【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第24讲 平面向量的概念及其线性运算

合集下载

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第32讲 数列的综合应用

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第32讲 数列的综合应用


返回目录
第32讲
数列的综合应用
• 点 面 讲 考 向
[ 思考流程 ] 条件:给出满足一定条件的数列 {an} 和 {bn}.目标:(1)求{an}和{bn}的通项公式;(2)求参数的取值 范围.方法:(1)先求数列{an}的公比,即可求数列{an}的通 bn n-1 项公式,通过 Tn=n bn,推出 = ,利用累乘法求出 bn-1 n+1
返回目录
第32讲
数列的综合应用
► 探究点一
等差等比数列的综合问题

例 1 [2013· 宁波二模] 设公比大于零的等比数列{an}的 1,S4=5S2,数列{bn}的前 n 项和为 点 前 n 项和为 Sn,且 a1= 面 Tn,满足 b1=1,Tn=n2bn,n∈N*. 讲 (1)求数列{an}和{bn}的通项公式; 考 (2)设 cn=(Sn+1)(nbn-λ),若数列{cn}是递减数列,求实 向 数 λ 的取值范围.
返回目录
第32讲
数列的综合应用
3+(-1)n 解:(1)因为 dn= , 2
• 点 面 讲 考 向
3×2n 所以 an=d1+d2+d3+„+d2n= 2 =3n. 故数列{an}的通项公式为 an=3n. 因为 b2, b4 为方程 x2-20x+64=0 的两个不相等的实 数根, 所以 b2+b4=20, b2 · b4=64.又数列{bn}的公比大于 1, 解得 b2=4,b4=16,故 q=2,a1=2,所以数列{bn}的通 项公式为 bn=2n.
2 = , n(n+1) 2 所以 bn= ,当 n=1 时也满足. n(n+1) 2 故数列{bn}的通项公式为 bn= . n(n+1)
返回目录
第32讲

2014高考数学(文)一轮复习课件选修系列不等式选讲

2014高考数学(文)一轮复习课件选修系列不等式选讲
不等式选讲
考纲解读 考向预测 课前热身
考点突破
即时巩固 课后拔高
考点 六 考点 五 考点 四 考点 三 考点 二 考点 一
真题再现 误区警示 规律探究
考纲解读
返回
考向预测
返回
课前热身
返回
返回
考点 一
考点突破
返回
返回
返回
返回
返回
返回
考点 二
返回
返回
返回
返回
返回
返回
考点 三
返回
返回
返回
考点 四
返回
返回
返回
返回
返回
返回
考点 五
返回
返回
返回
考点 六
返回
返回
返回
返回
真题再现
返回
返回
误区警示
返回
规律探究
返回
返回
即时巩固
返回
返回
返回
课后拔高
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第4讲 函数的概念及其表示

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第4讲 函数的概念及其表示
双 向 固 基 础 点 面 讲 考 向 多 元 提 能 力 教 师 备 用 题
第4讲 函数的概念及其表示
返回目录
教学要求
返回目录
第4讲
双 向 固 基 础
函数的概念及其表示
非空数集 任意 唯一 任意
非空集合
唯一确定
定义域 值域
对应关系
返回目录
第ቤተ መጻሕፍቲ ባይዱ讲
双 向 固 基 础
函数的概念及其表示
交集 意义
返回目录
返回目录
第4讲
函数的概念及其表示
点 面 讲 考 向
返回目录
第4讲
函数的概念及其表示
点 面 讲 考 向
返回目录
第4讲
函数的概念及其表示
点 面 讲 考 向
返回目录
第4讲
函数的概念及其表示
点 面 讲 考 向
返回目录
第4讲
函数的概念及其表示

点 面 讲 考 向
返回目录
第4讲
函数的概念及其表示

点 面 讲 考 向
函数的概念及其表示
点 面 讲 考 向
返回目录
第4讲
函数的概念及其表示
点 面 讲 考 向
返回目录
第4讲
函数的概念及其表示
点 面 讲 考 向
返回目录
第4讲
函数的概念及其表示

点 面 讲 考 向
返回目录
第4讲
函数的概念及其表示

点 面 讲 考 向
返回目录
第4讲
函数的概念及其表示
点 面 讲 考 向
返回目录
第4讲
函数的概念及其表示
教 师 备 用 题
返回目录
第4讲

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第22讲 正弦定理和余弦定理

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第22讲 正弦定理和余弦定理

返回目录
第22讲
正弦定理和余弦定理
• 双 向 固 2.在△ABC 基 础=________.
[答案] 7
中,已知 a=5,b=2
3,C=30°,则 c
[解析] 由余弦定理得 c2=a2+b2-2abcos C=52+ (2 3)2-2×5×2 3cos 30°=7,所以 c= 7.
返回目录
第22讲
返回目录
第22讲
正弦定理和余弦定理
[答案] (1)直角
(2)等腰
• 点 面 讲 考 向
[解析] (1)已知 bcos C+ccos B=asin A,由正弦定理可得 sin Bcos C+sin Ccos B=sin Asin A⇒sin(B+C)=sin2A⇒sin A =sin2A⇒sin A=1,故 A=90°,故△ABC 为直角三角形. (2)方法一:因为 sin C=2sin Acos B, 又 sin C=sin(A+B)=sin Acos B+cos Asin B, ∴sin Acos B-cos Asin B=sin(A-B)=0,即 A=B. ∴△ABC 为等腰三角形. a2+c2-b2 a2+c2-b2 方法二:c=2a· = , c 2ac ∴c2=a2+c2-b2,即 a2=b2,a=b. ∴△ABC 为等腰三角形.
返回目录
第22讲
正弦定理和余弦定理

探究点二 利用正弦定理、 余弦定理判断三角形形状
• 点 面 讲 考 向

例2
在△ABC 中 a,b,c 分别为内角 A,B,C 所对
π π sin 2C b 的边, 3 <C< 2 且 = ,判断△ABC 的形 a-b sin A-sin 2C 状.

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第7讲 二次函数

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第7讲 二次函数

返回目录
第7讲
双 向 固 基 础
二次函数
2.二次函数求最值时的注意问题 (1)已知二次函数 f(x)=(k2-1)x2+2x-3,函数 f(x) 有最小值,则 k>1 或 k<-1.( ) (2)已知二次函数 f(x)=x2-4x+5,若 x∈[0,3],则 函数的最大值为 f(0)=5,最小值为 f(3)=2.( )
返回目录
第7讲
双 向 固 基 础
二次函数
—— 疑 难 辨 析 ——
1.二次函数单调性的求解误区 (1)已知二次函数 f(x)=(k2-1)x2+2x-3. 2 ①函数 f(x)的单调递增区间是(-∞, 2], 则 k= .( ) 2 2 ②函数 f(x)在区间(-∞, 2]上单调递增, 则 k=± 2 .( ) (2)函数 f(x)=x2-kx+1 是区间(-1,2)上的单调函数, 则 k≥4.( )
解:(1)证明:易知与原二次函数对应的一元二次方程 是 x2-2(m-1)x+m2-2m-3=0. 因为 Δ = 4(m - 1)2 - 4(m2 - 2m - 3) = 4m2 - 8m + 4 - 4m2+8m+12=16>0, 所以方程 x2-2(m-1)x+m2-2m-3=0 必有两个不 相等的实数根. 故不论 m 取何实数, 这个二次函数的图像与 x 轴必有 两个交点.
返回目录
第7讲
二次函数
点 面 讲 考 向
[思考流程] 条件: 给出一个带参数的二次函数. 目标: (1)证明二次函数的图像与 x 轴必有两个交点;(2)求二次函 数的解析式.方法:(1)用判别式判断;(2)利用根与系数的 1 1 2 关系将 + = 表示为关于 m 的方程, 解方程得到 m 的值, x1 x2 3 从而得到函数的解析式.

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第1讲 集合及其运算

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第1讲 集合及其运算

[答案] a≥1
[解析] B={x|x-a≤0}={x|x≤a},因为 A⊆B,所 以 a≥1.
返回目录
第1讲
双 向 固 基 础
集合及其运算
—— 疑 难 辨 析 ——
1.集合问题中的易错易混点 已知集合 A={x|y=x2}, B={y|y=x2}, C={(x, y)|y=x2}, 则 A=B=C.( )
返回目录
第1讲
双 向 固 基 础
集合及其运算
(5)集合的代表元素 集 {x|f(x)=0} {x|f(x)>0} {x|y=f(x)} {y|y=f(x)} 合 集 方程f(x)= 函数y= 合 0的解集 不等式 f(x) f(x)的定 函数 y= ________ ________ 含 >0 的解集 义域 f(x)的值域 义 {(x,y)|y=f(x)}
返回目录
第1讲
集合及其运算
点 面 讲 考 向
变式题 (1)若集合 M={0,1,2},N={(x,y)|x-2y +1≥0 且 x-2y-1≤0,x,y∈M},则 N 中元素的个数为 ________. (2)设集合 A={x|x2-3x+2=0},B={x|x2+2(a+1)· x+ (a2-5)=0}.若 A∩B={2},则实数 a 的值为________.

点 面 讲 考 向
例 1 (1)[2013· 山东卷改编] 已知集合 A={0,1, 2} , 则 集 合 B = {x - y|x∈A , y∈A} 中 元 素 的 个 数 是 ________. *24 中含有的元素个数为 (2) 集 合 x∈N x ∈Z ________. (3)已知 A={a+2,(a+1)2,a2+3a+3}.若 1∈A, 则实数 a 构成的集合 B 的元素个数是________.

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第28讲 数列的概念

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第28讲 数列的概念

返回目录
第28讲
数列的概念
• 双 向 2.求数列通项公式的方法 固 基 (1)数列1,0,1,0,1,0,„的通项公式只能是an= 础 1+(-1)n+1
.( ) 2 (2)[2012· 全国卷改编] 数列{an}的前n项和为Sn=n2- 1,则其通项公式为an=Sn-Sn-1=2n-1.( ) 1 (3)若已知数列{an}的递推公式为an+1= ,且a2 2an-1 =1,则可以写出数列{an}的任何一项.( ) (4)所有的数列都有通项公式.( ) (5)数列1,3,5,„,2n+5,„的通项公式为an=2n +5.( )
返回目录
第28讲
数列的概念
• 双 向 固 基 础
[答案] (1)×
(2)×
(3)√
(4)×
(5)×
[解析] (1)数列1,0,1,0,1,0,„的通项公式可以 1+(-1)n+1 nπ 是an= ,也可以是 a . n=sin 2 2 (2)要考虑n=1的情况,该数列的通项公式为an=
1.数列的概念 (1)数列的定义:按照__________ 一定顺序 排列着的一列数称为 项 数列,数列中的每一个数叫作这个数列的________ . (2)数列与函数的关系:从函数观点看,数列可以看成 定义域 的 函 数 以 正 整 数 集 N*( 或 它 的 有 限 子 集 ) 为 ________ an=f(n),当自变量按照从小到大的顺序依次取值时,所 ________ 对应的一列函数值. 列表法 、 ________ 图像法 和 (3) 数 列 的 三 种 表 示 法 : ________ ______________ 通项公式法 .
返回目录
第28讲
数列的概念

