光子晶体和光子晶体光纤

合集下载

光子晶体光纤

光子晶体光纤

PCF的一些特性
非线性现象
减小光纤模场面积,可增强非线性 在孔中可以装载气体,也可以 效应,从而使光子晶体光纤同时具 装载低折射率液体,从而使光 有强非线性和快速响应特性。常规 子晶体光纤具有可控制的非线 光纤有效截面积在50-100μm量级, 性。 而光子晶体光纤可以做到1μm量级
PCF的一些特性
不同类型的光子晶体光纤及其应用
保偏光子晶体光纤
传统保偏光纤双折射现象由纤芯附近差异热 扩张的合成材料形成,当光纤在拉制降温过 程中差异热扩张产生压力。相反保偏光子晶 体光纤是由非周期结构纤芯中空气和玻璃的 大折射率差而形成双折射现象,从而得到更 小的拍长,减小偏振态和保偏消光比之间的 耦合曲率。主要用于光传感器、光纤陀螺和 干涉仪。
不同类型的光子晶体光纤及其应用
高非线性光子晶体光纤
高非线性光子晶体光纤中的光是在由周期性 排列的硅材料空气孔围成的实心硅纤芯中传 输。通过选择相应的纤芯直径,零色散波长 可以选定在可见光和近红外波长范围 (670nm~880nm),使得这些光纤特别适合 于采用掺钛蓝宝石激光或Nb3+泵浦激光光源 的超连续光发生器
光子晶体光纤的制备
• 预制棒的设计和制作 • 将预制棒拉丝
光子晶体光纤的制备
预制棒的设计和制作
(1)毛细管组合法
第一步是设计并制作出光子晶体光纤的截面结构: 第二步是形成光子晶体结构,将六角形细棒按三角形或蜂 首先选用直径为30mm的石英棒为原材料,然后沿石英 这种制造工艺最早由英国Southampton 大学Birks 等 窝形堆积起来形成所要求的晶体结构,然后放在光纤拉丝 棒轴线方向钻一个直径为16mm 的孔。接着将石英棒 塔上拉制成空气孔孔距为50μm 的细丝。接着再把这些细丝 人报道,他们的整个制作过程分为三步 第三步是复制堆积拉丝过程 磨成一个正六棱柱,然后将这个正六棱柱放在光纤拉丝 切断并再次堆积成三角形或蜂窝形结构,其中心用一根直 塔上拉制成直径为0.8mm 的六角形细棒,拉丝温度在 径完全相同的实芯细丝替代,这样在光纤中心引入缺陷。 2000℃左右。

光子晶体及其在激光电磁学中的应用

光子晶体及其在激光电磁学中的应用

光子晶体及其在激光电磁学中的应用光子晶体是一种具有周期性结构的材料,其晶格常数比可见光波长要小得多,所以具有对光的完美控制特性,其光学性质优于普通的材料。

因此,光子晶体在激光电磁学中有着广泛的应用。

一、光子晶体的构造及其特性光子晶体是一种由周期性结构单元构成的材料,其周期性结构单元必须满足材料中的光子能够在其中传播的条件,也就是说,其周期应该与波长相当。

光子晶体可以用于在某些特定波段和极化状态下完美地反射和透射光线,其光学特性与普通材料不同。

光子晶体的物理特性随着结构和材料的变化而发生变化。

通过调整其内部的构造和成分,可以实现对光场的高度定制,可以控制光的传播方向、速度、损耗等性质。

光子晶体还具有非线性光学性质,可以产生与普通材料不同的非线性光学效应。

二、光子晶体在激光电磁学中的应用光子晶体是一种典型的光学材料,其在激光电磁学中有着很多的应用。

1. 光子晶体光纤光子晶体光纤是一种由光子晶体材料制成的光纤,受到物理尺寸和波长限制的传统光纤无法彻底解决多模干扰问题,导致光纤通信中的数据传输质量下降。

与传统光纤相比,光子晶体光纤的中心井宽和周期性结构单元的数量可以调整,改变传播模式,可实现单模传输,光传输带宽更大,并且混合模式可以避免在传输中的失真。

因此,光子晶体光纤可以用于长距离通讯、高速通讯、卫星通讯等领域。

2. 光子晶体激光器光子晶体激光器是一种基于光子晶体材料制成的激光器,可以用于光通信、光信息存储等领域。

光子晶体激光器利用光子晶体中的光子能带结构,实现了高效的光增强效应,它的光学特性比传统的激光器具有更好的稳定性和更高的高功率输出。

光子晶体激光器也可以实现波长调制,可以在大范围内实现波长调整,具有优良的单模性、高精度和低成本等优点。

这种波长可调激光器可以用于激光雷达、气体探测、医学诊断等领域。

3. 光子晶体光学振荡器光子晶体光学振荡器是一种基于光子晶体材料制成的光学器件,有着极高的透过率和较低的损耗率。

《光子晶体光纤光栅折射率传感特性的研究》范文

《光子晶体光纤光栅折射率传感特性的研究》范文

《光子晶体光纤光栅折射率传感特性的研究》篇一一、引言随着现代科技的不断发展,光子晶体光纤(PCF)因其独特的物理和光学特性,在传感器技术领域得到了广泛的应用。

其中,光子晶体光纤光栅(PCF-Bragg Grating)作为一种重要的光学元件,具有高灵敏度、高分辨率以及良好的稳定性等优点,被广泛应用于折射率传感领域。

本文旨在研究光子晶体光纤光栅的折射率传感特性,为相关领域的研究和应用提供理论支持。

二、光子晶体光纤与光栅原理1. 光子晶体光纤(PCF)原理光子晶体光纤是一种基于光子晶体原理的光纤,其内部结构具有周期性排列的微结构。

这种结构使得光子晶体光纤在光传输过程中具有较低的损耗和较强的约束能力,可有效控制光的传播方向和模式。

2. 光栅原理光栅是一种具有周期性结构的衍射元件,其作用是将入射光束分解成多束衍射光束。

在光子晶体光纤中引入光栅结构,可形成光子晶体光纤光栅(PCF-Bragg Grating),其具有对特定波长或波长范围的光束进行选择性衍射的能力。

三、PCF-Bragg Grating折射率传感特性研究1. 实验原理与方法本研究采用PCF-Bragg Grating作为传感器元件,通过测量衍射光谱的变化来反映外界折射率的变化。

