第4章管式反应器
化学制药工艺与反应器第4章 化学制药反应器51P
反应过程及反应器在生产中重要性
制药工业的生产过程由一系列化学反应与物理处理过程有 机地组合而成的。 以氯霉素工艺为例 化学反应过程是生产过程的中心,反应器是关键设备。
第一节 反应器基础
一、化学反应器的分类 1.按物料的聚集状态分
均相: 气相、液相 非均相:g-l相、 g-s相、l-l相、l-s相、 g-l-s相
(3)连续式操作 连续加入反应物料和取出产物的生产过程。属定态
过程,反应器内参数不随时间而改变,适于大规模生 产。
二、反应器计算的内容和基本方程式 (一)反应器计算的基本内容 1.选择合适的反应器型式 2.确定最佳操作条件 3.计算完成生产任务所需的反应器体积
(二)反应器计算的基本方程
反应器计算可以采用经验法和数学模型法。
釜式反应器的结构, 主要由壳体、搅拌 装置、轴封和换热 装置四大筒体、底、盖(或称封头)、 手孔或人孔、视镜及各种工艺接管口等。
2.搅拌器
作用:使物料混和均匀,强化传热和传质。
种类:桨式、推进式、涡轮式、框式、锚式、 螺带式等
选择依据:主要根据物料性质、搅拌目的及 各种搅拌器的性能特征来进行。
CA CA,O
time
CA, out
0
tout/2
tout
t
➢ 优点: 操作灵活,适用于小批量、多品种、反应 时间较长的产品生产
➢ 缺点:
➢装料、卸料等辅助操作时间长, 定
产品质量不稳
➢ 应用:用于液—液相、气—液相等系统,如染料、 医药、农药等小批量多品种的行业。
一、已知条件
1.每天处理物料总体积VD(或反应物料每小时体积流 量V0)
➢ 一般情况下,反应器计算可以不考虑此 项。
化工原理第四章传热过程超详细讲解
例4-12 在其他条件(K,Cp,M1,M2)不变时, 并→逆,求T2, t1。 解:利用并流求得有关常数: Φ=KAΔtm=-M1Cp1ΔT’=M2Cp2Δt’
设热阻集中在保温层:则
则一米管年损失的热量:
W=J/s
年损失的价值:
一米管道耗保温材料体积:V= ∴年折旧费用:
总费用: 求导,求极值:
28.356
复杂系数一元三次方程,用试差法求解:
设D=0.4 时,左=62.8≈右=63 ∴δ=D-0.1/2=(0.4-0.1)/2=0.15 m
作业:P142 (4、5)
∴ A (t1 t 2) At
R=δ/λ—热阻
2 多层平面壁,如耐火砖——绝热砖——建筑砖组成三层复合 壁,对各层分别应用单层导热公式有:
一层:
(1)
二层:
(2)
三层:
(3)
∵平面壁:A1=A2=A3=A ∵稳定传热Φ1=Φ2=Φ3=Φ则有:
t1-t4=Δt=
…(4)
…(5)
讨论:(1) ①+②得:
(4)潜热 Q潜 mH m nH n
(J/mol*K)
式中:ΔHm和ΔHn分别为质量和摩尔相变潜热 (单位分别为: J/kg;J/mol)
§2 传导传热(热传导,导热) 一、定义:传导传热——发生在固体、静止或滞流流体中,因分
子的振动或自由电子的运动而传递热量的方式。
二、导热方程—付立叶定律:
故将对流传热扩展为:对流给热——流体与壁面 之间的传热。由于壁面附近的流体为滞流,因此:对 流给热包括湍流主体的对流传热和壁附近滞流层的热 传导,为描述此复杂的给热过程的速率,特提出对流 给热机理(模型),其要点为:
a.湍流主体以对流方式传热,温度一致, 即忽略湍流主体的热阻。
化学反应工程1_7章部分答案
第一章绪论习题1.1 解题思路:(1)可直接由式(1.7)求得其反应的选择性(2)设进入反应器的原料量为100 ,并利用进入原料气比例,求出反应器的进料组成(甲醇、空气、水),如下表:组分摩尔分率摩尔数根据式(1.3)和式(1.5)可得反应器出口甲醇、甲醛和二氧化碳的摩尔数、和。
并根据反应的化学计量式求出水、氧及氮的摩尔数,即可计算出反应器出口气体的组成。
习题答案:(1) 反应选择性(2) 反应器出口气体组成:第二章反应动力学基础习题2.1 解题思路:利用反应时间与组分的浓度变化数据,先作出的关系曲线,用镜面法求得反应时间下的切线,即为水解速率,切线的斜率α。
再由求得水解速率。
习题答案:水解速率习题2.3 解题思路利用式(2.10)及式(2.27)可求得问题的解。
注意题中所给比表面的单位应换算成。
利用下列各式即可求得反应速率常数值。
习题答案:(1)反应体积为基准(2)反应相界面积为基准(3)分压表示物系组成(4)摩尔浓度表示物系组成习题2.9 解题思路:是个平行反应,反应物A的消耗速率为两反应速率之和,即利用式(2.6)积分就可求出反应时间。
习题答案:反应时间习题2.11 解题思路:(1)恒容过程,将反应式简化为:用下式描述其反应速率方程:设为理想气体,首先求出反应物A的初始浓度,然后再计算反应物A的消耗速率亚硝酸乙酯的分解速率即是反应物A的消耗速率,利用化学计量式即可求得乙醇的生成速率。
(2)恒压过程,由于反应前后摩尔数有变化,是个变容过程,由式(2.49)可求得总摩尔数的变化。
这里反应物是纯A,故有:由式(2.52)可求得反应物A的瞬时浓度,进一步可求得反应物的消耗速率由化学计量关系求出乙醇的生成速率。
习题答案:(1)亚硝酸乙酯的分解速率乙醇的生成速率(2)乙醇的生成速率第三章釜式反应器习题3.1 解题思路:(1)首先要确定1级反应的速率方程式,然后利用式(3.8)即可求得反应时间。