2014届高考数学文一轮复习方案(8,305页,附详细解析)[

2014届高考数学文一轮复习方案(8,305页,附详细解析)[

课时作业(一)A [第1讲 集合及其运算](时间:35分钟 分值:80分)基础热身1.已知集合S ={1,2},T ={1,3},则S ∪T =( )A .{1}B .{2,3}C .{1,2,3}D .{1,2,1,3}2.[2012·商丘模拟] 设全集U ={1,2,3,4,5,6,7,8},集合A ={1,2,3,5},B ={2,4,6},则图K1-1中的阴影部分表示的集合为( )A .{2}B .{4,6}C .{1,3,5}D .{4,6,7,8}3.[2012·安徽省城名校联考] 若集合A ={x |x 2<9},B ={y |3y +1>0},则集合M ={x ∈N |x ∈A ∩B }子集的个数为( )A .2B .4C .8D .164.若集合A ={x |2x -1>0},B ={x ||x |<1},则A ∩B =________.能力提升5.已知集合A ={x |x 2-4x -12<0},B ={x |x <2},则A ∪(∁R B )=( )A .{x |x <6}B .{x |-2<x <2}C .{x |x >-2}D .{x |2≤x <6}6.[2013·江南十校联考] 若全集为R ,集合A ={x |log 12(2x -1)>0},则∁R A =( ) A.12,+∞ B .(1,+∞) C .0,12∪[1,+∞) D .-∞,12∪[1,+∞) 7.[2012·开封模拟] 设全集U ={x |x ≤7,x ∈N *},集合A ={1,3},B ={2,6},则∁U (A ∪B )=( )A .{2,3,6}B .{1,2,7}C .{2,5,7}D .{4,5,7}8.[2012·北京卷] 已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( )A .(-∞,-1) B.⎝⎛⎭⎫-1,-23 C.⎝⎛⎭⎫-23,3 D .(3,+∞)9.已知集合A ={(x ,y )|x ,y 为实数,且x 2+y 2=1},B ={(x ,y )|x ,y 为实数,且y =x },则A ∩B 的元素个数为________.10.集合A ={x |ax -1=0},B ={x |x 2-3x +2=0},且A ∪B =B ,则实数a 的值为________.11.已知x ∈R ,y >0,集合A ={x 2+x +1,-x ,-x -1},集合B =-y ,-y 2,y +1,若A =B ,则x 2+y 2的值为____________________.12.(13分)集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},满足A ∩B ≠∅,A ∩C =∅,求实数a 的值.难点突破13.(12分)集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集的个数;(3)当x ∈R 时,若A ∩B =∅,求实数m 的取值范围.课时作业(一)B [第1讲 集合及其运算](时间:35分钟 分值:80分)基础热身1.[2012·安徽示范高中联考] 已知集合M ={y |y =2x ,x ∈R },N ={y |y =x 2,x ∈R },则M ∩N 等于( )A .(0,+∞)B .[0,+∞)C .{2,4}D .{(2,4),(4,16)}2.[2012·浙江卷] 设全集U ={1,2,3,4,5,6},集合P ={1,2,3,4},Q ={3,4,5},则P ∩(∁U Q )=( )A .{1,2,3,4,6}B .{1,2,3,4,5}C .{1,2,5}D .{1,2}3.[2012·合肥模拟] 已知M ={x |y =3x -1},N ={x |y =log 2(x -2x 2)},则∁R (M ∩N )=( )A.13,12B .-∞,13∪12,+∞ C .0,12D .(-∞,0)∪12,+∞ 4.已知全集U ={1,2,3,4,5},集合A ={x |x 2-3x +2=0},B ={x |x =2a ,a ∈A },则集合∁U (A ∪B )=________.能力提升5.[2012·驻马店模拟] 集合A ={x |x 2-2x +a >0},1∉A ,则实数a 的取值范围是( )A .(-∞,0]B .[0,+∞)C .[1,+∞)D .(-∞,1]6.[2012·襄阳模拟] 设全集U =A ∪B ,定义:A -B ={x |x ∈A ,且x ∉B },集合A ,B 分A -B图7.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A 等于( )A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}8.已知集合A ,B ,A ={x |-2≤x <2},A ∪B =A ,则集合B 不可能...为( ) A .∅ B .{x |0≤x ≤2}C .{x |0<x <2}D .{x |0≤x <2}9.已知集合M ={(x ,y )|x +y =1},N ={(x ,y )|x -y =1},则M ∩N =________.10.设集合A ={5,log 2(a +3)},B ={a ,b },若A ∩B ={2},则A ∪B =________.11.集合A ={(x ,y )|y =1-x 2},B ={(x ,y )|y =x +b },若A ∩B 的子集有4个,则b 的取值范围是________.12.(13分)[2012·芜湖模拟] 已知集合A ={x |-2<x -1<2},B ={x |x 2+ax -6<0},C ={x |x 2-2x -15<0}.(1)若A∪B=B,求a的取值范围;(2)是否存在a的值使得A∪B=B∩C,若存在,求出a的值;若不存在,请说明理由.难点突破13.(6分)(1)[2012·北京西城区模拟] 已知集合A={a1,a2,…,a20},其中a k>0(k=1,2,…,20),集合B={(a,b)|a∈A,b∈A,a-b∈A},则集合B中的元素至多有() A.210个B.200个C.190个D.180个(6分)(2)[2012·北京朝阳区模拟] 已知集合A={(x,y)|x2+y2≤4},集合B={(x,y)|y≥m|x|,m为正常数}.若O为坐标原点,M,N为集合A所表示的平面区域与集合B所表示的平面区域的边界的交点,则△MON的面积S与m的关系式为________.课时作业(二)[第2讲命题及其关系、充分条件、必要条件](时间:35分钟分值:80分)基础热身1.[2012·重庆卷] 命题“若p,则q”的逆命题是()A.若q,则p B.若綈p,则綈qC.若綈q,则綈p D.若p,则綈q2.[2013·安徽示范高中联考] 设a>0且a≠1,则“函数f(x)=a x在R上是增函数”是“函数g(x)=x a在R上是增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.下列命题中为真命题的是()A.命题“若x>y,则x>|y|”的逆命题B.命题“若x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>0,则x>1”的逆否命题4.[2013·扬州中学月考] 已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是________________________.能力提升5.“a=2”是“函数f(x)=x a-12为偶函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.下列有关命题的说法中,正确的是()A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”B.“x>1”是“x2+x-2>0”的充分不必要条件C.命题“∃x0∈R,使得x20+x0+1<0”的否定是“∀x∈R,都有x2+x+1>0”D.命题“若α>β,则tanα>tanβ”的逆命题为真命题7.[2013·江南十校联考] 下列说法不正确的是()A.“∃x0∈R,x20-x0-1<0”的否定是“∀x∈R,x2-x-1≥0”B.命题“若x>0且y>0,则x+y>0”的否命题是假命题C.“∃a∈R,使“方程2x2+x+a=0的两根x1,x2满足x1<1<x2”和“函数f(x)=log2(ax -1)在[1,2]上单调递增”同时为真D.△ABC中,A是最大角,则sin2B+sin2C<sin2A是△ABC为钝角三角形的充要条件8.[2012·郑州模拟] 设p :|2x +1|>a ,q :x -12x -1>0,使p 是q 的必要不充分条件的实数a 的取值范围是( )A .(-∞,0)B .(-∞,-2]C .[-2,3]D .(-∞,3]9.[2012·怀远一中模拟] 若“0<x <1”是“(x -a )[x -(a +2)]≤0”的充分不必要条件,则实数a 的取值范围是________.10.已知命题“若a >b ,则ac 2>bc 2”,则命题的原命题、逆命题、否命题和逆否命题中正确命题的个数是________.11.“x =2”是“向量a =(x +2,1)与向量b =(2,2-x )共线”的________条件.12.(13分)π为圆周率,a ,b ,c ,d ∈Q ,已知命题p :若a π+b =c π+d ,则a =c 且b =d .(1)写出命题p 的否定并判断真假;(2)写出命题p 的逆命题、否命题、逆否命题并判断真假;(3)“a =c 且b =d ”是“a π+b =c π+d ”的什么条件?并证明你的结论.难点突破13.(12分)[2012·巢湖月考] 设不等式组⎩⎪⎨⎪⎧y ≥x ,y ≥-x ,y ≤1表示的平面区域为A ,不等式y ≥ax 2+b (b <0,b 为常数)表示的平面区域为B ,P (x ,y )为平面上任意一点.命题p :点P (x ,y )在区域A 内,命题q :点P (x ,y )在区域B 内,若p 是q 的充分不必要条件,求a 的取值范围.课时作业(三) [第3讲 简单的逻辑联结词、全称量词与存在量词](时间:35分钟 分值:80分)基础热身1.已知命题p :∀x ∈R ,x >sin x ,则命题p 的否定形式为( )A .∃x 0∈R ,x 0<sin x 0B .∀x ∈R ,x ≤sin xC .∃x 0∈R ,x 0≤sin x 0D .∀x ∈R ,x <sin x2.已知命题p :存在x ∈R ,使x 2≤0,命题q :若x ≠1,则x 2-3x +2≠0,下面结论正确的是( )A .命题p 和q 均是真命题B .命题p 和q 均是假命题C .命题“p 且q ”是假命题D .命题p 的否定是:任意x ∈R ,x 2≥03.[2012·河北五校联考] 下列结论错误的是( )A .命题“若x 2-3x +2=0,则x =2”的逆否命题为“若x ≠2,则x 2-3x +2≠0”B .命题“存在x 为实数,x 2-x >0”的否定是“任意x 是实数,x 2-x ≤0”C .“ac 2>bc 2”是“a >b ”的充分不必要条件D .若p 且q 为假命题,则p ,q 均为假命题4.命题“存在点P (x 0,y 0),使x 20+y 20≤0成立”的否定是________.能力提升5.[2012·黄冈中学月考] 命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条......件.是( ) A .a ≥4 B .a ≤4 C .a ≥5 D .a ≤56.[2013·德州模拟] 下列有关命题的说法正确的是( )A .命题“若xy =0,则x =0”的否命题为:“若xy =0,则x ≠0”B .“若x +y =0,则x ,y 互为相反数”的逆命题为真命题C .命题“∃x 0∈R ,使得2x 20-1<0”的否定是:“∀x ∈R ,均有2x 2-1<0”D .命题“若cos x =cos y ,则x =y ”的逆否命题为真命题7.命题“存在α,β∈R ,使sin(α+β)sin(α-β)≥sin 2α-sin 2β”的否定为( )A .任意α,β∈R ,使sin(α+β)sin(α-β)≥sin 2α-sin 2βB .任意α,β∈R ,使sin(α+β)sin(α-β)<sin 2α-sin 2βC .存在α,β∈R ,使sin(α+β)sin(α-β)<sin 2α-sin 2βD .存在α,β∈R ,使sin(α+β)sin(α-β)≤sin 2α-sin 2β8.[2012·大庆模拟] 已知命题p :∃x 0∈(-∞,0),2x 0<3x 0,命题q :∀x ∈0,π2,tan x >sin x ,则下列命题为真命题的是( )A .p ∧qB .p ∨(綈q )C .(綈p )∧qD .p ∧(綈q )9.[2012·安庆模拟] 已知命题p :|x -1|+|x +1|≥3a 恒成立,命题q :y =(2a -1)x 为减函数,若p 且q 为真命题,则a 的取值范围是________.10.[2012·宁德质检] 若“∀x ∈R ,(a -2)x +1>0”是真命题,则实数a 的取值集合是________.11.下列四个命题:①∀x ∈R ,x 2+x +1≥0;②∀x ∈Q ,12x 2+x -13是有理数; ③∃α,β∈R ,使sin(α+β)=sin α+sin β;④∃x ,y ∈Z ,使3x -2y =10.所有真命题的序号是________.12.(13分)[2012·吉林模拟] 已知p :f (x )=x 3-ax 在(2,+∞)上为增函数,q :g (x )=x 2-ax +3在(1,2)上为减函数,若p 或q 为真命题,p 且q 为假命题,求a 的取值范围.难点突破13.(12分)已知p :方程a 2x 2+ax -2=0在[-1,1]上有解;q :只有一个实数x 满足不等式x 2+2ax +2a ≤0,若“p 或q ”是假命题,求实数a 的取值范围.课时作业(四)A [第4讲 函数的概念及其表示](时间:35分钟 分值:80分)基础热身1.[2012·石家庄质检] 下列函数中与函数y =x 相同的是( )A .y =|x |B .y =1xC .y =x 2D .y =3x 32.[2012·郑州质检] 函数f (x )=2x -1log 2x的定义域为( ) A .(0,+∞)B .(1,+∞)C .(0,1)D .(0,1)∪(1,+∞)3.下列函数中,值域为[0,3]的函数是( )A .y =-2x +1(-1≤x ≤0)B .y =3sin xC .y =x 2+2x (0≤x ≤1)D .y =x +34.[2012·陕西卷] 设函数f (x )=⎩⎪⎨⎪⎧x ,x ≥0,⎝⎛⎭⎫12x ,x <0,则f (f (-4))=________.能力提升5.[2012·江西卷] 设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=( ) A.15 B .3 C.23 D.1396.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如解析式为y =2x 2+1,值域为{9}的“孪生函数”三个:(1)y =2x 2+1,x ∈{-2};(2)y =2x 2+1,x ∈{2};(3)y =2x 2+1,x ∈{-2,2}.那么函数解析式为y =2x 2-1,值域为{-1,5}的“孪生函数”共有( )A .5个B .4个C .3个D .2个7.[2012·唐山模拟] 函数y =1-lg (x +2)的定义域为( )A .(0,8]B .(-2,8]C .(2,8]D .[8,+∞)8.函数f (x )=2-2x +x 21-x的值域是( ) A .(-∞,-2)∪(2,+∞) B .(-∞,-2)C .(-∞,-2]∪[2,+∞)D .[2,+∞)9.[2012·汕头质检] 已知f (x )=⎩⎪⎨⎪⎧sin πx ,x ≤0,f (x -1)+1,x >0,则f ⎝⎛⎭⎫56的值为________. 10.[2012·皖北协作区联考] 函数y =log 3(3x 2-x -2)的定义域是________________.11.已知g (x )=1-2x ,f (g (x ))=1-x 2x 2(x ≠0),那么f ⎝⎛⎭⎫12=________. 12.(13分)[2012·宿州质检] 已知函数f (x )=x 2+bx +2.(1)若当x ∈[-1,4]时,f (x )≥b +3恒成立,求f (x );(2)若函数f (x )的定义域与值域都是[0,2],求b 的值.难点突破13.(12分)已知二次函数f (x )有两个零点0和-2,且f (x )的最小值是-1,函数g (x )与f (x )的图象关于原点对称.(1)求f (x )和g (x )的解析式;(2)若h (x )=f (x )-λg (x )在区间[-1,1]上是增函数,求实数λ的取值范围.课时作业(四)B [第4讲 函数的概念及其表示](时间:35分钟 分值:80分)基础热身1.下列是映射的是(图 1A .(1)(2)(3)B .(1)(2)(5)C .(1)(3)(5)D .(1)(2)(3)(5) 2.[2012·江西师大附中月考] 已知函数f (x )=⎩⎪⎨⎪⎧1-x ,x ≤0a x ,x >0,若f (1)=f (-1),则实数a 的值等于( )A .1B .2C .3D .43.[2012·马鞍山二模] 已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .34.函数y =x -x 的值域是________.能力提升5.已知f (x )的图象恒过点(1,2),则f (x +3)的图象恒过点( )A .(-3,1)B .(2,-2)C .(-2,2)D .(3,5)6.[2012·肇庆一模] 已知函数f (x )=lg x 的定义域为M ,函数y =⎩⎪⎨⎪⎧2x ,x >2,-3x +1,x <1的定义域为N ,则M ∩N =( )A .(0,1)B .(2,+∞)C .(0,+∞)D .(0,1)∪(2,+∞)7.[2012·江南十校联考] 设函数y =f (x )在R 上有定义,且对正数M ,定义函数f M (x )⎩⎪⎨⎪⎧f (x ),f (x )≤M ,M ,f (x )>M ,则称函数f M (x )为f (x )的“孪生函数”.