实验中,我们使用不同浓度的溶液作为折射率变化的介质,将PCF-Bragg Grating浸入不同浓度的溶液中,观察其衍射光谱的变化情况。

同时,我们还采用光谱仪等设备对衍射光谱进行精确测量和分析。

2. 实验结果与分析实验结果表明,当PCF-Bragg Grating浸入不同浓度的溶液中时,其衍射光谱发生了明显的变化。

随着溶液浓度的增加,衍射光谱的峰值波长逐渐发生红移或蓝移。

这一现象表明PCF-Bragg Grating的折射率传感特性具有良好的灵敏度和分辨率。

此外,我们还发现PCF-Bragg Grating的稳定性较好,能够在不同环境下保持较高的测量精度和可靠性。

为了进一步分析PCF-Bragg Grating的折射率传感特性,我们采用了多种数学方法对实验数据进行处理和分析。

光子晶体光纤 (PCF)

光子晶体光纤 (PCF)


2. 光子晶体波导
• 传统的介电波导可以支持直线传播光,但在拐角处会损失能量 • 光子晶体波导不仅对直线路径,而且对转角都有很高的效率 • 这对于光学器件的集成非常有意义
3. 光子晶体微腔
• 在光子晶体中引入缺陷可能在光子带隙中出现缺陷态 • 这种缺陷态具有很大的态密度和品质因子,这种光子晶体制成 的微腔比传统的微腔优异得多 • 用它制作的微腔激光器的体积可以非常小
2.1 特性
• 将光纤和光子晶体的特性相结合,可以得到传统光纤达不到的一 系列独特性质 • 具有非常严格的设计原则:
• 为了得到单模运转,要受到限定芯径,模的截止波长,有限的材料选择 (芯材玻璃与包层材玻璃的热特性必须相同)等方面的限制
• 有两个基本特性与传统光纤十分不同
两个基本特性
1. 微结构的二维特性
• PCF的色散控制
• 由于石英和空气的折射率对比度很大,气孔的大小和排列方式可以灵活地变化,和普 通光纤相比,PCF能够在更大的范围内对色散进行控制 • 例如,小心控制光纤中的气孔大小和空间距离,可设计出令人惊异的色散曲线,使光 纤在通信频带中几百纳米波长范围内,色散D<0.5ps/(nm· km),从而大大减小由色散造 成的脉冲展宽
光子晶体光纤 (PCF)
主要内容
• 光子晶体
• 结构 • 原理:光子带隙基础 • 优点
• 光子晶体光纤(PCF) • PCF激光器
1 光子晶体
• E. Yablonovitch 和 S.John 在1987年分别独立地提出了光子晶体的概念 • 光子晶体是介电常数在空间呈周期性排列形成的人工结构。所谓晶体就是针 对这种“周期性”而言的。 • 根据“周期性”的维数,光子晶体也分为一维、二维和三维的

光子晶体光纤的特征

光子晶体光纤的特征

光子晶体光纤的特征光子晶体光纤是指具有光子晶体结构的光纤。

光子晶体是一种具有周期性折射率的介质,其结构类似于晶体,但其周期性不在空间晶格坐标上,而是在光学尺寸的尺度范围内实现。

与普通的光纤相比,光子晶体光纤在光学性能上具有很多独特的特点。

高效传输光子晶体光纤的介电常数分布呈现出光子能带结构,这意味着该光纤可以实现“禁带”的传输,并且允许特定波长范围内的光线沿着光纤中推进,并在纤芯中无损耗地传输。

此外,光子晶体光纤还可以实现全反射,使得光线可以沿着光纤中的同一路径传输,从而使其具有高效传输的能力。

宽波长范围光子晶体光纤的禁带频率是可以通过调节光子晶体的结构进行调控的,从而使其在不同的波段内均可以实现光传输。

因此,光子晶体光纤具有宽波长范围的优点,在不同的领域均能够实现优秀的性能。

高灵敏度光子晶体光纤的光学性能可以通过纤芯中的微观结构进行调控,从而使其具有高灵敏度的特点。

例如,通过在纤芯中引入缺陷等微小的结构变化,就可以实现对光信号的高效检测。

此外,光子晶体光纤还可用于制作传感器等领域,具有很高的应用价值。

抗干扰能力强光子晶体光纤具有很高的抗干扰能力。

它可以有效地抑制光纤中的各种杂散光,避免光信号受到干扰或衰减。

独特的光场分布特性光子晶体光纤的纤芯结构可以自由地调控,因此它具有很多独特的光场分布特性。

例如,光子晶体光纤可以实现单模传输,从而避免了多模光纤传输所带来的光学噪声。

此外,光子晶体光纤的光学场分布与在普通光纤中的有所不同,因此它还可以用于调制光场、实现光学非线性效应等领域。

综上所述,光子晶体光纤具有特定波长范围内高效传输、宽波长范围、高灵敏度、抗干扰能力强、独特的光场分布特性等特点,因此在通信、传感器、量子光学、生物医学、材料等领域均有广泛的应用。

光子晶体光纤简介

光子晶体光纤简介

光子晶体光纤
杨莹 物理系光学专业
光子பைடு நூலகம்体
光子晶体就是通过人工制造方法,使其制作 的晶体材料具有类似于半导体硅和其它半导体中 相邻原子所具备的周期性结构,只不过光子晶体 的周期性结构的尺度远比电子禁带晶体的大,其 大小为波长的数量级。例如,在硅和其它半导体 中,相邻原子间的距离约为0.25nm,而光子晶体 的周期结构的间距远大于0.25nm,约几百纳米, 其具体数值决定于光的波长。一种典型的光子晶 体,其结构是钻有许多柱形孔的特殊玻璃。圆柱 形空气孔紧密排列,孔距为数百纳米,这些圆柱 形空气孔类似于半导体的原子。
钻有许多圆柱形空气孔的玻璃的截面图
如果破坏光子晶体的周期性结构,使光子晶体成 为不完全的光子禁带晶体,这种不完全的光子晶 体非常有用。光子晶体光纤是不完全光子晶体的 重要应用。 光子晶体光纤的制作方法和普通光纤一样,也是 用肉眼可见的预制棒玻璃拉制而成。主要差别在 于预制玻璃棒的横截面结构,拉制光子晶体光纤 的预制棒是一束紧密排列的石英毛细管。这种有 小气孔的二维“晶体”在纤维中从头至尾延伸, 多次复制这种石英毛细管的排列,便可拉制出符 合要求的孔距的光子晶体光纤。
采用堆积石英毛细管方法拉制光子晶体光纤示意图
以英国Bath大学研制的全内反射光子晶体光纤为例,说明 其制作过程。 第一步:选用直径为30mm的石英棒为原材料,然后沿石英 棒轴线方向钻一个直径为16mm的孔。接着将石英棒磨成一 个正六棱柱,然后将这个正六棱柱放在光纤拉丝塔上拉制 成直径为0.8mm的六角形细棒,拉丝温度在2000℃左右。 第二步:将六角形细棒按三角形或蜂窝形结构堆积起来形 成所要求的晶体结构,然后放在光纤拉丝塔上拉制成空气 孔孔距为50um的细丝。接着再把这些细丝切断并再次堆积 成三角形或蜂窝形结构,其中心用一根直径完全相同的实 芯细丝替代,这样在光纤中心引入缺陷。 第三步:复制堆积拉丝过程,最终拉制成2um空气孔孔距 的光纤。在这多次的拉制过程中细棒堆熔合在一起,同时 棒间距不断缩减。

