的是 ( )A .一个正数的绝对值一定是正数B .任何数的绝对值都是正数C .一个负数的绝对值一定是正数D .任何数的绝对值都不是负数 14.比较-12,-13,14的大小,结果正确的 ( )A .-12<-13<14B .-12<14<-13C .14<-13<-12D .-13<-12<14【拓展提优】15.下列哪些数是正数?-2,13+,3-,0,-2+,()2--,-2-16.比较下列各对数的大小:(1)56-和67-; (2)227-和-3.13;(3)5--与0;(4)15⎛⎫-- ⎪⎝⎭与16--.17.如果a=4,b=3,则比较a与b的大小会有哪些结果,请你都写出来.18.先比较下列各式的大小,再回答问题.(1)35_______35-++-+;(2)1111_______2424-+---;(3)03_______03+--.(4)通过上面的比较,请你归纳出当a,b为有理数时,a+b与a b+的大小关系.19.已知A、B两点在数轴上分别表示互为相反数的两个数a,b(a<b),并且A、B两点之间的距离是6,求出a、b两数.20.在数轴上点A表示5,点B、C表示互为相反数的两个数,且C与A间的距离为2,求点B、C对应的数是什么?21.一个数a在数轴上表示的点是A,当点A在数轴上向右平移了5个单位后是点B,点A与点B表示的数恰好互为相反数,那么数a是几?22.有理数a、b、c在数轴上的位置如图所示,化简:a b c-+--.课后练习1.在数轴上离原点距离是3的数是________.2.绝对值等于本身的数是________,绝对值小于2的整数是________.3.数轴上与表示1个点的距离是2的点所表示的数有________.4.+6的符号是________,绝对值是________,56-的符号是_______,绝对值是_______.5.计算:2 3.6 1.6-+--=_______.6.绝对值等于10的数是________.7.下列说法中,错误的是( )A.+5的绝对值等于5B.绝对值等于5的数是5C.-5的绝对值是5D.+5、-5的绝对值相等8.绝对值最小的有理数是( )A.1 B.0C.-1 D.不存在9.绝对值等于本身的数有( )A.1个B.2个C.4个D.无数个10.绝对值小于3的负数有( )A.2个B.3个C.4个D.无数个11.化简3--等于( )A.-3 B.-13C.13D.312.求下列数的绝对值,并用“<”号把这些绝对值连接起来.-1.5,-3.5,2,1.5,-2. 75.13.如果a=-a,那么( )A.a>0 B.a<0C.a≥0D.a≤0 14.在数轴上表示-2的点离原点的距离等于( ) A.2 B.-2C.±2 D.415.下列各式中,正确的是( )A.若a=b,则a=b B.若a>b,则a>bC.若a<b,则a<b D.若a=b,则a=b或a=-b 16.如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是( )A.a+b>0 B.ab>0 C.a-b>0 D.->017.实数a、b在数轴上的位置如图所示,则a、b的大小关系是_______.18.下列各数中,一定互为相反数的是( )A.-(-5)和-5-B.5-和5+C.-(-5)和5-D.a和a-19.若一个数大于它的相反数,则这个数是( )A.正数B.负数C.非负数D.非正数20.已知a=5,b=8,且a<b,则a+b=_______.21.比较下列各组数的大小:(1)78-与67-;(2)58-与711-.22.计算:(1)5 2.49-+-;(2)113168--;(3)3 6.2-⨯-;(4)21433-÷.23.若一个数的绝对值等于1,则这个数是__________.24.(1)若3x=,则x=_________;(2)若13x-=,则x=__________.25.请在数轴上画出表示3、-2、-3.5及它们相反数的点,并分别用A、B、C、D、E、F来表示.(1)把这6个数按从小到大的顺序用“<”号连接起来.(2)点C与原点之间的距离是多少?点A与点C之间的距离是多少?预习:2.5有理数的加法与减法1.(+5)+(+7)=_______;(-3)+(-8)=_______;(+3)+(-8)=_______;(-3)+(-15)=_______;0+(-5)=________;(-7)+(+7)=_______.2.一个数为-5,另一个数比它的相反数大4,这两个数的和为________.3.如果a =-2,b =-5,则a +b =_______,a +b =________.4.如图,数轴上A 、B 两点所表示的有理数的和是_______.5.下列各组数中,相等的一组是 ( )A .+2.5和-2.5B .-(+2.5)和-(-2.5)C .-(-2.5)和+(-2.5)D .-(+2.5)和+(-2.5)6.下列各组运算:3455⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭、6576⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭、1303⎛⎫-+ ⎪⎝⎭、()31.254⎛⎫-+- ⎪⎝⎭,其中结果符号为负的有 ( )A .1个B .2个C .3个D .4个7.计算:(1) 214336⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭; (2)()28 4.53⎛⎫-+ ⎪⎝⎭;(3)257336⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭; (4)77915-+-;。

苏版初一上册数学第一章《有理数》第1讲有理数(解析+解析)

苏版初一上册数学第一章《有理数》第1讲有理数(解析+解析)

苏版初一上册数学第一章《有理数》第1讲有理数(解析+解析)第一部分知识梳理知识点一:正数、负数1、正数:像1、2.5、如此大于0的数叫做正数;2、负数:在正数前面加上“-”号,表示比0小的数叫做负数;3、0即不是正数也不是负数,0是一个具有专门意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。

概念剖析:①、判定一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判定,要严格按照“大于0的数叫做正数;0小的数叫做负数”去识别。

②、正数和负数的应用:正数和负数通常表示具有相反意义的量。

③、所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④、常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;知识点二:有理数整数和分数统称为有理数。

有理数的分类如下:(1)按定义分类:(2)按性质符号分类:概念剖析:①、整数和分数统称为有理数,也确实是说假如一个数是有理数,则它就一定能够化成整数或分数;②、正有理数和0又称为非负有理数,负有理数和0又称为非正有理数③、整数和分数都能够化成小数部分为0或小数部分不为0的小数,但并不是所有小数差不多上有理数,只有有限小数和无限循环小数是有理数;知识点三:数轴标有原点、正方向和单位长度的直线叫作数轴。