若给定函数f (x )=2-x 2,M =1,则f M (0)的值为( )A .2B .1C. 2 D .- 28.[2012·石家庄质检] 设集合A =⎣⎡⎭⎫0,12,B =⎣⎡⎦⎤12,1,函数f (x )=⎩⎪⎨⎪⎧x +12,x ∈A ,2(1-x ),x ∈B ,若x 0∈A 且f (f (x 0))∈A ,则x 0的取值范围是( )A.⎝⎛⎦⎤0,14B.⎝⎛⎭⎫14,12 C.⎝⎛⎦⎤14,12 D.⎣⎡⎦⎤0,38 9.函数f (x )=11-2x的定义域是________.(用区间表示) 10.[2012·济南三模] 已知函数f (x )=a sin x +bx 3+5,且f (1)=3,则f (-1)=________.11.[2012·安庆一模] 函数f (x )=⎩⎪⎨⎪⎧x 2,x ≥1,log 12x ,0<x <1的值域是________. 12.(13分)(1)求函数f (x )=lg (x 2-2x )9-x 2的定义域; (2)已知函数f (x )的定义域为[0,1],求下列函数的定义域:①f (x 2),②f (x -1);(3)已知函数f (lg(x +1))的定义域是[0,9],求函数f (2x )的定义域.难点突破13.(12分)已知f (x )是定义在[-6,6]上的奇函数,它在[0,3]上是一次函数,在[3,6]上是二次函数,且当x ∈[3,6]时,f (x )≤f (5)=3,f (6)=2,求f (x )的解析式.课时作业(五) [第5讲 函数的单调性与最值](时间:45分钟 分值:100分)基础热身1.下列函数中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)2.函数f (x )=1-1x在[3,4)上( ) A .有最小值无最大值B .有最大值无最小值C .既有最大值又有最小值D .最大值和最小值皆不存在3.[2012·天津卷] 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .y =cos2x ,x ∈RB .y =log 2|x |,x ∈R 且x ≠0C .y =e x -e -x 2,x ∈R D .y =x 3+1,x ∈R4.函数f (x )=x x +1的最大值为________.能力提升5.[2013·黄山月考] 若函数f (x )=x 2+2(a -1)x +2在区间(-∞,4)上是减函数,则实数a 的取值范围是( )A .a ≤-3B .a ≥-3C .a <-3D .a >-36.[2012·宿州二中检测] 下列函数中,在区间[-1,0)上为减函数的是( )A .y =x 13B .y =sin x +π2C .y =-12x D .y =lg|x | 7.[2012·哈尔滨师范大学附中期中] 函数y =⎝⎛⎭⎫121x 2+1的值域为( )A .(-∞,1) B.⎝⎛⎭⎫12,1C.⎣⎡⎭⎫12,1D.⎣⎡⎭⎫12,+∞8.[2013·惠州二调] 已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若有f (a )=g (b ),则b 的取值范围为( )A .(2-2,2+2)B .[2-2,2+2]C .[1,3]D .(1,3)9.[2013·皖南八校联考] 已知函数y =f (x )是x ∈R 上的奇函数且满足f (x +5)≥f (x ),f (x +1)≤f (x ),则f (2 013)的值为( )A .0B .1C .2D .410.若函数y =f (x )的值域是⎣⎡⎦⎤12,3,则函数F (x )=f (x )+1f (x )的值域是________. 11.若在区间⎣⎡⎦⎤12,2上,函数f (x )=x 2+px +q 与g (x )=x +1x在同一点取得相同的最小值,则f (x )在该区间上的最大值是________.12.函数y =x x +a在(-2,+∞)上为增函数,则a 的取值范围是________. 13.函数y =ln 1+x 1-x的单调递增区间是________. 14.(10分)试讨论函数f (x )=x x 2+1的单调性.15.(13分)[2012·德州模拟] 已知函数f (x )是定义在R 上的单调函数,满足f (-3)=2,且对任意的实数a ∈R 有f (-a )+f (a )=0恒成立.(1)试判断f (x )在R 上的单调性,并说明理由.(2)解关于x 的不等式f m -x x+f (m )<0,其中m ∈R 且m >0.难点突破16.(12分)已知函数f(x)=x2x-2(x∈R,且x≠2).(1)求f(x)的单调区间;(2)若函数g(x)=x2-2ax与函数f(x)在x∈[0,1]上有相同的值域,求a的值.课时作业(六)A [第6讲 函数的奇偶性与周期性](时间:35分钟 分值:80分)基础热身1.下列函数中,在其定义域内既是奇函数又是减函数的是( )A .y =-x 3,x ∈RB .y =sin2x ,x ∈RC .y =2x ,x ∈RD .y =-⎝⎛⎭⎫13x ,x ∈R2.函数f (x )=a 2x -1a x (a >0,a ≠1)的图象( ) A .关于原点对称 B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称3.[2012·安庆模拟] 设f (x )是定义在R 上的偶函数,当x ≤0时,f (x )=log 2(2-x )2,则f (2)=( )A .3B .4C .6D .84.[2012·上海卷] 已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=________.能力提升5.[2012·威海模拟] 定义在R 上的奇函数f (x )满足f (x +3)=f (x ),当0<x ≤1时,f (x )=2x ,则f (2 012)=( )A .-2B .2C .-12 D.126.[2012·长春外国语学校月考] 已知函数f (x )是定义在R 上的奇函数,且f (x +2)=-f (x ),若f (1)=1,则f (3)-f (4)=( )A .-1B .1C .-2D .27.[2013·保定摸底] 若函数f (x )=|x -2|+a 4-x 2的图象关于原点对称,则f a 2=( ) A.33 B .-33C .1D .-18.[2012·广东六校联考] 若偶函数f (x )在(-∞,0)内单调递减,则不等式f (-1)<f (lg x )的解集是( )A .(0,10) B.110,10C.110,+∞ D .0,110∪(10,+∞) 9.[2013·银川一中月考] 已知f (x )是定义在R 上的函数,且满足f (x +1)+f (x )=3,当x ∈[0,1]时,f (x )=2-x ,则f (-2 005.5)=________.10.[2013·南昌一中、十中联考] 函数f (x )是定义在R 上的奇函数,下列结论中,正确结论的序号是________.①f (-x )+f (x )=0;②f (-x )-f (x )=-2f (x );③f (x )f (-x )≤0;④f (x )f (-x )=-1. 11.[2012·南京三模] 若函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2+ax ,x <0是奇函数,则满足f (x )>a 的x 的取值范围是________.12.(13分)[2012·衡水中学一调] 已知函数f (x )=x m -2x 且f (4)=72. (1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.难点突破13.(12分)已知定义域为R 的函数f (x )=-2x +b 2x +1+a是奇函数. (1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.课时作业(六)B [第6讲 函数的奇偶性与周期性](时间:35分钟 分值:80分)基础热身1.[2012·佛山质检] 下列函数中既是奇函数,又在区间(-1,1)上是增函数的为( )A .y =|x |B .y =sin xC .y =e x +e -xD .y =-x 32.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .-13 B.13 C.12 D .-123.[2012·成都调研] 若函数f (x )=2x +2-x 与g (x )=2x -2-x 的定义域为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为奇函数,g (x )为偶函数C .f (x )与g (x )均为奇函数D .f (x )为偶函数,g (x )为奇函数4.[2012·浙江卷] 设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32=________.能力提升5.[2012·郑州模拟] 设函数f (x )=⎩⎪⎨⎪⎧2x ,x <0,0,x =0,g (x ),x >0,且f (x )为奇函数,则g (3)=( )A .8 B.18 C .-8 D .-186.已知y =f (x )是定义在R 上的偶函数,且f (x )在(0,+∞)上是增函数,如果x 1<0,x 2>0,且|x 1|<|x 2|,则有( )A .f (-x 1)+f (-x 2)>0B .f (x 1)+f (x 2)<0C .f (-x 1)-f (-x 2)>0D .f (x 1)-f (x 2)<07.已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2 012)+f (2 011)的值为( )A .1B .2C .-2D .-18.命题p :∀x ∈R ,3x >x ;命题q :若函数y =f (x -1)为奇函数,则函数y =f (x )的图象关于点(1,0)成中心对称.以下说法正确的是( )A .p ∨q 真B .p ∧q 真C .綈p 真D .綈q 假9.函数f (x )对于任意实数x 满足条件f (x +2)f (x )=1,若f (1)=-5,则f (-5)=________.10.[2011·广东卷] 设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.11.[2012·合肥六中模拟] 设f (x )=cos(x -sin x ),x ∈R .关于f (x )有以下结论: ①f (x )是奇函数;②f (x )的值域是[0,1];③f (x )是周期函数;④x =π是函数y =f (x )图象的一条对称轴;⑤f (x )在[0,π]上是减函数.其中不正确...的结论是________.(写出所有不正确的结论的序号) 12.(13分)已知函数f (x )=lg 1+x 1-x. (1)求证:对于f (x )的定义域内的任意两个实数a ,b ,都有f (a )+f (b )=f ⎝ ⎛⎭⎪⎫a +b 1+ab ; (2)判断f (x )的奇偶性,并予以证明.难点突破13.(12分)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.课时作业(七) [第7讲 二次函数](时间:45分钟 分值:100分)基础热身1.已知二次函数y =x 2-2ax +1在区间(2,3)内是单调函数,则实数a 的取值范围是( )A .a ≤2或a ≥3B .2≤a ≤3C .a ≤-3或a ≥-2D .-3≤a ≤-22.函数y =(cos x -a )2+1,当cos x =a 时有最小值,当cos x =-1时有最大值,则a 的取值范围是( )A .[-1,0]B .[-1,1]C .(-∞,0]D .[0,1]3.[2012·长春外国语学校月考] 若函数f (x )=(m -1)x 2+(m 2-1)x +1是偶函数,则f (x )在区间(-∞,0]上是( )A .增函数B .减函数C .常数D .增函数或常数4.a ≥2是函数f (x )=x 2-2ax +3在区间[1,2]上单调的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件能力提升5.函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是( )A .f (1)≥25B .f (1)=25C .f (1)≤25D .f (1)>256.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( )A .-1B .0C .1D .27.[2012·汕头模拟] 设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ).则f (x )的值域是( )A .-94,0∪(1,+∞) B .[0,+∞)C .-94,+∞D .-94,0∪(2,+∞)8.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值为( ) A .正数 B .负数C .非负数D .与m 有关 9.[2012·牡丹江一中期中] 如图K7-1是二次函数f (x )=x 2-bx +a 的图象,其函数f (x )的导函数为f ′(x ),则函数g (x )=ln x +f ′(x )( )A.⎝⎛⎭⎫14,12B.⎝⎛⎭⎫12,1 C .(1,2) D .(2,3)10.函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3(-2≤x <0),x 2-2x -3(0≤x ≤3)的值域是________.11.方程|x 2-2x |=a 2+1(a ∈(0,+∞))的解的个数是________.12.实数a ,b 两数中的最小值用min{a ,b }表示.若函数f (x )=min{x 2,(x -m )2}(m 为常数)的图象关于直线x =1对称,则函数f (x )在[0,4]上的值域为________.13.[2012·北京卷] 已知f (x )=m (x -2m )(x +m +3),g (x )=2x -2,若∀x ∈R ,f (x )<0或g (x )<0,则m 的取值范围是________.14.(10分)[2012·正定月考] 已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5). (1)求f (x )的解析式;(2)对于任意x ∈[-1,1],不等式f (x )+t ≤2恒成立,求t 的范围.15.(13分)设f (x )是定义在R 上的偶函数,当0≤x ≤2时,y =x ,当x >2时,y =f (x )的图象是顶点为P (3,4),且过点A (2,2)的抛物线的一部分.(1)求函数f (x )在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f (x )的草图; (3)写出函数f (x )的值域.难点突破16.(12分)[2013·衡水中学一调] 已知对于函数f(x),若存在x0∈R,使f(x0)=x0,则称x0是f(x)的一个不动点,已知函数f(x)=ax2+(b+1)x+(b-1)(a≠0).(1)当a=1,b=-2时,求函数f(x)的不动点;(2)对任意实数b,函数恒有两个相异的不动点,求a的取值范围;(3)在(2)的条件下,若y=f(x)的图象上A,B两点的横坐标是f(x)的不动点,且A,B两点关于直线y=kx+12a2+1对称,求b的最小值.课时作业(八)A [第8讲 指数与对数的运算](时间:35分钟 分值:80分)基础热身1.2log 510+log 50.25=( ) A .0 B .1 C .2 D .42.下列等式能够成立的是( )A.⎝⎛⎭⎫n m 5=m 15n 5B.12(-2)4=3-2C.4x 3+y 3=(x +y )34D.39=33 3.[2012·宿州月考] 已知指数函数y =f (x )满足f (3)=9,则f (9)=________.4.[2012·正定中学月考] 计算lg 14-lg25100-12=________.能力提升5.若log 2log 3log 4x =log 3log 4log 2y =log 4log 2log 3z =0,则x +y +z 的值为( ) A .50 B .58 C .89 D .1116.[2012·武汉调研] 若x =log 43,则(2x -2-x )2=( ) A.94 B.54 C.34 D.43 7.[2012·重庆卷] 已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( )A .a =b <cB .a =b >cC .a <b <cD .a >b >c8.若lg(x -y )+lg(x +2y )=lg2+lg x +lg y ,则xy=( )A .2B .3C.12D.139.[2012·海南五校联考] x >0,则(2x 14+332)(2x 14-332)-4x -12(x -x 12)=________.10.[(1-log 63)2+log 62·log 618]÷log 64=________.11.方程4x -2x +1-3=0的解是________.12.(13分)设x >1,y >1,且2log x y -2log y x +3=0,求T =x 2-4y 2的最小值.难点突破13.(12分)已知f (x )=e x -e -x ,g (x )=e x +e -x . (1)求[f (x )]2-[g (x )]2的值;(2)若f (x )·f (y )=4,g (x )·g (y )=8,求g (x +y )g (x -y )的值.课时作业(八)B [第8讲 指数与对数的运算](时间:35分钟 分值:80分)基础热身1.下列命题中,正确命题的个数为( ) ①na n =a ;②若a ∈R ,则(a 2-a +1)0=1; ③3x 4+y 6=x 43+y 2;④5-3=10(-3)2.A .0B .1C .2D .32.化简:(log 23)2-4log 23+4+log 213=( )A .2B .2-2log 23C .