(精心整理)高中数学必修1-5知识点归纳及公式大全
最新新课标高中数学必修1-5公式大全
数学必修1-5常用公式及结论必修1: 一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。
记作A B ⊆ 真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集, 记作A ≠⊂B 集合相等:若:,A B B A ⊆⊆,则A B =3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 A B交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个; 6.常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R二、函数的奇偶性1、定义: 奇函数 <=> f (– x ) = – f ( x ) ,偶函数 <=> f (–x ) = f ( x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D ,且x 1 < x 2① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) < 0 <=> f ( x )是增函数 ② f ( x 1 ) > f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) > 0 <=> f ( x )是减函数 2、复合函数的单调性: 同增异减三、二次函数y = ax 2 +bx + c (0a ≠)的性质1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22, 对称轴:a b x 2-=,最大(小)值:a b ac 442-2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠. 四、指数与指数函数1、幂的运算法则:(1)a m • a n = a m + n ,(2)nm nmaa a -=÷,(3)( a m ) n = a m n (4)( ab ) n = a n • b n(5) n n nb a b a =⎪⎭⎫ ⎝⎛(6)a 0 = 1 ( a ≠0)(7)n n a a 1=- (8)m n mna a =(9)m n m naa 1=-2、根式的性质(1)n a =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.4、指数函数y = a x (a > 0且a ≠1)的性质:(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)5.指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>.五、对数与对数函数1对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N= N (6)log a (MN) = log a M + log a N (7)log a (NM) = log a M -- log a N (8)log a N b = b log a N (9)换底公式:log a N =aNb b log log(10)推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). (11)log a N =aN log 1(12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A(其中 e = 2.71828…) 2、对数函数y = log a x (a > 0且a ≠1)的性质:(1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)六、幂函数y = x a 的图象:(1) 根据 a例如:y = x 221x x y ==11-==x xy 七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位, 得到函数b a x f y +-=)(的图象; 规律:左加右减,上加下减 八. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+. 九、函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。
高中数学必修1、3、4、5知识点归纳及公式大全
必修 1 数学知识点第一章、会合与函数观点§、会合1、把研究的对象统称为元素,把一些元素构成的整体叫做会合。
会合三因素:确立性、互异性、无序性。
2、只需构成两个会合的元素是同样的,就称这两个会合相等。
3、常有会合:正整数会合:N *或 N ,整数会合: Z ,有理数会合:Q ,实数会合: R .4、会合的表示方法:列举法、描绘法.§、会合间的基本关系1、一般地,对于两个会合 A 、B ,假如会合 A 中随意一个元素都是会合 B 中的元素,则称会合A是会合 B的子集。
记作 A B .2、假如会合A B ,但存在元素x B ,且 x A ,则称会合A是会合B的真子集.记作:A B.3、把不含任何元素的会合叫做空集.记作:.并规定:空会合是任何会合的子集.4、假如会合 A 中含有 n 个元素,则会合 A有 2 n个子集.§、会合间的基本运算1、一般地,由所有属于会合 A 或会合 B 的元素构成的会合,称为会合 A 与 B 的并集 .记作:2、一般地,由属于会合 A 且属于会合 B 的所有元素构成的会合,称为 A 与 B 的交集 .记作:3、全集、补集C U A { x | x U , 且 x U }§、函数的观点A B .A B .1、设 A 、 B 是非空的数集,假如依据某种确立的对应关系 f ,使对于会合 A 中的随意一个数x ,在会合 B 中都有唯一确立的数 f x 和它对应,那么就称 f : A B 为会合A到会合 B 的一个函数,记作:y f x , x A .2 、一个函数的构成因素为:定义域、对应关系、值域.假如两个函数的定义域同样,并且对应关系完整一致,则称这两个函数相等.§、函数的表示法1、函数的三种表示方法:分析法、图象法、列表法.§、单一性与最大(小)值1、注意函数单一性证明的一般格式:解:设 x1 , x2a, b 且 x1x2,则: f x1 f x2=§、奇偶性1、一般地,假如对于函数f x的定义域内随意一个x ,都有f x f x,那么就称函数f x.为偶函数偶函数图象对于y 轴对称.2 、一般地,假如对于函数f x 的定义域内随意一个x ,都有 f x f x ,那么就称函数f x 为奇函数.奇函数图象对于原点对称.第二章、基本初等函数(Ⅰ)§、指数与指数幂的运算1、一般地,假如x n a ,那么 x 叫做 a 的 n 次方根。
高中数学必修1-5知识点归纳及公式大全
必修1数学知识点第一章、集合与函数概念§1.1.1、集合1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、只要构成两个集合的元素是一样的,就称这两个集合相等。
3、常见集合:正整数集合:*N 或N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A .2、如果集合B A,但存在元素B x,且A x,则称集合A 是集合B 的真子集.记作:A B.3、把不含任何元素的集合叫做空集.记作:.并规定:空集合是任何集合的子集.4、如果集合A 中含有n 个元素,则集合A 有n2个子集.§1.1.3、集合间的基本运算1、一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A . 2、一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A.3、全集、补集?{|,}U C A x x U x U 且§1.2.1、函数的概念1、设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数x f 和它对应,那么就称B Af :为集合A 到集合B 的一个函数,记作:A x x f y,.2、一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、函数的三种表示方法:解析法、图象法、列表法.§1.3.1、单调性与最大(小)值1、注意函数单调性证明的一般格式:解:设b a x x ,,21且21x x ,则:21x f x f =,§1.3.2、奇偶性1、一般地,如果对于函数x f 的定义域内任意一个x ,都有x f x f,那么就称函数x f 为偶函数.偶函数图象关于y 轴对称.2、一般地,如果对于函数x f 的定义域内任意一个x ,都有x f x f,那么就称函数x f 为奇函数.奇函数图象关于原点对称.第二章、基本初等函数(Ⅰ)§2.1.1、指数与指数幂的运算1、一般地,如果a xn,那么x 叫做a 的n 次方根。
