2加法原理和乘法原理
两个基本计数原理加法原理和乘法原理
两个基本计数原理加法原理和乘法原理两个基本计数原理:加法原理和乘法原理在我们日常生活和数学学习中,计数是一项非常重要的任务。
而加法原理和乘法原理就是两个帮助我们解决计数问题的基本原理。
让我们先来聊聊加法原理。
想象一下,你要从 A 地去 B 地,有三条不同的路可以走,分别是路 1、路 2 和路 3。
那么从 A 地到 B 地,总的路线选择就是这三条路的总和,这就是加法原理。
加法原理说的是,如果完成一件事情有 n 类不同的方式,在第一类方式中有 m1 种不同的方法,在第二类方式中有 m2 种不同的方法,以此类推,在第 n 类方式中有 mn 种不同的方法,那么完成这件事情总的方法数就是 m1 +m2 +… + mn 种。
比如说,在一个班级里评选优秀学生,有学习成绩优秀的、品德优秀的、社会实践积极的三种类型。
假设学习成绩优秀的有 10 人,品德优秀的有 8 人,社会实践积极的有 6 人。
那么这个班级里优秀学生的总数就是 10 + 8 + 6 = 24 人。
再比如,你周末想去图书馆看书,图书馆在三个不同的区域分别有分馆,第一个区域有 2 家分馆,第二个区域有 3 家分馆,第三个区域有 1 家分馆。
那么你可以选择去的图书馆分馆总数就是 2 + 3 + 1 = 6 家。
接下来,我们说一说乘法原理。
假设你早上要穿衣服出门,上衣有3 件不同的款式可以选择,裤子有 2 条不同的款式可以选择。
那么你搭配衣服的方式总共有 3×2 = 6 种。
这就是乘法原理。
乘法原理是指,如果完成一件事情需要 n 个步骤,做第一步有 m1 种不同的方法,做第二步有 m2 种不同的方法,以此类推,做第 n 步有 mn 种不同的方法,那么完成这件事情总的方法数就是m1×m2×…×mn 种。
比如说,要从 0 、 1 、 2 、 3 这 4 个数字中选出 3 个数字组成一个三位数,百位上有 3 种选择(因为 0 不能在百位),十位上有 3 种选择,个位上有 2 种选择,那么总共能组成的三位数个数就是 3×3×2 =18 个。
加法原理和乘法原理
加法原理和乘法原理
1.加法原理:
加法原理也称为分情形原理,是指对一个由相互独立的事件构成的事件总和,其计数等于这些事件各自计数的总和。
简单来说,当我们需要从A和B两个集合中选择元素,或者进行两个动作时,可以使用加法原理来计数。
加法原理的表达式可以表示为:,
A∪B,=,A,+,B,-,A∩B。
一个例子是,有5个红球和3个蓝球,我们要从中选3个球。
这里红球和蓝球是分别独立的集合,使用加法原理可以直接将选红球的方式数目与选蓝球的方式数目相加,即C(5,3)+C(3,3)=10+1=11
2.乘法原理:
乘法原理也称为连乘法则,是指对一个多步操作的计数问题,其计数等于每个步骤计数的乘积。
乘法原理可以用于计数多个独立事件同时发生的可能性。
乘法原理的表达式可以表示为:,A×B,=,A,×,B。
一个例子是,有4个人,每个人有3种选择,问有多少种不同的选择方式。
我们可以将这个问题分解成4个独立的选择过程,并将每个选择过程的可能性相乘:3^4=81
乘法原理还可以推广到更多步骤的操作。
比如,在一个密码中,每位密码有10个可能的选项,密码有4位。
使用乘法原理,我们可以计算出总共有10^4=10,000种不同的密码可能性。
总结起来,加法原理和乘法原理是计数问题中非常重要的基本原理。
它们可以帮助我们计算各种可能性的总数,从而解决各种实际问题。
在实际应用中,我们通常需要灵活地使用这两个原理,结合具体问题进行推理和计算。
两个基本计数原理加法原理和乘法原理
两个基本计数原理加法原理和乘法原理两个基本计数原理:加法原理和乘法原理在我们的日常生活和学习中,计数是一项经常会遇到的任务。
比如,计算从家到学校有多少种不同的路线,或者在商店里挑选衣服时有多少种搭配方式。
而在解决这些计数问题时,两个基本的计数原理——加法原理和乘法原理,就发挥着至关重要的作用。
先来说说加法原理。
加法原理指的是,如果完成一件事情有 n 类不同的方式,在第一类方式中有 m1 种不同的方法,在第二类方式中有m2 种不同的方法,……,在第 n 类方式中有 mn 种不同的方法,那么完成这件事情共有 N = m1 + m2 +… + mn 种不同的方法。
为了更好地理解加法原理,我们来看一个例子。
假设你要从 A 地去B 地,有三种交通方式可以选择:飞机、火车和汽车。
如果选择飞机有 5 个航班可选,选择火车有 10 趟车次可选,选择汽车有 8 趟班车可选。
那么从 A 地到 B 地,总的出行方式就有 5 + 10 + 8 = 23 种。
在这个例子中,选择飞机、火车、汽车这三种交通方式是相互独立的,彼此之间没有交叉和关联。
无论选择哪种方式,都能够完成从 A地到 B 地的行程。
所以,我们只需要将每种方式的可选数量相加,就可以得到总的出行方式数量。
再来看乘法原理。
乘法原理是说,如果完成一件事情需要分成 n 个步骤,做第一步有 m1 种不同的方法,做第二步有 m2 种不同的方法,……,做第 n 步有 mn 种不同的方法,那么完成这件事情共有 N =m1 × m2 × … × mn 种不同的方法。
比如说,你要从你的衣柜里挑选一套衣服出门,上衣有 5 件可选,裤子有 3 条可选。
那么你搭配出一套衣服的方式就有 5 × 3 = 15 种。
这里,挑选上衣和挑选裤子是两个相互独立的步骤。
只有先完成挑选上衣的步骤,才能进行挑选裤子的步骤。
而且,对于每一件上衣,都可以与 3 条裤子进行搭配;对于每一条裤子,也都可以与 5 件上衣进行搭配。
加法原理乘法原理
加法原理乘法原理加法原理和乘法原理是概率论中重要的基本原理,它们在计算概率问题时起到了至关重要的作用。
本文将详细介绍加法原理和乘法原理,并从实际问题的角度解释这两个原理。
一、加法原理:加法原理是指当可能发生的两个事件互不相容时,其概率可以通过将两个事件的概率相加来计算。
假设有两个事件A和B,它们互不相容,即A和B不可能同时发生。
那么,这两个事件的概率可以用加法原理进行计算。
对于事件A和B,它们的概率分别为P(A)和P(B),那么事件“A或B 发生”的概率可以表示为P(A∪B)。
根据加法原理,有以下公式:P(A∪B)=P(A)+P(B)加法原理可以简单地理解为,当两个事件互不相容时,事件“A或B 发生”的概率等于事件A发生的概率加上事件B发生的概率。
举例说明:假设考虑一个掷骰子的问题,事件A表示掷骰子出现1的概率,事件B表示掷骰子出现2的概率。
由于掷骰子不可能同时出现1和2,所以事件A和B互不相容。
根据加法原理,事件“A或B发生”的概率等于事件A发生的概率加上事件B发生的概率。
假设掷骰子出现1的概率为1/6,出现2的概率为1/6,那么事件“A或B发生”的概率为1/6+1/6=1/3加法原理的应用不仅仅局限于两个事件,它可以推广到多个互不相容的事件之间。
如果有n个互不相容的事件A1,A2,...,An,那么它们的概率之和可以表示为:P(A1∪A2∪...∪An)=P(A1)+P(A2)+...+P(An)二、乘法原理:乘法原理指出当一个事件发生的次数与另一个事件发生的次数有关联时,可以通过将两个事件的概率相乘来计算它们同时发生的概率。
假设有两个事件A和B,它们的发生次数有一定的关联。
那么,这两个事件同时发生的概率可以用乘法原理进行计算。
对于事件A和B,它们的概率分别为P(A)和P(B),那么事件“A和B 同时发生”的概率可以表示为P(A∩B)。
根据乘法原理,有以下公式:P(A∩B)=P(A)×P(B,A)乘法原理可以简单地理解为,事件“A和B同时发生”的概率等于事件A发生的概率乘以事件B在已知事件A发生的条件下发生的概率。
排列组合问题2:加法原理和乘法原理
加法原理和乘法原理导言:加法原理和乘法原理,是排列组合中的二个基本原理,在解决计数问题中经常运用。
把握这两个原理,并能正确区分这两个原理,至关重要。
一、概念(一)加法原理如果完成某件事共有几类不同的方法,而每类方法中,又有几种不同的方法,任选一种方法都可以完成此事,那么完成这件事的方法总数就等于各种方法的总和,这一原理称为加法原理。
例:从甲地到乙地,一天中火车有4班,汽车有2班,轮船有3班,那么,一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?解析:把乘坐不同班次的车、船称为不同的走法。