-2D .2log 23-23.log(n +1+n )(n +1-n )=( ) A .1 B .-1 C .2 D .-24.已知a 12=49,则log 23a =________.能力提升5.若10x =2,10y =3,则103x -y2=( )A.263B.63C.233D.366.函数y =x 2+2x +1+3x 3-3x 2+3x -1的图象是( ) A .一条直线 B .两条射线 C .抛物线 D .半圆7.若a >1,b >0,且a b +a -b =22,则a b -a -b 的值等于( ) A. 6 B .2或-2 C .2 D .-28.[2012·唐山模拟] 已知3x =4y =12,则1x +1y=( )A. 2 B .1 C.12 D .29.设f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1],log 81x ,x ∈(1,+∞),则满足f (x )=14的x 值为________.10.[2012·合肥模拟] 已知f (3x )=4x log 23+233,则f (2)+f (4)+f (8)+…+f (28)的值是________.11.方程log 2(x 2+x )=log 2(2x +2)的解是________.12.(13分)已知x 12+x -12=3,求x 2+x -2-2x 32+x -32-3的值.难点突破13.(12分)设a ,b ,c 均为正数,且满足a 2+b 2=c 2.(1)求证:log 2⎝⎛⎭⎫1+b +c a +log 2⎝⎛⎭⎫1+a -c b =1;(2)若log 4⎝⎛⎭⎫1+b +c a =1,log 8(a +b -c )=23,求a ,b ,c 的值.课时作业(九) [第9讲 指数函数、对数函数、幂函数](时间:45分钟 分值:100分)基础热身1.[2012·西安质检] 已知a =32,函数f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,n满足的关系为( )A .m +n <0B .m +n >0C .m >nD .m <n2.设实数x 满足2x +log 2x =0,则有( ) A .2x <1<x B .x <1<2x C .1<x <2x D .1<2x <x 3.[2012·四川卷] x -a (a >0,且a ≠1)的图象可能是( )K9-14.[2012·南通模拟] 已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α=________.能力提升 5.[2012·汕头测评] 下列各式中错误..的是( ) A .0.83>0.73B .log 0.50.4>log 0.50.6C .0.75-0.1<0.750.1 D .lg1.6>lg1.4 6.[2012·怀远模拟] 下列函数中值域为正实数的是( )A .y =-5xB .y =131-xC .y =⎝⎛⎭⎫12x -1D .y =1-2x7.[2012·南昌调研] 函数f (x )=log 22x 2+1的值域为( )A .[1,+∞)B .(0,1]C .(-∞,1]D .(-∞,1)8.[2012·三明联考] 已知函数y =f (x )是奇函数,当x >0时,f (x )=lg x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100的值等于( )A.1lg2 B .-1lg2 C .lg2 D .-lg29.已知x =ln π,y =log 52,z =e -12,则( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x10.[2013·黄冈中学月考] 若∃x ∈1,52,使函数g (x )=log 2(tx 2+2x -2)有意义,则t 的取值范围为________.11.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是________.12.[2013·河北五校联盟调研] 已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,(x >0),2x ,(x ≤0)且关于x 的方程f (x )+x-a =0有且只有一个实根,则实数a 的取值范围是________.13.[2012·长春外国语学校月考] 关于函数f (x )=lg x 2+1|x |(x ≠0),有下列命题:①其图象关于y 轴对称; ②f (x )的最小值是lg2;③当x >0时,f (x )是增函数;当x <0时,f (x )是减函数; ④f (x )在区间(-1,0),(2,+∞)上是增函数; ⑤f (x )无最大值,也无最小值.其中所有正确结论的序号是________.14.(10分)设a >0,f (x )=e x a +aex 是R 上的偶函数.(1)求a 的值;(2)证明f (x )在(0,+∞)上是增函数; (3)解方程f (x )=2.15.(13分)己知函数f (x )=2-x 2+ax +3. (1)当a =0时,求函数f (x )的值域;(2)若A ={x |y =lg(5-x )},函数f (x )=2-x 2+ax +3在A 内是增函数,求a 的取值范围.难点突破16.(12分)已知函数f(x)=log4(ax2+2x+3).(1)若f(1)=1,求f(x)的单调区间;(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.课时作业(十) [第10讲 函数的图象与性质的综合](时间:45分钟 分值:100分)基础热身1.函数f (x )=1x+2x 的图象关于( )A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称2.为了得到函数y =3⎝⎛⎭⎫13x 的图象,可以把函数y =⎝⎛⎭⎫13x 的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度3.下列四个函数中,图象如图 )A .y =x +lg xB .y =x -lg xC .y =-x +lg xD .y =-x -lg x 4.[2012·开封质检] 把函数y =f (x )=(x -2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是________________________________________________________________________.能力提升5.[2012·蚌埠质检] 已知函数f (x )=⎩⎨⎧-2x (-1≤x ≤0),x (0<x ≤1),则下列的图象错误的是( )图K10-26.已知图K10-3①中的图象对应的函数为y=f(x),则图K10-3②中的图象对应的函数为()-3A.y=f(|x|) B.y=|f(x)|C.y=f(-|x|) D.y=-f(|x|)7.[2012·郑州调研]图K10-以下为编号为①②③④的四个方程:①x-y=0;②|x|-|y|=0;③x-|y|=0;④|x|-y=0.请按曲线A,B,C,D的顺序,依次写出与之对应的方程的编号为()A.④②①③B.④①②③C.①③④②D.①②③④8.函数f(x)=1+1-x()9.[2012·北海质检] 现有四个函数①y=sin|x|;②y=x·|sin x|;③y=|x|·cos x;④y=x+sin x 的部分图象如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是()图K10-6A.①③②④B.①③④②C.③①②④D.③①④②10.将函数y=2x+1的图象按向量a平移得到函数y=2x+1的图象,则a=________.11.[2012·海淀一模] 函数f (x )=x +1x图象的对称中心为________.12.设函数f (x )=|x +1|+|x -a |的图象关于直线x =1对称,则a 的值为________. 13.[2012·唐山二模] 奇函数f (x )、偶函数g (x )的图象分别如图K10-7(1),K10-7(2)所示,方程f (g (x ))=0,g (f (x ))=0的实根个数分别为a ,b ,则a +b =________.14.(10分)设函数f (x )=x +1x的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x ).求g (x )的解析式.15.(13分)已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎡⎦⎤13,2都有|f (x )|≤1成立,试求a 的取值范围.难点突破16.(12分)(1)已知函数y =f (x )的定义域为R ,且当x ∈R 时,f (m +x )=f (m -x )恒成立,求证y =f (x )的图象关于直线x =m 对称;(2)若函数y =log 2|ax -1|的图象的对称轴是x =2,求非零实数a 的值.课时作业(十一) [第11讲 函数与方程](时间:45分钟 分值:100分)基础热身 1.[2013·安庆四校联考] 图K11-1是函数f (x )的图象,它与x 轴有4个不同的公共点.给出下列四个区间之中,存在不能用二分法求出的零点的区间是( )图K11-1A .[-2.1,-1]B .[1.9,2.3]C .[4.1,5]D .[5,6.1] 2.[2012·唐山期末] 设f (x )=e x +x -4,则函数f (x )的零点位于区间( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3) 3.[2012·宣城质检] 若函数f (x )=ax +b 的零点为2,那么函数g (x )=bx 2-ax 的零点是( )A .0,2B .0,12C .0,-12D .2,124.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.能力提升5.函数y =f (x )在区间(-2,2)上的图象是连续的,且方程f (x )=0在(-2,2)上仅有一个实根0,则f (-1)·f (1)的值( )A .大于0B .小于0C .等于0D .无法确定6.[2012·宿州调研] 已知x 0是函数f (x )=11-x+ln x 的一个零点,若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)>0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)<0,f (x 2)>07.已知定义在R 上的函数f (x )=(x 2-3x +2)g (x )+3x -4,其中函数y =g (x )的图象是一条连续曲线,则方程f (x )=0在下面哪个范围内必有实数根( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)8.方程|x |=cos x 在(-∞,+∞)内( ) A .没有根 B .有且仅有一个根C .有且仅有两个根D .有无穷多个根9.[2012·石家庄质检] 已知函数f (x )=⎝⎛⎭⎫12x -sin x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .410.[2012·怀远一中模拟] 若f (x )=⎩⎪⎨⎪⎧x 2-x -1,x ≥2或x ≤-1,1,-1<x <2,则函数g (x )=f (x )-x 的零点为________.11.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________.12.[2012·盐城二模] 若y =f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=2x-1,则函数g (x )=f (x )-log 3|x |的零点个数为________.13.[2013·扬州中学月考] 已知函数f (x )=|x 2-1|x -1-kx +2恰有两个零点,则k 的取值范围是________.14.(10分)已知函数f (x )=4x +m ·2x +1有且仅有一个零点,求m 的取值范围,并求出该零点.15.(13分)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两个实数根为x 1和x 2.(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证:x 0>-1; (2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围.难点突破16.(12分)已知函数f (x )=⎩⎪⎨⎪⎧2x (0≤x ≤1),-25x +125(1<x ≤5).(1)若函数y =f (x )的图象与直线kx -y -k +1=0有两个交点,求实数k 的取值范围;(2)试求函数g (x )=xf (x )的值域.课时作业(十二) [第12讲 函数模型及其应用](时间:45分钟 分值:100分)基础热身1.“红豆生南国,春来发几枝?”,图K12-1给出了红豆生长时间t (月)与枝数y (枝)的散点图,那么红豆生长时间与枝数的关系用下列哪个函数模型拟合最好?( )A .y =t 2B .y =log 2tC .y =2tD .y =2t 22.等边三角形的边长为x ,面积为y ,则y 与x 之间的函数关系式为( )A .y =x 2B .y =12x 2C .y =32x 2D .y =34x 23.[2012·厦门月考] 设甲、乙两地的距离为a (a >0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回甲地用了30分钟,则小王从出发到返回原地所经过的路程y )图K12-24.某种储蓄按复利计算利息,若本金为a 元,每期利率为r ,存期是x ,本利和(本金加利息)为y元,则本利和y随存期x变化的函数关系式是________.能力提升5.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x 之间关系的是()A.y=100x B.y=50x2-50x+100C.y=50×2x D.y=100log2x+1006.[2012·华南师大附中模拟] 在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y=f(x),一种是平均价格曲线y=g(x)(如f(2)=3表示开始交易后第2小时的即时价格为3元;g(2)=4表示开始交易后两个小时内所有成交股票的平均价格为4元).下面所给出的四个图象中,实线表示y=f(x),虚线表示y=g(x),其中可能正确的是()7.[2012·商丘一模] 某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为()A.45.606万元B.45.6万元C.45.56万元D.45.51万元8.[2013·荆州中学一检] 下列所给4个图象中,与所给3件事吻合最好的顺序为()(a)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(b)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(c)K12A.(1)(2)(4) B.(4)(2)(3)C.(4)(1)(3) D.(4)(1)(2)9.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件10.一位设计师在边长为3的正方形ABCD 中设计图案,他分别以A ,B ,C ,D 为圆心,以b ⎝⎛⎭⎫0<b ≤32为半径画圆,由正方形内的圆弧与正方形边上线段(圆弧端点在正方形边上的连线)构成了丰富多彩的图形,则这些图形中实线部分总长度的最小值为________.11.[2012·珠海模拟] 一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg/mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,那么,一个喝了少量酒后的驾驶员,至少经过________小时,才能开车.(精确到1小时)12.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价收费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过的部分按每千米2.85元收费,每次乘车需付燃油附加费1元,现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.13.[2013·上海南汇一中月考] 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (mg)与时间t (h)成正比;药物释放完毕后,y 与t 的函数关系式为y =⎝⎛⎭⎫116t -a (a 为常数),如图K12-6 所示,据测定,当空气中每立方米的含药量降低到0.25 mg 以下时,学生方可进教室,那从药物释放开始,至少需要经过________h 后,学生才能回到教室.14.(10分)某地上年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x 元,则本年度新增用电量y (亿千瓦时)与(x -0.4)元成反比例.又当x =0.65时,y =0.8.(1)求y 与x 之间的函数关系式;(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年增加20%?[收益=用电量×(实际电价-成本价)]15.(13分)围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m 的进出口,如图K12-7所示.已知旧墙的维修费为45元/m ,新墙的造价为180元/m.设利用的旧墙长度为x (单位:m),修建此矩形场地围墙的总费用为y (单位:元).(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.。