数轴有三要素:原点、正方向、单位长度。

画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

在数轴上所表示的数,右边的数总比左边的数大,即从数轴的左边到右边所对应的数逐步变大,因此正数都大于0,负数都小于0,正数大于负数。

概念剖析:①、画数轴时数轴的三要素原点、正方向、单位长度缺一不可;②、数轴的方向不一定差不多上水平向右的,数轴的方向能够是任意的方向;③、数轴上的单位长度没有明确的长度,但单位长度与单位长度要保持相等;④、有理数在数轴上都能找到点与之对应,一样地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数a -的点在原点的左边,与原点的距离是a 个单位长度。

苏教版七年级数学(上册)第2章 有理数

苏教版七年级数学(上册)第2章 有理数

3 2
3 2
9 4
2
,所以
a 不是
3 2

45
因为
4 3
4 3
16 9
2
5 ,3
5 3
25 9
2,
所以
a 不是
3
,3

4
5
而是大于 3 且小于 3 的数.
......
事实上, a 不能化为分数的形式,a是一个无限不循环
小数,它的值是1.414 213 562 373 …
无限不循环小数叫做无理数.
小学学过的圆周率π是无限不循环小数,它的值 是3.141 592 653 589…,π是无理数.
C -1 0 2 3
温度计
学生观察0
25
25
25
20
20
20
②零下10℃怎样表示? 15
15
15
10
10
10
③0℃怎样表示?
5
5
5
0
0
0
-5
-5
-5
-10
-10
-10
对比观察
30
30
30
25
25
25
20
20
20
15
15
15
10
10
10
5
5
5
0
-5 -4 -3 -2 -1 0 1 2 3 4 5 6
做一做
我们来画一画
数轴
得出定义 揭示内涵
什么是数轴?
单位长度
原点
-3 -2 -1 0 1
正方向(向右)
23
手脑并用 深入理解
讨论下列图形中哪些是数轴,

七年级苏教版数学复习要点考点专题一:有理数运算综合

七年级苏教版数学复习要点考点专题一:有理数运算综合

七年级苏教版数学复习要点考点专题一:有理数运算综合知识结构图知识点一 有理数加减1、有理数的加法法则(1)同号两数相加,取相同的符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0. (3)一个数同0相加,仍得这个数. 2、有理数加法运算律(1)加法交换律:a b b a +=+;(2)加法结合律:()()a b c a b c ++=++. 注意:在进行有理数加法运算时,常用到以下技巧: ①把符号相同的数结合在一起;②把相同分母的分数结合在一起;③把能凑成整数的数结合在一起,尤其是常把互为相反数的数结合在一起,即凑成0. 2、有理数的减法法则减去一个数,等于加这个数的相反数.也可以表示成:()a b a b -=+- 例1把(8)(4)(5)(2)--++---写成省略加号的形式是( ) A .8452-+-+ B .8452---+ C .8452--++ D .8452--+例2下列各式中正确的是( ) A .5(6)11+--= B .7|7|0---= C .5(3)2-++= D .(2)(5)7-+-=例3(2019秋•兴化市校级月考)计算:(1)7(4)(5)--+- (2)16()2| 1.5|5-----(3)7.20.8 5.611.6---+ (4)2243110.6(3)3535-+---知识点二 有理数乘除及乘方1、有理数的乘法法则(1)两数相乘,同号得正,异号得负,并把绝对值相乘. (2)任何数与0相乘,积仍为0. 2、有理数乘法运算律(1)交换律:a b b a ⨯=⨯;(2)结合律:()()a b c a b c ⨯⨯=⨯⨯;(3)分配律:()a b c a b a c ⨯+=⨯+⨯. 注意:在有理数的乘法运算中,灵活运用运算律可以使计算简便。