(2)理解间歇反应器的反应时间取决于反应状态,即反应物初始浓度、反应温度和转化率,与反应器的体积大小无关习题答案:(1)反应时间t=169.6min.(2)因间歇反应器的反应时间与反应器的体积无关,故反应时间仍为169.6min.习题3.5 解题思路:(1)因为B过量,与速率常数k 合并成,故速率式变为对于恒容过程,反应物A和产物C的速率式可用式(2.6)的形式表示。
化学反应工程第四章习题答案
答:在定常态下的连续稳定流动系统中,相对于某瞬间t=0流入反应器内的流体,在反应器出口流
体的质点中,在器内停留了t至U t+dt之间的流体的质点所占的分率为E(t)dt(②分)。
停留时间分布的实验数据来确定所提出的模型中所引入的模型参数;
过模拟计算来预测反应结果;4) 通过一定规模的热模实验来验证模型的准确性。
3||2(t3E(t)3tE(t)5tE(t)7)tE(t)9
3
=vt =0.86.187 =4.95(m)
°02-2
=°t E(t)dt -t
2G
2
= 47.25 -(6.187)=8.971
8.971
2
(6.187)
= 0.234
73. 某反应器用示踪法测其流量,
不可逆反应,此反应若在活塞流反应器中进行,转化率为 出口转化率。
2
◎a解:-
8(丄)2=0.2178
Pe Pe
2
a
= 4.59
XA
活塞流:
dxA
kCA0(1
kt
d(1—Xa)
1
=In4.60
1 -Xa
Xa
=1 -
,ktn
(1 )
N
Xa
=96%
75.用多级全混流串联模型来模拟一管式反应装置中的脉冲实验, 求
1)
2)
已知
2
6=8.971t2=6.187
1)
2)
推算模型参数N;
质的交换,微团内部具有均匀的组成和相同的停留时间,这种流体称为宏观流体。如在气一液鼓泡
搅拌装置中,气体以气泡方式通过装置,此时气体是宏观流体,而液体为微观流体。
化学反应工程复习题
《化学反应工程原理》复习思考题第一章绪论1、了解化学反应工程的研究内容和研究方法。
2、几个常用指标的定义及计算:转化率、选择性、收率。
第二章化学反应动力学1、化学反应速率的工程表示,气固相催化反应及气液相非均相反应反应区的取法。
2、反应速率常数的单位及其换算。
3、复杂反应的反应速率表达式(可逆、平行、连串、自催化)。
4、气固相催化反应的步骤及基本特征。
5、物理吸附与化学吸附的特点。
6、理想吸附等温方程的导出及应用(单组分吸附、解离吸附、混合吸附)。
7、气固相催化反应动力学方程的推导步骤。
8、不同控制步骤的理想吸附模型的动力学方程的推导。
9、由已知的动力学方程推测反应机理。
第三章理想间歇反应器与典型化学反应的基本特征1、反应器设计的基本方程式。
2、理想间歇反应器的特点。
3、理想间歇反应器等温、等容一级、二级反应反应时间的计算及反应器体积的计算。
4、自催化反应的特点及最佳工艺条件的确定及最佳反应器形式的选择。
5、理想间歇反应器最优反应时间的计算.7、可逆反应的反应速率,分析其浓度效应及温度效应。
8、平行反应选择率的浓度效应及温度效应分析。
9、平行反应反应器形式和操作方式的选择。
10、串连反应反应物及产物的浓度分布,t opt C p.max的计算。
11、串连反应的温度效应及浓度效应分析。
第四章理想管式反应器1、理想管式反应器的特点。
2、理想管式反应器内进行一级、二级等容、变容反应的计算。
3、空时、空速、停留时间的概念及计算。
4、膨胀率、膨胀因子的定义,变分子数反应过程反应器的计算。
第五章理想连续流动釜式反应器1、全混流反应器的特点。
2、全混流反应器的基础方程及应用。
3、全混釜中进行零级、一级、二级等温、等容反应时的解析法计算。
4、全混釜的图解计算原理及图解示意。
5、全混流反应器中的浓度分布与返混,返混对反应的影响。
6、返混产生的原因及限制返混的措施。
7、多釜串联反应器进行一级、二级不可逆反应的解析法计算。
第四章题解
4-1 在定态操作反应器的进口物料中脉冲注入示踪物料。
出口处示踪物浓度随时间变化的情况如下。
假设在该过程中物料的密度不发生变化,试求物料的平均停留时间与])(2)(4[3109753864210c c c c c c c c c c tdt c i +++++++++∆=⎰∞]0)5.20.1025.1(2)0.10.55.125.6(40[32++++++++==100min)/1(100)()(0tii c dtc t c t E ==⎰∞})(])()()()([2])()()()([4)({31010997755338866442211_t E t t E t t E t t E t t E t t E t t E t t E t t E t t E t tt +++++++++∆=]0)03.08.05.0(2)14.05.075.013.0(40[32+++++++++=min 187.6=⎰∞=-=-=02222971.8187.625.47)(t dt t E t tσmin 24-2 无量纲方差表达式的推导 (1)推导无量纲方差222/ttσσθ=;(2)推导CSTR 的22tt=σ。