高中数学必修一公式整理精选全文
可编辑修改精选全文完整版高中数学必修一公式整理一、几何公式1、直线:(1) 直线的方程是y=kx+b,其中k为斜率,b为y轴截距;(2) 直线的斜率的计算公式:斜率K=(点1的纵坐标减去点2的纵坐标)除以(点1的横坐标减去点2的横坐标)。
2、平面图形(1) 三角形三边关系:任意一边长加上另外两边长,总长度要大于第三边。
(2) 三角形面积公式:面积 = (底边×高)÷2(3) 矩形的面积公式:面积 = 长×宽(4) 圆的面积公式:面积= π × 半径×半径二、代数公式1、平方差(1) 一元二次方程的解法:ax²+bx+c=0,解法为:x={-b±√(b²-4ac) }/2a(2) 二元二次方程的解法:ax²+bxy+cy²+dx+ey+f=0,解法为:x=(-be+√(b²-4ac)(-de+√(d²-4af))/(2a);y=(2a(-be+√(b²-4ac))/(-de+√(d²-4af))。
2、二次函数(1) 二次函数公式:y=ax²+bx+c,其中a不等于0(2) 二次函数的对称轴:x轴的方程为: x= -b/2a(3) 二次函数的极值的计算:极值的 x 值为: -b/2a , 极值的 y 值为:y=a(-b/2a)²+b(-b/2a)+c三、数列公式1、等差数列公式(1) 求和公式:Sn=n(a1+an)/2,其中n为项数,a1为首项,an为末项;(2) 首项公式:a1=Sn/n-(n-1)d,其中n为项数,Sn为该数列的前n项和,d为公差;(3) 末项公式:an=a1+(n-1)d,其中a1为首项,n为项数,d为公差;(4) 公差公式:d=(an-a1)/(n-1),其中an为末项,a1首项,n为项数;2、等比数列的公式(1) 求和公式:Sn=a1(1-qn)/(1-q),其中a1为首项,q为公比,n为项数;(2) 首项公式:a1=Sn(1-q)/(1-qn),其中Sn为该数列的前n项和,q为公比,n为项数;(3) 末项公式:an=a1q(n-1),其中a1为首项,q为公比,n为项数;(4) 公比公式:q=(an/a1)^(1/(n-1)),其中an为末项,a1首项,n 为项数;。
高中数学必修1-5公式
(线面平行→面面平行),
(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。
(线线平行→面面平行),
(3)垂直于同一条直线的两个平面平行,
两个平面平行的性质定理
(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)
5、若函数 的定义域关于原点对称,则 可以表示为 ,该式的特点是:右端为一个奇函数和一个偶函数的和。
表1
指数函数
对数数函数
定义域
值域
图象
性质
过定点
过定点
减函数
增函数
减函数
增函数
表2
幂函数
奇函数
偶函数
第一象限性质
减函数
增函数
过定点
高中数学必修2知识点
一、直线与方程
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
高一数学必修1知识网络
集合
函数
附:
一、函数的定义域的常用求法:
1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数 中 ;余切函数 中;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
用符号语言表示公理1:
(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。
高中数学必修1、2、3、4、5公式及知识点总结大全
1 2)(x 是偶函数; )(x f 是奇函数。
3).(0,1,0)a a N >≠>. 1a ≠,0m >,且1m ≠, 0N >).).).二、三角函数、三角变换、解三角形、平面向量4、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin . 5、正弦、余弦的诱导公式(奇变偶不变,符号看象限)απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。
()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-= ⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.6、和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.7、二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-.公式变形: ;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+=sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2xk k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴函 数性 质9、辅助角公式(化一公式))sin(cos sin 22ϕ++=+=x b a x b x a y 其中ab =ϕtan 10.正弦定理 :2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径). 2sin ,2sin ,2sin a R A b R B c R C ⇔===::sin :sin :sin a b c A B C ⇔=11.余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.12.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.13、三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+. 14、a 与b 的数量积(或内积)θcos ||||b a b a ⋅=⋅15、平面向量的坐标运算(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (2)设a =11(,)x y ,b =22(,)x y ,则b a ⋅=2121y y x x +. (3)设a =),(y x ,则22y x a +=16、两向量的夹角公式设a =11(,)x y ,b =22(,)x y ,且0≠b ,则121cos ||||x a ba b x θ⋅==⋅+a =11(,)x y ,b =22(,)x y ).17、向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0b a //⇔a b λ= 12210x y x y ⇔-=.)0(≠⊥a b a ⇔0=⋅b a 12120x x y y ⇔+=.*平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b =1212x x y y +.三、数列18、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).19、等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;20、等差数列其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 21、等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 22、等比数列前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或 11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.四、不等式23、xy y x ≥+2。
高中数学必修1-5_知识点总汇+公式大全
数学必修 1-5 常用公式及结论必修 1: 一、集合 1、含义与表示: ( 1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集 ( 3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A ,都有 x B ,则称 A 是 B 的子集。