在有理数乘法算式中,如果含有带分数或小数,为了便于约分,应先把带分数划分假分数,把小数化成分数. 2、倒数乘积是1的两个数互为倒数.0没有倒数. 3、有理数的除法法则(1)除以一个不等于0的数,等于乘这个数的倒数.这个法则也可以表示成:1a b a b÷=⨯(0b ≠); (2)两数相除,同号得正,并把绝对值相除;0除以任何一个不等于0的数,都得0. 4、乘方定义:一般地,n 个相同的因数a 相乘,记作n a ,即n n a a a a a ⨯⨯⨯⨯=个求n 个相同因数的积的运算,叫做乘方.乘方的结果叫做幂.在n a 中,a 叫做底数,n 叫做指数.n a 可以读作a 的n 次方,也可以读作a 的n 次幂.注意:①正数的任何次幂都是正数;②负数的奇数次幂是负数,负数的偶数次幂是正数. 例1一个数是5-,另一个数比|5|-的相反数大4,则这两个数的积是( ) A .6 B .5-C .6-D .5例2如果a b ÷得正数,那么( ) A .a 、b 同号 B .a 和b 都是正数C .a 和b 都是负数D .a 和b 一正一负例3下列各对数中,数值相等的是( ) A .(2)3和2(3)- B .23-和2(3)- C .33-和3(3)-D .332-⨯和3(32)-⨯知识点三 有理数混合运算1、有理数的混合运算顺序是:先乘方,再乘除,后加减,如果有括号,应先算括号里面的. 2、相关运算律加法交换律:a b b a +=+加法结合律:()()++=++a b c a b c 乘法交换律:ab ba = 乘法结合律:()()ab c a bc = 乘法分配律:()a b c ab ac +=+ 3、科学记数法一般地,一个大于10的数可以写成10n a ⨯的形式,其中110a ≤<,n 是正整数,这种记数法称为科学记数法.注意:确定n 的方法技巧是原数整数数位减1. 例1在“1□2□6□9”中的每个□内,填入+,-,⨯,÷中的某一个(可重复使用),使计算所得数最小,则这个最小数是 . 例2(2020•淮安区一模)岂日无衣,与子同袍.新冠肺炎(19)COVID -疫情暴发以来,全国共有346支医疗队,4.26万医护人员驰援湖北,愈是在危难时刻,愈加体现中华民族强大的凝聚力和国家制度的优越性.数据4.26万用科学记数法表示为( ) A .40.42610⨯ B .44.2610⨯ C .54.2610⨯ D .242610⨯例3计算:(1)20(5)(18)-+--- (2)355()53÷-⨯(3)13124()243-⨯-+- (4)320132|23|2(1)-+--⨯-【提优训练】一、单选题(共6小题)1.计算1 86()2-÷-的结果是()A.4-B.5C.13D.202.若0ab<,0a b+>,则a、b两数()A.同为正数B.同为负数C.异号且负数绝对值比较大D.异号且正数绝对值较大3.若||2x=,||5y=,且0xy>,则x y-的值等于()A.3-或7B.3或7-C.3-或3D.7-或74.计算2019(1)-的结果等于()A.2019-B.2019C.1-D.15.下面各组数中,相等的一组是()A.22-与2(2)-B.323与32()3C.3(3)-与33-D.|2|--与(2)--6.如图,数轴上A、B、C三点所表示的数分别为a、b、c,且AB BC=.如果有0a b+<、0b c+>、0a c+<,那么该数轴原点O的位置应该在()A.点A的左边B.点A与B之间C.点B与C之间D.点C的右边二、填空题(共5小题)7.某地12月5日最高温度是3C︒,最低温度是2C︒-,则最高温度比最低温度高C︒.8.绝对值不大于4的所有负整数的和是.9.在2-、3-、4、5中选取2个数相除,则商的最小值是.10.下图是计算机计算程序,若开始输入2x=-,则最后输出的结果是.11.对于正数x,规定()1xf xx=+,例如:f(2)22123==+,f(3)33134==+,1112()12312f==+,1113()13413f ==+,⋯⋯利用以上规律计算: 11111()()()()()20192018201732f f f f f f +++⋯⋯+++(1)f +(2)(2019)f +⋯⋯+的值为: .三、解答题(共2小题)12.计算(1)20(5)(18)-+---; (2)21293()12(3)23-÷+-⨯+-;(3)4211(10.5)[2(3)]3---⨯⨯--; (4)222172(3)(6)()3-+⨯-+-÷-.13.(2019秋•常熟市期中)观察下列等式的规律,解答下列问题: ①1111()24224=-⨯;②1111()46246=-⨯;③1111()68268=-⋯⋯⨯ (1)按以上规律,第④个等式为:1111()8102810=-⨯ ; 第n 个等式为: (用含n 的代数式表示,n 为正整数); (2)按此规律,计算:111112446688101012++++⨯⨯⨯⨯⨯; (3)探究计算(直接写出结果)1111:2558811299302+++⋯+=⨯⨯⨯⨯ .。

苏科版七年级上册第二章有理数知识点汇总

苏科版七年级上册第二章有理数知识点汇总

第二章有理数知识点全归纳整数⎩⎪⎨⎪⎧正整数负整数分数⎩⎨⎧正分数负分数正有理数⎩⎨⎧正整数正分数负有理数⎩⎨⎧负整数负分数有理数的有关概念⎩⎪⎨⎪⎧数轴相反数绝对值比较有理数的大小⎩⎨⎧绝对值法数轴法运算⎩⎪⎨⎪⎧加法运算减法运算乘法运算除法运算乘方运算交换律: a+b=b+a结合律: (a+b)+c=a+(b+c)分配律()a b c ab ac+=+有理数按定义分按正负分加减混合运算乘除及乘方混合运算有理数的混合运算用计算器进行有理数的简单运算近似数科学记数法:无理数:无限不循环小数;第1讲 有理数的意义知能解读(一)正数和负数的意义(1)像3+,l ,8%,3.5这样大于0的数(“+”通常省略不写)叫作正数... (2)像3-, 2.7-%, 4.5-, 1.2-这样在正数前面加上“-”(读负号)的数叫作负数..,负数小于0.注意:(1)0既不是正数也不是负数,它是一个整数,它表示正数和负数的分界.(2)对于正数和负数的概念,不能简单理解为带“+”的数是正数,带“-”的数是负数.如0+是0,0-也是0;当0a <时,a -就是正数.(二)具有相反意义的量正数和负数是根据实际需要而产生的,比如一些具有相反意义的量:收入200元与支出200元,上升7米与下降3米,零上2℃与零下7℃等.虽然它们都表示一定的数量,却意义相反,那么我们如何去表示它们呢?我们把一种意义的量规定为正的(如收入200元规定为200+元),把另一种和它意义相反的量规定为负的(如支出200元规定为200-元),于是就产生了正数和负数.注意:(1)用正数和负数表示具有相反意义的量时,哪种意义的量规定为正,是可以任意选定的(如将上升2米规定为2+米或2-米都可以),一旦选定一种意义的量为正,则另一种意义相反的量就只能为负.(2)具有相反意义的量的特点:①具有相反意义的量是成对出现的,单独一个量不能成为具有相反意义的量;②与一个量意义相反的量不止一个;③具有相反意义的量包含两个要素:一是它们的意义相反,二是它们都具有数量;④具有相反意义的量必须是同类量,如节约3吨油与浪费1吨水不是具有相反意义的量.(三)有理数的分类1.有理数的定义:凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数; 正整数、0、负整数统称整数...正分数和负分数统称分数...整数和分数统称有理数.....2.有理数的分类:(1)按定义分类: 整数⎩⎪⎨⎪⎧正整数0负整数 分数⎩⎨⎧正分数负分数(有限小数或无限循环小数也是分数) (2)按正负分类:有理数⎩⎪⎨⎪⎧正有理数⎩⎨⎧正整数正分数0(即不是正数也不是负数)负有理数⎩⎨⎧负整数负分数 注意:(1)在对有理数进行分类时,要做到不重不漏.(2)在分类时,注意0的地位和意义.(3)正整数,0统称非负整数(也叫自然数);负整数,0统称非正整数.(四)无理数:无限不循环小数角无理数;注:无理数的常见形式:(1)无限不循环小数形式:-2.010010001…(2)含π的形式:⋯-πππ31,, (3)含有根号的:⋯5,3,2(初二上学期学)(五)数轴规定了原点、正方向、单位长度的一条直线叫数轴;它满足以下要求:(1)在直线上任取—个点表示数0,这个0点叫作原点;(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示l ,2,3,…;从原点向左,用类似方法依次表示1-,2-,3-,…(如图所示).点拨:(1)利用数轴,我们可以表示任意一个有理数,还可以表示任意一个无理数.(2)数轴是研究数学的重要工具,也是“数形结合”的重要体现.(3)数轴的定义包含三层含义:①数轴是一条可以向两端无限延伸的直线;②数轴有三要素:原点、单位长度、正方向;③原点的位置、单位长度、正方向都是根据实际需要规定的.65-5-1-2-3-412340有理数 自然数(六)绝对值一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作a .正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,即,00,0,0a a a a a a >⎧⎪==⎨⎪-<⎩点拨:因为有理数的绝对值表示两点之间的距离,距离总是正数或零,所以任意一个有理数的绝对值是非负数,即0a ≥.(七)相反数只有..符号不同,绝对值相等的两个数互为相反数.其中一个数是另一个数的相反数;特别地,0的相反数是0.(1)在数轴上,互为相反数的两个数对应的点与原点的距离相等(几何意义).且在原点两侧;(2)数a 的相反数是a .若a ,b 互为相反数,则0a b +=(或a b =-,或b a =-).(八)有理数大小比较的常用方法(1)数轴比较法:将两数分别表示在数轴上,右边的点表示的数总比左边的点表示的数大.(2)代数比较法:正数大于零,负数小于零,正数大于一切负数;两个负数,绝对值大的反而小.(3)差值比较法:设a ,b 是两个任意数,若0a b ->,则a b >;若0a b -=,则a b =;若0a b -<,则a b <;(4)商值比较法:设a ,b 是两个正数,若1a b >,则a b >;若1a b =,则a b =;若1a b <,则a b <.(初中基本不用,高中用)此外,还有倒数比较法、中间值比较法、平方比较法、换元比较法等.(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