高考数学(文,江苏教育版)一轮复习课件第24讲 平面向量的概念及其线性运算

高考数学(文,江苏教育版)一轮复习课件第24讲 平面向量的概念及其线性运算

第24讲 平面向量的概念及其线性运算

双 向
固 基 础
2.
若2
x-13a

1 2
(b+c-3x)+b=0,其中a,b,c为已
知向量,则x=________.
[答案] 241a+17b+17c
[解析] 由 2(x-13a)-12(b+c-3x)+b=0,得(2+32)x -23a-12b-12c=0,即72x=23a+12b+12c,所以 x=241a+17b+17c.
基 础
________.
[答案] 12(a+b)
[解析] ∵A→B+B→M=A→M, A→C+C→M=A→M,∴A→M=12(A→B+B→M+A→C+C→M).又C→M =-B→M, ∴A→M=12(A→B+A→C)=12(a+b).
返回目录
第24讲 平面向量的概念及其线性运算

双 向



—— 疑 难 辨 析 ——
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/7/262021/7/262021/7/262021/7/267/26/2021
• 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年7月26日星期一2021/7/262021/7/262021/7/26
[答案] 1
•点


[解析] ①错,向量可以用有向线段表示,但并不是有
考 向
向线段.②对,A→B=D→C时,A→B∥D→C且|A→B|=|D→C|,则四
边形ABCD是平行四边形.③错,b为零向量时,则不能
得到a∥c.④错,两个向量起点相同,终点相同,则两向

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第23讲 解三角形

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第23讲 解三角形
以 10 n mile/h 的速度从 B 处向北偏东 30°方向逃窜,问缉 私船沿什么方向能最快追上走私船?

图4-23-4
返回目录
第23讲
解三角形
• 点 面 讲 考 向
[思考流程] 条件:给出 AB,AC 之间的距离,走私船 的速度和方向,缉私船的方位、速度.目标:求缉私船的 运动方向.方法:根据两船所用时间相等,用余弦定理解 △ABC,用正弦定理解△BCD,可得出所求角∠BCD.
• 双 向 固 基 础 • 点 面 讲 考 向 • 多 元 提 能 力 • 教 师 备 用 题
第23讲 解三角形
返回目录
考试大纲
能够运用正弦定理、 余弦定理等知识和方法解决一些与测 量和几何计算有关的实际问题.
返回目录
第23讲
解三角形
• 双 向 固 基 础
1.距离的测量 背景 两点 均可 到达 只有 一点 可到达 可测 元素 a,b,α 图形
3,AC= 2,A=60°,则
1 3 [解析] 由面积公式得 S= AB·AC·sin A= 2 4
2.
返回目录
第23讲
解三角形
• 双 向 3.已知 A,B 两地的距离为 10 m,B,C 两地的距离为 固 基20 m, 现测得∠ABC=120°, 则 A, C 两地的距离是________. 础
图 4231
返回目录
第23讲
解三角形
• 双 向 4.求解与三角形有关的实际问题的步骤 固 正弦定理和余弦定理在实际中的应用非常广泛,如测量、 基 础航海、几何、物理等方面都要用到解三角形的知识.解题的
一般步骤是: (1)分析题意,理解问题的实际背景,分清已知与所求, 尤其要理解应用题中的有关名词、术语,如坡比、仰角、俯 角、方位角等; (2)根据题意画出示意图, 将实际问题抽象成三角形模型; (3)根据已知条件与求解目标,将所求的问题归结到一个 或几个三角形中,通过合理运用正弦定理、余弦定理及面积 公式等有关知识正确求解; (4)检验解出的答案是否具有实际意义,对解进行取舍, 得出实际问题的解.

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第26讲 平面向量的数量积

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第26讲 平面向量的数量积
返回目录
第26讲
平面向量的数量积
• 点 面 讲 考 向
[归纳总结] (1)利用向量夹角公式时, 不一定非得算出 |a|,|b|和 a· b 的值,只要能得出它们的关系即可. (2)求角时,注意向量夹角的取值范围是[0,π ].若题 目给出向量的坐标表示,可直接套用公式 cos〈a,b〉= x1x2+y1y2 2 2 2 2求解. x1+y1 x2+y2
[解析] (1)(a· b)· c是一个与c共线的向量,a· (b· c)是一个与 a共线的向量,因此它们不一定相等. (2) a· b=0,则a=0或b=0或a⊥b. (3)a⊥b⇔x1x2+y1y2=0.
返回目录
第26讲
平面向量的数量积

探究点一
平面向量的数量积的概念
• 点 面 讲 考 向

例1 (1)[2013· 新课标全国卷Ⅱ] 已知正方形ABCD的边 → ·BD → =________. 长为2,E为CD的中点,则AE (2)[2013· 湖北卷] 已知点A(-1,1),B(1,2),C(-2, → 在CD → 方向上的投影为________. -1),D(3,4),则向量AB
返回目录
第26讲
平面向量的数量积
• 双 向 固 基 础
2.向量数量积的性质与运算 (1)(a· b)· c=a· (b· c).( ) (2) a· b=0,则a=0或b=0.( ) (3)a=(x1,y1),b=(x2,y2),若a⊥b,则x1y2-x2y1= 0.( )
[答案] (1)× (2)× (3)×
返回目录
第26讲
平面向量的数量积

[思考流程] (1)分析:利用向量的数量积公式.推理: 依题意列方程得(m+n)· (m-n)=0.结论:解方程得λ的值. (2)分析:利用向量的数量积公式.推理:将已知等式 点 两边平方,再利用向量的夹角公式.结论:解方程得cos 面 讲 〈a,b〉的值.

