第三章 平面一般力系

合集下载

第三章平面力系的合成与平衡

第三章平面力系的合成与平衡
【解】杆AB和BC都是二力杆,假设杆AB受拉力、杆BC 受压力,如图3.10(b)所示。
滑轮的受力图如图3.10(c)所示。
为了避免解联立方程,选直角坐标系如图所示,使x、 y轴分别与反力NBC、NAB垂直。
∑Fx=0,-NAB+Tcos60°-TBDcos30°=0 得 NAB=Tcos60°-TBDcos30°=-7.33kN NAB为负值,表示该力的实际指向与受力图中所假设 的指向相反。即杆AB受压力作用。再由
R Rx2 Ry2 ( Fx )2 ( Fy )2
tan Ry Fy
Rx
Fx
上式表明了合力在任一轴上的投影,等于各分 力在同一轴上投影的代数和。我们称之为合力投影 定理。
【例3.3】图3.7所示的吊环上作用有3个共面的拉力,各 力的大小分别是T1=3kN、T2=1kN、T3=1.5kN,方向如图
【解】绳AB作用于桩上的拉力是由绳BD传来的。因此先 取结点D为研究对象求出绳BD的拉力。
作用在结点D上的力有已知力F、绳DE的拉力TDE和 绳BD的拉力TDB,这三个力组成一平面汇交力系。结点D 的受力图如图3.11(b)所示。
选直角坐标系如图,使y轴与TDE垂直。列平衡方程
∑Fy=0,TDBsinα-Fcosα=0 得 TDB=Fcotα=4000N 再取结点B为研究对象。作用在结点B上的力有绳BC、 BD和BA的拉力TBC、TBD、TBA,绳BD给两结点D和B的 作用力应大小相等、方向相反,即有TBD=TDB=4000N。 力TBC、TBD、TBA组成一个平面汇交力系,结点B的受力 图如图3.11(c)所示。
3.1 平面汇交力系 3.1.1 力在坐标轴上的投影
设力F作用于物体的A点,如图3.4所示。

《工程力学》第三章 平面一般力系

《工程力学》第三章  平面一般力系
• 运用解析法:在力系所在平面上取坐标系 O -xy(图3-3(a)),应用合力投影定理, 则由(3-2)式得
• 故主矢R′的模为
• 主矢R′的方向从图3-3(b)中可知
图3-3
• 2.对点O的主矩 • 从图3-3(b)中可知,MO应是该平面一般力偶
系m1,m2,…,mn的合力偶矩。由平面力偶 系的合成定理可知,
• 由于Fd也等于力F对B点的矩,mB(F)=Fd,于 是得
• §3-2 平面一般力系向一点的简化 • 一、平面一般力系向一点的简化 • 在力系的作用平面内,被任选的一点O称为简
化中心。将力系中诸力平移至简化中心,同时 附加一个力偶系的过程,称为力系向给定点的 简化。
图3-2
•经 简 化 后 的 平 面 共 点 力 系 合成为一个合力R′,该合力作用点在简化 中心上;把简化后的附加力偶系m1, m2,…,mn合成得一力偶MO(图32(c))。自然,依据力的平移定理,可将 力R′和MO合成为一个力R(图3-2(d)), 这个力R就是原力系F1,F2,…,Fn的合 力。
• 二、截面法求桁架内力
• 截面法一般采用如下步骤:
• (1)先求出桁架支承约束反力。
• (2)如需求某杆的内力,可通过该杆作一 假想截面,将桁架截为两段(只截杆件, 不能截在节点上)。注意被截杆件一般不 能多于三根。任选半边桁架考虑平衡,在 杆件被截处,画出杆件内力,其指向假定 沿杆件而背离杆件被截处。
图3-5
• 二、平面一般力系向一点简化结果分析
• 1.平面一般力系向一点的简化结果
• 平面一般力系向简化中心简化,其结果可能出现 四种情况:
• (1)R′=0,MO=0
• 主矢和主矩均等于零。它表明简化后的平面汇交 力

建筑力学-第三章(全)

建筑力学-第三章(全)

建筑力学
3.5 平面一般力系平衡条件和平衡方程
众所周知,当主矢 FR 0 时,为力平衡;当主矩 MO 0 时,为力偶平衡。
故平面任意力系平衡的充要条件为: 力系的主矢 FR和 主矩 都M O等于零。
上述平衡条件可表示为
FR ( Fx )2 ( Fy )2 0
Mo Mo (Fi ) 0
YA
XA
A
Q1=12kN
300 S
Q2=7kN 三力矩方程:再去掉Σ X=0方程 B
mC 0, X A60tg300 30Q1 60Q2 0
D
(二)力系的平衡
示例:斜梁。求支座反力
300
2kN/m B
2kN/m B
300
RB
A
300
A
2m
YA XA
C
X 0, X A RB sin 300 0
30cm
30cm Q1=12kN
Q2=7kN
X 0, X A S cos 300 0