苏教版七上 有理数2.3数轴 知识点+例题+练习(非常好)

苏教版七上 有理数2.3数轴 知识点+例题+练习(非常好)

姓名:日期:2.3数轴【学习目标】1.理解数轴的概念及三要素,能正确画出数轴;2.能用数轴上的点表示有理数,初步感受数形结合的思想方法;3.能利用数轴比较有理数的大小.【要点梳理】要点一、数轴定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)定义中的“规定”二字是说原点的选定、正方向的取向、单位长度大小的确定,都是根据需要“规定”的.通常,习惯取向右为正方向.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.要点二、数轴的画法(1)画一条直线(通常画成水平位置);(2)在这条直线上取一点作为原点,这点表示0;(3)规定直线上向右为正方向,画上箭头;(4)再选取适当的长度,从原点向右每隔一个单位长度取一点,依次标上1,2,3,…从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,…要点诠释:(1)原点的位置、单位长度的大小可根据实际情况适当选取.(2)确定单位长度时根据实际情况,有时也可以每隔两个(或更多的)单位长度取一点.要点三、数轴与有理数的关系任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如.要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示. (2)一般地,在数轴上表示的两个数,右边的数总比左边的数大. 【典型例题】类型一、数轴的概念及画法例1.下列各图中,能正确表示数轴的是( ) A . B .C .D .例2.一只蚂蚁沿数轴从点A 向右直爬15个单位到达点B ,点B 表示的数为﹣2,则点A 所表示的数为( )A. 15B. 13C. -13D.-17类型二、利用数轴比较大小例3.在数轴上表示2.5,0,,-1,-2.5,,3有理数,并用“<”把它连接起来.例4.若p ,q 两数在数轴上的位置如下图所示,请用“<”或“>”填空.①p______q; ②-p______0; ③-p______-q ; ④-p______q ;34 114【基础巩固】1.画一条数轴,并在数轴上画出表示下列各数的点:-3,0,1,-32,1.5,+5,162,-103.2.下列图形中,不是数轴的是( )3.如图,在数轴上A、B两点所表示的有理数分别为( )A.3.5和3 B.3.5和-3 C.-3.5和3 D,-3.5和-3 4.在数轴上,原点及原点右边的点表示( )A.正数B.整数C.非负数D.有理数5. 如图,在数轴上到原点的距离为3个单位长度的点是( )A.D点B.A点C.A点和D点D.B点和C点6.有理数a、b在数轴上的位置如图所示,则下列判断中,正确的是( ) A.a>1 B.b>1C.a<-1 D.b<07.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长度到点B 时,点B 所表示的数为 ( )A .2B .-6C .2或-6D .不同于以上答案 8.在数轴上表示+2的点在原点的_______侧,它距原点的距离为_______个单位长度;表示-3的点在原点的_________侧,它距原点的距离为________个单位长度;表示+2的点在表示-3的点的________侧,它们之间的距离为________个单位长度. 9. 比0小2的数是________,比-4大5的数是_________, 比2小4的数是________.10.写一个负数,它所对应的点到原点的距离小于5:_______. 11.在-100、-120、-0.01、-116中,最大的数是_______.12.用“<”或“>”填空.(1)5________0; (2)32_______ 0; (3)2 ________-3; (4)77_______89; (5)-6________-8; (6)-13________. 13.在0与-3.5之间的负整数是_______. 14.在-2、0、1、3这四个数中比0小的数是( )A .-2B .0C .1D .315.在数轴上表示-3、0、5、2、25、-3.5的点中,不在原点右边的有 ( ) A .0个 B .1个 C . 2个 D .3个 16.实数x 、y 在数轴上的位置如图所示,则( )A .x>y>0B .y>x>0C . x<y<0D .y<x<0 17.在数轴上-1与2之间的有理数有 ( )A .3个B .2个C . 1个D .无数个1218.在数轴上点A 和点B 所表示的数分别为-2和1,若使点A 表示的数是点B 表示数的3倍,应将点A ( )A .向左平移5个单位B .向右平移5个单位C .向右平移4个单位D .向左平移1个单位或向右平移5个单位19.将-0. 01,-2,0、0.01四个数从大到小用“>”号连接,正确的是 ( ) A .-0.01>-2>0>0.01 B .-0.01>0>-2>0.01 C .0.01>0>-0.01>-2 D .0.01>-0.01>0>-2 20.在数轴上表示下列各数:+5,-3.5,,-1,-4,0,2.5,并用“<”号把这些数连接起来.【拓展提优】21.数轴上的点M 表示-5,在同一数轴上与点M 相距3个单位的点表示的数是________.22.一个点从原点开始,先向右移动1个单位,再向左移动5个单位到达终点,这个终点表示的数是________.23.如图,如果点A 、B 、C 、D 所表示的数分别为a 、b 、c 、d ,则a 、b 、c 、d 的大小关系为 ( )A .a<c<d<bB .b<d<a<cC .b<d<c<aD .a<b<c<d 24.如图,5个城市4月30日的国际标准时间(单位:时)在数轴上的表示如图所示,那么北京时间4月30日20时应是 ( )A .伦敦时间4月30日11时B .