1. τθt=2. ττtet E -=1)(证明:222)(i i i ittt t E t -∆=∑∞σ⎰∞--=221tdt e t t ττ22)()()()(ττθθττθ--=⎰∞-d t E()]1)1([022--=⎰∞θθθτd E22θστ= 222/τσσθt=∴ 220222)(1)(--∞-=-=⎰⎰t dt e tt dt t E t ttττσ222ττ-=2τ=22τσ=t4-3 设()θF 及()θE 分别为闭式流动反应器的停留时间分布函数及停留时间分布密度函数,θ为对此停留时间。
(1)若该反应器为平推流反应器,试求①F(1); ②E(1);③F(0.8);④E(0.8);⑤F(1.2) (2)若该反应器为全混流反应器,试求①F(1); ②E(1);③F(0.8);④E(0.8);⑤F(1.2) (3)若该反应器为非理想流动反应器,试求 ①F(∞); ②F(0);③E(∞);④E(0);⑤⎰∞0)(θθd E ;⑥⎰∞)(θθθd E解1平推流模型0)(=θF )(t t 〈 0)(=θE )(t t ≠1)(=θF )(t t≥ ∞=)(θE )(t t =)()(τθtF F =⎪⎩⎪⎨⎧===2.1,18.0,01,1θθθ⎩⎨⎧=====8.0,01,1)()(θθτθt E E2 全混流θθ-=e E )( , θθ--=e F 1)(==)()(τθt f F ⎪⎭⎪⎬⎫=-=-=----699.01551.01632.012.18.01e e e ⎪⎩⎪⎨⎧===2.18.01θθθ ==)()(τθtE E ⎪⎭⎪⎬⎫==--449.0368.08.01e e ⎩⎨⎧==8.01θθ3非理想流动模型a 多釜串联θθθN N N e N N E ---=1)!1()(, 0)(C C F N =θ()()1]!11)(!21)(!111[1)(12=-++++-=∞--N N N N N N e F θθθθ()()0]!11)(!21)(!111[1)0(12=-++++-=--N N N N N N eF θθθθ()()()0!11=-=∞--θθN N Ne N N E()()1,00!1001≠=-=-N e N N E N N()()1!1!1)(01010=-=-=⎰⎰⎰∞--∞--∞θθθθθθθθd e N N d e N N d E N N NN N N ()1!1)(0=-=⎰⎰∞-∞θθθθθθd e N N d E N N N4-4 C(t)t/min4-18图用阶跃法测定某一闭式流动反应器的停留时间分布,得到离开反应器的示踪剂浓度与时间的关系,如图4-18所示。
反应工程总结
第一章 绪论 1、化学反应工程是化学工程学科的一个分支,通常简称为反应工程。
其内容可概括为两个方面,即反应动力学和反应器设计与分析。
2、传递现象包括动量、热量和质量传递,再加上化学反应,这就是通常所说的三传一反。
3、反应组分的反应量与其化学计量系数之比的值为定值,ξ叫做反应进度且恒为正值。
、本书规定反应物的化学计量系数一律取负值,而反应产物则取正值。
8、工业反应器有三种操作方式: ① 间歇操作;② 连续操作;③ 半间歇(或半连续)操作 9、反应器设计的基本内容一般包括:1)选择合适的反应型式 ;2)确定最佳操作条件 ;3)根据操作负荷和规定的转化程度,确定反应器的体积和尺寸 。
10.反应器按结构原理的特点可分的类型: 管式,釜式 ,塔式,固定床,流化床,移动床,滴流床反应器。
第二章 3、温度对反应速率的影响 如果反应速率方程可以表示为:r=f1 (T)f2(c ),f1(T)是温度的影响。
当温度一定时,其值一定。
通常用阿累尼乌斯方程(Arrhenius ‘ law )表示反应速度常数与温度的关系, 即, 为指前因子,其因次与k 相同;E 为反应的活化能;R 为气体常数。
两边取对数,则有 : lnk=lnA0-E/RT ,lnk 对 1/T 作图,可得-直线,直线的斜率=-E/RT 。
注意:不是在所有的温度范围内上面均为直线关系,不能外推。
其原因包括:(1)速率方程不合适; (2)反应过程中反应机理发生变化;(3)传质的影响;(4)指前因子A0与温度有关。
速率极大点处有: 对应于极大点的温度叫做最佳温度Top 。
速率为零点处有: rA=0 6、多相催化与吸附 1)、催化剂的用途:①加快反应速度②定向作用(提高选择性)-化学吸附作用结果 2)、催化剂的组成:主催化剂-金属或金属氧化物,用于提供反应所需的活性中心。
助催化剂-提高活性,选择性和稳定性。
助催化剂可以是 ①结构性的;② 调变性的。
载体-用于 ① 增大接触表面积;②改善物理性能。
反应工程 2012-2013 第 4 章 管式反应器 PFR
42/20
4.3 管式与釜式反应器反应体积的比较
Chemical Reaction Engineering
42/21
4.4 循环反应器
对于单程转化率不高的情况,为提高原料的利用率,将 反应器出口物料中的产品分离后再循环进入反应器入口, 与新鲜原料一起进行反应。
Qr 设循环物料与新鲜原料量之比为循环比: Q0
故,反应器的物料处理量为:
Q0 Qr (1 )Q0
在混合点M处对A做物料衡算:
Q0cA0 Q0cA0 (1 X Af ) (1 )Q0cA0 (1 X A0 )
化简后得: X A0
X Af 4.23 1
0
' X Af
X Am
X Af
XA
此时,可以: 釜式与管式的串联
42/19
Chemical Reaction Engineering
4.3 管式与釜式反应器反应体积的比较