要完成从甲地到乙地这件事,可以乘火车,也可以乘汽车,还可以乘轮船,一天中,乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法。
而乘坐火车、汽车、轮船中的任何一班次,都可以从甲地到乙地,符合加法原理。
所以从甲地到乙地的总的走法=乘火车的4种走法+乘汽车的2种走法+乘轮船的3种走法=9种不同的走法(二)乘法原理如果做某件事,需要分几个步骤才能完成,而每个步骤又有几种不同的方法,任选一种方法都不能完成这件事,那么完成这件事的方法总数,就等于完成各步骤方法的乘积。
例:用1、2、3、4这四个数字可以组成多少个不同的三位数?解析:要完成组成一个三位数这件事,要分三个步骤做,首先选百位上的数,再选十位上的数,最后选个位上的数。
选百位上的数这一步骤中,可选1、2、3、4任何一个,共4种方法选十位上的数这一步骤中,可选除百位上已选好那个数字之外的三个数字,共3种方法选个位上的数这一步骤中,可选除百、十位上已选好的两个数字之外的另两个数字,共2种方法单独挑上面的任何一步中的任何一种方法,都不能组成一个三位数,符合乘法原理所以,可以组成:4×3×2=24(个)不同的三位数二、加法原理和乘法原理的区别什么时候使用加法原理,什么时候使用乘法原理,最关键是要把握住加法原理与乘法原理的区别。
从上面两个例子我们容易发现,加法原理与乘法原理最大的区别就是:如果完成一件事有几类方法,不论哪一类方法,都能完成这件事时,运用加法原理,简称为“分类-----加法”;如果完成一件事要分几个步骤,而无论哪一个步骤,都只是完成这件事的一部分,只有每一步都完成了,这件事才得以完成,这里运用乘法原理,简称为“分步----乘法”。
加法原理与乘法原理
加法原理与乘法原理加法原理和乘法原理都是数学中常用的基本原理,它们在组合计数和概率等领域中具有广泛的应用。
下面将分别对加法原理和乘法原理进行详细的介绍。
一、加法原理加法原理又称为求和原理,它指出当其中一事件可以通过若干个不同的方法实现时,其总的可能性数等于各种情况的可能性之和。
首先,我们假设有两个事件A和B,事件A可以通过m种方式发生,事件B可以通过n种方式发生。
那么,事件A和B共同发生的方式有多少种呢?加法原理告诉我们,共同发生的方式总共有m+n种。
这就是加法原理的基本形式。
这一原理可以推广到多个事件的情况。
假设有n个事件A1,A2,...,An,分别可以通过m1,m2,...,mn种方式实现。
那么,这n个事件共同发生的方式有多少种呢?根据加法原理,可以得出这n个事件共同发生的方式总共有m1+m2+...+mn种。
加法原理在实际问题中的应用非常广泛。
例如,在数列求和中,如果一些数列可以分成若干个部分进行求和,那么最终的求和结果就可以通过加法原理来计算。
又如,在排列组合问题中,如果一些问题可以拆分成若干个子问题,那么其总的可能性数也可以通过加法原理来计算。
二、乘法原理乘法原理又称积法原理,它指出当若干个独立的事件同时发生时,这些事件共同发生的方式数等于各事件发生方式数的乘积。
首先,我们假设有两个独立的事件A和B,事件A可以通过m种方式发生,事件B可以通过n种方式发生。
那么,事件A和B同时发生的方式有多少种呢?根据乘法原理,共同发生的方式总共有m*n种。
类似地,乘法原理也可以推广到多个事件的情况。
假设有n个独立的事件A1,A2,...,An,分别可以通过m1,m2,...,mn种方式实现。
那么,这n个事件同时发生的方式有多少种呢?根据乘法原理,可以得出这n个事件同时发生的方式总共有m1 * m2 *...* mn种。
乘法原理在实际问题中的应用也非常广泛。
例如,在排列组合问题中,如果一些问题可以拆分成若干个独立的子问题,那么其总的可能性数就可以通过乘法原理来计算。
初中数学重点梳理:加法原理和乘法原理
加法原理和乘法原理知识定位加法原理和乘法原理是计数研究中最常用、也是最基本的两个原理.所谓计数,就是数数,把一些对象的具体数目数出来.当然,情况简单时可以一个一个地数.如果数目较大时,一个一个地数是不可行的,利用加法原理和乘法原理,可以帮助我们计数.知识梳理知识梳理1.加法原理完成一件工作有n种方式,用第1种方式完成有m1种方法,用第2种方式完成有m2种方法,…,用第n种方式完成有m n种方法,那么,完成这件工作总共有m+m2+…+m n1种方法.例如,从A城到B城有三种交通工具:火车、汽车、飞机.坐火车每天有2个班次;坐汽车每天有3个班次;乘飞机每天只有1个班次,那么,从A城到B 城的方法共有2+3+1=6种.知识梳理2.乘法原理完成一件工作共需n个步骤:完成第1个步骤有m1种方法,完成第2个步骤有m2种方法,…,完成第n个步骤有m n种方法,那么,完成这一件工作共有m·m2·…·m n1种方法.例如,从A城到B城中间必须经过C城,从A城到C城共有3条路线(设为a,b,c),从C城到B城共有2条路线(设为m,t),那么,从A城到B城共有3×2=6条路线,它们是:am,at,bm,bt,cm,ct.下面我们通过一些例子来说明这两个原理在计数中的应用.例题精讲【试题来源】【题目】利用数字1,2,3,4,5共可组成(1)多少个数字不重复的三位数?(2)多少个数字不重复的三位偶数?(3)多少个数字不重复的偶数?【答案】(1)60 (2)24 (3)130【解析】(1)百位数有5种选择;十位数有4种选择;个位数有3种选择.所以共有5×40×3=60个数字不重复的三位数.(2)先选个位数,共有两种选择:2或4.在个位数选定后,十位数还有4种选择;百位数有3种选择.所以共有2×4×3=24个数字不重复的三位偶数.(3)分为5种情况:一位偶数,只有两个:2和4.二位偶数,共有8个:12,32,42,52,14,24,34,54.三位偶数由上述(2)中求得为24个.四位偶数共有2×(4×3×2)=48个.括号外面的2表示个位数有2种选择(2或4).五位偶数共有2×(4×3×2×1)=48个.由加法原理,偶数的个数共有2+8+24+48+48=130.【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】从1到300的自然数中,完全不含有数字3的有多少个?【答案】242【解析】解法1将符合要求的自然数分为以下三类:(1)一位数,有1,2,4,5,6,7,8,9共8个.(2)二位数,在十位上出现的数字有1,2,4,5,6,7,8,98种情形,在个位上出现的数字除以上八个数字外还有0,共9种情形,故二位数有8×9=72个.(3)三位数,在百位上出现的数字有1,2两种情形,在十位、个位上出现的数字则有0,1,2,4,5,6,7,8,9九种情形,故三位数有2×9×9=162个.因此,从1到300的自然数中完全不含数字3的共有8+72+162=242个.解法2将0到299的整数都看成三位数,其中数字3不出现的,百位数字可以是0,1或2三种情况.十位数字与个位数字均有九种,因此除去0共有3×9×9-1=242(个).【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】在小于10000的自然数中,含有数字1的数有多少个?【答案】3439【解析】不妨将1至9999的自然数均看作四位数,凡位数不到四位的自然数在前面补0.使之成为四位数.先求不含数字1的这样的四位数共有几个,即有0,2,3,4,5,6,7,8,9这九个数字所组成的四位数的个数.由于每一位都可有9种写法,所以,根据乘法原理,由这九个数字组成的四位数个数为9×9×9×9=6561,其中包括了一个0000,它不是自然数,所以比10000小的不含数字1的自然数的个数是6560,于是,小于10000且含有数字1的自然数共有9999-6560=3439个.【知识点】加法原理和乘法原理【适用场合】当堂练习题【难度系数】3【试题来源】【题目】求正整数1400的正因数的个数.【答案】24【解析】因为任何一个正整数的任何一个正因数(除1外)都是这个数的一些质因数的积,因此,我们先把1400分解成质因数的连乘积1400=23527所以这个数的任何一个正因数都是由2,5,7中的n个相乘而得到(有的可重复).