巴黎时间4月30日13时C .纽约时间4月30日5时D .首尔时间4月30日19时121225.将一刻度尺如图所示放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0cm”和“15 cm”分别对应数轴上的-3.6和x,则( )A.9<x<10 B.10<x<11 C.11<x<12 D.12<x<1326.实数a在数轴上对应的点如图所示,则a、-a、-1的大小关系是( )A.-a<a<-1 B.-a<-1<a C.a<-1<-a D.a<-a<-1的线段,则此线段在这条数轴上最多能盖27.在数轴上任取一条长度为201719住的整数点的个数是( )A.2 016 B.2 017 C.2 018 D.2 01928.如图,数轴上A、B、C三点分别表示数a、b、c,试比较-1、1、a、b、c 的大小关系.30.在一条东西走向的马路上,有一棵桃树,在桃树东面的4m和6.5 m处分别有一棵柳树和一棵杨树,在桃树西4m和4.8 m处分别有一棵槐树和一根电线杆,将桃树当做数轴的原点,并设向东方向为正,用数轴上的点表示柳树、杨树、电线杆与槐树的相对位置关系.课后练习1.用“>”或“<”填空:(1)1________-2;(2)-4_________0.2.写出所有比-5大的负整数:______________________.3.两个同号的数中,较大的负数所表示的点离原点较________,较大的正数所表示的点离原点较_________.(填“近”或“远”)4.比较下列各组数的大小:(1)58和38-;(2)311-和0.5.用“>”或“<”填空:(1)-5__________0;(2)-7_________-9:(3)5__________-10;(4)-4___________4:(5)-0.5__________-2.5.6.在0与-3.5之间的负整数是__________________________.7.据中央气象台2018年1月8日的预报,下列四个地区的最低气温分别是:哈尔滨-11℃,杭州6℃,兰州-5℃,海口27℃,则其中气温最高的地区是_________,气温最低的地区是__________.8.如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是_____________(用含m,n的式子表示).9.如图,如果点A、B、C、D所表示的数分别为a、b、c、d,则a、b、c、d 的大小关系为( )A.a<c<d<b B.b<d<a<c C.b<d<c<a D.a<b<c<d 10.在数轴上,一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数为( )A.7 B.3 C.-3 D.-211.在数轴上,A 、B 两点的位置如图所示,那么下列说法中,错误的是 ( )A .点A 表示的数是负数B .点B 表示的数是负数C .点A 表示的数比点B 表示的数大D .点B 表示的数比0小 12.将四个数-0.01,-2,0,0.01从大到小用“>”连接,正确的是 ( ) A .-0.01>-2>0>0.01 B .-0.01,>0>-2>0.01 C .0.01>0>-0.01>--2 D .0.01>-0.01>0>-213.数轴上的点A 、B 、C 、D 分别表示数a 、b 、c 、d ,已知点A 在点B 的左侧,点C 在点B 的左侧,点D 在点B 、C 之间,则下列式子中,可能成立的是 ( )A .a<b<c<dB .b<c<d<aC .c<d<a<bD .c<d<b<a 14.如图,数轴上A B 、两点分别对应实数a b 、, 则下列结论正确的是( ) A .0a b +> B .0ab >C .0a b ->D .||||0a b ->15.在数轴上画出表示下列各数的点,并将它们按照从小到大的顺序排列.2,-1.5,0,4.16.画一条数轴,并在数轴上画出表示下列各数的点,并将它们按照从小到大的顺序排列.52,-3,0.4,-32,1.5,-2.5.BA10 a b17.如图,在数轴上有A、B、C三个点.请回答下列问题:(1)将点B向左移动3个单位长度后,三个点所表示的数谁最小?是多少?(2)将点A向右移动4个单位长度后,三个点所表示的数谁最小?是多少?(3)将点C向左移动6个单位长度后,这时点B所表示的数比点C所表示的数大多少?(4)怎样移动点A、B、C中的两个点,使三个点表示的数相同?有几种移动的方法?预习:2.4绝对值与相反数1.若3a =,则a 的值是 ( )A .-3B .3C .13 D .±32.如果一个有理数的绝对值是4,那么在数轴上表示这个数的点位于原点的 ( )A .左边B .右边C .左边或者右边D .以上都不正确 3.如图,点A 所表示的有理数的绝对值是 ( )A .-1B .1C .±1D .以上都不对 4.下列说法中,错误的是 ( ) A .任何数的绝对值都是正数 B .一个正数的绝对值还是正数 C .一个负数的绝对值是正数 D .任何数的绝对值都不是负数 5.下列说法中,不正确的是 ( ) A .正数的相反数一定是负数 B .有理数都有相反数C .3.5与72-互为相反数 D .符号不同的两个数互为相反数6.如图,互为相反数的点是 ( )A .点A 与点CB .点B 与点DC .点B 与点CD .点A 与点D 7.若一个数的相反数是非负数,则这个数一定是 ( ) A .负数 B .正数 C .非负数 D .非正数 8.下列判断中,正确的有 ( ) (1)22+=;(2)22-=;(3)55--=;(4)0a >.(a 表示任何一个有理数) A .4个 B .3个 C .2个 D .1个 9.-5的绝对值是 ( )A .5B .-5C .15D .15-10.如果a 与1互为相反数,则2a +等于 ( )A .2B .-2C .1D .-1。

苏教版七上 有理数2.6有理数的乘法与除法 知识点+例题+练习(非常好)