光子晶体光纤的导光原理

光子晶体光纤的导光原理

光子晶体光纤的导光原理1.引言1.1 概述概述:光子晶体光纤作为一种新型的光纤传输介质,具有独特的结构和出色的光导特性。

它采用光子晶体结构,通过调控光子晶体中的周期性折射率变化,实现对光信号的高效导引和传输。

与传统的光纤相比,光子晶体光纤在光导性能上具有明显的优越性,因此在光通信、光传感等领域有着广泛的应用前景。

本文将从光子晶体光纤的基本原理和导光机制两个方面进行探讨。

首先,我们将介绍光子晶体光纤的基本原理,包括其结构特点、制备方法和光学性质等方面的内容。

其次,我们将重点探讨光子晶体光纤的导光机制,包括全内反射、布喇格散射和空气孔径调制等关键技术的原理及其对光信号传输的影响。

通过对光子晶体光纤的导光原理的深入研究,可以更好地理解其优越的光导特性,并为其在光通信、光传感等领域的应用提供理论指导和技术支持。

此外,我们还将展望光子晶体光纤在未来的发展趋势,以及可能遇到的挑战和解决方案。

综上所述,本文旨在全面介绍光子晶体光纤的导光原理,为读者深入了解和应用光子晶体光纤提供参考。

1.2文章结构文章结构部分的内容可以如下所示:1.2 文章结构本文主要围绕光子晶体光纤的导光原理展开讨论。

为了使读者更好地理解这个主题,本文将分为引言、正文和结论三个部分。

引言部分将首先对光子晶体光纤进行概述,介绍其基本特点和应用领域。

然后,本文将给出文章结构的总体概述,为读者提供一个整体的框架。

正文部分将重点讨论光子晶体光纤的基本原理和导光机制。

在2.1节中,将详细介绍光子晶体光纤的基本原理,包括其构造和组成材料。

然后,2.2节将深入讨论光子晶体光纤的导光机制,解释光信号在光纤中的传输过程,并探讨其与传统光纤的区别和优势。

结论部分将对文章进行总结,并展望光子晶体光纤在未来的发展前景。

3.1节将总结本文的要点和主要观点,强调光子晶体光纤在光通信和光传感领域的重要性。

而3.2节将展望光子晶体光纤技术未来的发展方向和可能的应用领域,为读者提供一个展望未来的思考。

光子晶体简介及应用

光子晶体简介及应用

光子晶体及其应用的研究(程立锋物理电子学)摘要:光子晶体(PbmDftic Crystal)是一种新型的人工材料,其最显著的特点就是具有光子禁带(Photonic B锄d.G£lp,简称PBG),频率落在光子禁带内的电磁波是禁止传播的,因而具有光子带隙的周期性奔电结构就称为光子晶体。

近几年,光子晶体被广泛地应用于微波、毫米波的电路设计中。

的滤波特性,加以优化,则可以实现带通滤波器。

迄今为止,已有多种基于光子晶体的全新光子学器件被相继提出,包括无阈值的激光器,无损耗的反射镜和弯曲光路,高品质因子的光学微腔,低驱动能量的非线性开关和放大器,波长分辨率极高而体积极小的超棱镜,具有色散补偿作用的光子晶体光纤,以及提高效率的发光二极管等。

光子晶体的出现使光子晶体信息处理技术的"全光子化"和光子技术的微型化与集成化成为可能,它可能在未来导致信息技术的一次革命,其影响可能与当年半导体技术相提并论。

关键词:光子晶体;算法;应用;1光子晶体简介在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路。

推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。

半导体的工作载体是电子,因此半导体的研究围绕着怎样利用和控制电子的特性。

但近年来,电子器件的进一步小型化以及在减小能耗下提高运行速度变得越来越困难。

人们感到了电子产业发展的极限,转而把目光投向了光子。

与电子相比,以光子作为信息和能量的载体具有优越性。

光子是以光速运动的微观粒子,速度快;它的静止质量为零,彼此间不存在相互作用,即使光线交汇时也不存在相互干扰:它还有电子所不具备的频率和偏振等特征。

电子能带和能隙结构是电子作为一种波的形式在凝聚态物质中传播的结构,而光子和电子一样具有波动性,那么是否存在这样一种材料,光子作为一种波的形式在其中传播也会产生光子能带和带隙。

光子晶体光纤制备原理

光子晶体光纤制备原理

光子晶体光纤制备原理
光子晶体光纤的制备原理基于光子晶体的概念。

光子晶体是一种具有周期性折射率变化的介质,能够控制光的传播。

在光子晶体光纤中,包层由规则排列的空气孔构成,这些空气孔的排列方式决定了光的导光特性。

光纤的核心则由破坏包层结构周期性的缺陷构成,这个缺陷可以是固体硅,也可以是空气孔。

对于核心为空气孔的情况,光的导光机制主要是布拉格衍射。

当一定波长的光通过作为包层的二维光子晶体时,光被陷获在作为核心的空气孔中,并通过布拉格衍射实现光的传输。

这种光子晶体光纤的导光机制使光纤设计更灵活,因为光子带隙条件只依赖于包层的性质,纤芯折射率可以自由选择,从而将光波限制在空纤芯中。

对于核心为固体硅的情况,包层不存在光子带隙,其有效折射率是硅和空气的体平均,小于核心硅的折射率。

因此,这种光纤的导光机制是全内反射。

只要满足全反射的条件,光完全可以局限在“纤芯”范围内传播。

与全内反射光纤相比,光子带隙导向给予了额外的自由度。

光子晶体光纤的制备过程涉及复杂的微纳加工技术。

首先,制备出一簇细小的毛细管,并使其周期性排列。

然后,通过特定的技术将这些毛细管组装起
来,形成光子晶体光纤的结构。

这种光纤具有优良的传输特性,因此在全球范围内受到了广泛的关注和应用。

光子晶体光纤概述

光子晶体光纤概述

光子晶体光纤概述光子晶体光纤(Photonic Crystal Fiber,简称PCF)是一种基于光子晶体的特殊光纤,其内部结构通过周期性排列的微结构孔道以控制和引导光信号的传播。