于是取1400的一个正因数,这件事情是分如下三个步骤完成的:(1)取23的正因数是20,21,22,33,共3+1种;(2)取52的正因数是50,51,52,共2+1种;(3)取7的正因数是70,71,共1+1种.所以1400的正因数个数为(3+1)×(2+1)×(1+1)=24.说明利用本题的方法,可得如下结果:若p i是质数,a i是正整数(i=1,2,…,r),则数的不同的正因数的个数是(a1+1)(a2+1)…(ar+1).【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】求五位数中至少出现一个6,而被3整除的数的个数.【答案】12504【解析】要使一个数能被3整除,只要确保该数各数位的和是3的倍数即可:于是分别讨论如下:(1)从左向右计,如果最后一个6出现在第5位,即a5=6,那么a2,a3,a4可以是0,1,2,3,4,5,6,7,8,9这十个数字之一,但a1不能是任意的,它是由a2+a3+a4+a5被3除后的余数所决定.因此,为了保证a1+a2+a3+a4+a5能被3整除,a1只有3种可能,根据乘法原理,5位数中最后一位是6,而被3整除的数有3×10×10×10=3000(个).(2)最后一个6出现在第四位,即a4=6,于是a5只有9种可能(因为a5不能等于6),a2,a3各有10种可能,为了保证a1+a2+a3+a4+a5被3整除,a1有3种可能.根据乘法原理,属于这一类的5位数有3×10×10×9=2700(个).(3)最后一个6出现在第3位,即a3=6,被3整除的数应有3×10×9×9=2430(个).(4)最后一个6出现在第2位,即a2=6,被3整除的数应有3×9×9×9=2187(个).(5)a1=6,被3整除的数应有3×9×9×9=2187(个).根据加法原理,5位数中至少出现一个6而被3整除的数应有3000+2700+2430+2187+2187=12504(个).【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,A,B,C,D,E五个区域分别用红、蓝、黄、白、绿五种颜色中的某一种着色.如果使相邻的区域着不同的颜色,问有多少种不同的着色方式?【答案】360【解析】对这五个区域,我们分五步依次给予着色:(1)区域A共有5种着色方式;(2)区域B因不能与区域A同色,故共有4种着色方式;(3)区域C因不能与区域A,B同色,故共有3种着色方式;(4)区域D因不能与区域A,C同色,故共有3种着色方式;(5)区域E因不能与区域A,C,D同色,故共有2种着色方式.于是,根据乘法原理共有5×4×3×3×2=360种不同的着色方式.【知识点】加法原理和乘法原理【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】在6×6的棋盘上剪下一个由四个小方格组成的凸字形,如图1-64,有多少种不同的剪法?【答案】64【解析】我们把凸字形上面那个小方格称为它的头,每个凸字形有并且只有一个头.凸字形可以分为两类:第一类凸字形的头在棋盘的边框,但是棋盘的四个角是不能充当凸字形的头的.于是,边框上(不是角)的小方格共有4×4=16个,每一个都是一个凸字形的头,所以,这类凸字形有16个.第二类凸字形的头在棋盘的内部,棋盘内部的每一个小方格可以作为4个凸字形的头(即头朝上,头朝下,头朝左,头朝右),所以,这类凸字形有4×(4×4)=64(个).由加法原理知,有16+64=80种不同的凸字形剪法.【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】把数、理、化、语、英5本参考书,排成一行放在书架上.(1)化学不放在第1位,共有多少种不同排法?(2)语文与数学必须相邻,共有多少种不同排法?(3)物理与化学不得相邻,共有多少种不同排法?(4)文科书与理科书交叉排放,共有多少种不同排法?【答案】(1)96 (2)48 (3)72 (4)12【解析】【知识点】加法原理和乘法原理【适用场合】课后两周练习【难度系数】3【试题来源】【题目】在一个圆周上有10个点,把它们两两相连,问共有多少条不同的线段?【答案】45【解析】【知识点】加法原理和乘法原理【适用场合】课后一个月练习【难度系数】3【试题来源】【题目】用1,2,3,4,5,6,7这七个数,(1)可以组成多少个数字不重复的五位奇数?(2)可以组成多少个数字不重复的五位奇数,但1不在百位上?【答案】(1)1440 (2)1260【解析】【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】从1,2,3,4,5这五个数字中任取三个数组成一个三位数,问共可得到多少个不同的三位数?【答案】60【解析】【知识点】加法原理和乘法原理【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】由1,2,3,4,5,6这六个数字能组成多少个大于34500的五位数?【答案】420【解析】【知识点】加法原理和乘法原理【适用场合】阶段测验【难度系数】3【试题来源】【题目】今有一角币一张,两角币一张,伍角币一张,一元币四张,伍元币两张,用这些纸币任意付款,可以付出不同数额的款子共有多少种?【答案】119【解析】【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】将三封信投到5个邮筒中的某几个中去,有多少种不同的投法?【答案】125【解析】【知识点】加法原理和乘法原理【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】从字母a,a,a,b,c,d,e中任选3个排成一行,共有多少种不同的排法?【答案】73【解析】【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3。
乘原理和加法原理的区别
乘原理和加法原理的区别乘法原理和加法原理是概率论中两个重要的基本原理,它们在计算事件的可能性时起到了重要作用。
虽然它们都是计算概率的方法,但是在具体应用中有明显的区别。
首先来看乘法原理。
乘法原理是指当一个事件可以分解为多个相互独立的子事件时,可以通过将这些子事件的概率相乘来计算整个事件的概率。
简单来说,乘法原理适用于多个事件同时发生的情况。
举个例子来说明,假设一次抽取彩票的过程可以分解为两步:第一步是抽取红色球的概率为p,第二步是抽取蓝色球的概率为q。
那么整个抽取过程的概率就可以通过p和q的乘积来计算。
乘法原理的应用范围非常广泛,不仅仅局限于概率论中。
在组合数学中,乘法原理也有重要的运用。
例如,当从一个有n个元素的集合中选择k个元素时,可以通过乘法原理计算出选择的可能性,即n个元素中选出k个的组合数为C(n,k)=n!/(k!(n-k)!)。
而加法原理则与乘法原理不同,它适用于多个事件互斥或互不相干的情况。
加法原理指的是当一个事件可以通过多个互斥的子事件中的任意一个发生而实现时,可以通过将这些子事件的概率相加来计算整个事件的概率。
换句话说,加法原理适用于多个事件中至少发生一个的情况。
继续以上面的例子来说明,假设现在有两种不同的彩票方式可以选取,第一种方式的概率为p,第二种方式的概率为q,那么选择一种方式购买彩票的概率就可以通过p和q的和来计算。
加法原理同样在概率论以外的领域有着广泛的应用。
在组合数学中,加法原理用来计算多种情况下的组合数。
比如当一个集合可以被划分成若干个不相交的子集时,可以通过加法原理计算出集合的总数。
另外,加法原理也在马尔可夫链、图论等领域中得到应用。
简而言之,乘法原理和加法原理是计算概率时使用的两种不同方法。
乘法原理适用于多个事件同时发生的情况,可以通过将各个事件的概率相乘来计算整个事件的概率;而加法原理适用于多个事件中至少发生一个的情况,可以通过将各个事件的概率相加来计算整个事件的概率。
乘法原理和加法原理
乘法原理和加法原理乘法原理和加法原理是数学中常用的两种组合计数方法,它们在解决排列组合问题时起着非常重要的作用。
下面我们将分别介绍乘法原理和加法原理的概念和应用。
乘法原理。
乘法原理是指如果一个事件发生的方式有m种,另一个事件发生的方式有n种,那么这两个事件同时发生的方式有mn种。