苏教版七上 有理数2.6有理数的乘法与除法 知识点+例题+练习(非常好)

2.6有理数的乘法与除法【学习目标】1.会根据有理数的乘法法则进行乘法运算,并运用相关运算律进行简算;2.理解乘法与除法的逆运算关系,会进行有理数除法运算;3. 巩固倒数的概念,能进行简单有理数的加、减、乘、除混合运算;4. 培养观察、分析、归纳及运算能力.【要点梳理】要点一、有理数的乘法1.有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0.要点诠释: (1) 不为0的两数相乘,先确定符号,再把绝对值相乘.(2)当因数中有负号时,必须用括号括起来,如-2与-3的乘积,应列为(-2)×(-3),不应该写成-2×-3.2. 有理数的乘法法则的推广:(1)几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数的个数有偶数个时,积为正;(2)几个数相乘,如果有一个因数为0,那么积就等于0.要点诠释:(1)在有理数的乘法中,每一个乘数都叫做一个因数.(2)几个不等于0的有理数相乘,先根据负因数的个数确定积的符号,然后把各因数的绝对值相乘.(3)几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么至少有一个因数为0.3. 有理数的乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc=(ab)c=a(bc).(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.要点诠释:(1)在交换因数的位置时,要连同符号一起交换.(2)乘法运算律可推广为:三个以上的有理数相乘,可以任意交换因数的位置,或者把其中的几个因数相乘.如abcd =d(ac)b .一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.如a(b+c+d)=ab+ac+ad . (3)运用运算律的目的是“简化运算”,有时,根据需要可以把运算律“顺用”,也可以把运算律“逆用”. 要点二、有理数的除法1.倒数的意义: 乘积是1的两个数互为倒数.要点诠释:(1)“互为倒数”的两个数是互相依存的.如-2的倒数是,-2和是互相依存的; (2)0和任何数相乘都不等于1,因此0没有倒数;(3)倒数的结果必须化成最简形式,使分母中不含小数和分数; (4)互为倒数的两个数必定同号(同为正数或同为负数). 2. 有理数除法法则:法则一:除以一个不等于0的数,等于乘这个数的倒数,即. 法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.要点诠释:(1)一般在不能整除的情况下应用法则一,在能整除时应用法则二方便些.(2)因为0没有倒数,所以0不能当除数.(3)法则二与有理数乘法法则相似,两数相除时先确定商的符号,再确定商的绝对值.要点三、有理数的乘除混合运算由于乘除是同一级运算,应按从左往右的顺序计算,一般先将除法化成乘法,然后确定积的符号,最后算出结果.12-12-1(0)a b ab b÷=≠要点四、有理数的加减乘除混合运算有理数的加减乘除混合运算,如无括号,则按照“先乘除,后加减”的顺序进行,如有括号,则先算括号里面的. 【典型例题】类型一、有理数的乘法运算例1.算式(﹣1)×(﹣3)×之值为何?( ) A .B .C .D .例2.(1); (2)(-5)×(-8.1)×3.14×0.【基础巩固】1.计算:()111513333⨯--⨯=⨯( )=_______. 2.计算:(-4)×125×(-25)×(-0.08)=_______.3.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积 ( )A .一定为正B .一定为负C .为零D .可能为正,也可能为负4.若a<0,b>0,则a b _______0;若a>0,b>0,则ab _______0; 若a =0,b<0,则a b _______0;若a>0,b<0,则ab _______0.54(3)1(0.25)65⎛⎫-⨯⨯-⨯- ⎪⎝⎭5.若干个不等于0的有理数相乘,积的符号( ) A .由因数的个数决定 B .由正因数的个数决定 C 由负因数的个数决定D .由负因数和正因数个数的差决定 6.下列运算结果为负值的是 ( )A .(-7)×(-6)B .(-6)+(-4)C .0×(-2)(-3)D .(-7)-(-15) 7.利用分配律计算981009999⎛⎫-⨯ ⎪⎝⎭时,正确的方法可以是( ) A .-981009999⎛⎫-+⨯ ⎪⎝⎭ B .-981009999⎛⎫--⨯ ⎪⎝⎭ C .981009999⎛⎫-⨯ ⎪⎝⎭ D .11019999⎛⎫--⨯ ⎪⎝⎭ 8.下列运算错误的是A .(-2)×(-3)=6B .()1632⎛⎫-⨯-= ⎪⎝⎭C .(-5)×(-2)×(-4)=-40D .(-3)×(-2)×(-4)=-24 9.下列说法错误的是 ( ) A .任何有理数都有倒数 B .互为倒数的两个数的积为1 C .互为倒数的两个数同号 D .1和-1互为负倒数 10.计算下列各题:(1)42575610⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎝⎭⎝⎭; (2)()511.249⎛⎫⨯-⨯- ⎪⎝⎭;(3)3416401373⎛⎫⎛⎫-⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭; (4)-5×8×(-7)×(-0.25);(5)318772156⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.11.用简便方法计算:(1)(-25)×(-85)×(-4); (2)11116428⎛⎫--⨯ ⎪⎝⎭;(3)315606060777⨯-⨯+⨯; (4)()()()()7.3342.07 2.077.33-⨯+-⨯-;(5) 2415127754⎛⎫⎛⎫-÷-⨯⨯-÷ ⎪ ⎪⎝⎭⎝⎭;(7) 134118432-÷⨯⨯-;【拓展提优】12.倒数等于它本身的有理数是_______.13.算式411010.05810.0454⎛⎫-⨯-+=-+- ⎪⎝⎭.这个运算过程应用了 ( )A .加法结合律B .乘法结合律C .乘法交换律D .乘法分配律 14.一个数的相反数与这个数的倒数的和为0,则这个数的绝对值为 ( ) A .2 B .1 C .0.5 D .0 15.若ab ≠0,则a ba b+的取值不可能是 ( ) A .0 B .1 C .2 D .-2 16.下列说法正确的是 ( ) A .有理数m 的倒数是1mB .任何正数大于它的倒数C .小于1的数的倒数一定大于1D .若两数的商为正,则这两个数同号 17.已知230x y ++-=,求152423x y xy --+的值.18.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是1,求(a +b)cd -2012m 的值.19.已知a、b互为相反数,c、d互为倒数,x的绝对值等于1,求x2+(a+b)x -(a+b-cd)的值.课后作业一、填空题1.运用运算律填空:(1)5×(-3)=(-3)×_______.(2)[(-3)×2]×5=(-3)×(_______×_______).(3)(-12)×[12+(-13)]=(-12)×_______+(-12)×_______.2.12的倒数是_______.3.计算:19.8×125-12.5×118=_______.4.114的相反数与114的倒数的积是_______.5.绝对值小于2011的所有整数的积是_______.二、选择题6.-13的倒数是( )A.-3 B.3 C.-13D.137.