X A 22.5kN
A
600
B
Y 0,YA Q1 Q2 S sin 300 0

YA 6kN
二力矩方程:去掉Σ Y=0方程
C
mB 0, 60YA 30Q1 0
FBl cos M 0
从而有:
FB

M l cos

20 kN 5 c os30

4.62kN
故:
FA FB 4.26kN
建筑力学
[例] 求图中荷载对A、B两点之矩.
解:
(a)
(b)
图(a): MA = - 8×2 = -16 kN ·m MB = 8×2 = 16 kN ·m

理论力学 第三章 平面力系

理论力学 第三章 平面力系

FBl cos M 0

M 20 k N m FB 4.62 kN l cos 5 m cos 30
FA FB 4.62kN

目录
第三章 平面力系\力的平移定理
3.3 力的平移定理
作用于刚体上的力,可平行移动到刚体内任一指定点,但必须 在该力与指定点所决定的平面内同时附加一力偶,此附加力偶的矩 等于原力对指定点之矩。 平面一般力系向一点简化的理论基础是力的平移定理。
设平面汇交力系F1、F2、…、Fn中各力在x、y轴上的投影分 别为Xi、Yi,合力FR在x、y轴上的投影分别为XR、YR,利用公式
F Fx Fy Xi Yj
分别计算式FR=F1+F2+…+Fn=ΣF 等号的左边和右边,可得 FR = XR i+YR j 以及 F1+F2+…+Fn=(X1i+Y1j)+(X2i+Y2j)+…+(Xni+Ynj) =(X1+X2+…+Xn)i+(Y1+Y2+…+Yn)j 比较后得到 X R X1 X 2 X n X YR Y1 Y2 Yn Y 目录
返回
第三章 平面力系
如图(a)所示水坝,通常取单位长度坝段进行受力分析,并将坝 段所受的力简化为作用于坝段中央平面内的一个平面力系[图(b)]。
返回
第三章 平面力系
第三章 平面力系
3.1 平面汇交力系的合成与平衡 3.2 平面力偶系的合成与平衡 3.3 力的平移定理 3.4 平面一般力系向一点简化 3.5 平面一般力系的平衡方程及其应用
第三章 平面力系\平面力偶系的合成与平衡

《工程力学:第三章-力系的平衡条件和平衡方程》解析

《工程力学:第三章-力系的平衡条件和平衡方程》解析

工程力学 1. 选择研究对象。以吊车大梁 AB为研究对象,进行受力分析 (如图所示) 2.建立平衡方程
第三章 力系的平衡条件和平衡方程
FAX FTB cos 0 Fy 0
F
x
0
: (1)
M
FAy FQ FP FTB sin 0
A
(F ) 0
工程力学
第三章 力系的平衡条件和平衡方程
§3.3 考虑摩擦时的平衡问题
3.3.1 滑动摩擦定律
概念:
静摩擦力:F 最大静摩擦力:Fmax 滑动摩擦力: Fd
静摩擦因数:
水平拉力: Fp
Fmax f s FN
fs
工程力学
第三章 力系的平衡条件和平衡方程
3.3.2 考虑摩擦时构件的平衡问题
考虑摩擦力时与不考虑摩擦力时的平衡 解题方法和过程基本相同, 但是要注意摩擦力的方向与运动趋势方向相反;且在滑动之前摩擦 力不是一个定值,而是在一定范围内取值。
l l sin 0
(3)
工程力学
第三章 力系的平衡条件和平衡方程
• 联立方程(1)(2)(3)得:
FAX
FQ FP 3 l x 2
(2)由FTB结果可以看出,当x=L时,即当电动机移动到大梁右 端B点时,钢索所受的拉力最大,最大值为
非静定问题:未知数的数目多于等于独立的平衡方程的数目,不能 解出所有未知量。相应的结构为非静定结构或超静定结构。
会判断静定问题和非静定问题
工程力学
第三章 力系的平衡条件和平衡方程
工程力学
第三章 力系的平衡条件和平衡方程
3.2.2 刚体系统平衡问题的特点与解法
1.整体平衡与局部平衡的概念 系统如果整体是平衡的,则组成系统的每一个局部以及每一个 2.研究对象有多种选择 刚体也必然是平衡的。