在A点保持较高速率进行,先用CSTR进行反 应到XAm,然后送入PFR中到XAf,则VR最小。 对多个反应,二者的比较主要是看在相同的最终转 化率下,哪一个目的产物最终收率大。 So~XA关系见图3-10(a)。 ①反应物CA低,获得高的选择性,选釜式反应器。 ②反应物CA高,则管式反应器优于釜式反应器。
二者的差别: CSTR PFR 返混 返混
最大(∞) 无(0)
都属于理想化流动模型,是返混程度的两个极端。
Chemical Reaction Engineering
42/6
4.2 等温管式反应器的设计
Fi 0
单一反应 进入量 = 排出量 + 反应量 + 累积量
化学反应工程 第四章 非理想流动
今用分散模型关联,求
数。
化学反应工程
4.2.1 常见的几种流动模型
解:
换算为无量纲时标,
则得下表数据。
将实验数据标绘成曲线,然后读取
等间隔时的诸E值
见下表。
化学反应工程
4.2.1 常见的几反应工程
4.2.1 常见的几种流动模型
③化学反应的计算 定态情况下平推流管式反应器的物料衡算式为:
流, ;对一般实际流况, 。
;对平推
所以,用
来评价分布的分散程度比较方便。
化学反应工程
4.1.4 用对比时间θ表示的概率函数
例4-1 今有某一均相反应器中测定的下列一组数据(见 ,示踪加入 下表第一栏和第二栏),实验采用
量Q=4.95g,实验完毕时测得反应器内存料量V=1785mL,求 解:
(详见教材P92)
对定态系统的非理想流动,同样可作微元段的物料衡算而得:
若用无量纲参数表示并注意到:
这样式(4-32)便变为:
化学反应工程
4.2.1 常见的几种流动模型
对一级反应可得解析解:
对于二级反应,用数值法求得的结果,表示在图(4-17)
和图(4-18)中。
化学反应工程
4.2.1 常见的几种流动模型
(4)组合模型
化学反应工程
4.1.1 非理想流动与停留时间分布
在一个稳定的连续流动系统中,当在某一瞬间同时进 入系统的一定量流体,其中各流体粒子将经历不同的停留 时间后依次自系统中流出。如果把函数 用曲线表示,
则图4-2(a)中所示阴影部分的面积值也就是停留时间介 于t和t+dt之间的流体分率。
化学反应工程
4.1.1 非理想流动与停留时间分布
化学反应工程
化学反应工程陈甘棠答案
化学反应工程陈甘棠答案【篇一:反应工程第五章习题答案】xt>5.1乙炔与氯化氢在hgcl2-活性炭催化剂上合成氯乙烯的反应c2h2?hcl?c2h3cl (a)(b) (c)其动力学方程式可有如下种种形式:(1) r??(papb?pc/k)/(1?kapa?kbpb?kcpc) (2)r??kakbpapb/(1?kbpb?kcpc)(1?kapa) (3)r??kapapb/(1?kapa?kbpb)(4) r??kbpapb/(1?kbpb?kcpc)2试说明各式所代表的反应机理和控制步骤。
解:(1) a???a?b???b?a??b??c??? (控制步骤) c??c??(2) a??1?a?1b??2?b?2a?1?b?2?c?2??1(控制步骤) c?1?c??1(3)a???a?b???b?a??b?c?? (控制步骤)(4) b???b?a?b??c? (控制步骤) c??c??5.2 在pd-al2o3催化剂上用乙烯合成醋酸乙烯的反应为c2h4?ch3cooh?12实验测得的初速率数据如下[功刀等,化工志,71,2007(1968).] 115℃, pacoh?200mmhg,po?92mmhg。
2pc2h4(mmhg)r0?10(mol/hr?g催化剂)570 100 195 247 315 4653.94.4 6.0 6.6 7.255.4注:1mmhg=133.322pa如反应机理设想为acoh???acoh?c2h4???c2h4?acoh?c2h4?hc2h4oac???o2?2??2o?hc2h4oac??o??c2h3oac??h2o? (控制步骤)c2h3oac??c2h3oac??h2o? ?h2o+?试写出反应速率并检验上述部分数据能与之符合否。
解:c2h4?ch3cooh?12o2?ch2cooc2h3?h2o(a)(b)(c)(e)(f) ?a?kapa?v?b?kbpb?v?c?v?f?kfpf?v ?d?ks1kakbpapb?v ?e?kep?ev?v??k2?k3par?ks2?d?c??k1pa(k2?k3pa)2r0??pa(k2?k3pa)2pc2h4(mmhg)70 100 195 247 315 465r0?10(mol/hr?g催化剂)53.94.4 6.0 6.6 7.255.41.3410?31.51 1.80 1.932.08 2.93pa作图,基本上为一直线。
管式反应器和釜式反应器
应用范围
适用于多种类型的反应,尤其是有 固体催化剂的反应
பைடு நூலகம்
适用于大规模的工业生产
添加标题
添加标题
适用于高压、高温的反应条件
添加标题
添加标题
适用于需要搅拌或混合的反应
优缺点分析
优点:釜式反应器适用于多种反应类型,如聚合、缩合、烷基化等;操作简单,易于控制。 缺点:釜式反应器由于搅拌作用,使得能耗较高;同时,反应釜体积较大,使得设备投资成本较高。
管式反应器和釜式反 应器的比较
XX,a click to unlimited possibilities
汇报人:XX