相比于传统的光纤,光子晶体光纤具有许多优异的特点和应用前景。

本文将对光子晶体光纤的概述进行详细介绍。

首先,光子晶体光纤的设计和制备基于光子晶体的结构和性质。

光子晶体是一种具有周期性折射率变化的人工材料,类似于原子晶体中的周期性晶格。

光子晶体具有禁带结构,使得特定波长的光在其中无法传播,从而实现对光信号的控制。

光子晶体光纤则是利用光子晶体的这种特性进行光信号的传输和处理。

在光子晶体光纤中,光信号通过微结构孔道进行传输。

这些孔道可以是气体孔道、空气孔道或者填充了特定介质的孔道,根据不同的应用需求进行设计。

利用光子晶体的禁带结构特性,光子晶体光纤可以实现多种传输方式,如单模传输、多模传输、混合模传输和超模传输等,以及特定波长的滤波和调制功能。

光子晶体光纤相比传统光纤具有许多优势。

首先,光子晶体光纤具有更低的色散特性,能够实现更宽的光带宽和更高的传输速率。

其次,光子晶体光纤具有更高的非线性效应,可用于光学信号处理和光学器件制备。

此外,光子晶体光纤还具有更大的模场面积,可以实现更高的光功率传输和更低的光损耗。

光子晶体光纤在通信、光子学和生物医学等领域拥有广泛的应用前景。

在通信领域,光子晶体光纤可以用于高速宽带传输、红外光通信和光信号调制等应用。

在光子学领域,光子晶体光纤可以用于激光增强、光谱分析和光学传感等应用。

在生物医学领域,光子晶体光纤可以用于激光手术、光学成像和生物传感等应用。

然而,光子晶体光纤的制备和应用仍然面临许多挑战。

目前,光子晶体光纤的制备技术相对复杂,需要高精度的光学和材料工艺。

此外,光子晶体光纤的设计和理论研究也仍处于初级阶段,需要进一步探索和发展。

总之,光子晶体光纤作为一种新型的光纤材料,具有许多独特的特点和应用前景。

光子晶体光纤的制备及应用

光子晶体光纤的制备及应用

光子晶体光纤的制备及应用光子晶体光纤是一种具有高光波导控制能力和特殊光学性质的光纤,它的制备手段和微电子加工技术相似,主要包括光子晶体结构设计、材料选择与制备、光纤预制和制备等过程。

光子晶体光纤在光通信、生物医学、传感器等领域有着广泛的应用。

一、光子晶体光纤的制备过程1. 光子晶体结构设计光子晶体结构是光子晶体光纤具有高光波导控制能力的重要保证。

可以选用计算机辅助设计软件和模拟器进行结构优化和仿真。

通过改变光子晶体晶胞中介质的折射率等参数,可以改变光子晶体的光学特性,如色散、带宽等。

可能的光子晶体结构包括一维、二维、三维光子晶体结构等。

2. 材料选择与制备光子晶体材料的选择具有重要意义。

常见的材料有二氧化硅、氧化铌、氧化锆等。

材料制备一般采用溶胶-凝胶法、水热法、溶液旋转涂覆法等方法。

在制备过程中,需要特别注意保证晶体结构的完整性和均匀性。

3. 预制光纤常规的预制光纤一般采用传统的气相化学沉积法、拉制法、熔石英法等制备。

而预制光纤的表面和内部质量对于最后制备的光子晶体光纤的质量和性能有着重要的影响。

4. 光子晶体光纤的制备光子晶体光纤的制备主要分为两步,首先是将预制光纤拉伸到一定长度,然后再通过模板法或空气堵塞法在拉伸的光纤中注入光子晶体颗粒。

两种方法制备的光子晶体光纤形态略有不同,模板法制备的光子晶体光纤表面光子晶体结构呈现出钮扣状,空气堵塞法制备的光子晶体光纤表面结构则为环状。

二、光子晶体光纤的特性和应用1. 光子晶体光纤的特性光子晶体光纤具有多种特殊的光学性质,如能够实现群速度减缓、衍射效应等,并且可以通过改变结构参数实现光学滤波、非线性光学等特殊功能。

由于光子晶体光纤内部的结构类似于光子晶体,因此对于光的波长和方向等具有良好的调制能力。

2. 光子晶体光纤的应用(1)光通信领域光子晶体光纤可以在制备过程中调节材料和结构参数,实现光口的高度定制化。

因此,光子晶体光纤在光通信领域可以用于实现波分复用、沿线灵活引导光波等应用。

光子晶体光纤

光子晶体光纤

光子晶体光纤(PCF).光纤的种类:光纤按光在物质中的传输模式可分为:单模光纤和多模光纤多模光纤传输的距离比较近,光纤一般只有几公里。

单模光纤只能传一种模式的光,其模间色散很小,适用于远程通讯。

多孔光纤是一种全新的工艺技术。

自从1996年第一根多孔光纤诞生以来,就受到了广泛关注,并于近几年取得了许多极有价值的成果。

多孔光纤包括两种材料:一种材料为透明的固体——通常为玻璃,另一种材料为空气——沿着光纤长度的方向填充在孔中。

多孔光纤的制作方法是:将玻璃管紧密捆扎成一束进行拉丝制成光纤,具有截面成蜂窝状,在石英玻璃中有许多空孔呈周期性存在的结构。

多孔光纤分为两类:光子晶体光纤和光子带隙光纤。

光子晶体(photonic crystal)的概念于1987年提出,1991年制造出世界上第一根光子晶体光纤。

光子晶体光纤(photonic crystal fiber,PCF),又称为微结构光纤(micro-structured fiber)或中空光纤光子晶体(photonic crystal)是由一种单一介质构成,并由波长量级的空气孔构成微结构包层的新型光纤。