换句话说,如果一个事件有m种可能,另一个事件有n种可能,那么这两个事件同时发生的可能性就是mn种。
举个例子,如果有一条裤子有3种颜色,一件衬衫有2种颜色,那么一套上衣下裤的搭配方式就有32=6种。
这就是乘法原理的应用。
在实际生活中,乘法原理常常用于解决排列组合问题,比如在购买商品时,不同商品的搭配方式;在安排活动时,不同活动的组合方式等等。
加法原理。
加法原理是指如果一个事件发生的方式有m种,另一个事件发生的方式有n种,那么这两个事件至少有一种发生的方式有m+n种。
换句话说,如果一个事件有m种可能,另一个事件有n种可能,那么这两个事件至少有一种发生的可能性就是m+n种。
举个例子,如果有一条裤子有3种颜色,一件衬衫有2种颜色,那么至少有一件衣服是红色的搭配方式就有3+2=5种。
这就是加法原理的应用。
在实际生活中,加法原理常常用于解决选择问题,比如在选择课程时,不同课程的选择方式;在选购商品时,不同商品的选择方式等等。
综合运用。
乘法原理和加法原理常常在实际问题中相互结合,通过综合运用这两种原理,我们可以更灵活地解决各种排列组合问题。
在实际应用中,我们可以根据具体情况选择使用乘法原理或加法原理,或者两者结合使用,以便更好地解决问题。
总结。
乘法原理和加法原理是数学中常用的两种组合计数方法,它们在解决排列组合问题时起着非常重要的作用。
通过学习和掌握乘法原理和加法原理,我们可以更好地解决实际生活中的各种组合问题,提高解决问题的能力和效率。
通过上面的介绍,相信大家对乘法原理和加法原理有了更深入的了解,希望大家在实际应用中能够灵活运用这两种原理,解决各种排列组合问题。
两个基本计数原理加法原理和乘法原理
两个基本计数原理加法原理和乘法原理两个基本计数原理:加法原理和乘法原理在我们日常生活和数学学习中,计数是一项经常会遇到的任务。
而两个基本的计数原理——加法原理和乘法原理,为我们解决各种计数问题提供了重要的方法和思路。
先来说说加法原理。
加法原理可以这样来理解:假如完成一件事情有若干种不同的方式,而每一种方式都能够独立地完成这件事情,那么完成这件事情的方法总数,就等于把每种方式的数量相加。
比如说,从 A 地到 B 地,你可以选择坐火车、汽车或者飞机。
如果坐火车有 3 种车次可选,坐汽车有 2 种车次可选,坐飞机有 4 种航班可选,那么从 A 地到 B 地总的出行方式就有 3 + 2 + 4 = 9 种。
再举个例子,在一个班级里,要选一名班长,候选人有男生 5 名,女生 7 名,那么总的候选人数量就是 5 + 7 = 12 名,也就是选班长的可能性有 12 种。
加法原理的关键在于,这些不同的方式之间是相互独立的,不存在交叉或者重复的情况。
接下来谈谈乘法原理。
乘法原理是指:如果完成一件事情需要分步骤进行,完成第一步有m 种方法,完成第二步有n 种方法,以此类推,完成第 k 步有 p 种方法,那么完成这件事情的总的方法数就是把这些步骤的方法数相乘,即m × n × … × p 。
比如说,你要从你的家去学校,首先要选择一种交通工具,有公交车、自行车、步行 3 种选择;选好交通工具后,又要选择走哪条路,假设每条交通方式都对应着 2 条不同的路线。
那么你去学校的总路线数就是 3 × 2 = 6 种。
再比如,一个密码由三位数字组成,第一位数字可以是 0 到 9 中的任意一个,第二位数字同样可以是 0 到 9 中的任意一个,第三位数字也是如此。
那么总共可能的密码数量就是 10 × 10 × 10 = 1000 种。
乘法原理的重点在于,每一步的选择都是相互依存的,前一步的选择会影响到后一步的可能性。
加法原理和乘法原理
加法原理和乘法原理1、加法原理:做一件事情分几类,每一类方法数之和就是完成这件事情的总方法数。
2、乘法原理:做一件事情分几步,每一步方法数之积就是完成这件事情的总方法数。
P29作业1、分四步组成四位数第一步:写好千位上的数,有3种选择(0不能作千位数)(所以一定要先考虑千位)第二步:写好百位上的数,有3种选择第三步:写好十位上的数,有2种选择第四步:写好个位上的数,有1种选择所以共有3×3×2×1=18个2、分三步组成三位数第一步:写好百位上的数,有4种选择(哪一位先考虑都行)第二步:写好十位上的数,有3种选择第三步:写好个位上的数,有2种选择所以共有4×3×2=24个3、分三步组成三位数第一步:写好个位上的数,有2种选择(个位一定是2或4)(所以一定要先考虑个位)第二步:写好十位上的数,有3种选择第三步:写好百位上的数,有2种选择所以共有2×3×2=12个4、分三步完成借书的事情第一步:第一个人来借书有7种选择第二步:第二个人来借书有6种选择第三步:第三个人来借书有5种选择所以共有7×6×5=210种5、分五步组成五位数第一步:写好万位上的数,有5种选择(哪一位先考虑都行)第二步:写好千位上的数,有4种选择第三步:写好百位上的数,有3种选择第四步:写好十位上的数,有2种选择第五步:写好个位上的数,有1种选择所以共有5×4×3×2×1=120个6、分三步完成种菜的任务第一步:第一块田里种菜有4种选择第二步:第一块田里种菜有3种选择第三步:第一块田里种菜有2种选择所以共有4×3×2=24种7、分类完成选书的事情第一类:选语文、数学(这一类在分2步完成,第一步选语文有3种选择,第二步选数学有4种选择,所以一共有3×4=12种)第二类:选数学、外语(同理,有4×5=20种)第三类:选外语、语文(同理,有3×5=15种)一共有12+20+15=47种(分类的要相加)综合列式:3×4+4×5+3×5=47种8、为叙述方便,设五个人为ABCDE,不能坐两端的是A。
加法原理及乘法原理课件
在保险业务中,可能会面临多种风险,如火灾、盗窃、车祸等。根据加法原理,可以分别计算每种风险发生的概 率,然后将这些概率相加以获得多种风险同时发生的总概率。这有助于保险公司制定合理的保险费率,以应对可 能出现的多种风险。
02
乘法原理
定义
乘法原理
做一件事,完成它需要分成几步 ,每一步又可以独立地完成,那 么完成这件事的方法数就是每一 步方法数的乘积。
适用范围
适用于分步骤完成的任何事情, 每一步的方法数是固定的。
适用范围
01
02
03
组合问题
乘法原理可以用于计算组 合数,即从n个不同元素 中取出m个元素的不同取 法数。
排列问题
乘法原理也可以用于计算 排列数,即从n个不同元 素中取出m个元素进行排 列的不同排法数。
概率问题
在概率论中,乘法原理可 以用于计算多步骤事件的 概率,即多个独立事件的 概率乘积。
应用实例
组合问题
从5个不同元素中取出3个元素的 组合数为C(5,3)=10,这是通过 将第一个元素的选择方法数(5 种)与第二个元素的选择方法数
(4种)相乘得到的。
排列问题
对于3个不同元素的全排列数为 A(3,3)=6,这是通过将第一个元 素的选择方法数(3种)与第二 个元素的选择方法数(2种)相
05
加法原理与乘法原理的实践 意义
提高数学思维能力
掌握加法原理与乘法原理,能够 更好地理解和运用数学概念,提
高数学思维能力。
通过运用加法原理与乘法原理, 可以解决各种数学问题,提高数
学解题能力。
掌握加法原理与乘法原理,有助 于发现数学中的规律和模式,培
养数学直觉和创造性思维。
培养逻辑推理能力
加法和乘法原理讲解
加法和乘法原理讲解加法原理和乘法原理是数学中两个基本的计数原理,可以用来解决一种常见的计数问题,即在给定一些条件下计算总数的问题。
下面将详细讲解这两个原理。
一、加法原理加法原理是指在给定一些条件下计算总数的原理,即当两个或多个事件不同时发生时,可以将每个事件的计数结果相加得到总数。
例如,假设有两个班级,第一班有30名男生和35名女生,第二班有25名男生和40名女生。
我们需要计算这两个班级总共有多少学生。
根据加法原理,我们可以将男生和女生的数量相加得到总数。
第一班男生和女生的数量相加为30+35=65,第二班男生和女生的数量相加为25+40=65、因此,这两个班级总共有65+65=130名学生。
加法原理也可以应用于更复杂的计数问题。
例如,假设有一个公司,分为研发部门和销售部门。
研发部门有10名员工,销售部门有8名员工。
我们需要计算这个公司总共有多少员工。
根据加法原理,我们可以将研发部门和销售部门的员工数量相加得到总数。
因此,这个公司总共有10+8=18名员工。