目录 /目录
01
点击此处添加 目录标题
02
管式反应器
03
釜式反应器
04
比较与选择
01 添加章节标题
02 管式反应器
结构特点
管式反应器由一根或多根管子组成,通常采用直管或盘管形式 管式反应器的长度与直径之比通常较大,以增加反应物的停留时间和减小反应物的返混 管式反应器适用于连续操作和批量生产,且具有较高的传热效率和良好的混合性能 管式反应器的结构简单,操作方便,但需要较高的操作压力和温度
汇报人:XX
比较:釜式反应 器具有较大的操 作弹性,适用于 多种反应类型; 管式反应器适用 于高转化率、小 批量生产,操作 简单
选择:根据生产 需求、物料特性、 反应类型等因素 综合考虑选择合 适的反应器类型
生产能力比较
管式反应器:适用于大规模生产,生产能力较强 釜式反应器:适用于小规模生产,生产能力相对较低 比较:管式反应器生产能力更强,适用于大规模生产 选择:根据生产规模和需求选择合适的反应器类型
经济性比较
投资成本:管式反应器通常较高, 但长期运行成本较低
管式反应器
du 4 F V0 由 Re = 其中 u = 2 d 4 FV 0 4VR 所以 d = ;L = 2 Re d
(2)先规定流体流速u,据此确定管径d,再计算 管长L,再检验Re是否>104
L = u ;d =
1 4VR 2 ( )
L
(3)根据标准管材规格确定管径d,再计算管长L, 再检验Re是否>104
设τ=τ时,A转化率为xA,对应的反应混合物的体 积流量为FV,于是
FV = FV 0 + FV 0 y A0 A x A = FV 0 (1 + y A0 A x A )
此时A组份的浓度为CA,所以
n A0 (1 x A ) C A0 (1 x A ) nA CA FV FV 0 (1 y A0 A x A ) 1 y A0 A x A PA0 (1 x A ) PA 所以 1 y A0 A x A PA0 - PA C A0 - C A 或x A xA PA0 (1 y A0 A ) C A0 (1 y A0 A )
第六章
管式反应器6.1物料在反应来自中的流动 6.2等温管式反应器的计算
6.3 变温管式反应器 6.4管式反应器与连续釜式反应器的比较 6.5循环反应器
6.6管式反应器的最佳温度序列
6.1 .1 管式反应器的特点、型式和应用
管式反应器既可用于均相反应又可用于多相反 应。具有结构简单、加工方便、传热面积大、 传热系数高、耐高压、生产能力大、易实现自 动控制等特点
n = nA0(1-xA)+nB0-bnA0xA/a+snA0xA/a+rnA0xA/a
= nA0+nB0+nA0xA((s+r-b)/a-1)
反应器设计原理-第四章 固定床反应器-PPT
按水力半径的定义:
RH 流道有效截面积 床层的空隙体积 流道润湿周边长 总的润湿面积 Se
(4-11)
因此,床层的当量直径
d e 4 RH 4 2 ds Se 3 1
2 ( ) sd p 3 1
(4-12)
4.2.2
固定床的流动特性
JD
k c D G
2/3
k P G G D M
2/3
(4-25)
Sh
kc d p D
(4-26)
Sc
D
d P u
(4-27)
Re
(4-28)
传质系数的关联式很多,选择几个比较广泛使用的公式供参考。 对气体:Sc = 0.5~3
根据热量衡算,传热速率应等于反应的放热(或吸热)速率,即
ha (Ts Tb ) (H ) (rA )
(4-35)
颗粒表面与气流主体间传热问题的关键是决定给热系数。有
关给热系数可用传热j因子JH表达式计算。即
1、流动特性
2、气体的分布 4.2.3 固定床反应器的床层压力降
流体在空圆管中作等温流动时,当流体密度的变化可以忽略不计时,
2 L0 f u 0 P P0 PL 4 f dt 2
(4-13)
当4-13式用于计算固定床层的压力降时,u0应为流体在床层孔道中的 真正平均流速u,而 u u 0 ,dt应为当量直径de,而 合并在修正摩擦系数fM中,经处理,可得到:
(4-23)
Pe a
d P u d P u D Dea ea
Re Sc
管式反应器
管式反应器除了上一章的两类理想反应器,管式反应器也是一类理想反应器模型(活塞流模型)。
与间歇釜式反应器不同,全混流和活塞流模型用于流动过程。
根据上一章所学的知识,物料在反应器中的停留时间是决定化学反应转化程度和产物分布的一个重要因素。
全混流和活塞流模型均是根据特定的停留时间分布规律建立起来的(这部分内容将在下一章中详细阐述),是两种极端的情况,是分析许多问题的出发点,也是各种实际反应器设计的理论基础。
本章将涉及到如下的具体内容:活塞流模型的基本假定等温管式反应器设计与分析管式反应器与釜式反应器的性能比较循环管式反应器的分析计算管式反应器的变温操作第一节活塞流假定流体流动是非常复杂的物理现象,影响到系统的反应速率和转化程度。
一、流动状况对反应过程的影响1. 流动情况影响例1. (1)空管中, 图4.1 (a)(b) 内部各部分流体的停留时间不同,因此反应时间也不一样,反应速率和最终转化率也不一样第二节等温管式反应器的设计一、单一反应在管式反应器中进行的单一反应,取如图4.2所示的微元体(高为dZ)图 4.2 管式反应器示意图在定态条件下,由此得到或∴(4-4)∴(4-5)假设 =常数(=X Af下的值),则--釜式反应器的设计方程式(4-5)可以进一步变成:(间歇釜式的设计的方程为)注意:二者尽管形式上相同,但一个是反应时间t,一个空时τ(与所选择的进口状态有关)。