光子晶体光纤呈现出许多在传统光纤中难以实现的特性,它受到了广泛关注并成为近年来光学与光电子学研究的一个热点。

90年代后光子晶体光纤(PCF)被日益关注,它的分类,独特的性能,制备方法和潜在的应用先后被提出。

光子晶体光纤在外观上和传统的普通单模光纤非常相似,但微观上光子晶体光纤的横截面完全不同。

光子晶体光纤的横截面由非常微小的孔阵列组成,类似于晶体中的晶格,实际上这些小孔是一些直径为光波长量级的毛细管,平行延伸在光纤中。

光子晶体光纤(PCF)的纤芯是固体芯,芯外为包层,包层内含有一定数量的沿光纤长度方向延伸的空孔(见图1)。

包层为光子带隙材料,它的平均折射率低于纤芯。

多孔包层的有效折射率随波长而发生变化,且与孔的尺寸和间隔有关。

光子晶体光纤和普通单模光纤相比有3个突出的优点:第一,光子晶体光纤可以在很大的频率范围内支持光的单模传输;第二,光子晶体光纤允许改变纤芯面积,以削弱或加强光纤的非线性效应;第三,光子晶体光纤可灵活地设计色散和色散斜率,提供宽带色散补偿。

光子晶体光纤概述

光子晶体光纤概述

光子晶体(PC)是一种介电常数随空间周期性变化的新型光学微结构材料,其概念是1987由S.jhon和E. Yablonovitch提出来的,就是将不同介电常数的介质材料在一维、二维就是将不同介电常数的介质材料在一维、二维或者三维空间组成具有光波长量级的折射率周期性变化的结构材料。

光子晶体的发现,可以说是光和电磁波传播与控制技术方面的一次革命。

与电子晶体不同,光子晶体是折射率周期性变化产生光子能带和能隙,频率(波长、能量)处在禁带范围内的光子禁止在光子晶体中传播。

当在光子晶体中引入缺陷使其周期性结构遭到破坏时,光子能隙就形成了具有一定频率宽度的缺陷区。

我们知道,现代信息技术爆炸之发端是人类能以极为精巧复杂的方法控制半导体中电子流的能力,光子晶体则可以让人们同样地控制光子,甚至控制得更为灵活多样。

可以预见,光子晶体将在光通信、光学、光电子学和信息科学等方面引发革命性变革,极有可能在21世界扮演更为重要的角色。

1999年12月17日,国际权威杂志《Science》将光子晶体方面的研究列为当今十大科学进展之一。

1991年,Russell等人根据光子晶体传光原理首次提出了光子晶体光纤(PCF)的概念。

1996年,英国南安普顿大学的J.C.Knight 等人研制出世界上第一根PCF,之后在光纤通信和光学研究领域中,PCF引起了全世界的普遍兴趣。

目前,有关光子晶体光纤(PCF)的研究重点有:理论模型、制造工艺、性能测量、实验室实验和工程应用技术探讨等。

2.光子晶体光纤的结构及其导光原理就结构而言,PCF可以分为实心光纤和空心光纤。

实心光纤是将石英玻璃毛细管以周期性规律排列在石英玻璃棒周围的光纤。

空心光纤是将石英玻璃毛细管以周期性规律排列在石英玻璃管周围的光纤。

PCF导光机理可以分为两类:折射率导光机理和光子能隙导光机理。

折射率导光机理:周期性缺陷的纤心折射率(石英玻璃)和周期性包层折射率(空气)之间有一定的差别,从而使光能够在纤芯中传播,这种结构的PCF导光机理依然是全内反射,但与常规G.652光纤有所不同,由于包层包含空气,所以这种机理称为改进的全内反射,这是因为空芯PCF中的小孔尺寸比传导光的波长还小的缘故。

光子晶体光纤

光子晶体光纤

光子晶体光纤摘要:光子晶体光纤由于其特殊的周期性结构,区别于传统的光纤,而具有无截止单模传输、可调节色散、高双折射、偏振控制、大的有效面积单模运转和小的有效面积高非线性等特性及其广泛的应用前景,成为当前国内外研究的热门课题。

本文主要介绍光子晶体光纤的基础知识,并介绍利用有限元软件COMSOL Multiphysics模拟仿真光子晶体光纤中传输时各种模式的场分布以及有效折射率。

为以后的进一步研究打下基础。

关键词:光子晶体光纤COMSOL Multiphysics一光子晶体与光子晶体光纤1.1 光子晶体光子晶体是一种折射率变化周期为光波长量级的具有光子禁带的人工材料。

最早的光子带隙思想由E.Yablonovitch和S.John提出。

当电磁波在光子晶体中传播时,具有透射、反射和折射,电磁波受到电子周期性布拉格散射的调制,形成类似于电子的能带结构,我们称之为光子能带。

在晶格常数与介电常数的比值取值适当的情况下,光子能带与电子能带相似。

光子能带间可能存在禁止某些频率电磁波的频率区域,我们将这些频率区域命名为光子带隙,这是光子晶体最根本的特征。

因此人们又将光子晶体称为光子带隙材料。

光子晶体的结构可以这样理解,正如半导体材料在晶格结点(各个原子所在位点)周期性的出现离子一样,光子晶体是在高折射率材料的某些位置周期性的出现低折射率(如人工造成的空气空穴)的材料。