二、乘法原理乘法原理是指在给定一些条件下计算总数的原理,即当两个或多个事件同时发生时,可以将每个事件的计数结果相乘得到总数。
例如,假设一些班级有30名男生和35名女生,我们需要计算同时是男生和女生的学生数量。
根据乘法原理,我们可以将男生的数量乘以女生的数量得到结果。
即,男生的数量为30,女生的数量为35,男生和女生的数量为30×35=1050。
因此,同时是男生和女生的学生数量为1050。
乘法原理也可以应用于更复杂的计数问题。
例如,假设一些公司中的每个员工都有一个独一无二的员工号,由字母和数字组成,字母部分有26个字母,数字部分有10个数字。
这个公司的员工号可以由一个字母和一个数字组成。
我们需要计算员工号的可能数量。
根据乘法原理,字母部分有26个选择,数字部分有10个选择,因此,员工号的可能数量为26×10=260。
综上所述,加法原理和乘法原理是解决计数问题的基本原理。
加法原理与乘法原理
加法原理与乘法原理加法原理和乘法原理是概率论中非常重要的基本原理,它们用来计算和分析事件的可能性。
无论是在日常生活中还是在各种实际问题中,加法原理和乘法原理都有着广泛的应用。
本文将对这两个原理进行详细论述,并分析它们的实际应用。
一、加法原理加法原理是指对于两个不相交的事件A和B,它们的总可能性等于各自发生的可能性之和。
换句话说,当事件A和B不能同时发生时,它们的概率可以进行相加。
这一原理可以用以下公式表示:P(A∪B) = P(A) + P(B)其中,P(A∪B)表示事件A和B中至少发生一个的概率,P(A)和P(B)分别表示事件A和B各自发生的概率。
加法原理的应用非常广泛。
例如,在一次投掷一枚硬币的实验中,我们可以定义事件A为“正面朝上”和事件B为“反面朝上”。
根据加法原理,事件A和B至少发生一个的概率为1,即P(A∪B) = 1。
这是因为在一次投掷中,硬币只能以正面朝上或反面朝上其中一种方式落下。
二、乘法原理乘法原理是指对于两个独立事件A和B,它们的总可能性等于各自发生的可能性相乘。
换句话说,当事件A和B相互独立时,它们的概率可以进行相乘。
这一原理可以用以下公式表示:P(A∩B) = P(A) × P(B)其中,P(A∩B)表示事件A和B同时发生的概率,P(A)和P(B)分别表示事件A和B各自发生的概率。
乘法原理的应用也非常广泛。
例如,在抓娃娃机的实验中,我们定义事件A为“第一次抓到娃娃”和事件B为“第二次抓到娃娃”。
根据乘法原理,事件A和B同时发生的概率为P(A∩B) = P(A) × P(B)。
假设第一次抓到娃娃的概率为0.2,第二次抓到娃娃的概率为0.3,则可以计算出事件A和B同时发生的概率为0.2 × 0.3 = 0.06。
综上所述,加法原理和乘法原理是概率论中常用的计算方法。
通过运用这两个原理,我们可以准确地计算事件的可能性,分析事件之间的关系。
在实际应用中,我们可以根据具体问题确定采用加法原理还是乘法原理,从而得到正确的计算结果。
四年级加法原理与乘法原理
加法原理和乘法原理是数学中的两个基本原理,也是四年级数学学习中的重点内容。
在接下来的文章中,我将详细介绍加法原理和乘法原理,并且给出一些实际问题的解决方法。
一、加法原理加法原理是指在进行加法运算时,两个数相加所得的和不受数的顺序和加数的分组方式的影响,即a+b=b+a。
在解决实际问题时,可以运用加法原理来解决一些计数问题。
例子:小明有10块钱,他想买一本书,书的价格有5元和8元两种,那么小明一共有多少种买书的选择?解法:我们可以使用加法原理来解决这个问题。
小明可以选择花5块钱买书,也可以选择花8块钱买书。
所以小明一共有2种买书的选择。
二、乘法原理乘法原理是指在进行乘法运算时,将两个数相乘所得的积不受数的顺序和因数的分组方式的影响,即a×b=b×a。
在解决实际问题时,可以运用乘法原理来解决一些排列组合的问题。
例子:小明有3种上衣和2种裤子,那么小明一共有多少种搭配的选择?解法:我们可以使用乘法原理来解决这个问题。
小明可以选择第一种上衣(3种)搭配第一种裤子(2种),也可以选择第一种上衣搭配第二种裤子,以此类推。
所以小明一共有3×2=6种搭配的选择。
综合运用加法原理和乘法原理:有时候,解决问题需要同时使用加法原理和乘法原理。
例子:商店有3种颜色的衬衫和2种款式的裤子,如果小红想买一套搭配,那么小红一共有多少种搭配的选择?解法:我们可以使用乘法原理来解决这个问题。
小红可以选择第一种衬衫(3种)和第一种裤子(2种)组成一套搭配,也可以选择第一种衬衫搭配第二种裤子,以此类推。
所以小红一共有3×2=6种搭配的选择。
在以上的例子中,我们使用了乘法原理计算小红的搭配方式的总数。
而如果我们要计算小明和小红一共有多少种搭配方式,那么我们需要通过加法原理将两个人的搭配方式的总数相加。
加法原理和乘法原理是数学中非常基础但非常重要的原理。
掌握了这两个原理,我们可以更好地解决一些计数和排列组合的问题,为数学学习打下坚实的基础。
乘法原理加法原理
乘法原理加法原理乘法原理和加法原理是数学中重要的计数原理,它们常被应用于组合数学和概率论等领域。
本文将详细介绍乘法原理和加法原理的概念、应用场景以及相关实例。
一、乘法原理乘法原理也称为乘法法则,是计算多个事件发生的总次数的原理。
它可以应用于各种情形下,通过将多个独立事件的次数相乘来计算它们组成的总数。
1.乘法原理的概念乘法原理是指,当一个过程可以分解为多个步骤时,每个步骤的可能性均不受前一步骤结果影响,那么该过程的总可能性等于各个步骤可能性的乘积。
2.乘法原理的应用场景乘法原理常用于计算排列和组合问题、概率和统计问题,以及各种计数问题。
3.乘法原理的实例【例1】一个餐厅提供汉堡、薯条和可乐三种主食,每种主食都有三种不同口味的选择,那么所有可能的组合数有多少种?解析:根据乘法原理,主食的选择有3种,口味的选择也有3种,所以总共的组合数为3×3=9种。
【例2】公司要选派草坪展示队参加草坪展览,共有4名男员工和3名女员工可供选择。
如果每支展示队必须由1名男员工和1名女员工组成,那么可能的组合数有多少种?解析:根据乘法原理,男员工的选择有4种,女员工的选择有3种,所以总共的组合数为4×3=12种。
【例3】手机品牌有5种不同颜色的手机外壳可供选择,每种颜色有3种不同配置的内部零部件可供选择,那么可能的组合数有多少种?解析:根据乘法原理,手机外壳的选择有5种,内部零部件的选择有3种,所以总共的组合数为5×3=15种。
二、加法原理加法原理也称为加法法则,是计算多个事件发生总和的次数的原理。
它可以应用于多种情形下,通过将多个互斥事件的次数相加来计算它们组成的总数。
1.加法原理的概念加法原理是指,当一个过程可以分解为多个互斥事件时,每个事件的可能性均不受其他事件结果影响,那么该过程的总可能性等于各个事件可能性的求和。
2.加法原理的应用场景加法原理常用于计算选择问题、排列和组合问题以及概率和统计问题。
加法原理、乘法原理
加法原理、乘法原理基础知识:1.加法原理:如果完成一件事情可以分成几类方法,每一类又包含若干种不同方法,那么将所有类中的方法数累加就是完成这件事的所有方法数.加法原理的关键在于分类,类与类之间用加法.2.乘法原理:如果完成一件事情可以分成几个步骤,每一步又包含若干种不同方法,那么将所有步骤中的方法数连乘就是完成这件事的所有方法数.乘法原理的关键在于分步,步与步之间用乘法.3.分类原则:分类要做到“不重不漏”.任意两类之间不可以重复,这叫做不重;把所有的类别累加在一起就得到整体,这叫做不漏.4.分步原则:分步要做到“前不影响后”.无论前面步骤采取哪种方法,后面一个步骤都应该有相同多的方法数,也就是说后面一个步骤的方法数与前面步骤采取哪一种方法无关.例1.从1开始依次写下去一直到999,得到一个多位数1234567891011121314…997998999,请问:(1)这个多位数一共有多少位?(2)第999位数字是多少?(3)在这个多位数中,数字9一共出现了多少次?(4)数字0一共出现了多少次?问题(1)这个多位数一共有多少位?[答疑编号5721040101]1【答案】(1)2889;(2)9;(3)300;(4)189【解答】分析1:999个自然数构成一个多位数,可以利用加法原理分类的思想求这个多位数的位数.将这999个自然数分成3类:第1类是1位数;第2类是2位数;第3类是3位数.