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第17讲 弧度制及任意角的三角函数

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第17讲 弧度制及任意角的三角函数

• 双 向 4.已知点 P(tan α ,cos α )在第三象限,则角 α 的 固 基 终边在第________象限. 础
[答案] 二
[解析] 由点 P 在第三象限,得 tan α <0,cos α <0, 则角 α 的终边在第二象限.
返回目录
第17讲
弧度制及任意角的三角函数
• 双 向 固 基 础
π 180 ( )° ________rad ,1 rad=________ . 180 π (3)扇形的弧长公式:l=________ |α|r ,扇形的面积公式:S 1 2 1 α r lr 2 2 =________=________.
3.任意角的三角函数及三角函数线
Байду номын сангаас返回目录
第17讲
弧度制及任意角的三角函数
返回目录
第17讲
弧度制及任意角的三角函数

π π α [解析] (1)由 2kπ + <α <2kπ +π (k∈Z),得 kπ + < 2 4 2 π α <kπ + 2 (k∈Z).当 k=2n(n∈Z)时, 2 在第一象限;当 k= 点 面2n+1(n∈Z)时,α 在第三象限. 讲 2 考 α α α α α 向 又cos =-cos ⇒cos <0, ∴ 在第三象限, 故 tan >0. 2 2 2 2 2 (2)由于函数 y=-|x|的图像是第三、四象限的角平分线, 故在 0°~360°范围内对应的两个角分别是 225°和 315°, 从 而角 α 的集合为{α|α=k· 360°+225°,k∈Z}∪{α|α=k· 360° +315°,k∈Z}.
各象 限符 号 口诀
Ⅰ Ⅱ Ⅲ Ⅳ

【一本通】2014届高考数学一轮复习 第3章 第24讲 数学归纳法课件 理

【一本通】2014届高考数学一轮复习 第3章 第24讲 数学归纳法课件 理

当x=0或m=1时,原不等式中等 【证明】 号显然成立. 下面用数学归纳法证明“当x> -1,且 x≠0时,(1+x)m>1+mx(*)对m≥2,m∈N* 成立”. (1)当m=2时,左边=1+2x+x2,右边 =1+2x. 因为x≠0,所以x2>0,即左边>右边, 不等式(*)成立;
【证明】 (2)假设当m=k(k≥2, k∈N*)时,不等式(*)成 立, 即(1+x)k>1+kx. 则当m=k+1时,因为x>-1,所以1+x>0. 又因为x≠0, k≥0,所以kx2>0. 于是在不等式(1+x)k > 1+kx两边同乘以1+x, 得(1+x)(1+x)k>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x, 所以(1+x)k+1>1+(k+1)x. 即当m=k+1时,不等式(*)也成立. 综上(1)(2)所述,所证不等式成立.
k
那么当n k 1时,k 1 3 3k 3 2k 1 3 6k 3 2k 3 2 k 1 1, 所以当n k 1时, 成立.综合①②, * 得3n 2n 1成立. S n 1 3n 1 所以 . Sn n
2 2 k 1
数都成立.
数学归纳法在解决有关数列问题时发
挥着很大的作用.数列是关于自然数的命 题,由数列的递推关系,可以对结果进行
推测和猜想,对猜想的结论进行合理证明,
数学归纳法是最佳的工具.本题联系等差 数列、等比数列,考查了数学归纳法的应 用和综合运用数学知识进行归纳、推理、 论证的能力.

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第25讲 平面向量基本定理及坐标表示

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第25讲 平面向量基本定理及坐标表示

返回目录
第25讲
平面向量基本定理及坐标表示
• 双 向 固 基 础
—— 链接教材 ——
1. 已知a=(3,-1),b=(1,2),则3a- 2b=____________.
[答案] (7,-7)
[解析] 3a-2b=3(3,-1)-2(1,2)=(7,-7).
返回目录
第25讲
平面向量基本定理及坐标表示
图5-25-2
返回目录
第25讲
平面向量基本定理及坐标表示
• 双 向 固 基 础
(2)平面向量的坐标运算
向量 a b a +b a -b λa 坐标 (x1,y1) (x2,y2)
(x1+x2,y1+y2) ________________
________________ (x1-x2,y1-y2) ________________ (λx1,λy1)
1→ 1→ → 3AB)+(AF-3AD), 1 → → 1→ → → → → → ∴AC=(AE+AF)-3(AB+AD)=(AE+AF)-3AC, 4→ → → 3 3 ∴ AC =AE+AF,∴m=n= ,m+n= . 3 4 2
返回目录
第25讲
平面向量基本定理及坐标表示

[归纳总结]平面向量基本定理的作用: (1)能把平面上的不同向量用基底向量表示出来,其做 点 面法是:先选择一组不共线的基底,通过向量的加、减、数 讲乘,把其他相关的向量用这一组基底表示出来,有时还利用 考向量相等建立方程组,再解出某些相关的值. 向 (2)平面向量基本定理是建立向量坐标的基础,它保证 了向量与坐标是一一对应的,即a=(x,y)一一对应,向量 → 对应点A(x,y). OA
返回目录
第25讲

【苏教版】【步步高】2014届高考数学一轮复习备考课件章末复习课(二)

【苏教版】【步步高】2014届高考数学一轮复习备考课件章末复习课(二)

=(PF1-PF2)2+2PF1· PF2(1-cos 60° ), 即4c2=c2+PF1· PF2. 1 又 SPF F=12 3,∴ PF1· PF2sin 60° =12 3, 2 1 2 即PF1· PF2=48.
由①②,得c2=16,c=4,
本 专 题 栏 目 开 关


则a=2,b2=c2-a2=12, x2 y2 ∴所求的双曲线方程为 4 -12=1.
y=kx-4, 由 2 y =4x
本 专 题 栏 目 开 关
得ky2-4y-16k=0,
42 2 2 2 ∴y1+y2=(y1+y2) -2y1y2= +32>32.
k
2 ∴y1 +y2 2的最小值为32.
4 ∴y1+y2= ,y1y2=-16. k

练一练· 当堂检测、目标达成落实处
本 专 题 栏 目 开 关
线上的点到焦点的距离转化为到另一焦点的距离或利用定 义把曲线上的点到焦点的距离转化为其到相应准线的距 离,再利用数形结合的思想去解决有关的最值问题.
研一研· 题型解法、解题更高效
x2 y2 跟踪训练3 已知椭圆 + =1,F1、F2分别是椭圆的 9 5 左、右焦点,点 A(1,1)为椭圆内一点,点P为椭圆上一 点,求PA+PF1的最大值.

2 x2 x (2)设与双曲线 -y2=1有公共渐近线的双曲线方程为 - 2 2
本 专 题 栏 目 开 关
y2=k (k≠0),
22 将点(2,-2)代入得k= 2 -(-2)2=-2, y2 x2 ∴双曲线的标准方程为 2 - 4 =1.
研一研· 题型解法、解题更高效
题型二
“设而不求”思想
例2 (1)过点(1,0)作斜率为-2的直线,与抛物线y2=8x交 于A、B两点,求弦AB的长. (2)若直线l过抛物线y2=4x的焦点,与抛物线交于A、B 两点,且线段 AB中点的横坐标为2,求线段 AB的长.