如图1所示的光子晶体材料从一维到三维的结构,可以明显看出周期性的存在。

高低折射率的材料交替排列形成周期性结构就可以产生光子晶体带隙(BandGap,类似于半导体中的禁带)。

而周期排列的低折射率位点的之间的距离大小相同,导致了一定距离大小的光子晶体只对一定频率的光波产生能带效应。

也就是只有某种频率的光才会在某种周期距离一定的光子晶体中被完全禁止传播。

如果只在一个方向上存在周期性结构,那么光子带隙只能出现在这个方向。

如果在三个方向上都存在周期结构,那么可以出现全方位的光子带隙,特定频率的光进入光子晶体后将在各个方向都禁止传播。

光子晶体和光子晶体光纤在传感器中的应用

光子晶体和光子晶体光纤在传感器中的应用
b a e n a c u ti e sn r e n p o td o t F n l , h t d o o s l e i we e b e r u h o wa d e t k n i c o n n s n i g a e b e i n e u . i a l t e meho sh w t o v t r e n b o g tfr r . y
【 src]h urn rsac i ao f htnccytl e srno r o nr a ef e n esneter w s nlsdi etei AbtatT ec r t eerhsu t no o i rs no u u t w sde b dadt es hoy a a e t s . e t i p o as i c y i h a y nh h s
要 】 文 阐 述 了 国 内光 子 晶 体传 感 器的 研 究现 状 , 析 了传 感 原理 。 究 了光 子 晶 体光 纤的 传 感 原理 以及 三 种 光 子 晶体 光 纤 传 感 器 , 本 分 研
叙 述 了在传 感 中需 要 考虑 的 两个 问题 . 并提 出 了解 决 的 办 法 。
丛 : A 4 鲤 n
A Ⅱ n
而 晶格 常 数 的相 对 变 化 与 温 度 的 变 化关 系 为 = , 效 折 射 以 等 光 纤 P F p ooi c s l b r的 概 念 最 早 是 由 PS.R se 等 人 于 C (h t c r t e) n y a f i .t.usl J l 19 9 6年 在 O C会 议 上 首 次 提 出 。 F 它是 一 种 新 型 光 纤 . 它 的 包 层 区域 率 的相 对 变 化 与 温度 变 化 量 的 关 系 为 兰 在 △ 。 其 中 q为 材 料 的 热 r t 有 许 多 平行 于光 轴 的 小 孔 。  ̄ f 膨胀 系 数 , B为 热光 系数 。因此 峰 值 波 长 的 位 移与 温 度 的 变化 关 系 为 : 2光 子 晶体 传 感 器 . (+ ) T, 么 波 长 d卢a 那 的位 移 与 温度 的 变化 成 线 性 关 系 , 过 通 光 子 晶体 的传 感 器 模 型 国 内 已经 有 学 者 在 进 行 研究 。 基本 原 其 测 量反 射 峰 值 波 长 的位 移 . 以 实 现 对 温 度 的测 量 。 如果 在 光 子 晶 体 可 理 是 基 于光 子 晶体 是 具 有 周期 性 结 构 的 材 料 . 么 组 成 光 子 晶 体 的材 那 中 引入 较 大 的缺 陷 ,会 由于 F P效 应 导 致 反 射 光 谱 峰 发 生 规 则 的 分 — 料 的 介 电性 质 及 其 空 间 排 列方 式 决 定 了 光 子 晶体 的光 传 播 性能 。

光子晶体光纤特性及应用

光子晶体光纤特性及应用

光子晶体光纤特性及应用【摘要】光子晶体光纤以其特殊的传输机理和优异的性能,其应用领域正不断扩大,本文介绍了光子晶体光纤的概念、原理和分类,说明两种光子晶体光纤的结构,并讨论了光子晶体光纤的特性及相应的应用。

【关键词】光子晶体光纤;微结构光纤;光子带隙1 概述光子晶体可以认为是一种由折射率周期性变化而产生光子能带和带隙的物质。

频率处于禁带范围内的光子不能在这种物质中传播,如在光子晶体中引入缺陷以破坏其周期性结构时,光子带隙就会形成具有一定频带宽度的缺陷区,与其对于的特定频率的光波可以在其中传播。

这就是光子晶体概念的来源。

光子晶体光纤又称为微结构光纤是一种二维光子晶体,通常的结构为光纤的横截面内存在着很多按一定规律周期性排列的空气孔,这些孔的尺寸和光波的波长相当。

如在周期性的结构中引入线缺陷,如改变孔径的大小,或以玻璃代替空气孔,便形成了光子晶体光纤结构,光可以沿着缺陷在光纤中传输。

缺陷构成光子晶体光纤的纤芯,缺陷外的周期性结构便是光子晶体光纤的包层,光在缺陷内传播。

光子晶体光纤是具有空洞的微列阵结构的光纤,被称为多孔光纤或微结构光纤。

光子晶体光纤有很多奇特的性质。

例如,可以在很宽的带宽范围内只支持一个模式传输;包层区气孔的排列方式能够极大地影响模式性质;排列不对称的气孔也可以产生很大的双折射效应。

2 光子晶体光纤的结构根据传光机制,光子晶体光纤可以分为两大类,全反射型光子晶体光纤和光子带隙型光子晶体光纤。

2.1全反射型光子晶体光纤的结构。

全反射型光子晶体光纤和传统光纤的传光原理相似,利用光纤内部全反射(TIR)原理,使被传送的光能量在高折射率实体的“芯”中传播,周围规则排列的微结构做为低折射率的光学皮层,如图1和图2所示。

2.2光子带隙型光子晶体光纤结构。

这种类型的光纤不是光的全反射原理,而是利用光子晶体的光子带隙效应(PBG),被传送的光被光子带隙限定在“芯”中,沿微结构方向传输。

如图3和图4所示,光子带隙型光子晶体光纤的结构,中间空的部分是“芯”,周围规则排列的微结构区域是光纤的包层。

光子晶体技术在光电子学中的应用

光子晶体技术在光电子学中的应用

光子晶体技术在光电子学中的应用随着科技的发展,光电子学作为一种新兴的学科逐渐受到人们的关注,而光子晶体技术作为光电子学中的重要组成部分之一,则更是备受人们瞩目。

那么,什么是光子晶体技术呢?它在光电子学中的作用是什么呢?一、光子晶体技术是什么光子晶体技术是一种新兴的材料技术,它是在微观尺度上制造具有特殊光学性能的孔阵列的。

所谓光子晶体,就是指这些孔阵列具有不同的折射率和电磁波学特征,可以影响光的传播。

二、2.1 光子晶体光纤光子晶体光纤是一种基于光子晶体技术的新型光学纤维,它能有效地避免信号的损耗和干扰,并且具有优异的传输性能。

因此,光子晶体光纤被广泛应用于通信和传感等领域。

2.2 光子晶体调制器光子晶体调制器是一种利用光子晶体技术制造的器件,它能够调节光的相位和强度,并且具有很高的调节速度和稳定性。

因此,光子晶体调制器被广泛应用于光通信和光雷达等领域。

2.3 光子晶体薄膜太阳能电池光子晶体薄膜太阳能电池是一种利用光子晶体技术制造的新型太阳能电池,它能够有效地提高光电转换效率,并且具有良好的稳定性和可靠性。

因此,光子晶体薄膜太阳能电池被广泛应用于太阳能发电和光伏领域。

2.4 光子晶体激光器光子晶体激光器是一种基于光子晶体技术的新型激光器,它能够提供高度单色性和高效的激光输出,并且具有较低的噪声和较小的体积。

因此,光子晶体激光器被广泛应用于激光制造、材料加工和医疗等领域。

2.5 光子晶体感应器光子晶体感应器是一种利用光子晶体技术制造的新型传感器,它能够高灵敏度地检测光、电磁场、声音和化学物质等各种信号,并且具有较高的准确性和稳定性。