记作 AB真子集:若 A 是 B 的子集,且在B 中至少存在一个元素不属于A ,则 A 是B 的真子集,记作 AB 集合相等:若:A B,BA ,则 AB3. 元素与集合的关系:属于不属于:空集:4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为A B 交集:由集合 A 和集合 B 中的公共元素组成的集合叫交集,记为 A B补集:在全集 U 中,由所有不属于集合A 的元素组成的集合叫补集,记为C U A5.集合 { a 1, a 2 , , a n } 的子集个数共有 2n个;真子集有 2n–1 个;非空子集有 2n–1 个;6. 常用数集:自然数集: N 正整数集: N *整数集: Z有理数集: Q 实数集: R二、函数的奇偶性1、定义: 奇函数<=> f (–x ) = –f ( x ) ,偶函数<=> f (–x ) = f ( x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形;( 2)偶函数的图象关于 y 轴成轴对称图形;( 3)如果一个函数的图象关于原点对称,那么这个函数是奇函数;( 4)如果一个函数的图象关于 y 轴对称,那么这个函数是偶函数.二、函数的单调性1、定义:对于定义域为D 的函数 f ( x ),若任意的 x 1, x 2∈ D ,且 x 1 < x 2 ① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) –f ( x 2 ) < 0 <=> f ( x )是增函数 ② f ( x 1 ) > f ( x 2 )<=> f ( x 1 ) –f ( x 2 ) > 0<=> f ( x )是减函数2、复合函数的单调性 : 同增异减三、二次函数 y = ax2+bx + c ( a 0 )的性质b 4ac b2b 4ac b 21、顶点坐标公式:,, 对称轴: x,最大(小)值:2a4a2a4a2. 二次函数的解析式的三种形式(1) 一般式 f ( x) ax2bx c(a 0) ; (2) 顶点式 f (x) a( x h)2k(a 0) ;(3) 两根式f ( x) a( x x 1 )( x x 2 )(a0) .四、指数与指数函数1、幂的运算法则:(1) a m ? a n = am + n,( 2) amanam n,( 3) ( a m ) n = am n( 4)( ab ) n = a n ? bnnnn(5)a a n( 6)a 0= 1 ( a ≠0)(7) a n1 (8) a m ma n( 9) am1bbnanma n2、根式的性质( 1) ( na )na .( 2)当 n 为奇数时, nana ; 当 n 为偶数时, n an| a | a, a 0 .a,a 04、指数函数 y = ax(a > 0 且 a ≠ 1) 的性质:(1)定义域: R ; 值域: (0,+∞)( 2)图象过定点( 0,1)YYa > 10 < a < 111XX5. 指数式与对数式的互化: log a N ba bN (a0, a 1, N 0) .五、对数与对数函数1 对数的运算法则:(1) a b= N <=> b = loga N ( 2)log a 1 = 0( 3) log a a = 1( 4) log a a b= b ( 5) a loga N= N(6) log a (MN) = log a M + log a NM( 7) log a () = log a M -- log a NN(8) log a N blog b N = b log a N (9)换底公式: log a N =alog b(10)推论log a m b n nlog a b ( a 0 ,且 a 1 , m, n 0 ,且 m 1, n 1, N 0 ). m1( 12)常用对数: lg N = log 10 N(13)自然对数:ln A = log e A (11)log a N =log N a(其中 e = 2.71828, )2、对数函数 y = log a x (a > 0 且 a≠ 1) 的性质:(1)定义域: ( 0 , +∞) ;值域:R ( 2)图象过定点(1,0)Ya >1 Y0 < a < 101 X1 X六、幂函数 y = x a的图象 : (1)根据 a 的取值画出函数在第一象限的简图.a > 10 < a < 1 a < 011 x 1 例如: y = x2 y x x 2 yx七. 图象平移:若将函数y f ( x) 的图象右移a、上移 b 个单位,得到函数 y f (x a) b 的图象;规律:左加右减,上加下减八. 平均增长率的问题如果原来产值的基础数为N,平均增长率为p ,则对于时间x的总产值y ,有1( ) x.y N p九、函数的零点: 1. 定义:对于y f ( x) ,把使 f (x) 0 的X叫 y f (x) 的零点。
高中数学知识点公式大全
高中数学知识点必修1-5必修1数学知识点第一章、集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个集合相等。
3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆. 2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集.§1.1.3、集合间的基本运算 1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A . 2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}UC A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=… §1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 第二章、基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。
新课标高中数学必修一至必修五知识点总结
高中数学常用公式及结论必修1第二章 函数8、映射观点下的函数概念如果A ,B 都是非空的数集,那么A 到B 的映射f :A →B 就叫做A 到B 的函数,记作y=f(x),其中x ∈A ,y ∈B.原象的集合A 叫做函数y=f(x)的定义域,象的集合C (C ⊆B )叫做函数y=f(x)的值域.函数符号y=f(x)表示“y 是x 的函数”,有时简记作函数f(x).9、分段函数:在定义域的不同部分,有不同的对应法则的函数。
如⎩⎨⎧--+=3122x x y 00≤>x x 10、求函数的定义域的原则:(解决任何函数问题,必须要考虑其定义域)①分式的分母不为零;01,11:≠--=x x y 则如 ②偶次方根的被开方数大于或等于零;05,5:≥--=x x y 则如 ③对数的底数大于0且不等于1;10),2(log :≠>-=a a x y a 且则如④对数的真数大于0;02),2(log :>--=x x y a 则如⑤指数为0的底不能为零;x m y )1(:-=如,则01≠-m 11、函数的奇偶性(在整个定义域内考虑)(1)奇函数满足)()(x f x f -=-, 奇函数的图象关于原点对称; (2)偶函数满足)()(x f x f =-, 偶函数的图象关于y 轴对称;注:①具有奇偶性的函数,其定义域关于原点对称; ②若奇函数在原点有定义,则0)0(=f③根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。
12、函数的单调性(在定义域的某个区间内考虑)当21x x <时,都有)()(21x f x f <,则)(x f 在该区间上是增函数,图象从左到右上升;当21x x <时,都有)()(21x f x f >,则)(x f 在该区间上是减函数,图象从左到右下降。
函数)(x f 在某区间上是增函数或减函数,那么说)(x f 在该区间具有单调性,该区间叫做单调(增/减)区间13、一元二次方程20ax bx c ++=(0)a ≠(1)求根公式:aac b b x 2422,1-±-= (2)判别式:ac b 42-=∆(3)0>∆时方程有两个不等实根;0=∆时方程有一个实根;0<∆时方程无实根。
高中数学知识点公式大全
高中数学知识点必修1-5必修1数学知识点第一章、集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个集合相等。
