2012年全国初中数学联赛试题参考答案和评分标准190410

合集下载

2012年全国初中数学联赛(浙江赛区)

2012年全国初中数学联赛(浙江赛区)

2012年全国初中数学联合竞赛(浙江赛区)试题及参考答案第一试一、选择题:(本题满分42分,每小题7分)1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( ) A. a b c << B. a c b << C. b a c << D.b c a <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( )A .3.B .4.C .5.D .6.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( )A .3 B .3 C .3 D .34.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( )A .18-. B .0. C .1. D .98. 5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p 的所有可能的值之和为 ( )A .0.B .34-. C .1-. D .54-. 6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( )A .36个.B .40个.C .44个.D .48个. 二、填空题:(本题满分28分,每小题7分) 1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t = . 2.使得521m⨯+是完全平方数的整数m 的个数为 .3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP= . 4.已知实数,,a b c满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++= . 答案:选择题:1.C 2.B 3.D 4.B 5.B 6.C填空题:1.1± 2. 1 3.4.332第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积.解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=. 显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >. 由a b c +>及30a b c ++=得302a b c c =++>,所以15c <. 又因为c 为整数,所以1114c ≤≤. 根据勾股定理可得222a b c+=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩ 所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π. 二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D .证明:2AD BD CD =⋅.证明:连接OA ,OB ,OC.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅. 又由切割线定理可得2PA PB PC =⋅,∴P B P C PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆,∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PB D ∽△COD ,∴PD BD CD OD=,∴2AD PD OD BD CD =⋅=⋅. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM//BC ,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x bx c -++=的两根,所以13x b =,23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223()||2b c m =+⋅,又易知0m <,所以可得6m =-.又由DA =DC 得22DA DC =,即222(30)()m b m c+=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).又因为AM//BC ,所以OA OMOB OC =3||2|6|-=-. 把6c =-代入解得52b =(另一解52b =-舍去). 因此,抛物线的解析式为215662y x x =-+-.。

2012年全国初中数学联赛试题(含答案)

2012年全国初中数学联赛试题(含答案)

2012年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分)1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A .3 B .3C .3D .34.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B ) A .18-. B .0. C .1. D .98.5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p 的所有可能的值之和为 ( B )A .0.B .34-. C .1-. D .54-. 6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( C )A .36个.B .40个.C .44个.D .48个. 二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =1±.2.使得521m⨯+是完全平方数的整数m 的个数为 1 .3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP=. 4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++=332.第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=. 显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >. 由a b c +>及30a b c ++=得302a b c c =++>,所以15c <. 又因为c 为整数,所以1114c ≤≤.根据勾股定理可得222a b c +=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩ 所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π. 二.(本题满分25分)如图,P A 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D .证明:2AD BD CD =⋅.证明:连接OA ,OB ,OC .∵OA ⊥AP ,AD ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA PB PC =⋅,∴P B P C PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PBD ∽△COD ,∴PD BD CD OD=,∴2AD PD OD BD CD =⋅=⋅. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,P A 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM //BC ,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x b x c -++=的两根,所以13x b c =,23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE.因为P A 为⊙D 的切线,所以P A ⊥AD ,又AE ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223)()||2b c m =+⋅,又易知0m <,所以可得6m =-. 又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).又因为AM //BC ,所以OA OMOB OC =3||2|6|-=-. 把6c =-代入解得52b =(另一解52b =-舍去). 因此,抛物线的解析式为215662y x x =-+-.第二试 (B )一.(本题满分20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则60a b c ++=. 显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由a b c ≤<及60a b c ++=得603a b c c =++<,所以20c >. 由a b c +>及60a b c ++=得602a b c c =++>,所以30c <. 又因为c 为整数,所以2129c ≤≤.根据勾股定理可得222a b c +=,把60c a b =--代入,化简得60()18000ab a b -++=,所以322(60)(60)1800235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是326025,6035,a b ⎧-=⨯⎪⎨-=⨯⎪⎩或2226025,6023,a b ⎧-=⨯⎪⎨-=⨯⎪⎩ 解得20,15,a b =⎧⎨=⎩或10,24.a b =⎧⎨=⎩当20,15a b ==时,25c =,三角形的外接圆的面积为6254π; 当10,24a b ==时,26c =,三角形的外接圆的面积为169π.二.(本题满分25分)如图,P A 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D ,△ADC 的外接圆与BC 的另一个交点为E .证明:∠BAE =∠ACB .证明:连接OA ,OB ,OC ,BD . ∵OA ⊥AP ,AD ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA PB PC =⋅,∴P B P C PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PBD ∽△COD , ∴PD BDCD OD =, ∴2BD CD PD OD AD ⋅=⋅=,∴BD AD AD CD=. 又∠BDA =∠BDP +90°=∠ODC +90°=∠ADC ,∴△BDA ∽△ADC , ∴∠BAD =∠ACD ,∴AB 是△ADC 的外接圆的切线,∴∠BAE =∠ACB . 三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同. 二.(本题满分25分)题目和解答与(B )卷第二题相同. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,P A 是△ABC 的外接圆的切线.将抛物线向左平移1)个单位,得到的新抛物线与原抛物线交于点Q ,且∠QBO =∠OBC .求抛物线的解析式.解 抛物线的方程即2213(3)62b y x bc =--++,所以点P 23(3,)2b b c +,点C (0,)c . 设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x b x c -++=的两根,所以13x b =,23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE .因为P A 为⊙D 的切线,所以P A ⊥AD ,又AE ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223)()||2b c m =+⋅,又易知0m <,所以可得6m =-.又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).将抛物线2213(3)662b y x b =--+-向左平移1)个单位后,得到的新抛物线为2213(324)662by x b=--++-.易求得两抛物线的交点为Q23(312102)2bb+-+.由∠QBO=∠OBC可得tan∠QBO=tan∠OBC.作QN⊥AB,垂足为N,则N(312b+-,又233(x b b=+=,所以tan∠QBO=QNBN2310212b+=12=22111)]22==⋅.又tan∠OBC=OCOB1(2b==⋅,所以111)](22b⋅=⋅-.解得4b=(另一解45)03b=<,舍去).因此,抛物线的解析式为21466y x x=-+-.。

2012年全国初中数学联合竞赛试题

2012年全国初中数学联合竞赛试题

这样的四位数共有 A . 36 个
B. 40 个
C. 44 个
D. 48 个
()
二、填空题(本题满分 28 分,每小题 7 分)
得分 评卷人
本题共有 4 个小题,要求直接将答案写在横线上 .




1
1
1
1.已知互不相等的实数 a,b, c 满足 a
b
c
t ,则 t _________ .
b
c
a
不 内
线


2.使得 5 2m 1 是完全平方数的整数 m 的个数为




BC
3.在△ ABC 中,已知 AB = AC ,∠A = 40°,P 为 AB上一点,∠ ACP =20°,则 =

AP
4. 已知实数 a, b, c 满足
a
b
c
4
abc
1, a b c
4, a2
3a 1
b2
3b 1
c2
3c 1
于点 F,连接 BF 并延长与线段 DE交于点 G,则 BG的长为
()
校 学
6
A.
3
5
B.
3
26
C.
3
25
D.
3
4. 已知实数 a, b 满足 a 2 b 2 1 ,则 a 4 ab b 4 的最小值为
1
A.
8
B.0
C.1
9
D.
8
()




( 市
2012 年全国初中数学联合竞赛试题
第一试
第 1 页(共 2 页)

2012年全国初中数学联赛试题详解

2012年全国初中数学联赛试题详解

2012年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分) 1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<解答:1a ===b ==,2c ===1显然:b a c <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6. 解答:222222223232()234x xy y x xy y y x y y ++=+++=++=由0、1、2、3、4、5、6的平分别是0、1、4、9、16、25、36知唯有16+2⨯9=34故5555544444x y x y x y x y x y y y y y y +=-+=+=+=-⎧⎧⎧⎧+=±=±⎨⎨⎨⎨===-=-⎩⎩⎩⎩、,由、、、得 4444=9=1=9=1y y y y x x x x ===-=-⎧⎧⎧⎧⎨⎨⎨⎨--⎩⎩⎩⎩、、、共4组解。

3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A.3 B.3 C.3 D.3EBD解答:如图,做G H ⊥BE 于H ,易证Rt △AB E ∽Rt △GHB ,设GH=a ,则HE=a ,BH=2-a , 由GH BH a 2-a 2==a=AB BE 123得解得,故BG=3。

4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B )A .18-. B .0. C .1. D .98. 解答:44222222219=2=21=2()48a ab b a b a b ab a b ab ab +++-+-++--+2() 考查以ab 整体为自变量的函数的图像为抛物线219y=2()48ab --+其对称轴为14ab = 由22222020a b ab a b ab +-≥++≥和知1122ab -≤≤ 又1111()4242-->-,故当12ab =-时,函数取最小值0。

2012全国初中数学竞赛试题参考答案和评分标准(湖南卷)

2012全国初中数学竞赛试题参考答案和评分标准(湖南卷)

中国教育学会中学数学教学专业委员会2012年全国初中数学竞赛试题参考答案一、选择题 1.C 2.D 3.D 4.B 5.D二、填空题 6.8 7.7<x ≤19 8.8 9.32-10.223 三、解答题11.解: 因为当13x -<<时,恒有0y <,所以 23420m m ∆=+-+>()(), 即210m +>(),所以1m ≠-. …………(5分)当1x =-时,y ≤0;当3x =时,y ≤0,即 2(1)(3)(1)2m m -++-++≤0, 且233(3)2m m ++++≤0, 解得m ≤5-. …………(10分)设方程()()2320x m x m ++++=的两个实数根分别为12x x ,,由一元二次方程根与系数的关系得 ()121232x x m x x m +=-+=+,. 因为1211910x x +<-,所以 121239210x x m x x m ++=-<-+, 解得12m <-,或2m >-.因此12m <-. …………(20分)12.解:因为sin ∠ABC =45AO AB =,8AO =,所以 AB = 10.由勾股定理,得 BO6=.易知△ABO ≌△ACO , 因此 CO = BO = 6.于是A (0,-8),B (6,0),C (-6,0). 设点D 的坐标为(m ,n ),由S △COE = S △ADE ,得S △CDB = S △AOB . 所以 1122BC |n |=AO BO , 1112()8622n ⨯-=⨯⨯, 解得n =-4. 因此D 为AB 的中点,点 D 的坐标为(3,-4). …………(10分) 因此CD ,AO 分别为AB ,BC 的两条中线,点E 为△A BC的重心,所以点E 的坐标为),(380-. 设经过B ,C ,E 三点的抛物线对应的二次函数的解析式为y =a (x -6)(x +6). 将点E 的坐标代入,解得a =272. 故经过B ,C ,E 三点的抛物线对应的二次函数的解析式为 228273y x =-. …………(20分) 13. 证明:连接BD ,因为OB 为1O 的直径,所以90ODB ∠=︒.又因为DC DE =,所以△CBE 是等腰三角形. …………(5分)设BC 与1O 交于点M ,连接OM ,则90OMB ∠=︒.又因为OC OB =,所以 22BOC DOM DBC ∠=∠=∠12DBF DO F =∠=∠. …………(15分)又因为1BOC DO F ∠∠,分别是等腰△BOC ,等腰△1DO F 的顶角,所以△BOC ∽△1DO F . …………(20分)14.解:设a -b = m (m 是素数),ab = n 2(n 是正整数).因为 (a +b )2-4ab = (a -b )2,所以 (2a -m )2-4n 2 = m 2,(2a -m +2n )(2a -m -2n ) = m 2. …………(5分)因为2a -m +2n 与2a -m -2n 都是正整数,且2a -m +2n >2a -m -2n (m 为素数),所以2a -m +2n =m 2,2a -m -2n =1.解得:a =2(1)4m +,n =214m -. 于是 b = a -m =214m -(). ………(10分) 又a ≥2012,即2(1)4m +≥2012. 又因为m 是素数,解得m ≥89. 此时,a ≥41)(892+=2025. 当2025a =时,89m =,1936b =,1980n =.因此,a 的最小值为2025. …………(20分)。