平面一般力系

平面一般力系

l FAyl P 2 Q(l a) 0
FAx l
tg
P
l 2
Qa
0
FAy 2.1KN
FAx 11.4KN
18
平面一般力系的平衡方程:
① 基本式(一矩式) ②二矩式
③三矩式
Fx 0
Fy 0
MO (Fi ) 0
Fx 0
MA(Fi ) 0
MB(Fi ) 0
MA(Fi ) 0
20
§3-4 平面平行力系的平衡方程
平面平行力系:各力的作用线在同一平面内且相互平行的力系。
y
F1
x1
FR'
Mo o
x2
xR xn
F2 FR
Fn
设有F1, F2 … Fn 为一平行力系,
向O点简化得:
主矢 FR Fi
主矩 MO MO(Fi ) Fi xi
合力作用线的位置为:
xR
MO FR
F 对新作用点B的矩。
[证]
'
M
M
力F
力系 F,F ,F
力 F 力偶( F, F )
4
说明: ①力平移的条件是附加一个力偶M,且M与d有关,M=F•d ②力线平移定理揭示了力与力偶的关系:力力+力偶 ③力线平移定理的逆定理成立。力力+力偶 ❖力线平移定理是力系简化的理论基础。 ❖力线平移定理可将组合变形转化为基本变形进行研究。
A
B
②当Q=180kN时,求满载
时轨道A、B给起重机轮子的反
力?
分析:
Q过大,空载时有向左倾翻的趋势。
Q过小,满载时有向右倾翻的趋势。 24
解:⑴ ①首先考虑满载时,起
重机不向右翻倒的最小Q为:

第3章平面一般力系

第3章平面一般力系
平面一般力系包含以下几种特殊力系: (1)平面汇交力系:各力的作用线都在同一平面 内且汇交于一点的力系。 (2)平面平行力系:各力的作用线都在同一平面 内且相互平行的力系。 (3)平面力偶系:各力偶作用面共面。
第3章 平面任意力系
§3.1 力线平移定理 §3.2 平面任意力系的简化 §3.3 平面任意力系的平衡条件 和平衡方程 §3.4 物体系统的平衡静定 和静不定问题 §3.5 平面桁架
M A / FR 2375.0 / 711.5 d a = AC = = = = 3.52 m o sin ϕ sin ϕ sin 71.6
§3.2 平面任意力系的简化
四、 合力矩定理
平面任意力系的合力对于点O之矩等于原力系对简化中心 O的主矩,即:
M O = M O ( FR ) M O = ∑ M O (F )
第3章 平面任意力系
§3.1 力线平移定理 §3.2 平面任意力系的简化 §3.3 平面任意力系的平衡条件 和平衡方程 §3.4 物体系统的平衡静定 和静不定问题 §3.5 平面桁架
§3.3 平面任意力系的平衡条件和平衡方程
一、 平面任意力系的平衡方程
′ =0 保证物体移动平衡 由于 FR MO=0 为转动平衡
§3.2 平面任意力系的简化
二、主矢和主矩
建立坐标系oxy
′ = F1 x + F2 x + ⋅⋅⋅ + Fnx = ∑ Fx FRx ′ = F1 y + F2 y + ⋅⋅⋅ + Fny = ∑ Fy FRy
y
MO
r ′ FR
α
O
主矢大小 ′ = ( FR ′x )2 + ( FR ′y )2 = ( ∑ Fx )2 + ( ∑ Fy ) 2 FR 主矢方向 r r ′,i ) = cos( FR

第三章.平面力系的合成与平衡

第三章.平面力系的合成与平衡

各力首尾相接
§3-1 平面汇交力系的合成与平衡
例4
已知:
系统如图,不计杆、轮自重,忽略滑轮大小,P=20kN; 求:系统平衡时,杆AB、BC受力。 解:AB、BC杆为二力杆, 取滑轮B(或点B),画受力图。
用解析法,建图示坐标系。
F
x
0
FBA F1 cos 60 F2 cos 30 0
Fy F cos F Fx Fy
Fx cos F
Fx
x
O
Fx
F Fx2 Fy2
cos
Fy F
§3-1 平面汇交力系的合成与平衡 3)合力投影定理 平面汇交力系,由三个力组成的力多边形 合力投影定理建立了合力投影与各分力投影的关系
FRx Fix
当 x轴与 y 轴不是正交轴时 :
F Fx Fy
力在坐标轴上的投影不等于力在这个轴上的分量。
§3-1 平面汇交力系的合成与平衡 2、平面汇交力系的解析法 2)力沿坐标轴的分解 当
Fx Fx
x y
y
Fy Fy
B
Fy
Fx F cos
Fy
A
β α
矢量和
θ
P
FNA 11.4kN FNB 10kN
F
FNB
F
θ P FNA
§3-1 平面汇交力系的合成与平衡 2、平面汇交力系的解析法 1)力在坐标轴上的投影 F力在 x 轴上的投影:
Fx F cosθ
Fy
Fx
F力在 y 轴上的投影:
Fy F cosβ
3 FR 2 FR1 F3 Fi i 1

第3章-平面与空间一般力系

第3章-平面与空间一般力系
【解】 土压力 FR 可使挡土墙绕A点倾覆,
故求土压力 FR使墙倾覆的力矩,就是求 FR
对A点的力矩。由已知尺寸求力臂d不方便,但如果将
FR分解为两分力 F1 和 F2
M A (FR ) M A (F1) M A (F2 )
F1h / 3 F2b