另外,间歇釜式反应器总是恒容的。
如果管式反应器也在恒容下进行,则有τ=t;否则,τ≠t。
对于式(4-4),设反应器的截面积为A,则有dV r=Ad Z,那么对于恒容过程 C A=C AO(1-X A)则时间变量转化为位置变量。
例4.1 例4.2 例4.3例4.4例4.5第三节管式与釜式反应器反应体积的比较在处理量、组成、T、XAf相同的条件下进行对比。
对于二级可逆反应,使用不同形式的理想反应器时所需要的反应体积如表4-1所示,即有(本章前面和上一章的例题给出的结果)一般来说,比较按正常动力学和反常动力学两种情况讨论:图 4.3 连续反应器反应体积的比较对于复杂反应,要同时考虑反应体积V和产物分布,后者更为重要。
化学反应工程许志美课后习
L
VR
(d / 2)2
140.8m
4-15 在一活塞流反应器中进行下列反应: A k1 P k2 S
反应均为一级,已知 k1 0.30 min1, k2 0.10 min。1 A的最大进料量为3 m3 / h ,
且不含P与S。试计算P的最大收率和总选择性以及达到最大收率时所需反应器 的体积
0.2745m3
4-23*
常压法生产稀硝酸时,离开快速冷却器的气体组成是:NO为9%, NO2为1%,
O2为8%,其余均为N2等惰性气体(摩尔分率)。此气体浸入氧化塔。在
t1 9900s
t5 9980s
t10 9990s
对于二级反应,若1/CA>>1/CA0
,
kt
1 cA
反应时间t与反应物初始浓度无关。
3-10
生物化工中胰蛋白原转化成胰蛋白酶时,
dcA dt
kcAcS
在间歇反应实验中测得不同温度下反应速率于某时刻 tMAX
达到最大值
CT 0kt
(CA0
CP0 )kt
K k1 xAe 0.667 2.003 k2 1 xAe 1 0.667
(rA ) 0.0577cA 0.0288(cA0 cA )
*例3-8(p27)《化学反应工程原理——例题与习题》
3-21 可逆反应 AP ,已知(H) 130959J / mol 。已知210oC 时,k1 0.2 , k2 0.5。求在该温度下所能达到的最大转化率为多 少?若要使 xA 0.9,则需采取何种措施?
3-13 在3-12题中,若 cB0 / cA0 5 时,用拟一级反应方程式处理, 其计算结果与按二级反应处理相比较。
k kcB kt ln 1
第四章 本体聚合工艺
间力被共价键所代替。收缩超过单体原有体积的 1/5。 根据PMMA本体聚合的特点,其聚合工艺分“预聚” 和“聚合”两段进行。
4.4.2 影响聚合反应的主要因素
反应温度 温度↑,反应速率↑ ,转化率↑, 但温度过高,会 导致链终止速率超过增长速率,同时引起长链解聚, 短链增多,分子量↓。
2. 转化率的控制 乙烯聚合时放热大,易导致急剧升温,为保证安 全生产,保证产品质量,聚合转化率不能超过30 %,大量的乙烯需循环使用。
4.3.5 低密度聚乙烯的结构、性能和应用
4.3.5.1 低密度聚乙烯的结构
▲ LDPE不完全是线型结构,而是有长、短支链,近似树枝状结构。 其结晶度64%,远低于HDPE的85%。
单体纯度 影响产品光学、力学性能。
4.4.3 有机玻璃的生产工艺
有机玻璃本体聚合的生产过程: 一般分为配料、预聚(聚合温度90~95℃,转化 率10~20%)、制模与灌浆、聚合等4个工段。
预聚:目的是缩短聚合周期,使自动加速效应提前,且预聚物有 一定黏度及体积收缩,有利于灌浆及聚合
P26 图3-1
50℃,使用受限制。 LDPE熔点为110~115℃,软化温度范围窄,低于软化温度15~
20℃,可进行延伸与造型,高于软化温度,可用挤出、注射等方 法加工。 化学稳定性好,室温几乎不溶于任何溶剂。耐弱酸碱。
4.3.5.3. 低密度聚乙烯用途
聚乙烯的生产能力长期居各品种的第一 位,消费量占世界聚烯烃的70%,占热 塑性通用塑料消费量的44%。
利用乙烯高压聚合装置,适当增加醋酸乙烯酯加料系统及回收 系统即可兼产乙烯-醋酸乙烯酯共聚物(EVA)。
第四章非理想流动习题
1 / 1
第四章非理想流动习题
1.脉冲示踪法测得如下数据:
求E 函数和F 函数
2.有一个反应器测得其离散准数τ
0.2D
uL
=。
对此反应进行示踪实验时符合闭式容器条件。
今在同样条件下用多釜串联模型描述其模型参数N 为多少?
3.有一个长12m 的管子,其中左端1m ,装有2mm 的固体颗粒,中间9m ,装有1cm 的固体颗粒,右端2m ,填有4mm 的固体颗粒。
假设空隙率相同
2D
udp
=,流体通过的时间为2min ,试估计出口方差:【提示:1()D udp =2()D udp =3()2D udp =,
()D uLi =()D
udpi ()dpi Li
,22t ti σσ=∑(有加合性)
】
求:(1)平均停留时间和方差;
(2)若在该反应器中进行一级不可逆反应A R →,速率常数0.045k =min -1 求A 的平均转化率?
求:(1)平均停留时间和无因次方差; (2)若用于一级反应,且该反应在单个全混釜中相同的τ下限定组分A 的转化率为0.82,在此真实反应器中转化率为多少?
(3)若进料量为20L/s,该容器的体积多大?