全国初中数学联合竞赛试题及参考答案

全国初中数学联合竞赛试题及参考答案

2012年全国初中数学联合竞赛试卷参考答案及评分规范说明:评阅试卷时,请依据本评分规范.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分规范规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分规范划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为D C B A ,,,的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1.设213a a +=,213b b +=,且a b ≠,则代数式2211a b+的值为 ( ) )(A 5. )(B 7. )(C 9. )(D 11.【答】B .解 由题设条件可知2310a a -+=,2310b b -+=,且a b ≠,所以,a b 是一元二次方程2310x x -+=的两根,故3a b +=,1ab =,因此222222222211()23217()1a b a b ab a b a b ab ++--⨯+====. 故选B . 2.如图,设AD ,BE ,CF 为三角形ABC 的三条高,若6AB =,5BC =,3EF =,则线段BE 的长为 ( ) )(A 185. )(B 4. )(C 215. )(D 245. 【答】D . 解 因为AD ,BE ,CF 为三角形ABC 的三条高,易知,,,B C E F 四点共圆,于是△AEF ∽△ABC ,故35AF EF AC BC ==,即3cos 5BAC ∠=,所以4sin 5BAC ∠=. 在Rt △ABE 中,424sin 655BE AB BAC =∠=⨯=. 故选D . 3.从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是 ( ))(A 15. )(B 310. )(C 25. )(D 12. 【答】C . 解 能够组成的两位数有12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54,共20个,其中是3的倍数的数为12,15,21,24,42,45,51,54,共8个.所以所组成的数是3的倍数的概率是82205=. 故选C . 4.在△ABC 中,12ABC ∠=︒,132ACB ∠=︒,BM 和CN 分别是这两个角的外角平分线,且点,M N 分别在直线AC 和直线AB 上,则 ( ))(A BM CN >. )(B BM CN =.)(C BM CN <. )(D BM 和CN 的大小关系不确定.【答】B .解∵12ABC ∠=︒,BM 为ABC ∠的外角平分线,∴1(18012)842MBC ∠=︒-︒=︒. 又180********BCM ACB ∠=︒-∠=︒-︒=︒,∴180844848BMC ∠=︒-︒-︒=︒,∴BM BC =. 又11(180)(180132)2422ACN ACB ∠=︒-∠=︒-︒=︒, ∴18018012()BNC ABC BCN ACB ACN ∠=︒-∠-∠=︒-︒-∠+∠168(13224)=︒-︒+︒12ABC =︒=∠,∴CN CB =. 因此,BM BC CN ==.故选B .5.现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r ,则r 的最小值为 ( ))(A 39()8. )(B 49()8. )(C 59()8. )(D 98. 【答】B .解 容易知道,4天之后就可以出现5种商品的价格互不相同的情况.设5种商品降价前的价格为a ,过了n 天.n 天后每种商品的价格一定可以表示为98(110%)(120%)()()1010k n k k n k a a --⋅-⋅-=⋅⋅,其中k 为自然数,且0k n ≤≤. 要使r 的值最小,五种商品的价格应该分别为:98()()1010i n i a -⋅⋅,1198()()1010i n i a +--⋅⋅, 2298()()1010i n i a +--⋅⋅,3398()()1010i n i a +--⋅⋅,4498()()1010i n i a +--⋅⋅,其中i 为不超过n 的自然数. 所以r 的最小值为44498()()91010()988()()1010i n i i n ia a +---⋅⋅=⋅⋅. 故选B . 6. 已知实数,x y满足(2008x y =,则223233x y x y -+-2007-的值为 ( ))(A 2008-. )(B 2008. )(C 1-. )(D 1.【答】D .解∵(2008x y =,∴x y -==y x -==由以上两式可得x y =.所以2(2008x =,解得22008x =,所以22222323320073233200720071x y x y x x x x x -+--=-+--=-=.故选D .二、填空题(本题满分28分,每小题7分)1.设12a =,则5432322a a a a a a a+---+=-2-. 解∵221a a ===-,∴21a a +=, ∴543232323222()2()2a a a a a a a a a a a a a a a a+---++--++=-⋅- 33332221211(1)(11)2(1)1a a a a a a a a a a a--+--===-=-++=-+=-⋅----. 2.如图,正方形ABCD 的边长为1,,M N 为BD所在直线上的两点,且AM =135MAN ∠=︒,则四边形AMCN 的面积为52解 设正方形ABCD 的中心为O ,连AO ,则AO BD ⊥,2AO OB ==, 2MO ===,∴MB MO OB =-=又135ABM NDA ∠=∠=︒, 13590NAD MAN DAB MAB MAB ∠=∠-∠-∠=︒-︒-∠45=︒-MAB AMB ∠=∠,所以△ADN ∽△MBA ,故AD DN MB BA =,从而12AD DN BA MB =⋅==. 根据对称性可知,四边形AMCN 的面积115222222MAN S S MN AO ==⨯⨯⨯=⨯⨯=△. 3.已知二次函数2y x ax b =++的图象与x 轴的两个交点的横坐标分别为m ,n ,且1m n +≤.设满足上述要求的b 的最大值和最小值分别为p ,q ,则p q +=12解 根据题意,,m n 是一元二次方程20x ax b ++=的两根,所以m n a +=-,mn b =. ∵1m n +≤,∴1m n m n +≤+≤,1m n m n -≤+≤. ∵方程20x ax b ++=的判别式240a b ∆=-≥,∴22()1444a m n b +≤=≤. 22244()()()11b mn m n m n m n ==+--≥+-≥-,故14b ≥-,等号当且仅当12m n =-=时取得; 22244()()1()1b mn m n m n m n ==+--≤--≤,故14b ≤,等号当且仅当12m n ==时取得. 所以14p =,14q =-,于是12p q +=. 4.依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是 1 .解21到23,结果都只各占1个数位,共占133⨯=个数位;24到29,结果都只各占2个数位,共占2612⨯=个数位;210到231,结果都只各占3个数位,共占32266⨯=个数位;232到299,结果都只各占4个数位,共占468272⨯=个数位;2100到2316,结果都只各占5个数位,共占52171085⨯=个数位;此时还差2008(312662721085)570-++++=个数位.2317到2411,结果都只各占6个数位,共占695570⨯=个数位.所以,排在第2008个位置的数字恰好应该是2411的个位数字,即为1. 第二试 (A )一.(本题满分20分) 已知221a b +=,对于满足条件01x ≤≤的一切实数x ,不等式 (1)(1)()0a x x ax bx b x bx ------≥ (1)恒成立.当乘积ab 取最小值时,求,a b 的值.解 整理不等式(1)并将221a b +=代入,得 2(1)(21)0a b x a x a ++-++≥ (2)在不等式(2)中,令0x =,得0a ≥;令1x =,得0b ≥.易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式(2)对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥. 由方程组221,14a b ab ⎧+=⎪⎨=⎪⎩ (3) 消去b ,得42161610a a -+=,所以2a =2a =又因为0a ≥,所以4a =或4a =, 于是方程组(3)的解为,4a b ⎧=⎪⎪⎨⎪=⎪⎩或4a b ⎧=⎪⎪⎨⎪=⎪⎩所以ab 的最小值为14,此时,a b 的值有两组,分别为44a b ==44a b == 二.(本题满分25分) 如图,圆O 与圆D 相交于,A B 两点,BC为圆D 的切线,点C 在圆O 上,且AB BC =.(1)证明:点O 在圆D 的圆周上.(2)设△ABC 的面积为S ,求圆D 的的半径r 的最小值.解 (1)连,,,OA OB OC AC ,因为O 为圆心,AB BC =,所以△OBA ∽△OBC ,从而OBA OBC ∠=∠.因为,OD AB DB BC ⊥⊥,所以9090DOB OBA OBC DBO ∠=︒-∠=︒-∠=∠,所以DB DO =,因此点O 在圆D 的圆周上.(2)设圆O 的半径为a ,BO 的延长线交AC 于点E ,易知BE AC ⊥.设2AC y =(0)y a <≤,OE x =,AB l =,则222a x y =+,()S y a x =+,22222222()2222()aS l y a x y a ax x a ax a a x y=++=+++=+=+=.因为22ABC OBA OAB BDO ∠=∠=∠=∠,AB BC =,DB DO =,所以△BDO ∽△ABC ,所以BD BO AB AC=,即2r a l y =,故2al r y =. 所以22223222()4422a l a aS S a S r y y y y ==⋅=⋅≥,即r ≥其中等号当a y =时成立,这时AC 是圆O 的直径.所以圆D 的的半径r的最小值为2三.(本题满分25分)设a 为质数,b 为正整数,且29(2)509(4511)a b a b +=+ (1)求a ,b 的值.解 (1)式即2634511()509509a b a b ++=,设634511,509509a b a b m n ++==,则 509650943511m a n a b --== (2) 故351160n m a -+=,又2n m =,所以2351160m m a -+= (3)由(1)式可知,2(2)a b +能被509整除,而509是质数,于是2a b +能被509整除,故m 为整数,即关于m 的一元二次方程(3)有整数根,所以它的判别式251172a ∆=-为完全平方数.不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-. 由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解.②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解.③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =. ⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去. 综合可知251a =.此时方程(3)的解为3m =或5023m =(舍去). 把251a =,3m =代入(2)式,得5093625173b ⨯-⨯==. 第二试 (B )一.(本题满分20分)已知221a b +=,对于满足条件1,0x y xy +=≥的一切实数对(,)x y ,不等式 220ay xy bx -+≥(1)恒成立.当乘积ab 取最小值时,求,a b 的值.解 由1,0x y xy +=≥可知01,01x y ≤≤≤≤.在(1)式中,令0,1x y ==,得0a ≥;令1,0x y ==,得0b ≥.将1y x =-代入(1)式,得22(1)(1)0a x x x bx ---+≥,即2(1)(21)0a b x a x a ++-++≥(2)易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式(2)对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥. 由方程组 221,14a b ab ⎧+=⎪⎨=⎪⎩ (3)消去b ,得42161610a a -+=,所以224a -=或224a +=,又因为0a ≥,所以4a =或a =. 于是方程组(3)的解为4,4a b ⎧=⎪⎪⎨⎪=⎪⎩或,44a b ⎧=⎪⎪⎨⎪=⎪⎩所以满足条件的,a b 的值有两组,分别为a b ==a b == 二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设a 为质数,,b c 为正整数,且满足29(22)509(41022511)2a b c a b c b c ⎧+-=+-⎨-=⎩(1)(2) 求()a b c +的值.解 (1)式即2()509509=, 设66341022511,509509a b c a b c m n +-+-==,则 5096509423511m a n a b c ---== (3) 故351160n m a -+=,又2n m =,所以 2351160m m a -+= (4)由(1)式可知,2(22)a b c +-能被509整除,而509是质数,于是22a b c +-能被509整除,故m 为整数,即关于m 的一元二次方程(4)有整数根,所以它的判别式251172a ∆=-为完全平方数.不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-. 由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解. ②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解.③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =.⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =,此时方程(4)的解为3m =或5023m =(舍去). 把251a =,3m =代入(3)式,得50936251273b c ⨯-⨯-==,即27c b =-. 代入(2)式得(27)2b b --=,所以5b =,3c =,因此()251(53)2008a b c +=⨯+=.2009年全国初中数学联合竞赛试卷参考答案第一试一、选择题(本题满分42分,每小题7分)1.设1a =,则32312612a a a +--= ( A )A.24.B. 25.C. 10.D. 12.2.在△ABC 中,最大角∠A 是最小角∠C 的两倍,且AB =7,AC =8,则BC = ( C )A. B. 10.C.D.3.用[]x 表示不大于x 的最大整数,则方程22[]30x x --=的解的个数为 ( C )A.1.B. 2.C. 3.D. 4.4.