=FR cos 30
=150kN 3
1h3.5m -F1R50siknN301h1.5m
注意:主矢与简化中心位置无关,主矩则有关。因此说
到力系的主矩时,必须指出是力系对于哪一点的主矩。
主矢的解析表达法
R RX 2 RY 2
RX X1 X 2 X n X1 X 2 X n X
同理: RY Y
R X 2 Y 2
Tan RY Y RX X
M0=∑M0=M0(F1)+M0(F2)+…M0(Fn)=∑M0(F)
又B处的支座反力垂直于支持面,要形成与已知力偶M反向的 力偶,B处的支座反力 FB 方向只能斜向上,A处的支座反力
FA 的方向斜向下,作用线与 FB 平行,且有 FA FB
n
由平衡条件 Mi 0 ,得: i 1
FB d M 0
30°
FB (4m sin 30 ) 20MkN m 0
n
Mi 0
i 1
【例题3-3】 如图3-10(a)所示的简支梁AB,受一力偶的作用。
已知力偶 M 20kN m ,梁长l 4m ,梁的自重不计。 求梁A、B支座处的反力。
30°
M
A B
4m
60°
d
M
A FA
B FB 4m
【解】 取梁AB为研究对象,梁AB上作用一集中力偶M且保持 平衡,由于力偶只能用力偶来平衡,则A、B处的支座反力必形 成一对与已知力偶M反向的力偶

《工程力学》第三章平面一般力系试卷

《工程力学》第三章平面一般力系试卷

1.当驱动外力的合力作用线与摩擦面法线所成的夹角不大于摩擦角时,物体总是处于状态。

(2 分)A.平衡B.运动C. 自由D. 自锁2.一力作平行移动后,新作用点的附加力偶矩一定。

(2 分)A.存在且与平移距离无关B.存在且与平移距离有关C.不存在3.平面一般力系的平衡条件是。

(2 分)A.合力为零B.合力矩为零C.各分力对某坐标轴投影的代数和为零D.合力和合力矩均为零4.若某刚体在平面一般力系作用下平衡,则此力系各分力对刚体的矩的代数和必为零。

(2 分)A.特定点B.重心C.任意点D.坐标原点5.这便于解题,力矩平衡方程的矩心应取在上。

(2 分)A.坐标原点B.未知力作用点C.任意点D.未知力作用线交点6.力矩平衡方程中的每一个单项必须是。

(2 分)A.力B.力矩C.力偶D.力对坐标轴上的投影7.一力向新作用点平移后,新点上有。

(2 分)A.一个力B.一个力偶C.一个力与一个力偶8.若平面一般力系向某点简化后合力矩为零,则其合力。

(2 分)A.一定为零B.不一定为零C.一定不为零9.为便于解题,力的投影平衡方程的坐标轴方向一般应按方向取定。

(2 分)A.水平或铅垂B.任意C.与多数未知力平行或垂直10.摩擦角是物体作用线与接触面法线间的夹角。

(2 分)A.全反力B.最大静摩擦力C.最大全反力D.驱动力11.( )平面一般力系的合力和合力偶的方向均与简化中心位置有关;合力和合力偶的大小均与简化中心位置无关。

(2 分)12.( )滚动摩擦力小于滑动摩擦力。

(2 分)13.( )作用于刚体上的力,其作用线可在刚体上任意平行移动,其作用效果不变。

(2 分)14.( )只要正确列出平衡方程,则无论坐标轴方向及矩心位置如何取定,未知量的最终计算结果总应一致。

(2 分)15.()对于受平面一般力系作用的物体系统,最多只能列出三个独立方程,求解三个未知量。

( )(2 分)16.( )对受平面一般力系作用的刚体列平衡方程时,三种形式的方程的使用条件均相同,每种形式均可求解三个未知量。

《建筑力学》第三章平面一般力系

《建筑力学》第三章平面一般力系

VS
产生条件
摩擦力的产生需要满足三个条件,即接触 面粗糙、接触面间有正压力和物体间有相 对运动或相对运动趋势。
考虑摩擦时物体平衡问题解决方法
01
02
03
静力学方法
通过受力分析,列出平衡 方程,考虑摩擦力对物体 平衡的影响。
动力学方法
分析物体的运动状态,根 据牛顿第二定律列出动力 学方程,考虑摩擦力对物 体运动的影响。
静定结构特性分析
1 2 3
内力与外力关系
静定结构的内力与外力之间存在一一对应的关系, 即外力的变化会直接导致内力的变化。
变形与位移
在荷载作用下,静定结构会产生变形和位移,但 变形和位移的大小与材料的力学性质有关,与结 构的超静定性无关。
稳定性分析
静定结构在受到微小扰动后,能够自动恢复到原 来的平衡状态,具有良好的稳定性。
求解未知数
通过解平衡方程,求解出未知 的力或力矩。
确定研究对象
根据问题要求,确定需要研究 的物体或物体系统。
列平衡方程
根据平面任意力系的平衡条件, 列出物体系统的平衡方程。
校验结果
将求解结果代入原方程进行校 验,确保结果的正确性。
05 静定结构内力计算
静定结构基本概念和分类
静定结构定义
静定结构是指在外力作用下,其反力和内力都可以用静力学平衡方程求解,且解答唯一确定的结构。
02 平面汇交力系分析
汇交力系几何法求解合力
几何法概念
利用力的平行四边形法则或三角形法则求解汇交力系的合 力。
求解步骤
首先确定各分力的方向和大小,然后选择合适的几何图形 (如平行四边形或三角形)进行力的合成,最后根据图形 求解合力的大小和方向。
注意事项