3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆. 2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集.§1.1.3、集合间的基本运算 1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A . 2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}UC A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=… §1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 第二章、基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。
高中数学必修1-5公式大全
必修2:一、直线与圆 1、斜率的计算公式:k = tanα=1212x x y y --(α ≠ 90°,x 1≠x 2)2、直线的方程(1)斜截式 y = k x + b,k 存在 ;(2)点斜式 y – y 0 = k ( x – x 0 ) ,k 存在; (3)两点式121121x x x x y y y y --=--(1212,x x y y ≠≠) ;4)截距式 1=+bya x (0,0ab ≠≠)(5)一般式0(,0Ax By c A B ++=不同时为) 3、两条直线的 位置关系:4、两点间距离公式:设P 1 ( x 1 , y 1 ) 、P 2 ( x 2 , y 2 ),则 | P 1 P 2 | =()()221221y y x x -+-5、点P ( x 0 , y 0 )到直线l :A x + B y + C = 0的距离:2200BA CBy Ax d +++=8.点与圆的位置关系 点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d = d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.9.直线与圆的位置关系(圆心到直线的距离为d)直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .10.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .11.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线. (2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±二、立体几何 (一)、线线平行判定定理:1、平行于同一条直线的两条直线互相平行。
高中数学必修1-5知识点归纳及公式大全
必修 1 数学知识点会合间的基本运算1 、 一般地,由全部属于会合 A 或会合 B 的元素构成的会合,称为会合 A 与B 的并集.记作: A B .2 、 一般地,由属于会合 A且属于会合 B 的全部元素构成的会合,称为A 与B 的交集 .记作: AB子集:对随意 x A ,都有 xB ,则称 A 是 B 的子集。
记作 A B 真子集:若 A 是 B 的子集,且在 B 中起码存在一个元素不属于 A ,则 A 是 B 的真子集,记作 AB 会合相等:若:AB, BA ,则A B自然数集: N 正整数集: N *整数集: Z 有理数集: Q 实数集: R奇偶性1 、 f x f x ,那么就称函数 fx 为偶函数 .偶函数图象对于 y 轴对称 .2 、 fxf x ,那么就称函数f x 为奇函数 .奇函数图象对于原点对称 .第二章、基本初等函数(Ⅰ) §、指数与指数幂的运算1、 一般地,假如 x na ,那么 x 叫做 a 的 n 次方根。
此中 n 1,n N .2、 当 n 为奇数时, n a na ;当 n 为偶数时, n a n a .n1⑴ a mma n am n N *m;⑵n0 ;0, ,,1aan n⑴ arasar sa 0, r , s Q ;⑵ a rsarsa 0, r , s Q ⑶ ab ra rb ra 0,b 0, r Q .§、指数函数及其性质1、 记着图象: ya x a 0, a1复合函数的单一性 : 同增异减三、二次函数 y = ax 2 +bx + c ( a0 )的性质1、极点坐标公式:b , 4ac b 2 , 对称轴:xb ,最大(小)值: 4ac b 22a 4a2a 4a2.二次函数的分析式的三种形式 (1)一般式 (3)两根式f ( x) ax 2 bx c(a 0) ; (2)极点式 f ( x) a( x h)2 k (a 0) ; f ( x) a( x x 1 )( x x 2 )(a 0) .§、对数与对数运算1、 a xN log a N x ;2、 a log a Na .3、 log a 1 0 ,log a a 1.4、当 a0, a 1, M0, N0 时:⑴log a MNlog a M log a N ;⑵ log a M log a M log a N ;⑶ log a M n nlog a M .N换底公式:log c b1log a b a 0, a 1, c 0, c 1, b 0 .;log a b a 0, a 1, b 0, b 1 .log c a log b a记着图象:y log a x a 0, a1§、幂函数1、几种幂函数的图象:1、幂的运算法例:( 1) a m a n = a m + n,( 2)a m a n a m n,(3)( a m)n= a m n(4)( ab )n= a n b nna n n n1( 5)a(6) a 0= 1 ( a ≠0)()an1() a m m a n()amb b n7a n89m a n必修 2 数学知识点⑴圆柱侧面积;S侧面 2 r l⑵圆锥侧面积:S侧面r l⑶圆台侧面积: S侧面r l R l⑷体积公式:V柱体S h; V锥体1S h ;V台体1S上S上S下S下 h 33⑸球的表面积和体积:S球 4 R2,V球4R3. 3第三章:直线与方程y2y1 1、倾斜角与斜率:k tanx2x12、直线方程:⑴点斜式:y y0k x x0⑵斜截式:y kx b⑶两点式:y y1x x1 y2y1x2x1⑷一般式:Ax By C0⑴ l 1 // l 2A1B2A2B1 ;B1C2B2 C1⑵ l1和 l 2订交A1B2A2B1;⑶ l1和 l 2重合A1 B2A2B1 ;B1C2B2 C1⑷ l 1l 2A1 A2B1B20 .5、两点间距离公式:P1 P2x2x12y2y12 6、点到直线距离公式:3、对于直线:d Ax0By0CA2B2l1 : y k1x b1 , l 2 : y k2 x b2有:⑴ l 1 // l 2k1k 2 ;b1b2⑵ l 1和 l 2订交k1k2⑶ l 1和 l 2重合k1k 2 ;b1b2⑷ l 1 l 2k1 k21.4、对于直线:l1 : A1x B1 y C10,有:l 2 : A2 x B2 y C20第四章:圆与方程1、圆的方程:⑴标准方程:x a 2y b 2r 2⑵一般方程: x 2y 2Dx Ey F0.2、两圆地点关系: d O1O2⑴外离: d R r ;⑵外切: d R r ;⑶订交: R r d R r ;⑷内切: d R r ;⑸内含: d R r .3、空间中两点间距离公式:P1 P2x2x12y2y12z2z12必修 4 数学知识点第一章、三角函数2、l.