设正方形ABCD 的中心为点O ,在以五个点A 、B 、C 、D 、O 为顶点所构成的所有三角形中任意取出两个,它们的面积相等的概率为 ( B )A.314. B. 37. C. 12. D. 47.5.如图,在矩形ABCD 中,AB =3,BC =2,以BC 为直径在矩形内作半圆,自点A 作半圆的切线AE ,则sin ∠CBE = ( D )A.3B. 23. C. 13.D. 10.6.设n 是大于1909的正整数,使得19092009n n--为完全平方数的n 的个数是 ( B )A.3.B. 4.C. 5.D. 6.二、填空题(本题满分28分,每小题7分)1.已知t 是实数,若,a b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则22(1)(1)a b --的最小值是_____3-_______.2. 设D 是△ABC 的边AB 上的一点,作DE//BC 交AC 于点E ,作DF//AC 交BC 于点F ,已知△ADE 、△DBF 的面积分别为m 和n ,则四边形DECF 的面积为______.3.如果实数,a b 满足条件221a b +=,22|12|21a b a b a -+++=-,则a b +=__1-____.4.已知,a b是正整数,且满足是整数,则这样的有序数对(,)a b 共有___7__对. 第二试DC一.(本题满分20分)已知二次函数2(0)y x bx c c =++<的图象与x 轴的交点分别为A 、B ,与y 轴的交点为C.设△ABC 的外接圆的圆心为点P.(1)证明:⊙P 与y 轴的另一个交点为定点.(2)如果AB 恰好为⊙P 的直径且2ABC S △=,求b 和c 的值.解 (1)易求得点C 的坐标为(0,)c ,设1A(,0)x ,2B(,0)x ,则12x x b +=-,12x x c =.设⊙P 与y 轴的另一个交点为D ,由于AB 、CD 是⊙P 的两条相交弦,它们的交点为点O ,所以O A ×OB =O C ×OD ,则121x x c OA OB OD OC c c⨯====.因为0c <,所以点C 在y 轴的负半轴上,从而点D 在y 轴的正半轴上,所以点D 为定点,它的坐标为(0,1).(2)因为AB ⊥C D ,如果AB 恰好为⊙P 的直径,则C 、D 关于点O 对称,所以点C 的坐标为(0,1)-, 即1c =-.又12AB x x =-===1122ABC S AB OC =⋅==△,解得b =±.二. (本题满分25分) 已知△ABC 中,∠ACB =90°,AB 边上的高线CH 与△ABC 的两条内角平分线 AM 、BN 分别交于P 、Q 两点.PM 、QN 的中点分别为E 、F.求证:EF ∥AB.NB解 因为BN 是∠ABC 的平分线,所以ABN CBN ∠=∠.又因为C H ⊥AB ,所以CQN BQH 90ABN 90CBN CNB ∠=∠=︒-∠=︒-∠=∠, 因此CQ NC =.又F 是QN 的中点,所以C F ⊥QN ,所以CFB 90CHB ∠=︒=∠,因此C 、F 、H 、B 四点共圆.又FBH =FBC ∠∠,所以FC =FH ,故点F 在CH 的中垂线上. 同理可证,点E 在CH 的中垂线上. 因此E F ⊥CH.又AB ⊥CH ,所以EF ∥AB.三.(本题满分25分)已知,,a b c 为正数,满足如下两个条件:32a b c ++=①14b c a c a b a b c bc ca ab +-+-+-++=②. 解法1 将①②两式相乘,得()()8b c a c a b a b ca b c bc ca ab+-+-+-++++=, 即222222()()()8b c a c a b a b c bc ca ab +-+-+-++=, 即222222()()()440b c a c a b a b c bc ca ab +-+-+--+-+=, 即222222()()()0b c a c a b a b c bc ca ab----+-++=, 即()()()()()()0b c a b c a c a b c a b a b c a b c bc ca ab-+---+--+++-++=,即()[()()()]0b c a a b c a b c a b c a b c abc -+----++++=,即222()[2]0b c a ab a b c abc -+--+=,即22()[()]0b c a c a b abc -+--=,即()()()0b c a c a b c a b abc-++--+=, 所以0b c a -+=或0c a b +-=或0c a b -+=,即b a c +=或c a b +=或c b a +=.90°.解法2 结合①式,由②式可得32232232214a b c bc ca ab ---++=, 变形,得222110242()4a b c abc -++=③又由①式得2()1024a b c ++=,即22210242()a b c ab bc ca ++=-++,代入③式,得110242[10242()]4ab bc ca abc --++=, 即16()4096abc ab bc ca =++-.3(16)(16)(16)16()256()16a b c abc ab bc ca a b c ---=-+++++-3409625632160=-+⨯-=,所以16a =或16b =或16c =.结合①式可得b a c +=或c a b +=或c b a +=.90°.2010年全国初中数学联合竞赛试卷参考答案第一试一、选择题:(本题满分42分,每小题7分) 1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-= ( B )A .1.B .2.C .3.D .4.2.若实数,,a b c 满足等式3||6b =,9||6b c =,则c 可能取的最大值为 ( C ) A .0.B .1. C .2. D .3.3.若b a ,是两个正数,且,0111=+-+-ab b a 则 ( C ) A .103a b <+≤.B .113a b <+≤. C .413a b <+≤. D .423a b <+≤.4.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( A ) A .-13.B .-9. C .6. D . 0.5.在△ABC 中,已知︒=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且︒=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB ( B )A .15°.B .20°.C .25°.D .30°.6.对于自然数n ,将其各位数字之和记为n a ,如2009200911a =+++=,201020103a =+++=,则12320092010a a a a a +++++= ( D )A .28062.B .28065.C .28067.D .28068.二、填空题:(本题满分28分,每小题7分)1.已知实数,x y 满足方程组3319,1,x y x y ⎧+=⎨+=⎩则22x y +=13.2.二次函数c bx x y ++=2的图象与x 轴正方向交于A ,B 两点,与y 轴正方向交于点C .已知AC AB 3=,︒=∠30CAO ,则c =19.3.在等腰直角△ABC 中,AB =BC =5,P 是△ABC 内一点,且PA PC =5,则PB =. 4.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放____15___个球.第二试 (A )一.(本题满分20分)设整数,,a b c (a b c ≥≥)为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数. 解 由已知等式可得222()()()26a b b c a c -+-+-=①令,a b m b c n -=-=,则a c m n -=+,其中,m n 均为自然数. 于是,等式①变为222()26m n m n +++=,即2213m n mn ++=②由于,m n 均为自然数,判断易知,使得等式②成立的,m n 只有两组:3,1m n =⎧⎨=⎩和1,3.m n =⎧⎨=⎩(1)当3,1m n ==时,1b c =+,34a b c =+=+.又,,a b c 为三角形的三边长,所以b c a +>,即(1)4c c c ++>+,解得3c >.又因为三角形的周长不超过30,即(4)(1)30a b c c c c ++=++++≤,解得253c ≤.因此2533c <≤,所以c 可以取值4,5,6,7,8,对应可得到5个符合条件的三角形.(2)当1,3m n ==时,3b c =+,14a b c =+=+.又,,a b c 为三角形的三边长,所以b c a +>,即(3)4c c c ++>+,解得1c >.又因为三角形的周长不超过30,即(4)(3)30a b c c c c ++=++++≤,解得233c ≤.因此2313c <≤,所以c 可以取值2,3,4,5,6,7,对应可得到6个符合条件的三角形.综合可知:符合条件且周长不超过30的三角形的个数为5+6=11.二.(本题满分25分)已知等腰三角形△ABC 中,AB =AC ,∠C 的平分线与AB 边交于点P ,M 为△ABC 的内切圆⊙I 与BC 边的切点,作MD//AC ,交⊙I 于点D.证明:PD 是⊙I 的切线. 证明过点P 作⊙I 的切线PQ (切点为Q )并延长,交BC 于点N. 因为CP 为∠ACB 的平分线,所以∠ACP =∠BCP. 又因为PA 、PQ 均为⊙I 的切线,所以∠APC =∠NPC. 又CP 公共,所以△ACP ≌△NCP ,所以∠PAC =∠PNC.由NM =QN ,BA =BC ,所以△QNM ∽△BAC ,故∠NMQ =∠ACB ,所以MQ//AC.又因为MD//AC ,所以MD 和MQ 为同一条直线.又点Q 、D 均在⊙I 上,所以点Q 和点D 重合,故PD 是⊙I 的切线.三.(本题满分25分)已知二次函数2y x bx c =+-的图象经过两点P (1,)a ,Q (2,10)a . (1)如果,,a b c 都是整数,且8c b a <<,求,,a b c 的值.(2)设二次函数2y x bx c =+-的图象与x 轴的交点为A 、B ,与y 轴的交点为C.如果关于x 的方程20x bx c +-=的两个根都是整数,求△ABC 的面积.解 点P (1,)a 、Q (2,10)a 在二次函数2y x bx c =+-的图象上,故1b c a +-=,4210a c a +-=, 解得93b a =-,82c a =-.(1)由8c b a <<知8293,938,a a a a -<-⎧⎨-<⎩解得13a <<.NC A又a 为整数,所以2a =,9315b a =-=,8214c a =-=. (2) 设,m n 是方程的两个整数根,且m n ≤.由根与系数的关系可得39m n b a +=-=-,28mn c a =-=-,消去a ,得98()6mn m n -+=-, 两边同时乘以9,得8172()54mn m n -+=-,分解因式,得(98)(98)10m n --=.所以981,9810,m n -=⎧⎨-=⎩或982,985,m n -=⎧⎨-=⎩或9810,981,m n -=-⎧⎨-=-⎩或985,982,m n -=-⎧⎨-=-⎩解得1,2,m n =⎧⎨=⎩或10,913,9m n ⎧=⎪⎪⎨⎪=⎪⎩或2,97,9m n ⎧=-⎪⎪⎨⎪=⎪⎩或1,932,3m n ⎧=⎪⎪⎨⎪=⎪⎩ 又,m n 是整数,所以后面三组解舍去,故1,2m n ==.因此,()3b m n =-+=-,2c mn =-=-,二次函数的解读式为232y x x =-+. 易求得点A 、B 的坐标为(1,0)和(2,0),点C 的坐标为(0,2),所以△ABC 的面积为1(21)212⨯-⨯=. 第二试 (B )一.(本题满分20分)设整数,,a b c 为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数(全等的三角形只计算1次). 解 不妨设a b c ≥≥,由已知等式可得222()()()26a b b c a c -+-+-=①令,a b m b c n -=-=,则a c m n -=+,其中,m n 均为自然数. 于是,等式①变为222()26m n m n +++=,即2213m n mn ++=②由于,m n 均为自然数,判断易知,使得等式②成立的,m n 只有两组:3,1m n =⎧⎨=⎩和1,3.m n =⎧⎨=⎩ (1)当3,1m n ==时,1b c =+,34a b c =+=+.又,,a b c 为三角形的三边长,所以b c a +>,即(1)4c c c ++>+,解得3c >.又因为三角形的周长不超过30,即(4)(1)30a b c c c c ++=++++≤,解得253c ≤.因此2533c <≤,所以c 可以取值4,5,6,7,8,对应可得到5个符合条件的三角形.(2)当1,3m n ==时,3b c =+,14a b c =+=+.又,,a b c 为三角形的三边长,所以b c a +>,即(3)4c c c ++>+,解得1c >.又因为三角形的周长不超过30,即(4)(3)30a b c c c c ++=++++≤,解得233c ≤.因此2313c <≤,所以c 可以取值2,3,4,5,6,7,对应可得到6个符合条件的三角形.综合可知:符合条件且周长不超过30的三角形的个数为5+6=11.二.(本题满分25分)题目和解答与(A )卷第二题相同. 三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同. 二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设p 是大于2的质数,k 为正整数.若函数4)1(2-+++=p k px x y 的图象与x 轴的两个交点的横坐标至少有一个为整数,求k 的值.解 由题意知,方程04)1(2=-+++p k px x 的两根21,x x 中至少有一个为整数. 由根与系数的关系可得4)1(,2121-+=-=+p k x x p x x ,从而有p k x x x x x x )1(4)(2)2)(2(212121-=+++=++①(1)若1k =,则方程为0)2(22=-++p px x ,它有两个整数根2-和2p -. (2)若1k >,则01>-k .因为12x x p +=-为整数,如果21,x x 中至少有一个为整数,则21,x x 都是整数. 又因为p 为质数,由①式知2|1+x p 或2|2+x p .不妨设2|1+x p ,则可设12x mp +=(其中m 为非零整数),则由①式可得212k x m-+=, 故121(2)(2)k x x mp m -+++=+,即1214k x x mp m-++=+. 又12x x p +=-,所以14k p mp m--+=+,即41)1(=-++mk p m ②如果m 为正整数,则(1)(11)36m p +≥+⨯=,10k m ->,从而1(1)6k m p m-++>,与②式矛盾. 如果m 为负整数,则(1)0m p +<,10k m -<,从而1(1)0k m p m-++<,与②式矛盾.因此,1>k 时,方程04)1(2=-+++p k px x 不可能有整数根. 综上所述,1=k .。