下列运算其中错误的有( )①2×(-4)=-4×2=-8;②3×(-14)=34;③4×3×(-13)=4×(-1)=-4;④10×(15-5)=10×15-10×5=2-50=48.A.1个B.2个C.3个D.4个8.利用运算律计算(-334×4)时,下列运算正确的是( )A.-3×4+34×4 B.-3×34×4 C.-3×4-34×4 D.-3×4-349.下列计算中正确的是( )A.-10÷10=1 B.(-10)÷(-1)=-10 C.1÷(-10)=-10 D.0÷(-10)=0 10.下列运算错误的是( )A.3÷(-13)=3×(-3) B.-5÷(-12)=-5×(-2)C.8÷(-2)=8+2 D.0÷3=011.如果1a a=-,那么a 是 ( )A .正数B .负数C .非负数D .非正数 12.两个不为0的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数 ( )A .一定相等B .一定互为倒数C .一定互为相反数D .相等或互为相反数 三、解答题 13.计算:(1)(-4)×(+8.9)×(-0.25); (2)(13-14+25-56)×(-60); (3) (-0.25)×0.5×(-427)×4;(4)(-5)×(-367)+(-7)×(-367)-(-12)×(-367).(5)(-5)÷(217 )×45×(-214)÷7; (6) -8÷[(-38)×38]÷(-1023);预习:2.7有理数的乘方1.计算:234-⎛⎫⎪⎝⎭的值是( )A.一916B.916C.一169D.1692.下列各对数中,数值相等的是( )A.+32与+22B.-23与(-2)3C.-32与(-3)2D.3×22与(3×2)2 3.下列等式成立的是( )A.-3×23=-32×2 B.-32=(-3)2C.-23=(-2)3 D.-32=-23 4.对于式子(-3)6与-36,下列说法中,正确的是( ) A.它们的意义相同B.它们的结果相同C.它们的意义不同,结果相等D.它们的意义不同,结果也不相等5.下列叙述中:①正数与它的绝对值互为相反数;②非负数与它的绝对值的差为0;③-1的立方与它的平方互为相反数;④±1的倒数与它的平方相等.其中正确的个数有( )A.1 B.2 C.3 D.46.将3×3×3写成乘方的形式是;将-3×3×3写成乘方的形式是;将(-3)×(-3)×(-3)写成乘方的形式是.7.计算:-32+(-2)3的值是.8.在有理数-32,0,20,-1.25,314,-(-2),(-4)2中,正数有个.9.平方等于它本身的数是;立方等于它本身的数是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6、有理数的乘法与除法
7、有理数乘方的意义,求有理数的正整数指数幂;用科学记数法表示较大的数.
8、有理数的混合运算
一、正数与负数
在小学里,我们学过正数、负数、零.你知道下边边图片中各数的意义吗?
分别说出 8844.43、-154、-117.3、-0.102%的意义。
正数与负数的意义
1、意义:像 8848.43、100、357、78 这样的数叫做
4、用数轴上的点表示无理数 无理数可以用数轴上的点表示吗? 例 3、面积为 2 的正方形的边长 a 是无理数,如何在数轴上画出表示 a 的点? 1.将边长为 a 的正方形放在数轴上(如图); 2.以原点为圆心,a 为半径,用圆规画出数轴上的一个点 A. 点 A 就表示无理数 a. 按要求画出表示 a 的点,如图.
例 1.把笔尖放在数轴的原点,沿数轴先向左移动 5 个单位长度,再向右移 动 3 个单位长度,这时笔尖停在“ 2 ”的位置上.
用数轴和算式可以将以上过程及结果分别表示为:
算式:________________________
练一练 计算并注明相应的运算法则: (1) (15) (3) ; (2) (180) (20) ; (3) 5 (5) ; (4) 0 (2) .
在数轴上,用原点右边且到原点的距离是 1.5 个单位长度的点表示 1.5,用 原点左边且到原点的距离是 2.4 个单位长度的点表示-2.4…… 例 1 分别写出数轴上 A、B、C 表示的数:
例 2 在数轴上画出表示下列各数的点:
1.5,3, 3 ,1.5, 3 1 .
Байду номын сангаас
5
2
有理数都可以用数轴上的点表示.
3
10
正数:
负数 :
应用一、用正数、负数表示相反意义的量 0 C 以上的温度用正数表示, 0 C 以下的温度用负数表示.日常生活中,许
多具有相反意义的量都可以用正数、负数来表示.
例 2 (1)如果向北走 8km 记作+8km,那么向南走 5km 记作什么? (2)如果粮库运进粮食 3t 记作+3t,那么-4t 表示什么?
4
4
(4) 0 _______.
2、填空: (1) 2 的符号是____,绝对值是______;10.5 的符号是______,绝对值是______;
5
(2)符号是“+”号,绝对值是 3 的数是______符号是“-”号, 7
(3)绝对值是 9 的数是______;符号是“-”号,绝对值是 0.37 的数是______.
你会用数轴上的点表示学校、小明家、小丽家的位置吗?
练一练: 你能说出数轴上的点 A、B、C、D、E 所表示的数的绝对值吗?
2、绝对值的表示方法 通常,我们将数 a 的绝对值记为 a .这样例 1 的结论可以写成 4 =4, 3.5 =3.5 ※ 小结:正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0. 练一练 1、求下列各数的绝对值: 6, π, 3, 2.7, 0. 2、已知一个数的绝对值是 5 ,求这个数
②规定直线上从原点向右为正方向(画箭头表示),向左为负方向.
③取适当长度(如 1cm)为单位长度,在直线上,从原点向右每隔一个单位长度
取一点,依次表示 1,2,3……从原点向左每隔一个单位长度取一点,依次表示
-1,-2,-3……
按照要求,同步完成画数轴的过程,如下图:
数轴三要素为:原点、正方向、单位长度. 3、用数轴上的点表示有理数
小试牛刀
1、根据绝对值与相反数的意义填空:
(1) 2.3 _______, 7 _________, 6 _________; 4
(2) 5 _______, 5 的相反数是_______, 10.5 _________,
(3) 10.5 的相反数是_______, 7 _________, 7 的相反数是________
3、利用相反数的意义化简一个数的符号 一般的,a 的相反数是-a,-a 的相反数是 a,即-(-a)=a.
表示一个数的相反数,可以在这个数的前面添一个“-”号.如-5 的相反 数可以表示为-(-5),而我们知道-5 的相反数是 5,所以-(-5)=5.
例 2 化简:-(+2),-(+2.7),-(-3),-(-3). 4
2
3、数轴上的点 A 和 B 分别表示- 1 与- 3 ,哪一个点离原点的距离较近?- 1 与
24
2
- 3 哪一个数较大? 4
四、绝对值与相反数
1、绝对值的定义:数轴上表示一个数的点与原点的距离叫做这个数的绝对 值.
想一想:小明家在学校正西方 3 km 处,小丽家在学校正东方 2 km 处,他 们上学所花的时间与各家到学校的距离有关.
有理数相加相关规律 加法交换律:两个数相加,交换加数的位置,和不变.
ab ba
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不 变。
(a b) c a (b c)
(1)上面式中字母 a、b、c 分别表示任意的一个有理数,在同一个式子中,相同 字母只能表示同一个数; (2)加法的运算律可以推广到三个以上有理数相加的情况.根据有理数加法的运 算律,在进行有理数的加法运算时,可以交换加数的位置,也可以先把其中几个 数相加. 例 2 计算:
应用二、整数与分数的扩展
1、