§、随意角r1、正角、负角、零角、象限角的观点.3、弧长公式:l n RR .2、与角终边同样的角的会合:1802k , k Z .n R 21 lR .4、扇形面积公式:S§、弧度制3602 1、把长度等于半径长的弧所对的圆心角叫做 1 弧度§、随意角的三角函数1、设是一个随意角,它的终边与单位圆交于点P x, y,那么:2、设点A x0, y0为角终边上随意一点,那么:(设 r x02y02)siny 0, cosx 0 , tan y0 .rrx 03、 sin , cos , tan在四个象限的符号和三角函数线的画法.4、 引诱公式一:sin 2k sin ,§、同角三角函数的基本关系式cos 2k cos , (此中: k Z )、 平方关系: sin 22tan2ktan .1cos1.sin2 、 商数关系: tan.cos§、三角函数的引诱公式 1 、 引诱公式二:sin sin , coscos ,tantan .2 、引诱公式三:§、两角和与差的正弦、余弦、正切公式1 、 coscos cos sin sin2 、 sinsin cos cos sin3 、 sin sin coscos sin4 、 tan tan tan .1 tan tan5 、 tantan tan .1 tan tan§、二倍角的正弦、余弦、正切公式1 、 sin 22 sin cos,变形: sincos 12 sin 2 .2 、 cos2cos 2 sin 22 cos 211 2sin 2,变形 1: cos 21 cos2 ,2 变形 2: sin21 cos2 .2 3 、 tan 22 tan.1 tan2sin sin ,cos cos ,tantan .3、引诱公式四:sin sin ,cos cos ,tantan .4、引诱公式五:sincos ,2cossin .25、引诱公式六:sincos ,2cossin .2必修 5 数学知识点函数正弦函数余弦函数正切函数图象定义域R R{x| x ≠ +k π,k∈ Z}2值域[-1,1][-1,1]R周期性2π2ππ奇偶性奇函数偶函数奇函数增区间 [- π +2kπ , 2k π]减区间 [2k π ,π+2k π ]增区间 [-+2kπ ,( k ∈Z )增区间+2kπ ]单一性22(-+k π , +k π) 3减区间 [+2kπ ]22 +2kπ ,( k∈ Z ) 22对称轴x =+ k π( k∈ Z )x = k π ( k ∈ Z )无2对称中( kπ ,0 ) ( k ∈ Z )(+ k π ,0 )( k ∈ Z )( k ,0 ) ( k ∈ Z )心22二、平面向量1、向量的模计算公式:( 1)向量法: | a | =a a2 a;( 2)坐标法:设a =( x,y),则 |a | =x 2y 2 2、单位向量的计算公式:( 1)与向量a =( x,y)同向的单位向量是x,y;x2x2y 2y 2( 2)与向量a =( x,y)反向的单位向量是x,y;x2y 2x 2y 23、平行向量规定:零向量与任一直量平行。
高中数学必修1-5知识点归纳及公式大全
高中数学必修1-5知识点归纳及公式大全61539(总26页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除必修1数学知识点 第一章、集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个集合相等。
3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A是集合B 的子集。
记作B A ⊆. 2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n 2个子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .3、全集、补集{|,}U C A x x U x U =∈∉且§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法.§1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…§1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称.第二章、基本初等函数(Ⅰ)§2.1.1、指数与指数幂的运算1、 一般地,如果a x n =,那么x 叫做a 的n 次方根。
高中数学必修1-5常用公式(精华版)
高中数学必修1-5常用公式(定理)1.集合的交集、并集、补集.A B (取A B 、的公共元素);A B (取A B 、的所有元素但不重复); UA 全集U 中除了A 中元素之外的元素2.子集与真子集:若集合A 中有n 个元素,则集合A 有2n 个子集,21n -个真子集.∅是任何集合的子集.3.二次函数2y ax bx c =++(0)a ≠. 可化为224()24b ac b y a x a a -=++(0)a ≠它的图象是抛物线,对称轴为2bx a=-,顶点坐标为24(,)24b ac b a a --; 二次函数的3种解析式:(1)一般式:2()f x ax bx c =++(0)a ≠; (2)顶点式:2()()f x a x h k =-+(0)a ≠; (3)零点式:12()()()f x a x x x x =--(0)a ≠. 4.函数的单调性.(1)设[]12,x x a b ⋅∈,12x x ≠,则[]1212()()()0x x f x f x -->⇔[]1212()()0(),f x f x f x a b x x ->⇔-在上是增函数;[]1212()()()0x x f x f x --<⇔[]1212()()0(),f x f x f x a b x x -<⇔-在上是减函数.(2)函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数. 5.函数()y f x =的图象的奇偶性.(1)函数的定义域必须关于原点对称;(2)若)(x f 是奇函数,那么()()f x f x -=-,若)(x f 是偶函数,那么()()()f x f x f x -== (3)定义域含零的奇函数必过原点,即(0)0f =.(4)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. 6.函数()y f x =的图象的对称性.函数()y f x =的图象关于直线x a =对称()()(2)()f a x f a x f a x f x ⇔+=-⇔-=. 7.两个函数图象的对称性.(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称; (2)函数()y f x =与函数()y f x =-的图象关于直线0y =(即x 轴)对称; (3)函数()y f x =与函数()y f x =--的图象关于原点对称;*(4)函数)(x f y =和)(1x fy -=的图象关于直线y x =对称(1()f x -是()f x 的反函数).8.函数()y f x =的周期性:若()()f x T f x +=,0T ≠,则()f x 是以T 为周期的函数.9.分数指数幂:m na =0,,a m n N *>∈,且1n >).1m nm naa-= (0,,a m n N *>∈,且1n >).10.指数的运算公式:mnm na a a +=; m m n n a a a-=; ()m n mn a a =; ()m m mab a b =11.对数的运算公式:log b a N b a N =⇔=(01,0)a a N >≠>且. log a N a N =(01,0)a a N >≠>且.log ()log log a a a MN M N =+; log ()log log a a a MM N N=-.log log m N N =log log nn b b =12.零点:函数()y f x =的图象与x 轴交点的横坐标(当0y =时,x 的值).零点存在定理:若函数()y f x =在区间[,]a b 上的图象是连续的,且有()()0f a f b ⋅<,则()f x 在(,)a b 内至少有一个零点.13.棱柱、棱锥、棱台的侧面积和体积:2S rl π=圆柱侧; S rl π=圆锥侧; 12)S r r l π=+圆台侧(; S ch =直棱柱侧; '12S ch =正棱锥侧;''1)2S c c h =+正棱台侧(; V Sh =柱体; 13V Sh =锥体;13V S S h =+下台体上(.14.球的表面积和体积:设球的半径是R ,则其表面积24S R π=,体积343V R π=.15.线面平行判定定理:若平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.线面平行性质定理:若一条直线与一个平面平行,过该直线的平面和此平面相交,则该直线和交线平行. 16.面面平行判定定理:若一个平面内有两条相交的直线都平行于另一个平面,则这两个平面平行.面面平行性质定理:若两个平行平面同时与第三个平面相交,则它们的交线平行.17.线面垂直判定定理:若平面外的一条直线垂直于平面内的两条相交直线,则该直线垂直于这个平面.线面垂直性质定理:若一条直线垂直于一个平面,则该直线垂直于此平面内的任意一条直线.垂直于同一个平面的两条直线平行;垂直于同一条直线的两个平面平行.18.面面垂直判定定理:若一个平面过另一平面的垂线,则这两个平面相互垂直.面面垂直性质定理:若两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面. 19.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.20.斜率公式:2121tan y y k x x α-==- (90α≠,12x x ≠).21.