2012全国初中数学竞赛试题及答案(安徽赛区)

2012全国初中数学竞赛试题及答案(安徽赛区)

2012全国初中数学竞赛试题附答案(安徽赛区)说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1、如果2a =-11123a+++的值为【 】(A)(B(C )2 (D)2、 在平面直角坐标系xOy 中,满足不等式y x y x 2222+≤+的整数点坐标(x ,y )的个数为【 】 (A )10 (B )9 (C )7 (D )53、如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为【 】(A )23 (B )4 (C )52 (D )4.54、如果关于x 的方程20x px q p q --=(,是正整数)的正根小于3,那么这样的方程的个数是【 】 (A ) 5 (B ) 6 (C ) 7 (D ) 85、黑板上写有1,12,13,…,1100共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是【 】 (A )2012 (B )101 (C )100 (D )99 二、填空题(共5小题,每小题7分,共35分)6、如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7、如图,⊙O 的半径为20,A 是⊙O 上一点.以OA 为对角线作矩形OBAC ,且12OC =.延长BC ,与⊙O 分别交于D E ,两点,则CE BD -的值等于 285 ..8、设n 为整数,且1≤n ≤2012. 若22(3)(3)n n n n -+++能被5整除,则所有n 的个数为 .9、如果正数x ,y ,z 可以是一个三角形的三边长,那么称x y z (,,)是三角形数.若a b c (,,)和111a b c(,,)均为三角形数,且a ≤b ≤c ,则ac的取值范围是 .10、已知n 是偶数,且1≤n ≤100.若有唯一的正整数对a b (,)使得22a b n =+成立,则这样的n 的个数为 .三、解答题(共4题,每题20分,共80分)11、如图,在平面直角坐标系xOy 中,8AO =,AB AC =,4sin 5ABC ∠=.CD 与y 轴交于点E ,且COE ADE S S =△△.已知经过B ,C ,E 三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.12、如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心. 求证:(1)OI是△IBD的外接圆的切线;(2)AB+AD=2BD.13、给定一个正整数n,凸n边形中最多有多少个内角等于150︒?并说明理由.,,(可以相同)使14、将2,3,…,n(n≥2)任意分成两组,如果总可以在其中一组中找到数a b c=,求n的最小值.得b a c2012全国初中数学竞赛答案(安徽赛区)1. 解:B ∵213+=+a ∴1231-=+a ,12312+=++a,123121-=++a因此原式=22. 解:B 解法一:y x y x 2222+≤+化为()()21122≤-+-y x3. 4解:图,以CD 为边作等边△CDE ,连接AE . 由于AC = BC ,CD = CE ,4. 解:C ∵p 、q 是正整数∴042>+=∆q p ,021<-=⋅q x x ∴正根为3242<++qp p解得p q 39-<∴⎩⎨⎧==11q p ,⎩⎨⎧==21q p ,⎩⎨⎧==31q p ,⎩⎨⎧==41q p ,⎩⎨⎧==51q p ,⎩⎨⎧==12q p ,⎩⎨⎧==22q p5.解:C 1)1)(1(-++=++b a ab b a ∵计算结果与顺序无关∴顺次计算得:21)121)(11(=-++,31)131)(12(=-++,41)141)(13(=-++,…… 1001)11001)(199(=-++6. 解:7在910111=+++++a c c b b a 两边乘以9=++c b a 得103=++++++ac bc b a b a c 即7=+++++ac b c b a b a c 7. 解:如图,设DE 的中点为M ,连接OM ,则OM DE ⊥.因为16OB ==,所以161248205OB OC OM BC ⋅⨯===,366455CM BM ===,. CE BD EM CM DM BM -=---()()643655BM CM =-=-285= 8. 解:1600()()()953332422222++=-+=+++-n n n n n n n n因此9|54+n ,所以)5(mod 14≡n ,因此25k ,15±±=或k n 240252012⋯⋯=÷所以共有2012-402=1600个数9. 解:1253≤<-ca依题意得:⎪⎩⎪⎨⎧>+>+ac b c b a 111,所以a c b ->,代入(2)得ca c cb a 11111+-<+<,两边乘以a 得 c a a c a +-<1即ac ac a c -<-化简得0322<+-c ac a ,两边除以2c 得 0132<+-⎪⎭⎫⎝⎛c a c a 所以253253+<<-c a 另一方面:a ≤b ≤c ,所以1≤c a 综合得1253≤<-c a10.解:依题意得()()b a b a b a n -+=-=22 由于n 是偶数,a+b 、a-b 同奇偶,所以n 是4的倍数当1≤n ≤100时,4的倍数共有25个 但是224⨯=,6412224⨯=⨯=,8416232⨯=⨯=,10420240⨯=⨯=,8612424248⨯=⨯=⨯=,14428256⨯=⨯=,10630260⨯=⨯=,16432264⨯=⨯= 12618436272⨯=⨯=⨯=,10820440280⨯=⨯=⨯=,22444288⨯=⨯= 12816624448296⨯=⨯=⨯=⨯=这些不符合要求,因此这样的n 有25-12=13个 11. 解:因为sin ∠ABC =45AO AB =,8AO =,所以AB = 10.由勾股定理,得6BO ==.易知ABO ACO △≌△, 因此 CO = BO = 6.于是(08)A -,,(60)B ,,(60)C -,.设点D 的坐标为()m n ,.由C O E A D E S S =△△,得C D B A O B S S =△△. 所以1122BC n AO BO ⋅=⋅,1112()8622n ⨯-=⨯⨯.解得 4n =-. 因此D 为AB 的中点,点 D 的坐标为(34)-,.因此CD ,AO 分别为AB ,BC 的两条中线,点E 为△ABC 的重心,所以点E 的坐标为8(0)3-,. 设经过B ,C ,E 三点的抛物线对应的二次函数的解析式为(6)(6)y a x x =-+.将点E 的坐标代入,解得a =272. 故经过B ,C ,E 三点的抛物线对应的二次函数的解析式为228273y x =-. 12. (1)如图,根据三角形内心的性质和同弧上圆周角的性质知CID IAD IDA ∠=∠+∠,CDI CDB BDI BAC IDA IAD IDA ∠=∠+∠=∠+∠=∠+∠.所以CID CDI ∠=∠, CI = CD . 同理,CI = CB .故点C 是△IBD 的外心.连接OA ,OC ,因为I 是AC 的中点,且OA = OC ,所以OI ⊥AC ,即OI ⊥CI .故OI 是△IBD 外接圆的切线.(2)如图,过点I 作IE ⊥AD 于点E ,设OC 与BD 交于点F .由 BCCD =,知OC ⊥BD . 因为∠CBF =∠IAE ,BC = CI = AI ,所以Rt BCF Rt AIE △≌△.所以BF = AE .又因为I 是△ABD 的内心,所以22AB AD BD AE BD BD BF BD +-=+-==.故2A B A D BD +=. 14. 解:当1621n =-时,把23n , , ,分成如下两个数组:{}88162322121+- , , , , , 和{}84521- , , , . 在数组{}88162322121+- , , , , , 中,由于38821632221<>-(,), 所以其中不存在数a b c ,,,使得ba c =.在数组{}84521- , , , 中,由于48421>-, 所以其中不存在数a b c ,,,使得ba c =. 所以,162n ≥. 下面证明当162n =时,满足题设条件.不妨设2在第一组,若224=也在第一组,则结论已经成立.故不妨设224=在第二组. 同理可设4842=在第一组,8216(2)2=在第二组.此时考虑数8.如果8在第一组,我们取8282a b c ===,,,此时ba c =;如果8在第二组,我们取16482abc ===,,,此时b a c =.综上,162n =满足题设条件. 所以,n 的最小值为162.注:也可以通过考虑2,4,16,256,65536的分组情况得到n 最小值为65536.。

2012年全国初中数学联合竞赛试题及解答

2012年全国初中数学联合竞赛试题及解答
2 2
又 c a ( 6 2) ( 2 1) 6 ( 2 1) ,而 ( 6) ( 2 1) 3 2 2 0 .所 以 6
2 1 ,故 c a .因此 b a c .
2.方程 x 2 xy 3 y 34 的整数解 ( x, y ) 的组数为(
因为 2 | ab | a b 1 ,所以
2 2
因此 a ab b 的最小值为 0,当 a
4 4
2 2 2 2 或a 时取得. ,b ,b 2 2 2 2
5.若方程 x 2 px 3 p 2 0 的两个不相等的实数根 x1 , x2 满足 x1 x1 4 ( x2 x2 ) ,
2
验证可知: b 因此, t 1 . 方法二:由 a
1 a 1 1 a 1 时 t 1; b 时 t 1 . ,c ,c 1 a a 1 a a
1 1 bc . b 可得 bc b c a b ca a b 同理可得: ca , ab . bc ca
1
) D.
6 3
B.
5 3
C.
2 6 3
2 5 3
易知 BG:GH=2:1,所以 BG =
2 2 5 BH 3 3
A F
D G
H
B
2 2 4
C
4
P
E

4.已知实数 a, b 满足 a b 1 ,则 a ab b 的最小值为 ( A. 【答】B.
1 . 8
B.0.
C.1.
D.
m 2
m 2
设 n 2k 1 (其中 k 是正整数) ,则 5 2 4k (k 1) ,即 5 2

全国初中数学联合竞赛试题(含解析)

全国初中数学联合竞赛试题(含解析)

全国2012年初中数学联合竞赛试题(含解析)一、选择题:(本题满分42分,每小题7分)1.已知1a =,b =,2c =,那么,,a b c 的大小关系是( )A. a b c <<B. a c b <<C. b a c <<D.b c a <<2.方程222334x xy y ++=的整数解(,x y 的组数为( )A .3.B .4.C .5.D .6.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( )A D 4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为( )A .18-. B .0. C .1. D .98. 5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p的所有可能的值之和为( )A .0.B .34-. C .1-. D .54-. 6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有( )A .36个.B .40个.C .44个.D .48个. 二、填空题:(本题满分28分,每小题7分)7.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =_________. 8.使得521m⨯+是完全平方数的整数m 的个数为 .9.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP= .10.已知实数,,a b c满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++= .第二试 (A)一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积.二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D.证明:2AD BD CD =⋅.三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM//BC ,求抛物线的解析式.一、选择题:(本题满分42分,每小题7分)1.已知1a =,b =,2c =,那么,,a b c 的大小关系是( )A. a b c <<B. a c b <<C. b a c <<D.b c a <<2.方程222334x xy y ++=的整数解(,x y 的组数为( )A .3.B .4.C .5.D .6.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( )A D连接BD ,易知∠BDC =∠EDC =45°,所以∠BDE =90°.又BD BG ==.4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为( )A .18-. B .0. C .1. D .98.5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p的所有可能的值之和为( )A .0.B .34-. C .1-. D .54-.因此,实数p 的所有可能的值之和为12330()44p p +=+-=-.6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有( )A .36个.B .40个.C .44个.D .48个.二、填空题:(本题满分28分,每小题7分) 7.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =_________.8.使得521m⨯+是完全平方数的整数m 的个数为 . 【答案】 1.【解析】设2521mn ⨯+=(其中n 为正整数),则2521(1)(1)m n n n ⨯=-=+-,显然n 为奇数,设21n k =-(其中k 是正整数),则524(1)mk k ⨯=-,即252(1)m k k -⨯=-.10.已知实数,,a b c满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++= .因此,222233()2()2a b c a b c ab bc ac ++=++-++=. 实际上,满足条件的,,a b c 可以分别为11,,422-.第二试 (A)一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积.二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D.证明:2AD BD CD =⋅.三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM//BC ,求抛物线的解析式.。