2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)两直线的位置关系(含解析)2014届

2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)两直线的位置关系(含解析)2014届

两直线的位置关系[知识能否忆起]一、两条直线的位置关系 斜截式 一般式方 程 y =k 1x +b 1 y =k 2x +b 2 A 1x +B 1y +C 1=0(A 21+B 21≠0) A 2x +B 2y +C 2=0(A 22+B 22≠0)相 交 k 1≠k 2 A 1B 2-A 2B 1≠0⎝⎛⎭⎫当A 2B 2≠0时,记为A 1A 2≠B 1B 2垂 直k 1=-1k 2或k 1k 2=-1A 1A 2+B 1B 2=0⎝⎛⎭⎫当B 1B 2≠0时,记为A 1B 1·A 2B 2=-1平 行k 1=k 2 且b 1≠b 2{ A 1B 2-A 2B 1=0,B 2C 1-B 1C 2≠0或{ A 1B 2-A 2B 1=0,A 1C 2-A 2C 1≠0⎝⎛⎭⎫当A 2B 2C 2≠0时,记为A 1A 2=B 1B 2≠C 1C 2 重 合 k 1=k 2 且b 1=b 2A 1=λA 2,B 1=λB 2,C 1=λC 2(λ≠0)⎝⎛⎭⎫当A 2B 2C 2≠0时,记为A 1A 2=B 1B 2=C 1C 2二、两条直线的交点设两条直线的方程是l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,两条直线的交点坐标就是方程组{ A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解,若方程组有唯一解,则两条直线相交,此解就是交点坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立.三、几种距离 1.两点间的距离平面上的两点A (x 1,y 1),B (x 2,y 2)间的距离公式:d (A ,B )=|AB |=(x 1-x 2)2+(y 1-y 2)2.2.点到直线的距离点P (x 1,y 1)到直线l :Ax +By +C =0的距离d =|Ax 1+By 1+C |A 2+B 2.3.两条平行线间的距离两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.(4)[小题能否全取]1.(教材习题改编)已知l 1的倾斜角为45°,l 2经过点P (-2,-1),Q (3,m ).若l 1⊥l 2,则实数m 为( )A .6 B .-6 C .5D .-5解析:选B 由已知得k 1=1,k 2=m +15.暑期报名海外游学的人数增长达到∵l 1⊥l 2,∴k 1k 2=-1, ∴1×m +15=-1,即m =-6.2.(教材习题改编)点(0,-1)到直线x +2y =3的距离为( )A.55B.5教案目的是用更严格的监管、更严厉的处罚、更严肃的问责化学教案切实保障“舌尖上的安全C .5D.15解析:选B d =|0+2×(-1)-3|5= 5.3.点(a ,b )关于直线x +y +1=0的对称点是( ) A .(-a -1,-b -1)B .(-b -1,-a -1)C .(-a ,-b )D .(-b ,-a )解析:选B 设对称点为(x ′,y ′),则⎩⎨⎧y ′-b x ′-a×(-1)=-1,x ′+a 2+y ′+b2+1=0,解得x ′=-b -1,y ′=-a -1.4.l 1:x -y =0与l 2:2x -3y +1=0的交点在直线mx +3y +5=0上,则m 的值为( )A .3B .5C .-5D .-8解析:选D 由{x -y =0,2x -3y +1=0,得l 1与l 2的交点坐标为(1,1).所以m+3+5=0,m=-8.5.与直线4x+3y-5=0平行,并且到它的距离等于3的直线方程是______________________.|m+5|,得m=10或-20.解析:设所求直线方程为4x+3y+m=0,由3=42+32答案:4x+3y+10=0或4x+3y-20=01.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在,两条直线都有斜率时,可根据斜率的关系作出判断,无斜率时,要单独考虑.2.在使用点到直线的距离公式或两平行线间的距离公式时,直线方程必须先化为Ax +By+C=0的形式,否则会出错.两直线的平行与垂直典题导入[例1](2012·浙江高考)设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x +(a+1)y+4=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[自主解答]由a=1,可得l1∥l2;反之,由l1∥l2,可得a=1或a=-2.[答案] A在本例中若l1⊥l2,试求a.解:∵l1⊥l2,∴a×1+2×(a+1)=0,∴a=-23.由题悟法1.充分掌握两直线平行与垂直的条件是解决本题的关键,对于斜率都存在且不重合的两条直线l 1和l 2,l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1·k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率是多少一定要特别注意.2.(1)若直线l 1和l 2有斜截式方程l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,则直线l 1⊥l 2的充要条件是k 1·k 2=-1.(2)设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0.则l 1⊥l 2⇔A 1A 2+B 1B 2=0.以题试法1.(2012·大同模拟)设a ,b ,c 分别是△ABC 中角A ,B ,C 所对的边,则直线x sin A +ay +c =0与bx -y sin B +sin C =0的位置关系是( )A .平行 B .重合C .垂直D .相交但不垂直解析:选C 由已知得a ≠0,sin B ≠0,所以两直线的斜率分别为k 1=-sin A a ,k 2=bsin B ,由正弦定理得k 1·k 2=-sin A a ·bsin B=-1,所以两条直线垂直.两直线的交点与距离问题典题导入[例2] (2012·浙江高考)定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离,则实数a =________.[自主解答] 因曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离为0-(-4)2-2=22-2=2,所以曲线C 1与直线l 不能相交,故x 2+a >x ,即x 2+a -x >0.设C 1:y =x 2+a上一点为(x 0,y 0),则点(x 0,y 0)到直线l 的距离d =|x 0-y 0|2=-x 0+x 20+a2=⎝⎛⎭⎫x 0-122+a -142≥4a -142=2,所以a =94.”化学教案结合全文化学教案概述作者这样认为的依据试卷试题[答案] 94由题悟法1.点到直线的距离问题可直接代入距离公式去求.注意直线方程为一般式.2.点到与坐标轴垂直的直线的距离,可用距离公式求解.也可用如下方法去求解:(1)点P (x 0,y 0)到与y 轴垂直的直线y =a 的距离d =|y 0-a |.(2)点P (x 0,y 0)到与x 轴垂直的直线x =b 的距离d =|x 0-b |.以题试法2.(2012·通化模拟)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c的值是________.解析:由题意得63=a -2≠c-1,得a =-4,c ≠-2,则6x +ay +c =0可化为3x -2y +c2=0,则⎪⎪⎪⎪c 2+113=21313,解得c =2或-6.答案:2或-6对 称 问 题典题导入[例3] (2012·成都模拟)在直角坐标系中,A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后,再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .210 B .6C .3 3D .25②________试卷试题它们使用着同样的文字化学教案③__________________化学[自主解答] 如图,设点P 关于直线AB ,y 轴的对称点分别为D ,C ,易求得D (4,2),C (-2,0),由对称性知,D ,M ,N ,C 共线,则△PMN 的周长=|PM |+|MN |+|PN |=|DM |+|MN |+|NC |=|CD |=40=210即为光线所经过的路程.[答案] A由题悟法对称问题主要包括中心对称和轴对称 (1)中心对称①点P (x ,y )关于O (a ,b )的对称点P ′(x ′,y ′)满足{ x ′=2a -x ,y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有⎩⎨⎧n -b m -a ×⎝⎛⎭⎫-A B =-1,A ·a +m 2+B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.以题试法3.(2012·南京调研)与直线3x -4y +5=0关于x 轴对称的直线方程为( )A .3x +4y +5=0 B .3x +4y -5=0 C .-3x +4y -5=0 D .-3x +4y +5=0解析:选A 与直线3x -4y +5=0关于x 轴对称的直线方程是3x -4(-y )+5=0,即3x +4y +5=0.1.(2012·海淀区期末)已知直线l 1:k 1x +y +1=0与直线l 2:k 2x +y -1=0,那么“k 1=k 2”是“l 1∥l 2”的( )A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 由k 1=k 2,1≠-1,得l 1∥l 2;由l 1∥l 2知k 1×1-k 2×1=0,所以k 1=k 2.故“k 1=k 2”是“l 1∥l 2”的充要条件.2.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限 B .第二象限C .第三象限D .第四象限解析:选B 解方程组{ kx -y =k -1,ky -x =2k ,得两直线的交点坐标为⎝ ⎛⎭⎪⎫k k -1,2k -1k -1,因为0<k <12,所以k k -1<0,2k -1k -1>0,故交点在第二象限.3.(2012·长沙检测)已知直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,则直线l 1与l 2的距离为( )A.85B.32(C .4D .8解析:选B ∵直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,即为3x +4y +12=0,∴直线l 1与直线l 2的距离为⎪⎪⎪⎪12+732+42=32.4.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( )A .(0,4) B .(0,2) C .(-2,4)D .(4,-2)解析:选B 由于直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2).又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2恒过定点(0,2).5.已知直线l 1:y =2x +3,若直线l 2与l 1关于直线x +y =0对称,又直线l 3⊥l 2,则l 3的斜率为( )A .-2 B .-12C.12D .2解析:选A 依题意得,直线l 2的方程是-x =2(-y )+3,即y =12x +32,其斜率是12,由l 3⊥l 2,得l 3的斜率等于-2.6.(2012·岳阳模拟)直线l 经过两直线7x +5y -24=0和x -y =0的交点,且过点(5,1).则l 的方程是( )A .3x +y +4=0 B .3x -y +4=0 C .x +3y -8=0D .x -3y -4=0解析:选C 设l 的方程为7x +5y -24+λ(x -y )=0,即(7+λ)x +(5-λ)y -24=0,则(7+λ)×5+5-λ-24=0.解得λ=-4.l 的方程为x +3y -8=0.7.(2012·郑州模拟)若直线l 1:ax +2y =0和直线l 2:2x +(a +1)y +1=0垂直,则实数a 的值为________.解析:由2a +2(a +1)=0得a =-12.答案:-128.已知平面上三条直线x +2y -1=0,x +1=0,x +ky =0,如果这三条直线将平面划分为六部分,则实数k 的所有取值为________.解析:若三条直线有两条平行,另外一条与这两条直线相交,则符合要求,此时k =0或2;若三条直线交于一点,也符合要求,此时k =1,故实数k 的所有取值为0,1,2.答案:0,1,29.(2013·临沂模拟)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.解析:由题意得,点到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解得,0≤a ≤10,所以a ∈[0,10].答案:[0,10]10.(2013·舟山模拟)已知1a +1b =1(a >0,b >0),求点(0,b )到直线x -2y -a =0的距离的最小值.解:点(0,b )到直线x -2y -a =0的距离为d =a +2b 5=15(a +2b )⎝⎛⎭⎫1a +1b =15⎝⎛⎭⎫3+2b a +a b ≥15(3+22)=35+2105,当且仅当a 2=2b 2,a +b =ab ,即a =1+2,b =2+22时取等号.所以点(0,b )到直线x -2y -a =0的距离的最小值为35+2105.11.(2012·荆州二检)过点P (1,2)的直线l 被两平行线l 1:4x +3y +1=0与l 2:4x +3y +6=0截得的线段长|AB |=2,求直线l 的方程.解:设直线l 的方程为y -2=k (x -1),由{y =kx +2-k ,4x +3y +1=0,解得A ⎝ ⎛⎭⎪⎫3k -73k +4,-5k +83k +4;由{y =kx +2-k ,4x +3y +6=0,解得B ⎝⎛⎭⎪⎫3k -123k +4,8-10k 3k +4.∵|AB |=2, ∴⎝ ⎛⎭⎪⎫53k +42+⎝ ⎛⎭⎪⎫5k 3k +42=2,整理,得7k 2-48k -7=0, 解得k 1=7或k 2=-17.因此,所求直线l 的方程为x +7y -15=0或7x -y -5=0.12.已知直线l :3x -y +3=0,求: (1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程.解:设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′).∵k PP ′·k l =-1,即y ′-yx ′-x ×3=-1.①又PP ′的中点在直线3x -y +3=0上,∴3×x ′+x 2-y ′+y 2+3=0.②由①②得⎩⎪⎨⎪⎧x ′=-4x +3y -95, ③ y ′=3x +4y +35. ④ (1)把x =4,y =5代入③④得x ′=-2,y ′=7, ∴P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 的对称直线方程为-4x +3y -95-3x +4y +35-2=0,化简得7x +y +22=0.1.点P 到点A (1,0)和直线x =-1的距离相等,且点P 到直线y =x 的距离为22,这样的点P 的个数是( )A .1 B .2 C .3D .4解析:选C ∵点P 到点A 和定直线距离相等, ∴P 点轨迹为抛物线,方程为y 2=4x . 设P (t 2,2t ),则22=|t 2-2t |2,解得t 1=1,t 2=1+2,t 3=1-2,故P 点有三个.2.(2012·福建模拟)若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是( )A .2B .2 2C .4D .2 3解析:选C 设原点到点(m ,n )的距离为d ,所以d 2=m 2+n 2,又因为(m ,n )在直线4x +3y -10=0上,所以原点到直线4x +3y -10=0的距离为d 的最小值,此时d =|-10|42+32=2,所以m 2+n 2的最小值为4.3.在直线l :3x -y -1=0上求一点P ,使得P 到A (4,1)和B (0,4)的距离之差最大.解:如图所示,设点B 关于l 的对称点为B ′,连接AB ′并延长交l 于P ,此时的P 满足|P A |-|PB |的值最大.设B ′的坐标为(a ,b ),则k BB ′·k l =-1,即3·b -4a =-1. 则a +3b -12=0.①又由于线段BB ′的中点坐标为⎝ ⎛⎭⎪⎫a 2,b +42,且在直线l 上,则3×a 2-b +42-1=0,即3a -b -6=0.②解①②,得a =3,b =3,即B ′(3,3).于是AB ′的方程为y -13-1=x -43-4,即2x +y -9=0.解{ 3x -y -1=0,2x +y -9=0,得{ x =2,y =5,即l 与AB ′的交点坐标为P (2,5).1.点(1,cos θ)(其中0≤θ≤π)到直线x sin θ+y cos θ-1=0的距离是14,那么θ等于( )A.5π6B.π6或5π6mLC.π6D.π6或7π6图①可判断可逆反应“A2(g)+3B2(g)2AB3(g)”的解析:选B 由已知得|sin θ+cos 2θ-1|sin 2θ+cos 2θ=14,即|sin θ-sin 2θ|=14, ∴4sin 2θ-4sin θ-1=0或4sin 2θ-4sin θ+1=0,∴sin θ=1±22或sin θ=12.∵0≤θ≤π,∴0≤sin θ≤1,∴sin θ=12,即θ=π6或5π6.2.已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( )A .x -2y +1=0B .x -2y -1=0C .x +y -1=0D .x +2y -1=0解析:选B l 1与l 2关于l 对称,则l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设其关于l 的对称点(x ,y ),则⎩⎨⎧ x +02-y -22-1=0,y +2x ×1=-1,得{ x =-1,y =-1.即(1,0),(-1,-1)为l 2上两点,可得l 2方程为x -2y -1=0.3.光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解:法一:由{ x -2y +5=0,3x -2y +7=0,得{ x =-1,y =2.即反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0),由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5.充其量只算得小河沟罢了试卷试题然而毕竟有水化学教案便是理直气壮的河了试卷试题有水化而PP ′的中点Q 的坐标为⎝ ⎛⎭⎪⎫x 0-52,y 02,Q 点在l 上,即3·x 0-52-2·y 02+7=0.由⎩⎪⎨⎪⎧ y 0x 0+5=-23,32(x 0-5)-y 0+7=0.得⎩⎨⎧ x 0=-1713,y 0=-3213.根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0.法二:设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ),则y 0-y x 0-x =-23,又PP ′的中点Q ⎝ ⎛⎭⎪⎫x +x 02,y +y 02在l 上,即3×x +x 02-2×y +y 02+7=0,由⎩⎨⎧ y 0-y x 0-x =-23,3×x +x 02-(y +y 0)+7=0.可得P 点的坐标为x 0=-5x +12y -4213,y 0=12x +5y +2813,代入方程x -2y +5=0中,化简得29x -2y +33=0, 故所求反射光线所在的直线方程为29x -2y +33=0.。