直线的方程:(1)点斜式:00()y y k x x -=-;(2)斜截式:y kx b =+(b 为直线l 在y 轴上的截距);(3)截距式:1x ya b +=(注意:① 截距不是距离;② 过原点的直线也具有横、纵截距相等的特征); (4)两点式:112121y y x x y y x x --=--(12x x ≠,12y y ≠);(5)一般式:0Ax By C ++=(其中A 、B 不同时为0). 22.两条直线的平行与垂直.(1)若111:l y k x b =+,222:l y k x b =+,① 121212//,l l k k b b ⇔=≠;② 12121l l k k ⊥⇔=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且1A 、2A 、1B 、2B 都不为零,① 11112222//A B C l l A B C ⇔=≠; ② 1212120l l A A B B ⊥⇔+=. 23.平面两点间的距离公式:若A 11(,)x y ,B 22(,)x y,则AB =24.空间两点间的距离公式:若A 111(,,)x y z ,B 222(,,)x y z,则AB =25.点到直线的距离:d =(点00(,)P x y ,直线l :0Ax By C ++=);平行线间的距离:d =(直线1l :10Ax By C ++=,直线2l :20Ax By C ++=).26.圆的方程:(1)圆的标准方程:222()()x a y b r -+-=,圆心为(,)a b ,半径为r ;(2)圆的一般方程:220x y Dx Ey F ++++=(2240D E F +->).27.直线0Ax By C ++=与圆222()()x a y b r -+-=的位置关系的判定方法:(1)d r >⇔相离0⇔∆<; (2)d r =⇔相切=0⇔∆; (3)d r <⇔相交0⇔∆>. 28.两圆位置关系的判定方法:设两圆圆心分别为1O ,2O ,半径分别为:1r ,2r ,12OO d =. (1)12d r r >+⇔外离; (2)12=d r r +⇔外切; (3)1212r r d r r -<<+⇔相交; (4)12=d r r -⇔内切; (5)120d r r <<-⇔内含.29.直线与圆锥曲线相交的弦长公式:12AB x x ==-.30.方差:2222121[()()()]n S x x x x x x n =-+-+⋅⋅⋅+-;标准差:S =31.古典概型的概率()mP A n=(m 表示随机事件A 包含的基本事件数,n 表示试验的所有基本事件数). 32.几何概型的概率()AP A μμ=(A μ表示事件A 发生区域的几何度量,μ表示试验中总区域的几何度量,如长度、面积、体积等).33.任意角(逆时针旋转→正角,顺时针旋转→负角):与α终边相同的角的集合:{|2,}k k Z ββαπ=+∈. 34.弧度制:(1)α=l r ,l =r α⋅;(2)180=π rad ;1rad 57.3≈;(3)扇形面积S =21122lr r α=. 35.任意角的三角函数:一般地,设角α终边上任意一点的坐标为(,)x y ,它与原点的距离为r (0)r >,则sin α=y r cos α=x r tan α=yx(0)x ≠.36.同角三角函数的基本关系式:22sin cos 1θθ+=,tan θ=θθcos sin ,tan cot 1θθ⋅=. 37.诱导公式(口诀:纵变横不变,符号看象限):如sin()πα+=sin α-,sin()2πα+=cos α等.38.两角和与差的正弦、余弦、正切公式及倍角、降幂公式:sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=sin 22sin cos ααα= 2222cos 2cos sin 2cos 112sin ααααα=-=-=- 22tan tan 21tan ααα=- 21+cos2cos 2αα=,21cos2sin 2αα-=*(22tan sin 21tan ααα=+; 221tan cos 21tan ααα-=+).39.辅助角公式(合一思想):sin cos a b αα+)αϕ+(其中tan baϕ=).40.正余弦“三兄妹”sin cos x x ±、sin cos x x 的内在联系:2(sin cos )12sin cos 1sin 2x x x x x ±=±=±.41.正弦定理:2sin sin sin a b cR A B C ===(R 为外接圆的半径). 42.余弦定理:2222cos a b c bc A =+-; 222cos 2b c a A bc+-=.43.三角形的面积公式:111sin ()222a S ab C ah r a bc ===++(其中r 为三角形内切圆半径).44.中点的坐标公式与△ABC 的重心坐标公式:若A 11(,)x y ,B 22(,)x y ,C 33(,)x y ,则AB 的中点为P 1212(,)22x x y y ++,△ABC 的重心坐标为G 123123(,)33x x x y y y ++++. 45.已知两点求向量坐标:若A 11(,)x y ,B 22(,)x y ,则2121(,)AB x x y y =--.46.向量的模公式:已知a 11(,)x y =,=a=22=a a .47.向量的数量积与夹角公式:已知a 11(,)x y =,b 22(,)x y =,cos θ⋅=⋅a b a b 1212x x y y =+; cos ,<>a b cos θ=⋅=⋅a b ab =48.向量的平行与垂直:(1)平行:a ∥b ⇔b λ=a 12210x y x y ⇔-=(0≠a );(2)垂直:a ⊥b ⇔a ·0=b 12120x x y y ⇔+=.49.已知前n 项和n S 求通项公式:11,1,2n nn S n a S S n -=⎧=⎨-≥⎩.50.等差数列的通项公式:1(1)n a a n d =+-; m n p q a a a a +=+(其中m n p q +=+).等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+21()22d dn a n =+-. 51.等比数列的通项公式:11n n a a q -=; m n p q a a a a ⋅=⋅(其中m n p q +=+).等比数列的前n 项和公式:111(1),111,1n n n a a qa q q S q qna q ⎧--=≠⎪=--⎨⎪=⎩. 52.等差中项与等比中项:若,,a b c 成等差数列,则2b a c =+;若,,a b c 成等比数列,则2b ac =. 53.解一元二次不等式20ax bx c ++>(0)<或,其中0a >,240b ac ∆=->.若12x x <,则121()()0a x x x x x x -->⇔<或2x x >;1212()()0a x x x x x x x --<⇔<<. 54.解含有绝对值的不等式:若0a >,则22x a x a a x a <⇔<⇔-<<;22x a x a >⇔>⇔x a <-或x a >.55.基本不等式(均值不等式).(1),a b R ∈⇒222a b ab +≥(当且仅当a b =时等号成立),变形:222a b ab +≤;(2),a b R +∈⇒2a b +≥a b =时等号成立),变形:2()2a b ab +≤;*(3)3333a b c abc ++≥(0,0,0)a b c >>>; *(4)a b a b a b -≤±≤+. 56.几种常见函数的导数.(1)0='C (C 为常数); (2)'1()n n x nx -=()n Q ∈; (3)x x cos )(sin =';(4)x x sin )(cos -='; (5)x x 1)(ln =';1(log )ln a x x a'=; (6)x x e e =')(;a a a xx ln )(='. ⎫⎬⎭别忘了A B C π++=。
高中数学知识点公式大全
高中数学知识点必修1-5必修1数学知识点第一章、集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个集合相等。