(整理)全国初中数学联赛试题参考答案和评分标准

(整理)全国初中数学联赛试题参考答案和评分标准

2012年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准•第一试,选择题和填空题只设7分和0分两档;第二试各题, 请按照本评分标准规定的评分档次给分•如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数•第一试一、选择题:(本题满分42分,每小题7分)1.已知2012 , b:=,3- .2 , c:=,6- 2,那么a,b,c的大小关系是( )A. a< b< cB. a < c< bC. b< a< cD.b< c< a 【答】C.1 _因为一二\ 2 + 1,=3 +、、2 ,1 1 l所以0 ,故b a .又c-a = (、.-2) -1)―飞a b a b(、,2 1),而(、.6)2 -(.2 1)2=3 -0,所以,6.21,故c a.因此b ::a : c.2 22.方程x 2xy 3y =34的整数解(x, y)的组数为()A . 3.B . 4. C. 5. D . 6.【答】B.方程即(x y)2 2y2 =34 ,显然x y必须是偶数,所以可设x,y=2t,则原方程变为2 2I t = 2,2t2 y2 =17 ,它的整数解为'从而可求得原方程的整数解为(x,y)= (-7,3), (1,3), (7,-3),ly v,3.已知正方形ABCD勺边长为1, E为BC边的延长线上一点, BF 并延长与线段DE交于点G,贝U BG的长为A .迈3【答】D.过点C作CP//BG,交DE于点P.因为BC= CE= 1,所以CP是△ BEG 的中位线,所以P为EG的中点.又因为AD= CE= 1 , AD//CE,所以△ ADF^A ECF,所以CF= DF,又CP//FG ,所以FG是厶DCP的中位线,所以G为DP的中点.1 寸2因此DG = GP= PE= — DE =——3 3连接BD,易知/ BDC=Z EDC= 45°,所以/ BDE= 90 °又BD= J2,所以BG= J BD 2+ DG 2= ^2^~ ¥934.已知实数a, b满足a2 b2 =1,则a4 ab b4的最小值为CE= 1,连接AE,与CD交于点F,连接()C.19A ..B . 0.C . 1.D .—.8 8【答】B.4422222221 2 9 a 4ab b 4=(a 2 b 2)-2a 2b 2 - ab =1 -2a 2b 2ab 二-2(ab_—)2—.4 8”221 1 3 1 1 1 29因为2|ab^a b =1,所以ab ,从而 ab,故0乞(ab ),因此2 244 44 161?99 亦 44 90 _ -2(ab ),即 0 _ a ab b 488 8因此a 4ab b 4的最小值为0,当a2,b2或a 2, b 2时取得.2 2 2 22323X 1,X 2 满足 X 1 X 1 =4-(X 2 - X 2),则实数 p的所有可能的值之和为3 A . 0.B ..4【答】B.2 2 2 2x-i x 2 = (x , x 2) _2片 x 2 = 4 p 6p 4 , x ; x ; =(x 「x 2)[(x 1 - x 2)2-3捲 x 2] = -2p(4 p 29p ■ 6).2323223322又由 X 1 X 1 =4-(X 2 X 2)得 X 1 X 2 =4 -(X 1 X 2),所以 4p 2 6p 4 = 4 2p(4p 2 9 p 6),3所以 p(4p 3)( p 1)=0,所以 5 =0, p 2 二一3, p 3=—1.43代入检验可知:p 1 =0, p 2均满足题意,p 3 =-1不满足题意.433因此,实数p 的所有可能的值之和为p 1 p^ 0 ().44abcd (数字可重复使用),要求满足a ^b d .这样的四5.若方程x 2 • 2px -3p -2 =0的两个不相等的实数根 C . -1.由一元二次方程的根与系数的关系可得 X 1 X 2 = -2p ,论 x 2 = -3 p - 2,所以6.由1 , 2, 3, 4这四个数字组成四位数 位数共有A . 36 个.B . 40 个.【答】C.根据使用的不同数字的个数分类考虑: (1) 只用1个数字,组成的四位数可以是 (2) 使用2个不同的数字,使用的数字有( )C . 44 个.D . 48 个. 1111, 2222, 3333, 4444,共有 4 个.6 种可能(1、2, 1、3, 1、4, 2、3, 2、4, 3、4).如果使用的数字是1、2,组成的四位数可以是1122, 1221, 2112, 2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6X 4= 24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232 , 2123,2321 , 3212, 2343, 3234, 3432, 4323,共有8 个.(4)使用4个不同的数字1 , 2, 3, 4,组成的四位数可以是1243, 1342, 2134 , 2431 , 3124 , 3421 , 4213 , 4312 ,共有8 个.因此,满足要求的四位数共有 4 + 24+ 8+ 8= 44个. 二、填空题:(本题满分28分,每小题7分)1 1 1 1. ___________________________________________________________________ 已知互不相等的实数 a,b,c 满足a +—= b +—= c +—= t ,贝U t= _________________________________ .bca【答】_1.1 1 1 11 由a t 得b ,代入b t 得 t ,整理得ct 2-(ac T )t • (a-c ) =0①b t -ac t -a c 1 2 2 2又由c t 可得ac •仁at ,代入①式得ct -at ・(a -c )=:0,即(c-a )(t -1)=0,又c = a ,a所以t 2 -1 =0,所以t验证可知:b 匚山二口 时t -1; b J,c = -L 时t =-1.因此,t =T .1-a a 1 +a a2. 使得5 2m 1是完全平方数的整数 m 的个数为 ____________ . 【答】1.设5 2m ,1= n 2 (其中n 为正整数),则5 2m = n 2-1=(n ,1)(n-1),显然n 为奇数,设n = 2k-1 (其中 k 是正整数),则 5 2m =4k (k -1),即 5 2m ,=k (k -1).因此,满足要求的整数 m 只有1个.因为 a 2 —3a -1 =a 2 —3a abc =a(bc a - 3) = a(bc — b — c 1) = a(b —1)(c-1),所以显然k 1,此时k 和k -1互质,所以L 严或L m.k-1=1, k-1=2「k = 2m_2或 ’解得k =5,m = 4.k-1=5,3.在厶 ABC 中,已知 AB = AC ,/ A = 40 P 为 AB 上一点,/ ACP = 20°,则匹AP【答】、、3 .设D 为BC 的中点,在△ ABC 外作/ CAE = 20°,则/ BAE = 60° . 1 作 CEL AE, PF 丄 AE,则易证△ ACE^A ACD 所以 CE= CD= - BC.2J31又 PF = PA sin / BAE = PA S in 60°= AP, PF = CE 所以AP = BC2 2 2因此匕BC =丿3 .AP4.已知实数 a,b,c 满足 abc - -1 , a b 4 ,a b — a - 3a -1 b - 3b -1 c - 3c -1c 2【答3322a -3a -1 (b-1)(c-1)1c1,~2=(a -1)(c-1) c -3c-1 (a-1)(b-1)4所以—(a -1)(b -1)(c -1) =(a -1) (b -1) (c-1).91 结合 abc = -1, a b c = 4,可得 ab bc ac . 4 222 233 因此,a b c = (a ■ b c) -2(ab bc ac) .21 1实际上,满足条件的 a,b,c 可以分别为 ,一,4.2 2第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为 解 设直角三角形的三边长分别为a,b,c ( aEbcc ),贝U a + b + c = 30.显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由 a _b : c 及 a b c =30得 30 二a b c : 3c ,所以 c 10. 由 a b c 及a b c =30得 30 = a b c 2c ,所以 c :: 15. 又因为c 为整数,所以11乞C 乞14........................... 5分根据勾股定理可得 a 2 b^c 2,把c =30-a -b 代入,化简得ab-30(a b) 45^ 0 ,所以2 2(30 -a)(30-b) =450 =2 3 5 ,........................ 10分30 - a = 52,1 a = 5,因为a,b 均为整数且a 兰b ,所以只可能是2解得彳............... 15分[30 —b = 2汽32,lb = 12. 169所以,直角三角形的斜边长 C =13,三角形的外接圆的面积为 竺二................ 20分4.. 2•(本题满分25分)如图,PA 为。