分别计算每一类自然数占了多少位,再求和就可以得出多位数的位数了.详解1:按照自然数的位数去分类.构成这个多位数的自然数中1位数有9个,占了9位;2位数有90个,占了2×90=180位;3位数有900个,占了3×900=2700位;所以这个多位数总共有9+180+2700=2889位.问题(2)第999位数字是多少?详解2:1位数和2位数一共占了189位,999位数数字还需要3位数占据999-189=810位.由810÷3=270…0可知第999位数字是第270个3位数的最后1位.第270个3位数是369,所以第999位数字是9.问题(3)在这个多位数中,数字9一共出现了多少次?分析3:前面2问分类的方法是按照自然数的位数去分类,1位数,2位数,3位数各自分为一类.但按照这种分类的思路来解第3问就不是很方便了:1位数含有1个9,2位数含有19个9,但是考虑3位数含有多少个9还是比较复杂.通过这种分类的思路去分析问题并没有使问题变得简单.可以考虑按照分段的方法去分类,第1类1—99;第2类100—199;第3类200—299;……;第10类900—999.分别计算每一类中包含了多少个9,然后再加和就可以了.注意利用每一类的相似性,比如第1类到第9类每一类所包含9的个数应该一样多,当然第10类900—999中9的个数2比前9类要多100个.再考虑一种分类的方法,按照9出现的位置去分类.首先考虑9在百位出现了多少次;再考虑9在十位出现了多少次;最后考虑9在个位出现了多少次.详解3:按照分段的方法去分类.实际这种分类方法也是按照百位数的不同去分类,在每一类中百位数是相同的(1—99可以看成百位数为0).考虑第1类1—99中包含了多少个9,个位包含9的有:9,19,29,39,49,59,69,79,89,99一共10个;十位包含9的有:90,91,92,93,94,95,96,97,98,99也是10个.这样在1—99中9在个位和十位各出现了10次,一共是20次.同理,第2类100—199;第3类200—299;……;第9类800—899;每一类中也都包含20个9.第10类900—999中9的个数比前9类要多100个,应该是120个.所以原来的多位数中总共有20×9+120=300个9.其实更快的方法是按9出现的位置去数,应用乘法原理.问题(4)数字0一共出现了多少次?详解4:按照0出现在个位、十位去分类当0出现在十位时,百位可以为1~9,个位可以为0~9,根据乘法原理,共有9×10=90次;同理,当0出现在个位时,共有9×10+9=99次,所以原来的多位数中0出现了99+90=189次.例2.允许数字重复,那么用数字0、1、3、5、7、9最多可以组成多少个不同的三位数?3[答疑编号5721040102]【解答】百位有5种选择,十位和个位都有6种选择.根据乘法原理,一共可以组成5×6×6=180个三位数.变化:如果不允许数字重复呢?其中被5整除的无重复数字的三位数又有多少个呢?例3.在所有的三位数中,至少出现一个2的偶数有________个.[答疑编号5721040103]【解答】①个位是2的有9×10=90个;②十位是2但个位不是2的偶数有9×4=36个;③百位是2但十位和个位都不是2的偶数有9×4=36个,所以一共有90+36+36=162个符合条件的三位数.例4.用1、2、3、4、5这5个数字组成四位数,至多允许有1个数字重复两次.例如1234、1233和2454是满足条件的,而1212、3335和4444就是不满足条件的.那么,所有这样的四位数共有________个.[答疑编号5721040104]【解答】方法1:分类讨论.如果包含4个互不相同的数字,一共有5×4×3×2=120个;如果包含3个互不相同的数字,我们可以先从5个数45字中选出3个数字,然后再从挑出的3个数字中选1个可以重复,最后把这3个数字带上1个重复的数字共4个数字排成1行.根据乘法原理,就有个,所以一共有120+360=480个四位数.方法2:排除法.所有可能的四位数有5×5×5×5=625个;只包含1个数字的有5个,包含2个数字的有5×4×(2×2×2-1)=140个.那么包含3个或4个不同数字的四位数有625-5-140=480个.例5.书架上有1本英语书,9本不同的语文书,9本不同的数学书和7本不同的历史书.现在要从中取出3本书,而且不能有两本是同一科的.那一共有多少种取法?[答疑编号5721040105]【答案】774【解答】因为一共要4种书中选3种,所以要分4种情况讨论:如果拿的是英语、语文和数学书,根据乘法原理一共有1×9×9种方法;如果拿的是英语、语文和历史书,一共有1×9×7种拿法,同理另外两种情况分别有1×9×7种和9×9×7种拿法.最后我们根据加法原理,一共有1×9×9+1×9×7+1×9×7+9×9×7=1×9×16+10×9×7=144+630=774种拿法.例1.用0,1,2,3,4这五个数字可以组成多少个无重复数字的:(1)银行存折的四位密码;(2)四位数;(3)四位奇数.[答疑编号5721040201]【解答】(1)完成“组成无重复数字的四位密码”这件事,可以分四个步骤:第一步:选取左边第一个位置上的数字,有5种选取方法;第二步:选取左边第二个位置上的数字,有4种选取方法;第三步:选取左边第三个位置上的数字,有3种选取方法;第四步:选取左边第四个位置上的数字,有2种选取方法;由乘法原理,可组成不同的四位密码共有N=5×4×3×2=120(个).(2)完成“组成无重复数字的四位数”这件事,可以分四个步骤:第一步:从1,2,3,4中选取一个数字作千位数字,有4种选取方法;第二步:从1,2,3,4中余下的三个数字和0中选取一个数字作百位数字,有4种选取方法;第三步:从余下的三个数字中选取一个数字作十位数字,有3种选取方法;第四步:从余下的两个数字中选取一个数字作个位数字,有2种选取方法;由乘法原理,可组成不同的四位数共有N=4×4×3×2=96(个).(3)完成“组成无重复数字的四位奇数”这件事,可以分四个步骤:6第一步:从1,3中选取一个数字作个位数字,有2种选取方法;第二步:从1,3中余下的一个数字和2,4中选取一个数字作千位数字,有3种选取方法;第三步:从余下的三个数字中选取一个数字作百位数字,有3种选取方法;第四步:从余下的两个数字中选取一个数字作十位数字,有2种选取方法;由乘法原理,可组成不同的四位奇数共有N=2×3×3×2=36(个).例2.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种?[答疑编号5721040202]【解答】取a+b与取b+a是同一种取法.分类标准为两加数的奇偶性,第一类,偶偶相加,由乘法原理得(10×9)/2=45种取法,第二类,奇奇相加,也有(10×9)/2=45种取法.根据加法原理共有45+45=90种不同取法.例3.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案有多少种?[答疑编号5721040203]【解答】5名志愿者分配到3个不同的奥运场馆,可以分成3,1,71和2,2,1两类,第一类:分成3,1,1,完成此件事可以分成3步,第1步:3个馆选一个馆去3个人,共有3种选法,第2步:5个人中选3个人,共有种选法,第3步:剩下的2个人分别去两个馆,所以当分配成3,1,1时,根据乘法原理,共有3×10×2=60(种);第二类:分成2,2,1,完成此件事可以分成3步,第1步:5个人中选出一个人,共有5种选法,第2步:3个馆中选出一个馆,共有3种选法,第3步:剩下的4个人中选2个人去剩下两个馆中的一个,最后一个人去另外一个馆,共有(种),所以当分配成2,2,1时,根据乘法原理,共有5×3×6=90(种);所以根据加法原理,不同的分配方案共有60+90=150(种).例4.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数有多少个?[答疑编号5721040204]【解答】可分三步来做这件事:第一步:先将3、5放到六个数位中的两个,共有2种排法;第二步:再将4、6插空放入剩下四个数位中的两个,共有2×2=4种排法;8第三步:将1、2放到3、5、4、6形成的空位中,共有5种排法.根据乘法原理:共有2×4×5=40(种).例5.在一个3行4列的方格表内放入4枚相同的棋子,要求每列至多只有1枚棋子,每行不做限制,那么一共有多少种不同的放法?