请预测一下相当于几个全混釜的串联效果。
化学反应工程 第四章
在t时对出口处的示踪物B作物料衡算:
所以,
VC V 'RA 0 V 'RB C0
C V 'RB C0 V
=停留时间≤t的示踪物溶液体积所占分率最后得:F(t)(
C C0
)
s
3.脉冲法
1)实验步骤
(1)物料保持稳定流动
(2)在一瞬间注入示踪剂B,总量是M,在体积流量V中的
t tm=t
则
2 t
t2E(t)dt
2
t
0
0
对离散型测定值,
t2E(t)
2 t
0
tm2
E(t)
0
三、对比时间 为了方便起见,常用对比时间作为变量。 对比时间的定义
t
tm
1.平均对比停留时间
tm 1
tm
2. E( )
3. F ( )
E( )
dF ( ) d
dF ( )
d( t )
浓度为Co 。数学描述为 0 t 0
C C0 0 t t0
0 t t0
c(∞)
C0
C(t)
t0
V ( M )Ccp(t)
0
0
t=0
t
(3)以t=0为计时基准,检测出口处的B浓度C。
响应t 曲线 t
(4)标绘
V
( M
)C p
~
t
曲线
2)( V
M
)Cp
?
在出口处作示踪物B的物料衡算:
V C dt Mt
在实际 反应器中,物料可能是由固体颗粒、液滴、气泡或者 分子团块等聚集体组成的,称之为微团。微团之间的混合程度 有三种情况,
李绍芬主编反应工程知识点
反应工程知识点第1章绪论1.反应动力学主要研究化学反应进行的机理和速率。
2.反应工程一般是按反应物系的相态来分类,将化学反应分为均相反应和多相反应两大类.3.根据反应过程是否使用催化剂,将化学反应分为催化反应和非催化反应两大类。
4.反应进度是指任何反应组分的反应量与其化学计量系数之比,反应进度永远为正值。
5.转化率是针对反应物而言的,收率则是对反应产物而言,转化率、收率和选择性三者的关系:Y=SX。
6.化学反应工程的主要研究对象是工业反应器,反应器设计的核心内容是确定反应体积,反应器设计最基本的内容是:①选择合适的反应器型式;②确定最佳的操作条件;③确定反应体积。
7.工业反应器放大主要方法是逐级经验放大法和数学模型法。
8.反应器类型可以搞看图填写。
9.工业反应器有三种操作方式:①间歇操作;②连续操作;③半间歇(或半连续操作).第2章反应动力学基础1。
反应速率是指单位时间内单位体积反应物系中某一反应组分的反应量.2。
以反应为例,其反应速率的表达式是或或,用反应进度表式反应速率的表达式:,其反应物转化量与反应产物生产量之间的关系。
3.在溶剂及催化剂和压力一定的情况下,定量描述反应速率与温度及浓度的关系的关系式叫做速率方程或动力学方程,其数学函数表达式,以以不可逆基元反应为例,其速率方程为.4.k为反应速率常数,为温度的函数,其关系式为。
5.绝大多数反应都是非基元反应,但是非基元反应可以看成是若干基元反应的综合结果,即反应机理。
6。
不论可逆反应还是不可逆反应,反应速率总是随着转化率的升高而降低(降低或升高);不可逆反应及可逆吸热反应,反应速率总是随着温度的升高而加快(减慢或加快);至于可逆吸热反应,反应温度按最佳温度曲线操作,反应速率最大.7。
在同一反应物系中同时进行若干个化学反应时,称为复合反应。
8。
独立反应是指这些反应中任何一个反应都不可能由其余反应进行线性组合而得到。
9.复合反应包括三个基本反应类型,即并列反应、平行反应和连串反应.10.当一个反应的反应产物同时又是另一个反应的反应物时,这类反应称为连串反应。
天津大学 反应工程复试 4 管式反应器PPT教学课件
等温管式反应器的设计
复合反应
(k1k2)cAddA c0
c A c A 0 ex (k 1 p k 2 [ )]
k1cAddcP 0 cpk k 1 1 cA k 0 2{ 1ex (p k1 [k2)]}
轴向上不断变化。
活塞流
理想流动模型
1.基本概念
全混流模型:
基本假定:
径向混合和轴向返混都达到最大
符合此假设的反应器,物料的停 留时间参差不齐
❖ 特点
反应物系的所有参数在径向上均 一,轴向上也均一,即:各处物 料均一,均为出口值
管径较小,流 速较大的管式 反应器--可 按活塞流处理
剧烈搅拌的连 续釜式反应器 --可按全混 流处理
Q0cA0d dX rV AR A(XA) 7
等温管式反应器的设计
复合反应 对关键组分作物料衡算的结果,得到一常微分方程组
d driV FR i jM 1ijrj i1,2,..k.,
该方程组初值为: V r 0,F i F i0,i 1 ,2 ,...,k 解该方程组时,需首先选定反应变量,可以选关键组 分的转化率或收率或各关键反应的反应进度。
k2cAddcQ 0 cQk k 12 cA k 0 2{ 1ex (p k1 [k2)]}
t 0 时 c A c , A 0 ,c P 0 ,c Q 0
等温管式反应器的设计
复合反应
A k1 P k2 Q
对A的物料衡算:
k1cA
dcA
d
0
cAcA0ek1
对P的物料衡算:(k1cAk2cP)ddP c0
釜式与管式的串联
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4.1 活塞流假设
流体流动是非常复杂的物理现象,影响到系统的反应速率 和转化程度。 一、 流动状况对反应过程的影响
1. 流动情况影响 (a)(b) 内部各部分流体的 停留时间不同,反应速率和 最终转化率也不一样。
图 4.1 径向流分布
3
2. 混合情况的影响 完全混合时,C、T在反应器内均一;否则,各处T,C
Fi
Q0 c A0
dX A dVr
RA ( X A )
Vr
Q0cA0
X Af
dX A