2012年全国初中数学竞赛试题(正题)参考答案

2012年全国初中数学竞赛试题(正题)参考答案

2012年全国初中数学竞赛试题(正题)参考答案一、选择题1(甲).C解:由实数a,b,c在数轴上的位置可知,且,所以.1(乙).B解:.2(甲).D解:由题设知,,,所以.解方程组得所以另一个交点的坐标为(3,2).注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).2(乙).B解:由题设x2+y2≤2x+2y,得0≤≤2.因为均为整数,所以有解得以上共计9对.3(甲).D解:由题设知,,所以这四个数据的平均数为,中位数为,于是.3(乙).B解:如图,以CD为边作等边△CDE,连接AE.(第3(乙)题)由于AC = BC,CD = CE,∠BCD=∠BCA+∠ACD=∠DCE+∠ACD =∠ACE,所以△BCD≌△ACE,BD = AE.又因为,所以.在Rt△中,于是DE=,所以CD = DE = 4.4(甲).D解:设小倩所有的钱数为x元、小玲所有的钱数为y元,均为非负整数. 由题设可得消去x得(2y-7)n = y+4,2n =.因为为正整数,所以2y-7的值分别为1,3,5,15,所以y的值只能为4,5,6,11.从而n的值分别为8,3,2,1;x的值分别为14,7,6,7.4(乙).C解:由一元二次方程根与系数关系知,两根的乘积为,故方程的根为一正一负.由二次函数的图象知,当时,,所以,即. 由于都是正整数,所以,1≤q≤5;或,1≤q≤2,此时都有. 于是共有7组符合题意.5(甲).D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以,因此最大.5(乙).C解:因为,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为,则,解得,.二、填空题6(甲).7<x≤19解:前四次操作的结果分别为3x-2,3(3x-2)-2 = 9x-8,3(9x-8)-2 = 27x-26,3(27x-26)-2 = 81x-80.由已知得27x-26≤487,81x-80>487.解得7<x≤19.容易验证,当7<x≤19时,≤487 ≤487,故x的取值范围是7<x≤19. 6(乙).7解:由已知可得.7(甲).8解:连接DF,记正方形的边长为2. 由题设易知△∽△,所以,由此得,所以.(第7(甲)题)在Rt△ABF中,因为,所以,于是.由题设可知△ADE≌△BAF,所以,.于是,,.又,所以.因为,所以.7(乙).解:如图,设的中点为,连接,则.因为,所以,.(第7(乙)题)所以.8(甲).解:根据题意,关于x的方程有=k2-4≥0,由此得 (k-3)2≤0.又(k-3)2≥0,所以(k-3)2=0,从而k=3. 此时方程为x2+3x+=0,解得x1=x2=.故==.8(乙).1610解:因为==.当被5除余数是1或4时,或能被5整除,则能被5整除;当被5除余数是2或3时,能被5整除,则能被5整除;当被5除余数是0时,不能被5整除.所以符合题设要求的所有的个数为.9(甲).8解:设平局数为,胜(负)局数为,由题设知,由此得0≤b≤43.又,所以. 于是0≤≤43,87≤≤130,由此得,或.当时,;当时,,,不合题设.故.9(乙).≤1解:由题设得所以,即.整理得,由二次函数的图象及其性质,得.又因为≤1,所以≤1.10(甲).解:如图,连接AC,BD,OD.(第10(甲)题)由AB是⊙O的直径知∠BCA =∠BDA = 90°.依题设∠BFC = 90°,四边形ABCD是⊙O的内接四边形,所以∠BCF =∠BAD,所以Rt△BCF∽Rt△BAD,因此.因为OD是⊙O的半径,AD = CD,所以OD垂直平分AC,OD∥BC,于是. 因此.由△∽△,知.因为,所以,BA=AD,故.10(乙). 12解:由已知有,且为偶数,所以同为偶数,于是是4的倍数.设,则1≤≤25.(Ⅰ)若,可得,与b是正整数矛盾.(Ⅱ)若至少有两个不同的素因数,则至少有两个正整数对满足;若恰是一个素数的幂,且这个幂指数不小于3,则至少有两个正整数对满足.(Ⅲ)若是素数,或恰是一个素数的幂,且这个幂指数为2,则有唯一的正整数对满足.因为有唯一正整数对,所以m的可能值为2,3,4,5,7,9,11,13,17,19,23,25,共有12个.三、解答题11(甲).解:因为当时,恒有,所以,即,所以.…………(5分)当时,≤;当时,≤,即≤,且≤,解得≤.…………(10分)设方程的两个实数根分别为,由一元二次方程根与系数的关系得.因为,所以,解得,或.因此.…………(20分)11(乙).解:因为sin∠ABC=,,所以AB = 10.由勾股定理,得BO=.(第11(乙)题)易知△ABO≌△ACO,因此CO = BO = 6.于是A(0,-8),B(6,0),C(-6,0).设点D的坐标为(m,n),由S△COE = S△ADE,得S△CDB = S△AOB. 所以,,解得n=-4.因此D为AB的中点,点D的坐标为(3,-4). …………(10分)因此CD,AO分别为AB,BC的两条中线,点E为△A BC的重心,所以点E的坐标为.设经过B,C,E三点的抛物线对应的二次函数的解析式为y=a(x-6)(x+6). 将点E的坐标代入,解得a =.故经过B,C,E三点的抛物线对应的二次函数的解析式为. …………(20分)12(甲).证明:连接BD,因为为的直径,所以.又因为,所以△CBE是等腰三角形.(第12(甲)题)…………(5分)设与交于点,连接OM,则.又因为,所以.…………(15分)又因为分别是等腰△,等腰△的顶角,所以△BOC∽△.…………(20分)12(乙).证明:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知(第12(乙)题)所以CI = CD.同理,CI = CB.故点C是△IBD的外心.连接OA,OC,因为I是AC的中点,且OA = OC,所以OI⊥AC,即OI⊥CI.故OI是△IBD外接圆的切线. …………(10分)(2)如图,过点I作IE⊥AD于点E,设OC与BD交于点F.由,知OC⊥BD.因为∠CBF =∠IAE,BC = CI = AI,所以Rt△BCF≌Rt△AIE,所以BF = AE.又因为I是△ABD的内心,所以AB+AD-BD = 2AE = BD. 故AB+AD = 2BD.…………(20分)13(甲).解:设a-b = m(m是素数),ab = n2(n是正整数).因为(a+b)2-4ab = (a-b)2,所以 (2a-m)2-4n2 = m2,(2a-m+2n)(2a-m-2n) = m2. …………(5分)因为2a-m+2n与2a-m-2n都是正整数,且2a-m+2n>2a-m-2n(m为素数),所以2a-m+2n m 2,2a-m-2n1.解得a,.于是= a-m. …………(10分)又a≥2012,即≥2012.又因为m是素数,解得m≥89. 此时,a≥=2025.当时,,,.因此,a的最小值为2025. …………(20分)13(乙).解:假设凸边形中有个内角等于,则不等于的内角有个.(1)若,由,得,正十二边形的12个内角都等于;…………(5分)(2)若,且≥13,由,可得,即≤11.当时,存在凸边形,其中的11个内角等于,其余个内角都等于.…………(10分)(3)若,且≤≤.当时,设另一个角等于.存在凸边形,其中的个内角等于,另一个内角.由≤可得;由≥8可得,且.…………(15分)(4)若,且3≤≤7,由(3)可知≤.当时,存在凸边形,其中个内角等于,另两个内角都等于.综上,当时,的最大值为12;当≥13时,的最大值为11;当≤≤时,的最大值为;当3≤≤7时,的最大值为.…………(20分)14(甲).解:由于都是正整数,且,所以≥1,≥2,…,≥2012.于是≤.…………(10分)当时,令,则.…………(15分)当时,其中≤≤,令,则.综上,满足条件的所有正整数n为.…………(20分)14(乙).解:当时,把分成如下两个数组:和.在数组中,由于,所以其中不存在数,使得.在数组中,由于,所以其中不存在数,使得.所以,≥.…………(10分)下面证明当时,满足题设条件.不妨设2在第一组,若也在第一组,则结论已经成立.故不妨设在第二组. 同理可设在第一组,在第二组.此时考虑数8.如果8在第一组,我们取,此时;如果8在第二组,我们取,此时.综上,满足题设条件.所以,的最小值为.。

2010-2012年全国初中数学联赛试题参考答案和评分标准

2010-2012年全国初中数学联赛试题参考答案和评分标准

2010年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分)1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-=( B )A .1.B .2.C .3.D .4.2.若实数,,a b c 满足等式23||6a b +=,49||6a b c -=,则c 可能取的最大值为 ( C ) A .0. B .1. C .2. D .3.3.若b a ,是两个正数,且,0111=+-+-ab b a 则 ( C ) A .103a b <+≤. B .113a b <+≤. C .413a b <+≤. D .423a b <+≤. 4.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( A ) A .-13. B .-9. C .6. D . 0.5.在△ABC 中,已知︒=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且︒=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB ( B )A .15°.B .20°.C .25°.D .30°.6.对于自然数n ,将其各位数字之和记为n a ,如2009200911a =+++=,201020103a =+++=,则12320092010a a a a a +++++=( D )A .28062.B .28065.C .28067.D .28068.二、填空题:(本题满分28分,每小题7分) 1.已知实数,x y 满足方程组3319,1,x y x y ⎧+=⎨+=⎩则22x y += 13 .2.二次函数c bx x y ++=2的图象与x 轴正方向交于A ,B 两点,与y 轴正方向交于点C .已知AC AB 3=,︒=∠30CAO ,则c = 19. 3.在等腰直角△ABC 中,AB =BC =5,P 是△ABC 内一点,且PA =5,PC =5,则PB =___10___.4.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放____15___个球.第二试 (A )一.(本题满分20分)设整数,,a b c (a b c ≥≥)为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数.解 由已知等式可得222()()()26a b b c a c -+-+-= ①令,a b m b c n -=-=,则a c m n -=+,其中,m n 均为自然数.于是,等式①变为222()26m n m n +++=,即2213m n mn ++= ②由于,m n 均为自然数,判断易知,使得等式②成立的,m n 只有两组:3,1m n =⎧⎨=⎩和1,3.m n =⎧⎨=⎩ (1)当3,1m n ==时,1b c =+,34a b c =+=+.又,,a b c 为三角形的三边长,所以b c a +>,即(1)4c c c ++>+,解得3c >.又因为三角形的周长不超过30,即(4)(1)30a b c c c c ++=++++≤,解得253c ≤.因此2533c <≤,所以c 可以取值4,5,6,7,8,对应可得到5个符合条件的三角形. (2)当1,3m n ==时,3b c =+,14a b c =+=+.又,,a b c 为三角形的三边长,所以b c a +>,即(3)4c c c ++>+,解得1c >.又因为三角形的周长不超过30,即(4)(3)30a b c c c c ++=++++≤,解得233c ≤.因此2313c <≤,所以c 可以取值2,3,4,5,6,7,对应可得到6个符合条件的三角形. 综合可知:符合条件且周长不超过30的三角形的个数为5+6=11.二.(本题满分25分)已知等腰三角形△ABC 中,AB =AC ,∠C 的平分线与AB 边交于点P ,M 为△ABC 的内切圆⊙I 与BC 边的切点,作MD//AC ,交⊙I 于点D.证明:PD 是⊙I 的切线. 证明 过点P 作⊙I 的切线PQ (切点为Q )并延长,交BC 于点N. 因为CP 为∠ACB 的平分线,所以∠ACP =∠BCP. 又因为PA 、PQ 均为⊙I 的切线,所以∠APC =∠NPC. 又CP 公共,所以△ACP ≌△NCP ,所以∠PAC =∠PNC.由NM =QN ,BA =BC ,所以△QNM ∽△BAC ,故∠NMQ =∠ACB ,所以MQ//AC.又因为MD//AC ,所以MD 和MQ 为同一条直线.又点Q 、D 均在⊙I 上,所以点Q 和点D 重合,故PD 是⊙I 的切线.三.(本题满分25分)已知二次函数2y x bx c =+-错误!未找到引用源。

2012全国初中数学竞赛试题及答案(现只有选择题答案)

2012全国初中数学竞赛试题及答案(现只有选择题答案)