在一个3行4列的方格表内放入4枚互不相同的棋子,要求每列至多只有1枚棋子,每行不做限制,那么一共有多少种不同的放法?[答疑编号5721040205]【解答】「问题1」4枚棋子放入4列,每一列有且仅有1枚棋子,因此总共分4个步骤考虑.第1步考虑第1列的棋子放在什么位置;第2步考虑第2列的棋子放在什么位置;第3步考虑第3列的棋子放在什么位置;第4步考虑第4列的棋子放在什么位置.每一步都有3种选择方法,所以方法数一共有3×3×3×3=81种.「问题2」假设4枚互不相同的棋子为A,B,C,D.将按照下面的4个步骤进行考虑,先放棋子A,12个格子可以随便选择,一共有12种方法.第2步放棋子B,A那一列的3个格子不能选择,其它的格子都可以放B,所以一共有9种方法.第3步放棋子C,A、B那两列一共6个格子不能选,所以一共有6种方法.第4步放棋子D,A、B、C三列一共9个格子不能选,还剩3个格子,所以一共有3种方法.利用乘法原理,放入4个不同棋子的方法数一共有12×9×6×3=1944种方法.9另外一种解法.「问题2」4个棋子要占4个方格,先选出放棋子的4个方格.实际上挑出4个方格的方法数和第1问是完全相同的,总共有3×3×3×3=81种选择方法.选好方格后再将棋子排列进去,第1列的方格可以选择A,B,C,D中的任何一个棋子,所以有4种方法;第2列的方格还剩下三个棋子可供选择,所以有3种方法;第3列的方格还剩下两个棋子可供选择,有2种方法;第4列的方格只有1种方法.所以选好4个方格后排列棋子的方法数一共是4×3×2×1=24种.选4个方格有81种方法,选好4个方格后放棋子一共有24种方法,所以将表格中放入4个互不相同的棋子的总方法数是81×24=1944种.例6. 如图,把图中的8个部分用红、黄、绿、蓝4种不同的颜色着色,且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色.那么,这幅图共有多少种不同的着色方法?[答疑编号5721040206]【解答】按照A,B,D,E,C,G,F,H的步骤进行染色.对A进行染色的时候没有任何的限制,总共有4种染色的方法;对B 进行染色的时候由于不能和A同色,所以有3种染色的方法;对D进行染10色的时候由于不能和A,B同色,所以只剩2种染色的方法;对E进行染色时不能和B,D同色,所以有2种染色的方法;对C进行染色时不能和B,E 同色,所以有2种染色方法;对G进行染色时不能和D,E同色,所以有2种染色的方法;对F进行染色时不能和D,G同色,所以有2种染色的方法;对H进行染色时不能和E,G同色,所以有2种染色的方法.综合上面的八个步骤,利用乘法原理,共有4×3×2×2×2×2×2×2=768种着色的方法.「评议」本题染色的步骤还有很多种,大家考虑一下按照A,B,C,D,E,F,G,H的步骤进行染色是否可以?可能有同学发现按照A,B,C,D,E,F,G,H的步骤进行染色会算出另外一个答案4×3×3×2×1×3×1×2=432.当然,正确答案只能有一个,那么这种分步方法到底错在哪里呢?这里要提到利用乘法原理一条重要的原则:“前不影响后”.无论前面步骤采取哪种染色方法,后面一个步骤都应该有相同多的方法数,也就是说后面一个步骤的方法数与前面步骤采取哪一种方法无关.而按照A,B,C,D,E,F,G,H的步骤来染色就违反了这个原则.请看下面图中的例子:在上面的例子中,左图前4步采取的染色方法是红、黄、绿、蓝,第5步对E进行染色时只有1种方法;右图前4步采取的染色方法是红、黄、绿、绿,这样第5步对E进行染色时有2种方法.于是第5个步骤对E进行11染色无法确定到底有几种染色的方法,前4步不同的染色方案影响到了第5步的方法数,既然不能确定是1种还是2种,乘法原理自然也就无法应用了.例7.如果一个数与11作竖式乘法的过程中不需要进位,那么就称这个数是“好数”.例如,11、131和142就都是“好数”,而65、78和75都不是“好数”.那么小于300的三位数中共有________个“好数”.[答疑编号5721040207]【解答】首先看首位数字是1的“好数”,其十位数字不能是9.在十位数字是8的“好数”中,只有180和181;在十位数字是7的“好数”中,只有170,171和172这3个……在十位数字是0的“好数”中,有100,101……109这10个.因此首位数字是1的“好数”有2+3+……+10=54个.同样方法,可以求出首位数字是2的“好数”有3+4+……+10=54个.因此,小于300的“好数”有54+52=106个.12。
加法原理和乘法原理
加法原理和乘法原理一、加法原理加法原理(也叫做并法则)是指对于两个或多个互不相容事件的概率之和等于每个事件概率的总和。
互不相容事件是指它们不能同时发生的事件。
假设有两个事件A和B,它们是互不相容的事件。
事件A发生的概率为P(A),事件B发生的概率为P(B),那么根据加法原理,事件A或者事件B发生的概率等于事件A发生的概率加上事件B发生的概率,即:P(A或B)=P(A)+P(B)这个原理可以进一步推广到多个事件的情况。
如果有n个互不相容的事件A1,A2,...,An,它们的概率分别为P(A1),P(A2),...,P(An),那么这些事件中至少有一个事件发生的概率等于每个事件概率之和,即:P(A1或A2或...或An)=P(A1)+P(A2)+...+P(An)加法原理的应用可以帮助计算出一系列互不相容事件的概率和,从而推断出整个概率空间的概率。
二、乘法原理乘法原理(也叫做积法则)是指对于两个或多个独立事件的概率乘积等于每个事件概率的乘积。
独立事件是指它们的发生与其它事件无关。
假设有两个事件A和B,它们是独立事件。
事件A发生的概率为P(A),事件B发生的概率为P(B),那么根据乘法原理,事件A和事件B同时发生的概率等于事件A发生的概率乘上事件B发生的概率,即:P(A且B)=P(A)×P(B)这个原理可以进一步推广到多个事件的情况。
P(A1且A2且...且An)=P(A1)×P(A2)×...×P(An)乘法原理的应用可以帮助计算出多个独立事件同时发生的概率,从而推断出复杂事件的概率。
三、加法原理和乘法原理的关系加法原理和乘法原理在概率论中是相辅相成的。
乘法原理可以看作加法原理的特殊情况。
当事件A和事件B同时发生时,可以将事件A和事件B看作两个互不相容的子事件,此时根据加法原理,事件A或者事件B发生的概率等于事件A发生的概率加上事件B发生的概率。
而根据乘法原理,事件A和事件B同时发生的概率等于事件A发生的概率乘上事件B在事件A发生的条件下发生的概率。
微专题:乘法原理与加法原理经典题型(含解析)
【学生版】微专题:乘法原理与加法原理【主题】“计数” 就是数事物的个数,这是数学学科发展的起点,也是我们从小学开始就在学习的,可以说,随着大家掌握的内容越来越多,我们计数的能力也变得越来越强大;数学学习和日常生活中,我们经常会遇到类似“统计完成一件事”、““共有多少种方法” 的集数问题,学习一些基本的计数原理,以便能够解决更多的计数问题;1、乘法原理(分步计数原理)做一件事,需要依次完成n 个步骤,其中完成第一步有1a 种不同的方法,完成第二步有2a 种不同的方法,……,完成第n 步有n a 种不同的方法;那么完成这件事共有123n N a a a a =⋅⋅⋅⋅种不同的方法;2、加法原理(分类计数原理)做一件事,完成它有n 类办法,其中第一类办法有1a 种不同的方法,第二类办法有 2a 种不同的方法,……,第n 类办法有n a 种不同的方法;那么完成这件事共有123n N a a a a =++++种不同的方法;正确理解“完成一件事情”的含义,能根据具体问题的特征,选择“分类”或“分步”;【典例】例1、用一个大写的英文字母或一个阿拉伯数字给教室里的一个座位编号,总共能编出多少种不同的号码?【提示】;【答案】;【解析】;【说明】;例2、要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?【提示】;【答案】;【解析】;【说明】;例3、给程序模块命名,需要用3个字符,其中首字符要求用字母~A G 或~U Z ,后两个要求用数字1~9;问最多可以给多少个程序命名?例4、如图所示的电路图,从A到B共有条不同的线路可通电。