工程力学第三章平面一般力系

工程力学第三章平面一般力系

5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Wednesday, May 26, 2021May 21Wednesday, May 26, 20215/26/2021
α=4°4°30ˊ
知识拓展
二、槽面摩擦
滑块与导槽的槽面接触
平带传动与V带传动
槽面接触
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。21.6.2521.6.2 509:01:4809:01 :48Jun e 25, 2021
14、谁要是自己还没有发展培养和教 育好, 他就不 能发展 培养和 教育别 人。202 1年6月 25日星 期五上 午9时1 分48秒 09:01:4 821.6.2 5
17、儿童是中心,教育的措施便围绕 他们而 组织起 来。上 午9时1 分48秒 上午9时 1分09:01:4821 .6.25
June 2021
ቤተ መጻሕፍቲ ባይዱ
1、Genius only means hard-working all one's life. (Mendeleyer, Russian Chemist)
各力在任意两个相互垂直的坐标轴上的分量的代数和均为零且力系中各力对平面内任意点的力矩的代数和也等于形式基本形式二力矩式三力矩式方程说明两个方程投影式方程一个力矩式方程一个投影式方程两个力矩式方程使用条件
第三章 平面一般力系
§3-1 平面一般力系的简化 §3-2 平面一般力系的平衡和应用 *知识拓展

平面一般力系

平面一般力系

.
4
F BC
FB
B FC
B
M
C
C
F
' A
FA
P
P
为什么钳工攻丝时, 两手要均匀用力?
A
A
牛腿柱的压、弯组合变形
.
5
为 什 么 有 时 滑 轮 不 给 尺 寸
.
6
二、平面一般力系向一点的简化
1、向简化中心平移—得到平面汇交力系和平 面力偶系
Fn
An o
A1
A2 F2
F1
F
' n
Mn o
F
' 2
F B2M P5 32.5P5 420 A F A x
P
FB
B
代入数据解得: FAx=3 kN FAy=5 kN FB=-1 kN
.
20
例3-5 自重为P=100 kN的T字型刚架 ABD,置于铅 垂面内,尺寸及载荷如图。其中 M=20 kN·m , F=400 kN , q= 20 kN/m ,l=1 m 。试 求固定端A的 约束反力。
(1)保证起重机在满载和空载时都不致翻倒,求平衡荷重 P3 应为多少?
(2)当平衡荷重 P3=180 kN 时,求满载时轨道 A、 B给起重 机轮子的反力
P3
6m
12 m
P2
P1
AB
.
33
P3
6m
12 m
P1
AB
FA 4 FB
分析:要使起重机不翻倒,应
按临界状态的平衡条件求解。
当满载时,为使起重机不绕 B
F1' M 1 M 2
{F1,F2,,Fn} {F 1',F 2', ,F n', M1,M2,,Mn}

第三章平面力系

第三章平面力系

(3)若FR‘≠0,MO‘≠0,这时根据力的平移定理的 逆过程,可以进一步简化成一个作用于另一点 的合力。
(4) FR‘=0,MO‘=0,则力系是平衡力系 。 综上所述,平面一般力系简化的最后结果 (即合成结果)可能是一个力偶,或者是一个合 力,或者是平衡。 3-1-3合力矩定理 当FR‘=0,MO‘≠0 时,还可进一步简化为一 M o ( FR ) FR d 合力,合力对点的矩是 / / 而 Mo mo ( F ) FR d M o 所以 Mo (FR ) mO (F )
3-1-2简化结果的分析 平面一般力系向一点简化,一般可得到一 个力和一个力偶,但这并不是最后简化结果。 根据主矢与主矩是否存在,可能出现下列几种 情况: (1)若FR‘=0,MO‘≠0,说明原力系与一个力偶等 效,而这个力偶的力偶矩就是主矩。 (2)若FR‘≠0,MO‘=0 ,则作用于简化中心的主 矢FR'就是原力系FR的合力,作用线通过简化中 心。
228 .9kN m
计算结果为正值表示是逆时针转向。
因为主矢
≠0,主矩 FR
/ Mo ,如图 0 (b)所示,
所以还可进一步合成为一个合力FR。 FR的大小、 方向与FR‘相同,它的作用线与点的距离为
M O 228.9 d 0.375m FR 612.9
因为MO正,故m0(FR)也应为正,即合力FR 应在点O左侧,
X
F F
0
二力矩形式的平衡方程 (简称二矩式)
在力系作用面内任取两点A、B及X轴,平 面一般力系的平衡方程可改写成两个力矩方程 和一个投影方程的形式,即
F m m
X
0 0 0
A
B
式中轴不与A、B两点的连线垂直。