3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆. 2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集.§1.1.3、集合间的基本运算 1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A . 2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}UC A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=… §1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 第二章、基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。
高中数学必修1-5常用公式及结论
数学必修1-5常用公式及结论必修1:一、集合1、元素与集合的关系:属于:∈不属于:∉空集:φ2、集合间的关系: 子集:A B ⊆真子集:A ≠⊂B集合相等:若,A B B A ⊆⊆,则A B = 交集:A B 并集:A B 补集:U C A3、集合A=12{,,,}n a a a①子集个数共有2n 个 ②真子集有2n -1 个 ③非空子集有2n -2 个④若C 中有m 个元素(n ≥m ),则满足C ⊆ B ⊆ A 的集合B 有 2n-m 个 4、常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R5、空集是任何一个集合的子集,是任何一个非空集合的真子集,空集的唯一子集是空集本身二、函数的奇偶性1、定义: 奇函数 <=>f (– x) = – f ( x) ,偶函数 <=>f (–x) = f ( x)(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.三、函数的单调性1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D ,且x 1 < x 2① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) < 0 <=>f ( x )是增函数② f ( x 1 ) > f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) > 0 <=>f ( x )是减函数 2、复合函数的单调性: 同增异减四、二次函数y = ax 2 +bx + c (0a ≠)的性质(定义域:R )1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛--ab ac a b 44,22, 对称轴:a b x 2-=,最大(小)值:a b ac 442- 2、二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;抛物线与y 轴交于(0,c) (2) 顶点式2()()(0)f x a x h k a =-+≠;顶点坐标:(h,k ) (3) 两根式12()()()(0)f x a x x x x a =--≠.3、韦达定理:X1+X2=-b/a ,X1〃X2=c/a五、指数与指数函数 1、幂的运算法则:(1)a m • a n = a m + n (2)n m n m a a a -=÷(3)( a m ) n = a m n(4)( ab ) n= a n• b n(5) n n nb a b a =⎪⎭⎫⎝⎛(6)a 0 = 1 ( a ≠0)(7)n naa1=-(8)m n mn a a =(9)mnm naa 1=-(10)(a+b)2=a 2+b 2+2ab/(a-b)²=a ²-2ab+b ² (11)(a+b)³=(a+b)(a ²+2ab+b ²)=a ³+3a ²b+3ab ²+b ³ (12)a 3-b 3=(a-b)(a 2+ab+b 2)/a 3+b 3=(a+b)(a 2-ab+b 2)2、根式的性质(1)n a =.(2)当na =; 当n ,0||,0a a a a a ≥⎧=⎨-<⎩.3、指数函数y = a x (a > 0且a ≠1)的性质:(1)定义域:R ;值域:( 0 , +≦) (2)图象过定点(0,1) ↑ ↓图像越靠近y 轴,底数a 越大 图像越靠近y 轴,底数a 越小 4、指数式与对数式的互化:log b a N b a N =⇔=(0,1,0)a a N >≠>.六、对数与对数函数1对数的运算法则:(0,1,0)a a N >≠>.(1)a b = N <=> b = log (2)log a 1 = 0(3)log a a = 1 (4)log a a b = b (5)a log a N = N (6)log a b 〃log b a=1 (7)log a (MN) = log a M + log a N (8)log a (NM) = log a M - log a N (9)log a N b = b log a N / log a b N =b 1log a N(10)换底公式:log a N = aN b b log log =aNlg lg(11)推论 log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠,0N >). (12)log a N =aN log 1(13)常用对数:lg N = log 10N (13)自然对数:ln A = log e A (其中 e = 2.71828…)2、对数函数y= log a x (a > 0且a ≠1)的性质:(1)定义域:( 0 , +≦) ;值域:R (七、幂函数y = x a 的图象:定义域(a ∈R ) (1)根据 a 的取值画出函数在第一象限的简图 .例如: y = x 221x x y ==11-==x xy (1)a ﹥0①图像都过点O (0,0)和点(1,1)②在区间(0,+≦)单调增加(2)a ﹤0①图像都过点(1,1)②在区间(0,+≦)单调减少八、图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象; 规律:左加右减,上加下减九、平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.必修2:一、直线与圆1、斜率的计算公式:k = tan α=1212x x y y --(α ≠ 90°,x 1≠x 2) ①α∈[0°,180°]②α=90°时,斜率k 不存在③α在一象限时,k ﹥0④α在三象限时,k ﹤02、直线的方程(1)斜截式 y = k x + b,k 存在 ; (2)点斜式 y – y 0 = k ( x – x 0 ) ,k 存在; (3)两点式 121121x x x x y y y y --=--(1212,x x y y ≠≠) ; (4)截距式1=+bya x (0,0ab ≠≠) (5)一般式0(,0Ax Byc A B ++=不同时为) 3、两条直线的位置关系:4、两点间距离公式:设P 1 ( x 1 , y 1 ) 、P 2 ( x 2 , y 2 ), 则 | P 1 P 2 | =()()221221y y x x -+-线段中点坐标:(X,Y)=(x ₁+x ₂)/2,(y ₁+y ₂)/25、(1)点P ( x 0 , y 0 )到直线l :Ax + B y + C = 0的距离:(2)两条平行直线距离:d=|C1-C2|/√(A 2+B 2)6、圆的方程7、点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d = ①d r >⇔点P 在圆外;②d r =⇔点P 在圆上;③d r <⇔点P 在圆内.8、直线与圆的位置关系(圆心到直线的距离为d)直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:①0<∆⇔⇔>相离r d ;②0=∆⇔⇔=相切r d ;③0>∆⇔⇔<相交r d .9、圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)xy 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=.当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=; ②斜率为k 的圆的切线方程为y kx =±二、立体几何(一)、线线平行判定定理:1、平行于同一条直线的两条直线互相平行。
高中数学必修1-5知识点总汇+公式大全,强列推荐
必修 1:
一、集合 1 、含义与表示: ( 1 )集合中元素的特征:确定性,互异性,无序性 ( 3 )集合的表示法:列举法,描述法,图示法
( 2 )集合的分类;有限集,无限集 2、集合间的关系:子集:对任意 真子集:若 A 是 B 的子集,且在 记作 A B
x
A ,都有
2
bx c( a x1 )( x
0) ; (2) 0) .