中国教育学会中学数学教学专业委员会答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1. 如果2a =-+11123a+++的值为( ).(A )(B (C )2 (D )解:B∵213+=+a ∴1231-=+a ,12312+=++a,123121-=++a因此原式=22. 在平面直角坐标系xOy 中,满足不等式x 2+y 2≤2x +2y 的整数点坐标(x ,y )的个数为( ).(A )10 (B )9 (C )7 (D )5 解:B解法一:y x y x 2222+≤+化为()()21122≤-+-y x因为x 、y 均为整数,因此()()01122=-+-y x 或()()11122=-+-y x 或()()21122=-+-y x分别解得⎩⎨⎧==11y x 或⎩⎨⎧==10y x ⎩⎨⎧==12y x ⎩⎨⎧==01y x ⎩⎨⎧==21y x 或⎩⎨⎧==20y x ⎩⎨⎧==22y x ⎩⎨⎧==00y x ⎩⎨⎧==02y x 所以共有9个整点解法二:y x y x 2222+≤+化为()()21122≤-+-y x 它表示以点(1,1)为圆心,2为半径的圆内, 画图可知,这个圆内有9个(0,2)、(0,1)(0,0),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)3. 如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为( ). (A )23 (B )4 (C )52 (D )4.5 解:4. 如果关于x 的方程20x px q p q --=(,是正整数)的正根小于3,那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 8 解:C∵p 、q 是正整数∴042>+=∆q p ,021<-=⋅q x x∴正根为3242<++qp p 解得p q 39-<∴⎩⎨⎧==11q p ,⎩⎨⎧==21q p ,⎩⎨⎧==31q p ,⎩⎨⎧==41q p ,⎩⎨⎧==51q p ,⎩⎨⎧==12q p ,⎩⎨⎧==22q p5. 黑板上写有1,12,13,…,1100共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99 解:C1)1)(1(-++=++b a ab b a∵计算结果与顺序无关∴顺次计算得:21)121)(11(=-++,31)131)(12(=-++,41)141)(13(=-++,…… 1001)11001)(199(=-++二、填空题(共5小题,每小题7分,共35分)6. 如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b c b c c a a b+++++的值为 . 解:7 在910111=+++++a c c b b a 两边乘以9=++c b a 得 103=++++++a c b c b a b a c 即7=+++++ac b c b a b a c7. 如图,正方形ABCD 的边长为2E ,F 分别是AB ,BC 的中点,AF 与DE ,DB 分别交于点M ,N ,则△DMN 的面积是 . 解:8易证△ABF ≌△DAE ,因此AF ⊥DE ∴()()351515222=+==AF DE∴323515152=⋅=AM ,()()343215222=-=DM易证△AND ∽△FNB ,且相似比为2:1∴331032==AF AN ,33531==AF FN ∴334323310=-=MN ∴83433421=⋅⋅=∆DMN S8. 设n 为整数,且1≤n ≤2012. 若22(3)(3)n n n n -+++能被5整除,则所有n 的个数为 . 解:1600()()()953332422222++=-+=+++-n n n n n n n n因此9|54+n ,所以)5(mod 14≡n ,因此25k ,15±±=或k n240252012⋯⋯=÷所以共有2012-402=1600个数9. 如果正数x ,y ,z 可以是一个三角形的三边长,那么称x y z (,,)是三角形数.若a b c (,,)和111a b c (,,)均为三角形数,且a ≤b ≤c ,则a c的取值范围是 . 解:1253≤<-ca依题意得:⎪⎩⎪⎨⎧>+>+ac b c b a 111,所以a c b ->,代入(2)得ca c cb a 11111+-<+<,两边乘以a 得 c a a c a +-<1即ac a c a c -<-化简得0322<+-c ac a ,两边除以2c 得0132<+-⎪⎭⎫⎝⎛c a c a所以253253+<<-c a 另一方面:a ≤b ≤c ,所以1≤ca综合得1253≤<-ca10. 已知n 是偶数,且1≤n ≤100.若有唯一的正整数对a b (,)使得22a b n =+成立,则这样的n 的个数为 . 解:依题意得()()b a b a b a n -+=-=22由于n 是偶数,a+b 、a-b 同奇偶,所以n 是4的倍数当1≤n ≤100时,4的倍数共有25个但是224⨯=,6412224⨯=⨯=,8416232⨯=⨯=,10420240⨯=⨯=,8612424248⨯=⨯=⨯=,14428256⨯=⨯=,10630260⨯=⨯=,16432264⨯=⨯= 12618436272⨯=⨯=⨯=,10820440280⨯=⨯=⨯=,22444288⨯=⨯= 12816624448296⨯=⨯=⨯=⨯=这些不符合要求,因此这样的n 有25-12=13个三、解答题(共4题,每题20分,共80分)11. 已知二次函数232y x m x m =++++(),当13x -<<时,恒有0y <;关于x 的方程2320x m x m ++++=()的两个实数根的倒数和小于910-.求m 的取值范围. 解:12. 如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心.求证:(1)OI 是△IBD 的外接圆的切线; (2)AB +AD = 2BD .13.给定一个正整数n,凸n边形中最多有多少个内角等于150︒?并说明理由.,,(可14.将2,3,…,n(n≥2)任意分成两组,如果总可以在其中一组中找到数a b c以相同)使得b a c=,求n的最小值.。

全国初中数学联合竞赛试题参考答案

全国初中数学联合竞赛试题参考答案

2012年全国初中数学联合竞赛试题参考答案第一试、选择题:(本题满分42分,每小题7分)已知a -1, b =3 - 2, c =炸6 -2,那么a,b,c 的大小关系是的所有可能的值之和为A . 0.使得5 2m 1是完全平方数的整数 m 的个数为 —1、(本题满分20分)已知直角三角形的边长均为整数, 在厶ABC 中,已知AB = AC ,/ A = 40 ° P 为AB 上一点,已知实数 a,b,c 满足 abc = T , a b c =4 ,BC/ ACP = 20 ° 贝U ——=AP - b c 2 ra 2b 2c 2 = 33 2 第二试+ ------ ----- + 2 2 2a —3a —1b —3b —1c —3c — 1(A )1.A. a ::: b :::cB. a ::: c ::: bC. b .: a .. cD. b ::: c .: a2. 方程x 2 2xy 3y 2 =34的整数解(x, y )的组数为3.B . 4.C . 5.已知正方形ABCD 的边长为1 , E 为BC 边的延长线上一点, 连接BF 并延长与线段 DE 交于点G,则BG 的长为A . 3. D . 6.CE = 1,连接AE ,与CD 交于点F , (D )2 2 4 4已知实数a, b 满足a b =1,则a ab b 的最小值为B . 0.C . 1.25.若方程x ・2px-3p-2=0的两个不相等的实数根 2x, x 2满足x 1 x ; =4 _则实数p6.由1 , 2, 3, 4这四个数字组成四位数 abcd (数字可重复使用),要求满足a ^b d•这样的四位数共有A . 36 个.二、填空题:(本题满分B . 40个. 28分,每小题1. 已知互不相等的实数 C . 44 个.7分)1 11 a,b, c 满足 a b c t , b caD . 48 个.2. 周长为 30,求它的外接圆的面积.解设直角三角形的三边长分别为a,b,c (a兰bcc),贝y a + b+c = 30.显然,三角形的外接圆的直径即为斜边长 c ,下面先求c 的值•由 a 乞 b ::: c 及 a bc = 30 得 30 = abc ::: 3c ,所以 c . 10 .由 a b. c 及 a b c=30 得 30 = a b c .2c ,所以 c ::: 15.又因为c 为整数,所以11乞c 空14.根据勾股定理可得 a 2 b^c 2,把c =30-a -b 代入,化简得ab -30(a - b) - 450 =0,所以(30-a)(30-b) =450 =2 32 52,30_ - 因为a,b 均为整数且a mb ,所以只可能是2解得""30-b = 2 汉3, 也=12.所以,直角三角形的斜边长 c =13,三角形的外接圆的面积为 空4二.(本题满分 25分)如图,PA 为O O 的切线,PBC 为O O 的割线,AD 丄OP 于点D.证明:证明:连接OA ,OB ,OC.1 225分)已知抛物线y x bx c 的顶点为P ,与x 轴的正半轴交于 A (x 1,0) >6两点,与y 轴交于点C , PA 是厶ABC 的外接圆的切线.设M (0, -^),若AM//BC ,2求抛物线的解析式.3 2解 易求得点P (3b, —b c),点C (0,c).2设厶ABC 的外接圆的圆心为 D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3b,m).1 2显然,x 2是一元二次方程 x bx ^0的两根,所以X 1 = 3b - 9b 6c ,6X 2 =3b • 9b 2 6c ,又 AB 的中点 E 的坐标为(3b,0),所以 AE = ■ 9b 2 6c .a =5,JTAD 2 = BD CD .•/ OA 丄AP , AD 丄OP ,「.由射影定理可得 PA 2 二 PD PO , AD 2 二 PD OD .又由切割线定理可得 PA 2二PB PC ,•••PB PC ^PD PO ,••• D 、B 、C 、O 四点共圆, •••/ PDB = Z PCO =Z OBC = Z ODC ,Z PBD = Z COD PBDCOD ,PD BDCD OD ' • AD 2 =PDCD .三.(本题满分 B (X 2,O) ( % :: X因为PA为O D的切线,所以PA丄AD,又AE丄PD,所以由射影定理可得AE PE DE,即_ 2 ___ 3(.9b 6c)2 = ( b 2 c) | m |,又易知 m :: 0 ,所以可得 m - -6.又由 DA = DC 得 DA — DC 2,即( _9b 2 6c)2 m 2 =(3b-0)2 (m-c)2,把 m = -6 代入后可解得c - 一6 (另一解c = 0舍去).又因为AM//BC ,所以°A = OMOB OC 即 3b — K=tl |3b . 9b 6c | -6|5把c = -6代入解得b (另一解2因此,抛物线的解析式为--5舍去).25x 一 6.2第二试 (B ).(本题满分20分)已知直角三角形的边长均为整数,周长为 60,求它的外接圆的面积.解 设直角三角形的三边长分别为a,b, c ( a 兰b<c ),贝U a + b+c = 60.显然,三角形的外接圆的直径即为斜边长C ,下面先求c 的值•由 a _ b ::: c 及 a b c = 60 得 60 = a b c .. 3c ,所以 c 20. 由 a b c 及a b c =60 得 60 = a b c 2c ,所以 c ::: 30 . 又因为c 为整数,所以21乞c 乞29.根据勾股定理可得 a 2 b^ c 2,把c =60 -a -b 代入,化简得ab -60(a b ) 1800 = 0,所以(60-a)(60-b) =1800 =23 32 52,160 — a = 23 汉5, 160 — a =2汉52,因为a,b 均为整数且a 辽b ,所以只可能是或2 2 2(60_b = 3 X5, (60_b = 2 工3 ,f a - 20, f a =10,解得或’b =15, b = 24.625 当a=20,b=15时,c=25,三角形的外接圆的面积为 - 4当a =10,b =24时,c =26,三角形的外接圆的面积为 169二. 二.(本题满分25分) 接圆与BC 的另一个交点为 证明:连接0A , OB , •/ OA 丄AP , AD 丄0P ,「.由射影定理可得 如图,PA 为O 0的切线,PBC 为O 0的割线,E.证明:/ BAE =Z ACB. OC , BD. 2 2 PA 2 =PD 卩O , AD 2 =PD OD . 又由切割线定理可得 PA 2 =PB PC ,••• PB PC 二 PD 卩0 ,••• D 、B 、C 、O 四点共圆, •••/ PDB = Z PCO =Z OBC = Z ODC ,AD 丄OP 于点D , △ ADC 的外个单位,得到的新抛物线与原抛物线交于点 Q ,且/ QBO = Z OBC.求抛物线的解析式.1 2解抛物线的方程即y =-—(x_3b )■6 3b 2 3—— c ,所以点 P (3b,— b 2 c),点 C (0, c). 2 2设厶ABC 的外接圆的圆心为 D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3b, m ).1 2 / 2显然,为,x 2是一元二次方程 x bx ^0的两根,所以为=3b - 9b 6c ,6X 2 =3^ 9b 2 6c ,又 AB 的中点 E 的坐标为(3b,0),所以 AE = . 9b 2 6c .因为PA 为O D 的切线,所以PA 丄AD ,又AE 丄PD ,所以由射影定理可得AE PE DE ,即(、、9b 2 6c )^(-b 2 c ) |m I 又易知 m :: 0 ,所以可得 m =「6.2又由 DA = DC 得 DA 2 二 DC 2,即(一 9b 2 6c )2 m 2 =(3b-0)2 (m-c )2,把 m = -6 代入后可解 得c =-6 (另一解c=0舍去)•1 3b2 —将抛物线y (x -3b )2 •—— -6向左平移24(-, 3-1)个单位后,得到的新抛物线为6 2y = -1(x -3b 24G -24)2 竺-6.6 2易求得两抛物线的交点为 Q (3b • 12-12、3,坐 48; 3-102).2由/ QBO =Z OBC 可得 tan /QBO = tan / OBC.作 QN 丄AB ,垂足为 N ,则 N (3b 1^12.3,0),又 X 2 =3b . 9b 2 -36 =3(b b 2-4),所以3b 2/ PBD = Z COD ,•••△ PBD s\ COD ,PD BD2BD•- BD CD 二 PD OD 二 AD , • -AD BDA =Z BDP + 90° = Z ODC + 90又/CD=Z ADC BDA ADC , BAD =Z ACD ,• AB 是厶ADC 的外接圆的切线,•/ BAE =Z ACB. (本题满分25分) 题目和解答与(A )卷第三题相同.第二试 (C )B (X 2,0) (本题满分 (本题满分 (本题满分(Xi ::: X2 ) 题目和解答与(B )卷第一题相同. 题目和解答与(B )卷第二题相同. 1 225分)已知抛物线y x bx c 的顶点为P ,与X 轴的正半轴交于 A (X-!,0)、620分) 25分)两点,与y 轴交于点C , PA 是厶ABC 的外接圆的切线•将抛物线向左平移 24C 3 -1)三 48,3 -102 i b 2 32.3 -68--------- . _ --- ------------------------ = — •— ------ --------------3(b 、b 2 匚 4)—(3b 12一12、.3) 2 .b 2 二4 4(31) j b 2—2")二(、严)2 一【心3“)]2」[严_心3_1)] 2 b 2-4 4(「3-1) 2 ,'b 2 -4 4( . 3-1)2又 tan / OBC = 9C =6- 1 (b -、b 2 _4),所以OB3(b + Jb 2 -4) 21 [ .b2 _4 _4(、、3 _1)] £ (b _ .b 2 _4). 解得 b =4 (另一解 b = 4(2.3 -5) ::: 0,舍去)31 2因此,抛物线的解析式为 y 二-丄x 2 • 4x -6 .6tan / QBO = QN BN。