例5、如图,一只蚂蚁沿着长方体的棱,从顶点A爬到相对顶点C1,求其中经过3条棱的路线共有多少条? 【提示】阅读理解、“建模”转化;【归纳】两个原理的联系与区别1、联系:分类加法计数原理和分步乘法计数原理都是解决计数问题最基本、最重要的方法;2、区别3、利用分步乘法计数原理解题的注意事项(1)明确题目中所指的“完成一件事”是什么事,完成这件事需要几步;(2)完成这件事需要分成若干个步骤,只有每个步骤都完成了,才算完成这件事,无论缺少哪一步,这件事都不可能完成;(3)根据题意正确分步,要求各步之间必须连续,只有按照这几步逐一去做,才能完成这件事,各步之间既不能重复也不能遗漏;(4)对于同一个题目,标准不同,分步也不同;分步的基本要求:一是完成一件事,必须且只需连续做完几步,既不漏步也不重步;二是不同步骤的方法不能互相替代;4、利用分类加法计数原理解题的注意事项(1)明确题目中所指的“完成一件事”是什么事,完成这件事可以有哪些办法,怎么才算是完成这件事;(2)完成这件事的n类办法,无论用哪类办法中的哪种方法都可以单独完成这件事,而不需要用到其他的方法;(3)确立恰当的分类标准,准确地对“完成这件事的办法”进行分类,要求每一种方法必属于某一类办法,不同类办法的任意两种方法不同,也就是分类必须既不重复也不遗漏;从集合的角度看,若完成一件事分A,B两类办法,则A∩B=⌀,A∪B=I(I表示全集);【即时练习】1、体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有()A.14种B.7种C.24种D.49种【错解】B学生进出体育场大门需分两类,一类从南侧的4个门进,一类从北侧的3个门进,由分类加法计数原理,共有7种方案.【错因分析】错解中由于没有审清题意,误用计数原理.事实上,题目中不仅要考虑从哪个门进,还需考虑从哪个门出,应该用分步乘法计数原理去解决.2、如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.93、有六名同学报名参加三项智力项目,每项限报一人,且每人至多参加一项,则不同的报名方法有__________种.4、从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有__________个.5、有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从中任选一幅画布置房间,有几种不同的选法?(2)从这些国画、油画、水彩画中各选一幅画布置房间,有几种不同的选法?(3)从这些画中任选出两幅不同画种的画布置房间,有几种不同的选法?【教师版】微专题:乘法原理与加法原理【主题】“计数” 就是数事物的个数,这是数学学科发展的起点,也是我们从小学开始就在学习的,可以说,随着大家掌握的内容越来越多,我们计数的能力也变得越来越强大;数学学习和日常生活中,我们经常会遇到类似“统计完成一件事”、““共有多少种方法” 的集数问题,学习一些基本的计数原理,以便能够解决更多的计数问题;1、乘法原理(分步计数原理)做一件事,需要依次完成n 个步骤,其中完成第一步有1a 种不同的方法,完成第二步有2a 种不同的方法,……,完成第n 步有n a 种不同的方法;那么完成这件事共有123n N a a a a =⋅⋅⋅⋅种不同的方法;2、加法原理(分类计数原理)做一件事,完成它有n 类办法,其中第一类办法有1a 种不同的方法,第二类办法有 2a 种不同的方法,……,第n 类办法有n a 种不同的方法;那么完成这件事共有123n N a a a a =++++种不同的方法;正确理解“完成一件事情”的含义,能根据具体问题的特征,选择“分类”或“分步”;【典例】例1、用一个大写的英文字母或一个阿拉伯数字给教室里的一个座位编号,总共能编出多少种不同的号码?【提示】注意:理解用什么编号,能编“多少种”、“不同”总的方法;【答案】36;【解析】因为大写的英文字母共有26个,阿拉伯数字共有10个,所以总共可以编出26+10=36种不同的号码;【说明】上述计数过程的基本环节是:1、确定分类标准,根据问题条件分为字母号码和数字号码两类;2、分别计算各类号码的个数;3、各类号码的个数相加,得出所有号码的个数;利用分类加法计数原理解题时的注意事项:1、根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;2、分类时,注意完成这件事件的任何一种方法必须属于某一类,不能重复。
加法原理与乘法原理(2)
2、分步计数原理(乘法原理) :完成一件事, 需要分n个步骤,做第1步时有m1种不同方法, 在做第2步时有m2种不同方法,……,在做第n 步时有mn种不同方法,那么完成这件事共有: N= m1× m2×……×mn种不同方法
的日文书5本.从其中取出不是同一国文字的书2本,
问有多少种不同的取法?
9×7+9×5+7×5=143
2.集合A={1,2,-3},B={-1,-2,3,4} .从A,B 中各取1
个元素作为点P(x,y) 的坐标.
3×4+4×3=24
(1)可以得到多少个不同的点?
(2)这些点中,位于第一象限的有几个?
卡,先集中起来,然后每人从中各拿1张别人送出 的贺年卡,则4张贺年卡不同的分配方式有( ) A.6种 B.9种 C.11种 D.23种
4、在3张卡片的正反两面分别写着1和4,3和5,7和8,将这三张卡片排成一排,组成一 个三位数,可组成不同的三位数有多少个?
5、自然数2520有多少个约数?
1.有不同的中文书9本,不同的英文书7本,不同
2×2+2×2=8
3.某中学的一幢5层教学楼共有3处楼梯,问从1楼
到5楼共有多少种不同的走法? 3×3×3×3=81
4.集合A={1,2,3,4},B={5,6,7}, 从A到B的映射有多 少个?
4. ①用0,1,2,……,9可以组成多少个8位号码; 10×10×10×10×10×10×10×10=108
②用0,1,2,……,9可以组成多少个8位整数; 9×10×10×10×10×10×10×10=9×107
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 加法原理和乘法原理
1、 书架上有三排书,第一排有12本,第二排共有20本,第三排共有15本
书,小明从中取出一本来阅读,问他共有几种不同的取法?
2、 某班有男生18人,女生15人,现从中选出一人参加夏令营,问有多少种
不同的选法?
3、 第一个口袋装有4个球,第二个口袋里装2个球,第三个口袋里装5个球,
所有三个口袋中的球各不相同。
(1) 从口袋中任取一个小球,共有多少种不同的取法?
(2) 从三个口袋中各取一个球,问有多少种不同的取法?
4、 如图所示,
地有四条路,问从甲地到 丙地共有多少种不同的走法?
5、 把多项式:(a 1+a 2+a 3)(b 1+b 2+b 3)(c 1+c 2)
展开,问展开式中有多少种不同的项?
6、 求2000的正约数的个数?
7、 用1、2、3、48、 将69、 从南京到上海的某次快车中途要靠六个大站,铁路局要为这次快车准备多
少种不同的车票,这些车票中最多有多少种不同的票价?
10、 10个人站成一排合影,共有多少种不同的排法?
11、 用2、3、4这三个数字组成没有重复的三位数。
(1) 求所有这些三位数的数字和的和。
(2) 求所有这些三位数的和。
12、 2000有多少个正约数?在这些正月数中,有多少个偶数
13、 用数字0、1、2、3、4可以组成多少个
(1)四位数? (2)四位偶数
14、 三封信,随机的投入四个箱中,问共有多少种不同的投信方法?
15、 5个人照相,其中一个人必须站在中间,有多少种站法?
16、 有多少个被3整除并含有数字9的三位数?
17、 如图,对图上的A 、B 、C 、D 、E 、这五个部分分成四种不同的颜色,且
相邻的部分不能用相同的颜色,不相邻的部分可用相同的颜色,那么,共有多少种不同的染色方法?
18、 一个学生要从2本科技书,3本文艺书,4本外文书中任选一本,共有多少
种不同的选法? 19、 求720的正约数?并求这些正约数的和。
20、 由1、2、3、4、5这五个数可以组成: (1)多少个四位数?其中有多少个奇数? (2)多少个没有重复数字的四位数?其中有多少个是3的倍
数?。