顶点式
f (x)
a( x h)
2
k(a
0) ;
a( x
x2 )( a
四、指数与指数函数 1、幂的运算法则: ( 1) a
m
? a = a
n
m+n
, ( 2) a
m
a
n
a
m n
, ( 3) ( a
m
)
n
=a
n
mn
( 4 ) ( ab ) = a
x
B ,则称 A 是 B 的子集。记作 A
B
B 中至少存在一个元素不属于
A ,则 A 是 B 的真子集,
集合相等:若: 不属于:AΒιβλιοθήκη B, BA ,则 A
空集:
B
3. 元素与集合的关系:属于 4、集合的运算:并集:由属于集合 交集:由集合 补集:在全集 记为 5.集合
A 或属于集合 B 的元素组成的集合叫并集,记为
x
(a > 0 且 a ≠ 1) 的性质: 值域: ( 0 , + ∞ ) ( 2)图象过定点( 0, 1 )
( 1 )定义域: R ;
Y a>1 1 X 0
Y 0< a<1 1 0 X
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修1数学知识点第一章、集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个集合相等。
3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .3、全集、补集?{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,. 2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=… §1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 第二章、基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。
其中+∈>N n n ,1. 2、 当n 为奇数时,a a n n =;当n 为偶数时,a a n n=. 3、 我们规定: ⑴m n mn a a=()1,,,0*>∈>m Nn m a ;⑵()01>=-n aan n; 4、 运算性质: ⑴()Q s r a aa a sr sr∈>=+,,0;⑵()()Q s r a a a rs sr∈>=,,0;⑶()()Q r b a b a ab rr r∈>>=,0,0.§2.1.2、指数函数及其性质 1、 记住图象:()1,0≠>=a a a y x§2.2.1、对数与对数运算1、x N N a a x=⇔=log ;2、a aNa =log .3、01log =a ,1log =a a .4、当0,0,1,0>>≠>N M a a 时: ⑴()N M MN a a a log log log +=; ⑵N M N M a a a log log log -=⎪⎭⎫⎝⎛; ⑶M n M a na log log =.5、换底公式:abb c c a log log log =()0,1,0,1,0>≠>≠>b c c a a .6、ab b a log 1log =()1,0,1,0≠>≠>b b a a .§2..2.2、对数函数及其性质1、 记住图象:()1,0log ≠>=a a x y a§2.3、幂函数1、几种幂函数的图象:第三章、函数的应用§3.1.1、方程的根与函数的零点 1、方程()0=x f 有实根⇔函数()x f y =的图象与x 轴有交点 ⇔函数()x f y =有零点.2、 性质:如果函数()x f y =在区间[]b a , 上的图象是连续不断的一条曲线,并且有()()0<⋅b f a f ,那么,函数()x f y =在区间()b a ,内有零点,即存在()b a c ,∈,使得()0=c f ,这个c 也就是方程()0=x f 的根. §3.1.2、用二分法求方程的近似解 1、掌握二分法.§3.2.1、几类不同增长的函数模型 §3.2.2、函数模型的应用举例1、解决问题的常规方法:先画散点图,再用适当的函数拟合,最后检验.必修2数学知识点1、空间几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
2、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。
3、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l R l r S ⋅⋅+⋅⋅=ππ侧面 ⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体; ()h S S S S V 下下上上台体+⋅+=31⑸球的表面积和体积:32344R V R S ππ==球球,.第二章:点、直线、平面之间的位置关系1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。
2、公理2:过不在一条直线上的三点,有且只有一个平面。
3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
4、公理4:平行于同一条直线的两条直线平行.5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
6、线线位置关系:平行、相交、异面。
7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。
8、面面位置关系:平行、相交。
9、线面平行:⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
10、面面平行:⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
11、线面垂直:⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。
⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
⑶性质:垂直于同一个平面的两条直线平行。
12、面面垂直:⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。
⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直。
⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。
第三章:直线与方程1、倾斜角与斜率:1212tan x x y y k --==α2、直线方程:⑴点斜式:()00x x k y y -=- ⑵斜截式:b kx y +=⑶两点式:121121x x x x y y y y --=-- ⑷一般式:0=++C By Ax 3、对于直线:222111:,:b x k y l b x k y l +=+=有:⑴⎩⎨⎧≠=⇔212121//b b k k l l ;⑵1l 和2l 相交12k k ⇔≠; ⑶1l 和2l 重合⎩⎨⎧==⇔2121b b k k ;⑷12121-=⇔⊥k k l l . 4、对于直线::,0:22221111=++=++C y B x A l C y B x A l 有:⑴⎩⎨⎧≠=⇔1221122121//C B C B B A B A l l ;⑵1l 和2l 相交1221B A B A ≠⇔;⑶1l 和2l 重合⎩⎨⎧==⇔12211221C B C B B A B A ;⑷0212121=+⇔⊥B B A A l l . 5、两点间距离公式:()()21221221y y x x P P -+-=6、点到直线距离公式:2200BA CBy Ax d +++=第四章:圆与方程 1、圆的方程:⑴标准方程:()()222r b y a x =-+-⑵一般方程:022=++++F Ey Dx y x . 2、两圆位置关系:21O O d = ⑴外离:r R d +>; ⑵外切:r R d +=;⑶相交:r R d r R +<<-; ⑷内切:r R d -=; ⑸内含:r R d -<.3、空间中两点间距离公式:()()()21221221221z z y y x x P P -+-+-=必修3数学知识点第一章:算法1、算法三种语言:自然语言、流程图、程序语言; 2、算法的三种基本结构:顺序结构、选择结构、循环结构 3、流程图中的图框:起止框、输入输出框、处理框、判断框、流程线等规范表示方法; 4、循环结构中常见的两种结构: 当型循环结构、直到型循环结构 5、基本算法语句: ①赋值语句:“=”(有时也用“←”) ②输入输出语句:“INPUT ” “PRINT ” ③条件语句: If … Then … Else …End If④循环语句: “Do ”语句 Do … Until … End“While ”语句 While … … WEnd⑹算法案例:辗转相除法—同余思想 第二章:统计 1、抽样方法:①简单随机抽样(总体个数较少) ②系统抽样(总体个数较多) ③分层抽样(总体中差异明显)注意:在N 个个体的总体中抽取出n 个个体组成样本,每个个体被抽到的机会(概率)均为Nn 。
2、总体分布的估计: ⑴一表二图:①频率分布表——数据详实 ②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1。