统称为整数.
2、

统称为分数.
例 3 把下列各数填入相应的集合内:99.9 ,6, 1 ,0,-101 ,+3 1 ,1.25 ,
3
4
0.01,+67, 10% , 5 ,2009, 18 . 13
整数集合{
};分数集合{
};
正数集合{
};负数集合{
}.
小试牛刀
1.把下列各数填入相应的集合内:
比较①、②两式,我们发现:-8“减去-3”与“加上+3”结果是相等的,即 5 (3) 5 3 . 小结;减去一个数,等于加上这个数的相反数. 有理数减法法则.字母表示:a-b=a+(-b).由此可见,有理数的减法运算可以 转化为加法运算.
3、用“<”或“>”填空: (1) 12.3 12 ; (2) (2.75)
(2.67) ;
(3)} 8 8 ;
(4) 0.4 (0.4) .
五、有理数的加法与减法 1、有理数的加法 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,绝对值相等时,和为 0;绝对值不等时,取绝对值较大的 加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与 0 相加,仍得这个数.
小试牛刀
1、判断题. (1)无理数都是无限小数.
(2)无限小数都是无理数.
(3)有理数与无理数的差都是有理数. (4)两个无理数的和是无理数.
2 、 将 下 列 各 数 填 入 相 应 括 号 内 : 6 ,9.3, 1 ,42 , 0,-0.33 , 0.333 , 6
1.414 213 56 ,-2π, 3.303 003 000 3 , -3.141 592 6 .
(1) (-23)+(+58)+(-17)
(2)(-2.8)+(-3.6)+(-1.5)+3.6
(3)
1 6
+-
2 7
+-
5 6
++
5 7
2、有理数的减法 如果某天最高气温是 5℃,最低气温是-3℃,那么这天的日温差记作[5-(- 3)]℃,怎样计算[5-(-3)]呢?
5 (3) 8 ① 538 ②
-117.3、-0.102%这样的数叫做
0 既不是
也不是
2、正数与负数的写法及读法
“+”读作“
”,如“+ 2 ”读作“ 3
“-”读作“
”,如“-117.3”读作“
;像-154、-38.87、
”,正号通常省略不写; ”.
例 1 指出下列各数中的正数、负数。
1
9
+7,-9, ,-4.5, 998 , - , 0 .
二、有理数和无理数 有理数
我们学过整数(正整数、负整数、零)和分数(正分数、负分数).实际上,
所有整数都可以写成分母为 1 的分数的形式.如 5= 5 , 4= 4 , 0= 0 .
1
11
有理数的定义:我们把能写成分数形式 m (m、n 是整数,n≠0)的数叫做 n
有理数.
问一问:有限小数和无限循环小数是有理数吗?
练一练 1、分别写出数轴上 A、B、C、D、E 表示的数:
2、在数轴上画出表示下列各数的点: 5.5, 3.5, 2, 3,0.5. 5、数轴上的点表示的数的大小关系: 例 4、在数轴上画出表示 0、5、 3 、 2 的点,你能比较这几个数的大小吗?
如图,画出数轴,并用数轴上的点表示 0、5、 3 、 2 .
5, 7.25, 3 , 0, 12 , 0.32, 1.
45
2
正数集合{
};负数集合{
}.
2.填空:
(1)如果买入 200kg 大米记为+200kg,那么卖出 120kg 大米可记作__________;
(2)如果-50 元表示支出 50 元,那么 +40 元表示___________; (3)太平洋最深处的马里亚纳海沟低于海平面 11 034m,它的海拔高度可表示 为____________. 3.用正数或负数表示下列问题中的数: (1)从同一港口出发,甲船向东航行 142 km,乙船向西航行 142km; (2)从同一车站出发,A 车向北行驶 50km,B 车向南行驶 40km; (3)拖拉机加油 50L,用去油 30L.
练习 怎样用数轴上的点表示圆周率π?
1.画一个直径为 1 的圆片,将圆片上的点 A 放在原点处; 2.把圆片沿数轴向右滚动一周,点 A 到达的位置点 A′表示的数就是π 按要求画出表示π的点,如图.
相关文档
最新文档