工程力学习题册第三章 答案

工程力学习题册第三章  答案

第三章平面一般力系答案一、填空(将正确的答案填写在横线上)1、作用在物体上的各力的作用线都在同一平面内 ,并呈任意分布的力系,称为平面一般力系。

2、平面一般力系的两个基本问题是平面力系的简化 ,其平面条件的的应用。

3、力的平移定理表明,若将作用在物体某点的力平移到物体上的另一点,而不改变原力对物体的作用效果,则必须附加一力偶,其力偶距等于原来的力对新作用点的距。

4、平面一般力系向已知中心点简化后得到一力和一力偶距。

5平面一般力系的平衡条件为;各力在任意两个相互垂直的坐标轴上的分量的代数和均为零力系中所有的力对平面内任意点的力距的代数和也等零。

6.平面一般力系平衡方程中,两个投影式ΣFix=0 和ΣFiy=0 保证物体不发生移动 ;一个力矩式ΣMo(Fi)=0 保证物体不发生转动。

三个独立的方程,可以求解三个未知量。

7.平面一般力系平衡问题的求解中,固定铰链的约束反力可以分解为相互垂直的两个分力固定端约束反力可以简化为相互垂直的两个分力和一个附加力偶矩。

8.平衡方程ΣMA(Fi)=0、ΣMB(Fi)=0、ΣFiX=0适用于平面一般力系,使其用限制条件为AB连线与X轴不垂直。

9.平衡方程ΣMA(Fi)=0、ΣMB(Fi)=0、ΣMc(Fi)=0的使用限制条约为ABC不在同一直线上。

10.若力系中的各力作用现在同一平面内且相互平行,称为平面平行力系。

它是平面一般力系的特殊情况。

11.平面平行力系有两个独立方程,可以解出两个未知量。

12.平面平行力系的基本平衡方程是:ΣFi X=0,ΣM O(Fi)=0二、判断题(正确的打“√”,错误的打“×”)1.作用于物体上的力,其作用线可在物体上任意平行移动,其作用效果不变。

(×)2.平面一般力系的平衡方程可用于求解各种平面力系的平衡问题。

(√)3.若用平衡方程解出未知力为负值,则表明:(1)该力的真实方向与受力图上假设的方向相反。

(√)(2)该力在坐标轴上的投影一定为负值。

工程力学第3节 平面一般力系

工程力学第3节 平面一般力系

• 2)力偶 M 对平面上任意一点的矩为常量。
• 3)应尽量选择各未知力作用线的交点为力矩方 程的矩心,使力矩方程中未知量的个数尽量少。
例2-10 如图所示一可 沿轨道移动的塔式起重 机,机身重G=200kN, 作用线通过塔架中心。 最大起重量FP=80kN。 为防止起重机在满载时 向右倾倒,在离中心线 x 处附加一平衡重FQ, 但又必须防止起重机在 空载时向左边倾倒。试 确定平衡重FQ以及离左 边轨道的距离 x 的值。
i 1 i 1 n i 1 n
n
• 二力矩式:A、B 两点的联线 AB 不能与 x 轴垂直。 • 三力矩式:A、B﹑C 三点不能共线。 • 选用基本式﹑二力矩式还是三力矩式,完全决定于 计算是否方便。不论何种形式,独立的平衡方程只 有三个。

平面平行力系的平衡方程
平面平行力系平衡的充分 必要条件是:力系中各力的代 数和等于零,以及各力对任一 点的矩的代数和等于零。 平衡方程 的解析式 (基本式) 注意
Fiy 0 M O ( Fi ) 0
i 1 M A ( Fi ) 0 M B ( Fi ) 0
i 1 i 1 n
n
二力矩式中A、B 两点的联线不能与 x 轴垂直。
例2-7 如图所示,数控车床一齿轮转动轴自重 G = 900N,水平安装在向心轴承A和向心推力轴承B 之间。齿轮受一水平推力F 的作用。已知 a = 0.4m, b = 0.6m,c = 0.25m,F = 160N。当不计轴承的宽度 和摩擦时,试求轴上A、B处所受的约束反力。
Fiy 0 M O ( Fi ) 0
i 1 i 1 n
i 1 n
二 力 矩 式 注意
Fix 0 M A ( Fi ) 0 M B ( Fi ) 0