0 [RA ( X A )]
Vr
Q0C A0 X Af A(X Af )
dz
dVr
Vr Qo
cA0
X Af
dX A
0 [RA ( X A )]
Fi dFi
X Af
t间歇
cA0
X Af
dX A
0 [RA ( X A )]
CSTR
连续加料(入口) 返混极大
7
4.2 等温管式反应器设计
1.活塞流反应器的设计方程 根据平推流反应器的特点,可取反应器中一微元段作
物料衡算,然后沿管长对整个反应器积分,就可得到活塞 流反应器的设计基础式。
8
等温管式反应器的设计
单一反应
Fi 0
进入量 = 排出量 + 反应量 + 累积量
Fi
10
注意:二者尽管形式上相同,但一个是反应时间t,
一个空时τ(与所选择的进口状态有关)。主要看RA 与XA的函数关系是否一样。间歇釜式反应器总是恒 容的。如果管式反应器也在恒容下进行,则有τ=t;
否则,τ≠t。
恒容时
CA CA0 (1 X A )
Vr Qo
cA0
X Af
dX A
0 [RA ( X A )]
第四章 管式反应器
§4.1 活塞流假设 §4.2 等温管式反应器设计 §4.3 管式反应器与釜式反
应器体积的比较 §4.4 循环反应器 §4.5 变温反应器
1
§ 引言
• 管式反应器PFR :一种呈管状、长径比很大的反
应器。这种反应器可以很长,如丙烯二聚的反应 器管长以公里计。 • 反应器的结构可以是单管,也可以是多管并联; • 可以是空管,如管式裂解炉,也可以是在管内填 充颗粒状催化剂的填充管,以进行多相催化反应, 如列管式固定床反应器。 • 物料的流动可近似地视为平推流
等容与变容条件下气相一级反应速率方程
rA kcA0 (1 X A )
rA
kcA0 (1 X A )
1 yAo A X A
12
• 对于式(4-4),设反应器的截面积为A,则有 dVr=AdZ,那么
Q0C A0 A
dX A dZ
A(X A )
u0C A0
dX A dZ
A(X A )
对于恒容过程 CA=CAO(-XA)则
1.9814hr
VR Q0 4.155 *1.9814 8.23m3
计算结果表明, 若不考虑辅助时间, 两类反应器需要的 反应器体积是相同的。
14
例题 4.2
C4H8 → C4H6 + H2
(A) (B) (C)
已知: rA=kpA kmol/(m3·h) yA0=10% P=105pa
973K时,k=1.079×10-4kmol/(h·Pa)
• 若气体符合理想气体状态方程,则浓度和摩 尔流率的关系可用:
Ci
pi RT
1. 轴向无返混。 2. 物系质点的相同。 3. 同一截面C、T相同。 4. C、T沿管长连续变化。
0
Z/2
Z
CA CA0
CAout CA
管长
Z/2
Z
CA0
0
Z/2
CAout
Z 时间
图 3.4-1 平推流反应器图示
6
反应器特性分析
BSTR
投料 一次加料(起始) 返混 全无返混
PFR
连续加料(入口) 全无返混
求: Xf= 35%,空时为多少?
15
解:
pA=cA RT
δA=1
16
17
如按恒容过程计算
t 1 xA dxA kRT 0 1 xA
1.87s
空时与平均停留时间不等
当 0 时, t
当 0时, t
18
4.2.2 复合反应
当反应器中有多个反应同时进行时,需分别对各个关键组 分作物料衡算,最后获得设计方程组。
(活塞流反应器)
t间歇
cA0
X Af
dX A
0 [RA ( X A )]
(间歇反应器)
cA0
X Af A(X A)
连续式反应器
11
注意:① 二者形式同,但一个是t,一个是τ(与所选择 的进样模式有关);
② 管式反应器恒容时,τ=t;否则,τ≠t。
③ 对于气相变容过程,用含膨胀因子的式子表示各 个浓度即可。
不同的流体粒子之间的混合称为返
混,也称为逆向混合。
无返混
2.全混流模型(上一章详细描述过) 混合(径向+轴向)达到最大,C、T均一
应该注意的是:理想流动模型是两种极端情况,活塞流的返混为"零" ,而全混流的返混"最大",实际反应器中的流动状况介于两者之间。
5
三、活塞流反应器的特征
假设:反应物料以稳定流量流入反应器,平行向前移动。
dz
dVr
Fi dFi
X Af
Fi (dFi Fi ) (Ri )dVr 0
dFi dVr
Ri
dFA dVr
RA
FA FA0 (1 X A )
FA0
dX A dVr
RA ( X A )
FA0 Q0cA0
Q0 c A0
dX A dVr
RA ( X A )
9
等温管式反应器的设计
Fi 0
u0
dC A dZ
A(X A )
间歇釜式反应器
dCA dt
A(X A
)
随位置变化 随时间变化
13
•例4.1 利用例3.1数据, 改用活塞流反应器,求反应体积? 解: 由于反应是液相反应, 可认为是等容过程
rA k1(CACB CRCS K ) (k1, xA )
CA0
xAf 0
dxA rA
不一样。这两种混合情况对反应过程产生不同的影响,反应 的结果也不一样。
最简单的流动模型是理想流动模型,包括:活塞流和全 混流模型。
4
二、 理想流动模型
1.活塞流模型PFR
径向
流动 方向
① 径向流速分布均匀; ② 径向混合均匀(C,T);
活塞流
③ 无返混/轴向混合/逆向混合
返混:在流体流动方向上停留时间
dFi idVR , i 1,2,, K (4.1)
M
i ij rj , i 1,2,, K j 1
dFi
dVR
M
ij rj ,
j 1
i 1,2,, K
(4.10)
常微分方程组初值问题求解,方程共有K个,便只需选M个
合适的反应变量,可以是反应程度,转化率和收率或选择性
,摩尔流率等。
19