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第9讲 对数与对数函数

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第9讲 对数与对数函数

例 3 比较下列各组数的大小: 1 1 (1)a=log23,b=log32,c=log 2,d=log2 ; 3 3 (2)a=0.91.1,b=1.10.9,c=log20.9.
[思考流程] 第一步,若所给对数底数有相同的,可先 比较同底的,再比较其他的;第二步,若底数各不相同, 可以借用中间量来比较.
返回目录
第9讲
双 向 固 基 础
对数与对数函数
2.对数函数性质中的易错点 x-2 (1)函数 f(x)=lg 与 g(x)=lg(x-2)-lg(x+2)是同一 x+2 个函数.( ) 2-x (2)函数 y= lg x 的定义域是{x|1<x≤2}.( )
返回目录
第9讲
双 向 固 基 础
对数与对数函数
解:(1) 原式=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3- lg 2=0. (2) 原式=(lg 2)2+(1+lg 5)lg 2+lg 52 =(lg 2+lg 5+1)lg 2+2lg 5 =(1+1)lg 2+2lg 5=2(lg 2+lg 5)=2.
返回目录
第9讲
返回目录
第9讲
对数与对数函数
点 面 讲 考 向
返回目录
第9讲
对数与对数函数
点 面 [归纳总结] 本题的解答过程体现了化归与转化的数 讲 考 学思想,其核心是化生为熟、化难为易、化繁为简.本题 便于进一步计 向 就是把不易处理的指数由“高”降“低”, 算,这是指、对数运算经常使用的方法.
返回目录
第9讲
对数与对数函数

探究点二
比较大小

点 面 讲 考 向
返回目录
第9讲
对数与对数函数

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第20讲 三角函数的图像与性质

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第20讲 三角函数的图像与性质
返回目录
第20讲
三角函数的图像与性质

[归纳总结] (1)由于对三角函数的周期性要求较低,故 只需要掌握y=Asin(ωx+φ)+B(或y=Acos(wx+φ)+B)的周 点 期的求解公式. (2)三角函数的奇偶性、周期性、对称性的研究,都应 面 讲 当先将函数化为y=Asin(ωx+φ)+B(或y=Acos(wx+φ)+B) 考 的形式后,再进行研究. 向
y=cos x
y=tan x
最值
当 x=2kπ (k∈Z)时, ymax =1; 当 x = 2k π + π 无最大、最小值 (k∈Z)时,ymin= -1
周期
2π ________
2π ________
偶 函数 ______
π ________
奇 函数 ______
奇 函数 奇偶性 ______
返回目录
第20讲
三角函数的图像与性质
y=cos x y=tan x
• 双 向 固 基 础
解析式
y=sin x π 在[2kπ - 2 ,2kπ π 增 函 + 2 ]上是______ 数; 单调性 π 在[2kπ + 2 ,2kπ 3 + 2 ]π 上是______ 减 函 数(k∈Z)
在[2kπ -π ,2k π ]上是________ 增 函 数; 在[2kπ ,2kπ + π ]上是______ 减 函数 (k∈Z)
返回目录
第20讲
三角函数的图像与性质
• 双 向 固 基 础
2.判断奇偶性的易错点 3π (1)函数 y=sinx+ 是奇函数.( ) 2 π π (2)函数 y=cosx- 和 y=cosx- 都是非奇非偶 2 3 函数.( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4)×
返回目录
第24讲
平面向量的概念及其线性运算
• 双 向 固 基 础
[解析] (1)不同于平面几何中的平行与共线的概念,向量 的平行与共线是同一个概念. (2)由相反向量的定义可知该说法正确. (3)λ>0 时,a 与 λa 方向相同. → 与向量CD → 共线, → 与向量CD → 所在的 (4)若向量AB 则向量AB 直线平行或重合,因此 A,B,C,D 不一定在一条直线上.
讲 考 向
[思考流程] (1)分析: 运用向量运算的三角形法则. 推理:
→ ,OB → 表示OM → ,在线段 OD 上用OC → 和CD →表 在△BOM 中用BM → .结论:经过运算得出向量表示. 示ON → ,AC → 作为基底向量.推理:用基底向量 (2)分析:将AB → ,得出 λ1,λ 2 的值.结论:求出 λ1+λ2 的值. 表示出向量DE
返回目录
第24讲
平面向量的概念及其线性运算

探究点二
平面向量的线性运算
• 点 → =1BC → ,CN → =1CD → ,用a,b表示 面 作平行四边形OADB,BM 3 3 讲 考 OM → =________,ON → =________. 向

→ =a, OB → =b为边 例2 (1)如图5241所示,以向量 OA
• 双 向 固 基 础
—— 疑 难 辨 析 ——
1.共线向量 (1)平行向量就是共线向量.( ) (2)相反向量一定是平行向量.( ) (3)a与λa共线,方向相同.( ) → 与 CD → 是共线向量,则A,B,C,D四点在 (4)若向量 AB 一条直线上.( )
[答案] (1)√
(2)√
(3)×Βιβλιοθήκη 返回目录第24讲平面向量的概念及其线性运算
1 5 [答案] (1)6a+6b
2 2 a + 3 3b
1 (2)2
• 点 面 讲 考 向
→ =OA → -OB → =a-b, → =1BA → =1a-1 [解析] (1)因为BA BM 6 6 6 1 5 → → → → =a+b,所以ON → =OC → b,所以OM=OB+BM=6a+6b.又OD 1→ 1→ 1→ 2→ 2 2 +3CD =2OD+6OD=3OD=3a+3b.
加法 的 ________ 和 的运算
b+a =__________
(2)加法结合律:(a+b) +c=
平行四边形
法则
a+(b+c) ______________
返回目录
第24讲
平面向量的概念及其线性运算
• 双 向 固 基 础
向量运 算
定义 减去一个向量
法则(或几何意 义)
运算律
减法
相当于加上这 个 向 量 的
2.
1 1 若2 x-3a - 2 (b+c-3x)+b=0,其中a,b,c为已
知向量,则x=________.
4 1 1 [答案] a+ b+ c 21 7 7
1 1 3 [解析] 由 2(x-3a)-2(b+c-3x)+b=0,得(2+2)x 2 1 1 7 2 1 1 4 1 1 -3a-2b-2c=0,即2x=3a+2b+2c,所以 x=21a+7b+7c.
返回目录
第24讲
平面向量的概念及其线性运算
[思考流程]分析:依据向量的基本概念.推理:利用 向量的条件推出各自的性质.结论:得出真命题的个数.
• 点 面 讲 考 向
[答案] 2
[解析] ①不正确,两个向量的长度相等,但它们的方 向不一定相同.②正确,实数可以比较大小,但向量不可 以比较大小.③正确,∵a=b,∴a,b的长度相等且方向 相同,又b=c,∴b,c的长度相等且方向相同,∴a,c的 长度相等且方向相同,故a=c.④不正确,当a∥b且方向相 反时,即使|a|=|b|也不能得到a=b,故|a|=|b|且a∥b不是a =b的充要条件,而是必要不充分条件.综上所述,真命 题有2个.
返回目录
第24讲
平面向量的概念及其线性运算
• 双 向 3. a表示向东走1 km,b表示向南走1 km,则a+b表示 固 基向________方向走________ km. 础
[答案] 东南
2
[解析] 向东南方向走 2 km.
返回目录
第24讲
平面向量的概念及其线性运算
• 双 向 → =a,AC → =b,则AM →= 4. M是BC边上的中点,AB 固 基 ________. 础
返回目录
第24讲
平面向量的概念及其线性运算
[答案] 1
• 点 面 [解析] ①错,向量可以用有向线段表示,但并不是有 讲 考 → = DC → 时, AB → ∥ DC → 且| AB → |=| DC → |,则四 向 向线段.②对,AB
边形ABCD是平行四边形.③错,b为零向量时,则不能 得到a∥c.④错,两个向量起点相同,终点相同,则两向 量相等,但两向量相等,不一定有相同的起点和终点.
—— 链接教材 ——
→ + MB → )+( BO → + BC → )+ OM → 化简后等于 1.向量式( AB ________.
→ [答案] AC
→ +BO → +OM → +MB → +BC → =AC →. [解析] 原式=AB
返回目录
第24讲
平面向量的概念及其线性运算
• 双 向 固 基 础
向量的 模
|AB| |a| 表示向量 a 的有向线段 AB ________ 或________
用________ 0 表示

零向量 长度为________ 的向量 0
返回目录
第24讲
平面向量的概念及其线性运算
• 双 向 固 基 础
名称 单位向量
定义
表示
1 长度等于 ________ 个 用 e 表 示 , |e| =
返回目录
第24讲
平面向量的概念及其线性运算
• 双 向 固 基 础
2.平面向量的线性运算 → +BC → +CA → =0,则 A,B,C 三点一定可以构 (1)若AB 成三角形.( ) (2) 已知两向量 a , b ,若 |a| = 1 , |b| = 2 ,则 |a + b| = 3.( )
[答案] (1)× (2)×
• 点 面 (2)[2013·广东珠海模拟] 如图5-24-2所示,在△ABC 讲 考 → =λ1 AB → +λ2 AC → 向 中,点D是BC边上靠近B的三等分点,若 DE
(λ1,λ2为实数),则λ1+λ2的值为________.
返回目录
第24讲
平面向量的概念及其线性运算
变式题 给出下列命题: ①有向线段就是向量,向量就是有向线段;
• 点 面 讲 考 向
→ =DC → ,则四边形ABCD为平行四边形; ②若AB ③若a∥b,b∥c,则a∥c; ④若两个向量相等,则它们的起点相同,终点相同. 其中真命题的个数________.
a-b=
a+(-b) ___________
________ 三角形 法则
相反向量 ___________
返回目录
第24讲
平面向量的概念及其线性运算
定义 法则(或几何意义) 运算律 |λ||a| (1)|λa|=________ (1) 对 向 量 加 法 的 个 与 a 的 方 向 λ (a + b) =
• 双 向 固 基 础 • 点 面 讲 考 向 • 多 元 提 能 力 • 教 师 备 用 题
第24讲 平面向量的概念及其 线性运算
返回目录
考试大纲
1.了解向量的实际背景,理解平面向量的概念和两个向 量相等的含义. 2.理解向量的几何表示. 3.掌握向量加法、减法的运算,并理解其几何意义. 4.掌握向量数乘的运算及其几何意义,理解两个向量共 线的含义. 5.了解向量线性运算的性质及其几何意义.
返回目录
第24讲
平面向量的概念及其线性运算

[归纳总结]对于向量的概念应注意以下几点: (1)向量的两个特征是有大小, 有方向. 向量既可以用有 点 向线段和字母表示,也可以用坐标表示. 面 (2)相等的向量不仅模相等, 而且方向也要相同, 所以相 讲 考 等向量一定是平行向量,而平行向量未必是相等向量. 向 (3)向量与数量不同, 数量可以比较大小, 而向量不能. 但 向量的模是非负数,故可以比较大小. (4)向量是自由向量, 所以平行向量就是共线向量, 二者 是等价的.
返回目录
第24讲
平面向量的概念及其线性运算
• 点 面 讲 考 向
2 → 1→ 2 → → → → → (2)如图所示,DE=BE-BD= BC- BA= (AC-AB) 3 2 3 1 → 1 2 → 2 → → =λ1AB → +λ2AC →, → 与AC →不 + AB=2-3AB+ AC, 又DE 且AB 2 3 1 2 2 共线,所以 λ1=2-3,λ2=3, 1 即 λ1+λ2=2.
单位的向量 ________ 1 a∥b
平行向量
相同 或相反 方向 ________
的非零向量
相等向量
长度 相等且方向 ________
________ 相同 的向量
a=b
相反向量
________ 长度 相等,方向 向量 a 的相反向量是
相反 的向量 ________
-a ________
返回目录
第24讲
返回目录
第24讲
平面向量的概念及其线性运算
• 双 向 固 基 础
1.向量的有关概念及表示
名称 向量 定义 表示
→, 大小 用 a,b,c,…或AB 在平面中,既有 ________
方向 的量 又有________ 大小 , 向量 a 的________ 也就是
相关文档
最新文档