第3章 平面力系的合成与平衡

第3章 平面力系的合成与平衡

4、对力的方向判定不准的,一般用解析法。
5、解析法解题时,力的方向可以任意设,如果求出 负值,说明力方向与假设相反。对于二力构件,一般先 设为拉力,如果求出负值,说明物体受压力。
作业
习题3-5;
习题3-8。
第三章 目录
3.1 汇交力系的合成与平衡
3.2 力线的平移
3.3 平面一般力系的合成
3.4 平面一般力系的平衡方程和应用
平面力系的 第三章 合成与平衡
教学目标
了解平面力系的定义及其分类;
掌握平面力系平衡方程的求解;
理解力线平移原理,平面力系的简化。
第三章 目录
3.1 汇交力系的合成与平衡
3.2 力线的平移
3.3 平面一般力系的合成
3.4 平面一般力系的平衡方程和应用
3.5 平面平行力系的合成与平衡
• 力系的分类
• 【思考题】
1.力系的合力与主矢有什么区别?
2.力系的主矩与合力偶有什么不同?
• 主矢的确定
FR F F
2 Rx 2 Ry
F F
2 x y
2
Fx F Rx cos FR , i FR FR


FRy Fy cos FR , j FR FR
FR2
d
F4
e
F3
a
FR
FR F1 F2 F3 F4
• 1. 力多边形
c
F2
F3
d
F4
由各分力和合力构
成的多边形 abcde 称 为力多边形,这种作图
b
F1
e
a
FR
法称力多边形法则。
合力的作用线通过汇交点,大小和方向

平面一般力系

平面一般力系
因此,在说到力系的主矩时,一定要指明简化中心。
从而这力系被分解为平面汇交力系和平面力偶系。
即:平面任意力系对简化中心O 的简化结果
一、力系向简化中心O 简化 §3–2 平面一般力系的简化
§3–3 刚体系统的平衡问题
二、平衡方程其他形式:
应用力的平移定理,可将刚体上平面任意力系中 2、主矩Mo可由下式计算:
称为刚体系统。 3、内 力——物体系内部各物体间相互作用的力
变换的方法称为力系向一点O 的简化。点O 称为简化 三铰拱桥如图所示,由左右两段借铰链C 连接起来,又用铰链A、B 与基础相联结。
3、R ≠0,MO≠0,原力系简化成一个力偶和一个作用于点O 的力。
2、平面任意力系的主矩与简化中心O 的位置有关。
平衡方程:
F F x 0 , F y 0 , m o 0
§3–3 平面一般力系平衡条件及其应用
二、平衡方程其他形式: 1、二矩式
F F F x 0 , m A 0 , m B 0
A、B 的连线不和x 轴相垂直。
2、三矩式
F F F m A 0 , m B 0 , m C 0
2、MO=0,而R≠0,原力系合成为一个力。作用于点O 的力R就是原力系的合力。
3、R≠0,MO≠0,原力系简化成一个力偶和一个作用 于点O 的力。这时力系也可合成为一个力。
说明如下: R
MO
O
=
R R
Mo
OR A
=
Mo R
O
R
A
AO M0 m0F
RR
R
§3–2 平面一般力系的简化
4、 R=0,而MO=0,原力系平衡。
§3–2 平面一般力系的简化
主矢、主矩的求法: 1、主矢可用力多边形法则作图求得,或用解析 法计算。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3–4 平面一般力系简化结果的讨论 .合力矩定理
例题 3-1 在长方形平板的 O、A、B、C 点上分别作用 着有四个力: F1=1kN,F2=2kN,F3=F4=3kN(如图), 试求以上四个力构成的力系对点 O 的简化结果,以及
1、R?=0,而MO≠0,原力系合成为力偶。这时力系主 矩MO 不随简化中心位置而变。
2、MO=0,而R?≠0,原力系合成为一个力。作用于点 O 的力R?就是原力系的合力。
3、 R?≠0, MO≠0,原力系简化成一个力偶和一个作用 于点O 的力。这时力系也可合成为一个力。
说明如下:
R
mO
O
=
R R??
般 §3–6 平面平行力系的平衡