因此,光子晶体感应器被广泛应用于环境监测、医疗检测和生物传感等领域。

三、结语光子晶体技术作为一种新兴的材料技术,已经在光电子学中得到了广泛的应用。

它不仅为光电子学的发展提供了新的思路和方法,而且也为我们生活和工作带来了更多的便利和创新。

我们相信,在不久的将来,光子晶体技术一定会在更多的领域得到应用,并且为人类的进步和发展做出更大的贡献。

光子晶体光纤的制备概要

光子晶体光纤的制备概要

预制棒的制备
预制棒制备示意图
毛细管的拉制
首先,根据要设计的PCF结构参数,决定 要拉制的毛细管外径大小和壁厚。选择具 有良好光学表面和结构参数的石英玻璃管 进行严格清洗后,拉制成毛细管。毛细管 的形状可以是六边形,也可以选择圆形。 由于最终获得的光子晶体光纤结构参数要 达到微米数量级,因而拉制的毛细管有一 点微小的形变,都会对光子晶体光纤的结 构产生巨大的影响。
拉制过程中温度的影响
拉制光子晶体光纤过程中,对温度的控制显得极为 重要,因为玻璃的表面张力、粘度均受到温度的影 响。一般来说温度升高,玻璃液表面张力和粘度都 会减小。拉丝是靠破璃液在一定高温范围内,有一 定合适的成型粘度范围才能正常进行的。低于此粘 度范围,破璃液粘度太稀,会形成不连续的液滴而 断丝;高于此粘度范围,玻璃液太稠,拉丝张力过 大造成断丝。因此在拉丝生产过程中,加热炉的温 度一定要均匀,还要精密控制炉子的温度。
注 意
在拉制毛细管的过程中严格控制以下两个方 面:一个是保持光纤横截面不发生形变,另 一个是确保光纤纵向均匀,不能拉成锥形。 否则在堆积时,就无法使得毛细管排列保持 周期性和紧密性。
毛细管的堆积
堆拉法的灵活性就表现在毛细管的堆积过 程,此过程制作的预制棒相当于PCF的放 大版。利用堆积法可以制造出不同结构的 预制棒,比如制造单个高折射率纤芯、多 个高折射率纤芯、椭圆纤芯、空气纤芯以 及集成式光纤预制棒,或是通过改变包层 中空气孑L的几何尺寸和排列方式制备出各 种性能不同光纤的预制棒。
拉制过程中表面张力的影响
预制棒在拉制后之所以能保持完好的 周期性孔分布,是与表面张力的作用 密切相关的。对于PCF,由于表面面 积很大而且材料空间很小,使得表面 张力极为重要。在光子晶体光纤成型 时,出口处的丝根会保持成新月形状。 新月形状的形成是玻璃液的向上的表 面张力和向下的粘性牵伸力平衡的结 果。如果表面张力太大,而相对地讲 粘度太小,则由于向上的表面张力占 优势而将丝根向回缩成液滴状,中断 了纤维成形过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光子晶体光纤
极大或极小的有效模场面积
Power point
PCF的有效模场与光纤的绝对尺寸无关,只与空气孔径和间 距有关光纤的放大和缩小都可保持单模传输。
英国Bath大学的研究表明:光子晶体光纤中传输模的数量仅 由空气孔直径和空气孔间距d/Λ决定。因此只要包层的结构 设计合理,我们就可以设计制作极大或极小模场面积的单模 光纤。
光子晶体光纤
极大或极小的有效模场面积
Power point
增大d/Λ,减小光纤的芯径,可以增大纤芯截面上的光功率 密度,使得光在这种光纤中传播时易产生如:四波混频、受 激拉曼散射等非线性效应。 极小模场面积光纤的这种非线性效应很强,并且对给定的功 率可以获得极高的光强特性,可以用来制成白光激光器。
光子晶体
Power point
光是电磁波,因此科学家猜测光在此光子晶体中的 情况应该类似于电子在一般晶体内的模式。既然电 子在周期性原子晶格内具有电子能隙现象,那么光 在光子晶体内也应该有所谓“光子能隙”(photonic band gap)的存在。 光子能量在此一特殊结构下呈现不连续性,光子能 带间可能出现能隙,意即某些频带的电磁波强度会 因破坏性干涉而呈指数衰减,无法在此结构内传播, 所以当这种光波入射此晶体时必然出现全反射现象, 此时可视为光子的绝缘体。
Power point

c
2
2
代入波动方程,可得: 2 ' 2 2 E r 2 r E r 2 r E r c c
光子晶体
光子帯隙的产生:
因此在周期性势场中,电场E应满足方程:
Power point
2 E
2
c
Power point
光子晶体
1887年赫兹发现了光电效应以及 1905年爱因斯坦对此所提的光量 子理论解释后,科学家们了解到 光的确具有粒子的性质。
Power point
光子晶体
1923年发现的康普顿散 射效应也支持光的粒子 性。 随着二十世纪量子理论 的兴起与发展成熟,人 们才清楚的知道光是电 磁波,同时具有粒子以 及波动的特性。
(1-2)
式中,V(r)=V(r+Rn),ħ为普朗克常数,Ee为电子的 能量,在周期性势场中只能取本征值。
光子晶体
光子帯隙的产生:
Power point
可以看出,方程(1-1)与方程(1-2)的形式完全相似,Ee在周 期性势场中只能取本征值,因此在周期性介电晶体中,ɛ0ω2/c2也 只能取某些特征值,光波的频率也因此只能取某些本征频率,从 而出现了频率禁带,这种禁带叫做光子禁带或者光子带隙。
光子晶体
光子晶体与器件:
Power point
在光子晶体的周期结构中引入缺陷,能够出现局域化的电磁场态 或局域化的传导态,就可以像在掺杂半导体中控制电子那样控制 光子。
光子晶体
光子晶体光纤通常由纯石英或聚 合物等材料为基地,在光纤的横 截面上具有二维的周期性折射率 分布(空气孔或高折射率柱), 而沿光纤长度方向不变。
2
Power point
如果介质为非磁性介质,则µ r=1。 对于非均匀介质,尤其是其介电常数是周期性变时, 有
r r k n