系 §3–7 物体系的平衡 与静不定问题的概念
§3–8 平面静力学在工程中的应用举例
§3–1 力对点之矩
一、力矩的定义 ——力F 的大小乘以该力作用线到 某点O 间距离d,并加上适当正负号,称为力 F 对 O 点的矩。简称力矩。 B
O dF
A
二、力矩的表达式 : M O ?F ?? ? Fd
? M 0 = mo (F1)+ mo (F2 )+ + mo (Fn ) = mo (F )
结论: 平面一般力系向平面内任一点的简化结果,
是一个作用在简化中心的主矢;和一个对简化中 心的主矩。
§3–3 平面一般力系的简化?主矢与主矩
二、几点说明: 1、平面一般力系的主矢的大小和方向与简化 中心的位置无关。
2、平面一般力系的主矩与简化中心 O 的位置
有关。因此,在说到力系的主矩时,一定要 指明简化中心。
§3–3 平面一般力系的简化?主矢与主矩
§3–3 平面一般力系的简化?主矢与主矩
三、主矢、主矩的求法:
1、主矢可按力多边形规则作图求得,或用解析
法计算。
?? ? ?? ? R ?
R x2
?
R
2 y
?
联 系:力偶中的两个力对任一点的矩之和是 常量,等于力偶矩。
§3–2 力线平移定理
一、力线平移定理:
把力F 作用线向某点 O 平移时,须附加一个力偶, 此附加力偶的矩等于原力 F 对点O 的矩。
证明:
F
F?
F
F?
Od A = O d A
=
Om A
F ??
F ?? ? F ??? F
m ? Fd ? m0 ?F ?
F1?
=F2?
m1
m2
O
m3
=
F3
F3?
R? O
Mo
§3–3 平面一般力系的简化?主矢与主矩
汇交力系 F1?、 F2?、 F3?的合成结果为一作用点在 点O 的力R?。这个力矢 R? 称为原平面一般力系的主矢。
R?? F1?? F2?? F3? ? F1 ? F2 ? F3
附加力偶系的合成结果是作用在同平面内的力
第三章 平面一般力系
平面一般力系
各个力的作用线在同一平面内, 但不汇交于一点,也不都平行的力 系称为平面一般力系
§3–1 力对点之矩
第 §3–2 力线平移定理 三 章 §3–3 平面一般力系的简化?主矢与主矩
平 §3–4 平面一般力系简化结果的讨论.合力矩定理
面 一
§3–5 平面一般力系的平衡条件和平衡方程
§3–2
§3–2 力线平移定理
二、几个性质:
1、当力线平移时,力的大小、方向都不改变,但附
加力偶的矩的大小与正负一般要随指定 O点的位
置的不同而不同。
2、力线平移的过程是可逆的,即作用在同一平面内 的一个力和一个力偶,总可以归纳为一个和原力 大小相等的平行力。
3、力线平移定理是把刚体上平面一般力系分解为一 个平面汇交力系和一个平面力偶系的依据。
偶,这力偶的矩用 M O 代表,称为原平面一般力系对 简化中心 O 的主矩。
M 0 = m1 + m2 + m3
= mo (F1 )+ mo (F2 )+ mo (F3 )
§3–3 平面一般力系的简化?主矢与主矩
推广: 平面一般力系对简化中心 O 的简化结果
主矢: 主矩:
? R?? F1 ? F2 ? ? ? Fn ? F
§3–1 力对点之矩
六、力矩的解析表达式
y
Fy
B
F
A y
Fx
Ox
x
mo ?F ?? xFy ? yFx
力对某点的矩等于该力沿坐标轴的分力对 同一点之矩的代数和
§3–1 力对点之矩
七、力对点的矩与力偶矩的区别:
相同处:力矩的量纲与力偶矩的相同。
不同处:力对点的矩可随矩心的位置改变而改 变,但一个力偶的矩是常量。
mo
OR A
? =
mo R
O
R ?? A
AO? m0 ? R
m0 ?F ?
R
R?
§3–4 平面一般力系简化结果的讨论 .合力矩定理
4、 R?=0,而MO=0,原力系平衡。
综上所述,可见:
⑴、平面一般力系若不平衡,则当主矢主矩均不 为零时,则该力系可以合成为一个力。
⑵、平面一般力系若不平衡,则当主矢为零而主 矩不为零时,则该力系可以合成为一个力偶。
三、力矩的正负号规定:按右手规则,当有逆时针
转动的趋向时,力 F 对O 点的矩取正值。
四、力矩的单位:与力偶矩单位相同,为 N.m。
§3–1 力对点之矩
五、力矩的性质: 1、力沿作用线移动时,对某点的矩不变 2、力作用过矩心时,此力对矩心之矩等于零 3、互成平衡的力对同一点的矩之和等于零
4、力偶中两力对平面内任意点的矩等于该力偶的力偶 矩
§3–3 平面一般力系的简化?主矢与主矩
一、力系向给定点 O 的简化
应用力线平移定理,可将刚体上平面一般力系 中各个力的作用线全部平行移到作用面内某一给定
点O 。从而这力系被分解为平面汇交力系和平面力 偶系。这种变换的方法称为力系向给定点 O 的简化 。点O 称为简化中心。
F1
F2
A1 O
A2
A3
§3–4 平面一般力系简化结果的讨论 .合力矩定理
合力矩定理
平面一般力系的合力对作用面内任一点的 矩,等于这个力系中的各个力对同一点的矩的 代数和。
mo ?R?? ? mo ?F ?
? ? mo ?F ?? mo ?Fx ?? mo Fy
y
Fy
B
F
mo ?Fx ?? ? yFx
A y
Fx
Ox
x
? ? mo Fy ? xFy
Fx 2 ?
Fy 2
方向余弦:
cos?R, x?? ?? Fx ? cos?R, y ?? ?? Fy ?
R
R
2、主矩Mo 可由下式计算:
? M 0 ? mo ?F1 ?? mo ?F2 ?? ? ? mo ?Fn ?? mo ?F ?
§3–4 平面一般力系简化结果的讨论 .合力矩定理
简化结果的讨论
相关文档
最新文档