光子晶体
光子帯隙的产生:
可将相对介电常数写为两个部分之和: 平均介电常数 r 和变动介电常数 r'
则有: k 2 r r '
在半导体材料中,电子禁带能够有效阻止电子通过半导体,从 而实现对电流的控制。而在光子禁带内,光子晶体将能够无条件 地反射任何形式的电磁波。
光子晶体
光子晶体与器件:
Power point
• 光子禁带:电磁波受周期性势场的调制而形成能带,能带之间可能出现 带隙,即光子带隙或光子禁带。 • 光子局域:如果在光子晶体中引入某种程度的缺陷,和缺陷态频率吻合 的光子就会被局域在缺陷位置,一旦其偏离缺陷处光将迅速衰减。
光子晶体光纤
光子晶体光纤的导光原理
a. 全内反射型 PCF导光原理 纤芯中传播. b. 光子带隙型 PCF导光机理
Power point
周期性缺陷的纤芯折射率 (石英玻璃 )大于周期性包层折射率 (空气 ) ,从而使光能够在
在空芯 PCF中形成周期性的缺陷是空气,空气芯折射率比包层石英玻璃低 ,但仍能保证 光不折射出去.
光子晶体光纤
光子晶体光纤的主要特性
a.无截止单模特性 b.可控的色散特性 c.良好的非线性效应
Power point
d.优异的双折射特性
光子晶体光纤
无截止单模特性
普通阶跃折射率光纤(SIF)单模传输条件:
与λ基本无关
Power point
VSIF ( )
2a

2 2 (nco ncl )1/ 2 2.405
Power point
面缺陷 线缺陷 点缺陷
1D光子晶体 2D光子晶体 3D光子晶体
光子晶体光纤(PCF) 微结构光纤(MOF) 空洞光纤(Holey fiber)
光子晶体光纤
Power point
光子晶体光纤又名微结构光纤(Microstructured optical fiber, MOF)或多孔光纤 (Holeyfiber,HF) ,它通过包层中 沿轴向排列的微 小空气孔对光 进行约束,从而 实现光的轴向传 输。独特的波导 结构,使得光子 晶体光纤与常规 光纤相比具有许 多无可比拟的传 输特性。
光子晶体
十七世纪是光学发展的一 个极为重要的时代,许多 关于光的现象和原理均在 此世纪出现。1611年,开 普勒(Johannes Kepler)所 发现光的全反射现象,是 目前光纤内光传输的基本 原理。
Power point
光子晶体
光的特性 光到底是波还是粒子? 1864年,麦克斯韦的论文“A dynamic theory of the electromagnetic field”中 推导出一准确以及简洁的数学式子来 描述光的传播,称之为麦克斯韦方程 式。光是电磁波的观念才逐渐地被科 学家们接受。
光子晶体光纤
大模场面积单模特性
2 2 NA (nco ncl )1/ 2
Power point
NA>0.8
高数值孔径内包层光纤晶体光纤,可以使在包层孔径不 大的情况下,接受更多的泵浦光,即使泵浦光耦合更容 易。因此可以增加双包层光子晶体光纤纤芯与内包层的 面积比,这有利于改善泵浦光的吸收效率(容易耦合)。
Power point
光子晶体
Power point
光的颜色与其本身的波长λ(或是频率,也就是每秒振动的次数) 有关。一般可将光在不同波长(频率)的区段分别加以区分姓名。
光子晶体
Power point
电磁波属于横波,在传输时电场与磁场的振动方向相互 垂直,且电场磁场均与波的传播方向(k)垂直。
光子晶体
光子晶体光纤
大模场面积单模特性
VSIF ( ) 2a
Power point

2 2 (nco ncl )1/ 2 2.405
2 2 NA (nco ncl )1/ 2
普通光纤实现大模面积面临的问题:纤径增大,可增加模场面积,但 为了维持单模传输,折射率差就必须减小,从而光纤的数值孔径减小, 这是不利的(弯曲损耗大)。另外,折射率差收受材料的限制,而且 最小精确控制也是一个问题。
光子晶体
Power point
光子晶体(Photonic Crystal):是指折射率在空间周期性 变化的介电结构,其变化周期和光波长为同一数量级。 光子晶体也被称为光子带隙材料。
光子晶体
Power point
由于光子晶体中折射率在空间上必须为周期性的函數,我们可将 光子晶体依空间维度区分为:一维、二维以及三维等。 在一个维度上存在此周期性结构,则光子能隙只出现在此方向上; 如果在三个维度上都存在着周期性结构,则可以得到全方位的光 子能隙,此时特定频率的光进入此光子晶体后在各方向都将无法 传播。
光子晶体光纤
大模场面积单模特性
PCF优点:
Power point
第一:大的纤芯尺寸,单模特性(真正的宽带),小的弯曲损耗。
第二:可以通过改变空气孔大小、间隔和分布状况来精确而灵活 的控制纤芯与包层的折射率差。MFD=21µm,模场面积350µm2 的大模面积光纤;
大模面积光纤:减小所用掺杂光纤的长度,降低非线性 效应,高破坏阈值;这可以使具有高峰值功率光纤激光 器和放大器系统的性能得到很大程度的改善。

V
● 普通光纤在短波呈现多模
光子晶体光纤
无截止单模特性
光子晶体光纤(PCF)的单模传输条件:
随λ减小而增加
Power point
VPCF ( )
2

2 2 (nco ncl )1/ 2
, ncl
V趋于常数
通过合理设计微结构光纤的结构, 就可以 使V在任意波长均满足单模 条件,实现在任意波长的单模传导。
Power point
入射光与折射光之间的路径关系遵守斯涅耳折射定律(Snell’s refraction law):n1sinθ1 =n2sinθ2。当光由折射率大的物质进入到折 射率小的物质(即n2> n1 ),折射角θ2 会大于入射角θ1,此时为内折 射。在此内折射的情况下,当入射角大于某一临界角时,折射角 会等于90度,亦即出现全反射(total reflection)现象。
极大的模场面积可以有效的应用于高功率的传输,而不必担 心非线性效应。
光子晶体光纤
光子晶体光纤的色散特性
Power point
光子晶体
信息技术革命
标志:半导体技术 趋势:微型化和高度集成化 限制:纳米尺度的量子效应
相关文档
最新文档