-2012年全国初中数学联赛试卷

-2012年全国初中数学联赛试卷

2012年全国初中数学联赛试卷一、选择题:(本题满分42分,每小题7分)223.(7分)已知正方形ABCD的边长为1,E为BC边的延长线上一点,CE=1,连接AE,与CD交于点F,连接.C D.2244..5.(7分)若方程x2+2px﹣3p﹣2=0的两个不相等的实数根x1,x2满足,则实数p的所C.6.(7分)由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有二、填空题:(本题满分28分,每小题7分)7.(7分)已知互不相等的实数a,b,c满足,则t=_________.8.(7分)使得5×2m+1是完全平方数的整数m的个数为_________.9.(7分)在△ABC中,已知AB=AC,∠A=40°,P为AB上一点,∠ACP=20°,则=_________.10.(7分)已知实数a,b,c满足abc=﹣1,a+b+c=4,,则a2+b2+c2= _________.三、解答题(共3小题)11.(20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积.12.(25分)如图,PA为⊙O的切线,PBC为⊙O的割线,AD⊥OP于点D,△ADC的外接圆与BC的另一个交点为E.证明:∠BAE=∠ACB.13.(25分)已知抛物线的顶点为P,与x轴的正半轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,PA是△ABC的外接圆的切线.设M(0,),若AM∥BC,求抛物线的解析式.2012年全国初中数学联赛试卷参考答案与试题解析一、选择题:(本题满分42分,每小题7分)﹣b=﹣﹣=,=+,=+1=<<,<<,22,3.(7分)已知正方形ABCD的边长为1,E为BC边的延长线上一点,CE=1,连接AE,与CD交于点F,连接.C D.DE=DE=.,=.2244..≤,﹣+≤时,时,﹣(﹣)+×+﹣,,或a=﹣5.(7分)若方程x2+2px﹣3p﹣2=0的两个不相等的实数根x1,x2满足,则实数p的所C.然后利用得到有关+﹣=[+﹣(+)得=4﹣(),﹣(﹣.6.(7分)由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有二、填空题:(本题满分28分,每小题7分)7.(7分)已知互不相等的实数a,b,c满足,则t=±1.=t,代入b+c+=t,=t,得:=t=t,时,,时,8.(7分)使得5×2m+1是完全平方数的整数m的个数为1.或9.(7分)在△ABC中,已知AB=AC,∠A=40°,P为AB上一点,∠ACP=20°,则=.BCBAE=PAsin60=AP==故答案为:10.(7分)已知实数a,b,c满足abc=﹣1,a+b+c=4,,则a2+b2+c2=.,同理可得:,=+,+=,=,即整理得:,=故答案为:三、解答题(共3小题)11.(20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积.∴只可能是或或,三角形的外接圆的面积为12.(25分)如图,PA为⊙O的切线,PBC为⊙O的割线,AD⊥OP于点D,△ADC的外接圆与BC的另一个交点为E.证明:∠BAE=∠ACB.13.(25分)已知抛物线的顶点为P,与x轴的正半轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,PA是△ABC的外接圆的切线.设M(0,),若AM∥BC,求抛物线的解析式.中,﹣的横坐标为:﹣=3b,纵坐标为:b的坐标为是一元二次方程的两根,,.,即,.代入,解得(另一解舍去)∴抛物线的解析式为。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x 2 2xy 3y2 34 的整数解 (x, y) 的组数为
B.4. C.5.
(x y) 2 2y 2 34,显然 x y必须是偶数,所以可设 x y 2t ,则原方程变为2t 2 t 2, y 3,
从而可求得原方程的整数解为 (x,
2
y 17
因此,满足要求的四位数共有 4+24+8+8=44 个. 二、填空题:(本题满分 28 分,每小题 7 分) 1.已知互不相等的实数 a,b,c 满足 a 【答】 1. 由a
1 1 1 b c t ,则t _________. b c a
1 1 1 1 1 t 得b ,代入b t 得 t ,整理得 ct 2 (ac 1)t (a c) 0 ① ta ta c b c 1 又由 c t 可得 ac 1 at ,代入①式得 ct 2 at2 (a c) 0,即 (c a)(t21) 0,又 c a a

它的整数解为 组.
y)= (7,3), (1,3), (7,3), (1,3) ,共 4
3.已知正方形 ABCD的边长为 1,E为 BC边的延长线上一点,CE=1,连接 AE,与 CD交于点 F,连接 BF并延长与线段 DE交于点 G,则 BG的长为 ( ) A.
6 3
B.
5 3
C.
26 3
1
的所有可能的值之和 为 3 B. . 4 A.0. 【答】 B. 由一元二次方程的根与系数的关系可得
2 x2 (x1 x 2 ) 2 2x1 x 2 4p x2 1 3 x2 (x1 x 2 )[(x x )2 x3 1 1 2 2
( D.

5 . 4
x 1 x 22p , x x 1 3p 2,所以 2
A
D.25 3D【答】D. 过点 C作 CP//BG,交 DE于点 P.因为 BC=CE=1,所以 CP是 △BEG的中位线,所以 P为 EG的中点. 又因为 AD=CE=1,AD//CE,所以△ADF≌△ECF,所以 CF= DF,又 CP//FG,所以 FG是△DCP的中位线,所以 G为 DP的中点. 因此 DG=GP=PE= DE=
1
2
6p 44 2p(4p 9p 6)

6.由 1,2,3,4 这四个数字组成四位数 abcd (数字可重复使用),要求满足 位数共有 A.36 个. 【答】C. B.40 个. C.44 个. D.48 个.
a c b d .这样的四
( )
根据使用的不同数字的个数分类考虑: (1)只用 1 个数字,组成的四位数可以是 1111,2222,3333,4444,共有 4 个. (2)使用 2 个不同的数字,使用的数字有 6 种可能(1、2,1、3,1、4,2、3,2、4,3、4).如果 使用的数字是 1、2,组成的四位数可以是 1122,1221,2112,2211,共有 4 个;同样地,如果使用的数 字是另外 5 种情况,组成的四位数也各有 4 个.因此,这样的四位数共有 6×4=24 个. (3)使用 3 个不同的数字,只能是 1、2、2、3 或 2、3、3、4,组成的四位数可以是 1232,2123, 2321,3212,2343,3234,3432,4323,共有 8 个. (4)使用 4 个不同的数字 1,2,3,4,组成的四位数可以是 1243,1342,2134,2431,3124, 3421,4213,4312,共有 8 个. 2012 年全国初中数学联合竞赛试题参考答案及评分标准 第 2 页(共 5 页)
2
1 1 ,故 b a .又 c a ( 6 2) ( 2 1) 6 a b
( 2 1),而 ( 6)
2.方程 A.3. 【答】B. 方程即
( 2 1) 2 3 2 2 0 ,所以 6 2 1,故 c a .因此b a c .
( D.6. )
2
AD BD C D
.
P B
A
O D C
2012 年全国初中数学联合竞赛试题参考答案及评分标准 证明:连接 OA,OB,OC. ∵OA⊥AP,AD⊥OP,∴由射影定理可得 又由切割线定理可得
2
第 1 页(共 4 页)
PDOD . ……………………5 分 PDPO AD ,∴D、B、C、O 四点共圆, PA PBPC PDPO PBPC PA 2

2
,∴ 2012 年全国初中数学联合竞赛试题参考答案及评分标准
所以
t
2
1 0 ,所以t 1.
m

验证可知:b 2.使得52 【答】 1.
a 1 1 ,c 时t 1;b 1 a a
a 1 1 ,c 时t 1.因此,t 1. 1 a a

1是完全平方数的整数 m 的个数为
m n 2 1 (n 1)(n 1) 设52m 1 n 2 (其中 n 为正整数), 则52
2012 年全国初中数学联合竞赛试题参考答案及评分标准
说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设 7 分和 0 分两档;第二试各题, 请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在 评卷时请参照本评分标准划分的档次,给予相应的分数.
k 5, 或 2 m2 k 1
k 5,m 4 .
因此,满足要求的整数 m 只有 1 个. 3.在△ABC 中,已知 AB=AC,∠A=40°,P为 AB上一点,∠ACP=20°,则 【答】
BC = AP
A

3. 1
设 D为 BC的中点,在△ABC 外作∠CAE=20°,则∠BAE=60°. 作 CE⊥AE, PF⊥AE,则易 证 3 1 △ACE≌△ ACD, BC, AP,PF=CE,所以 所以 CE=AP CD= 2= 2 BC.
n
,显然 为奇数, 设
(其中 k 是正整数),则5 2
k k 1) ,即52m2 k(k 1) 4(. k , 显 然 k 1, 此 时 k 和 k 1互 质 , 所 以 5 2 m2 k 11,
m
n 2k 1 2m2 , 解得 或 k , k 1 5,
第 1 页(共 5 页)
A.
1 . 8
B.0.
C.1.
D.
9 . 8
【答】B.
1 9 a 4 ab b4 (a 2 b2 ) 2 2a2b 2 ab 1 2a 2b 2 ab 2(ab ) 2 . 4 8 1 1 3 1 1 1 2 2 因为 2 | ab | a b 1,所以 ab ,从而 ab ,故 0 (ab ) 2 4 4 4 4 2 1 9 9 9 4 4 0 2(ab ) 2 ,即 0 a ab b . 4 8 8 8
显然,三角形的外接圆的直径即为斜边长 根据勾股定理可得
……………………5 分
a 2 b2 c2 ,把
c 30 a b ab 30(a b) 450 0 ,所以
代入,化简得 ……………………10 分
(30 a)(30 b) 450 232 5 2 ,
因为 a,b 均为整数且 a

4 , 9
所以 (a
4 1)(b 1)(c 1) (a 1) (b 1) (c 1) . 9
1 1, a b c 4 ,可得 ab bc ac . 4 33 2 2 2 2 因此, a b c (a b c) 2(ab bc ac) . 2 11 实际上,满足条件的 a,b,c 可以分别为 , ,4 . 22
G F
P
1 3
2 . 3
B
C
E
连接 BD,易知∠BDC=∠EDC=45°,所以∠BDE=90°. 又 BD= 2 ,所以 BG=
BD 2 DG2 2 a 2 b2
2 25 . 9 3
( )
4.已知实数 a,b 满足
1,则a
4
ab b4 的最小值为
2012 年全国初中数学联合竞赛试题参考答案及评分标准
因此 a
4
2

9 ,因此 16
ab b4 的最小值为 0,当 a
2 2 2 2 ,b ,b 或a 时取得. 2 2 2 2
2 3 满足 x1
5.若方程
x 2 2px 3p 2 0 的两个不相等的实数根 x1 , x2
C. 1.
x
3 4 (x2 p 2 x2 ) ,则实数
2 30 a 5 a 5, , b ,所以只可能是 ……………………15 分 解得 2 30 b 23 , b 12.
所以,直角三角形的斜边长 c
13,三角形的外接圆的面积为
169 . ……………………20 分 4
二.(本题满分 25 分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,AD⊥OP于点 D.证明:
结合 abc
第二试 (A)
一、(本题满分 20 分)已知直角三角形的边长均为整数,周长为 30,求它的外接圆的面积. 解 设直角三角形的三边长分别为 a,b,c ( a
b c ),则 a b c 30.
c ,下面先求 c 的值. 由 a b c 及 a b c 30得30 a b c 3c ,所以 c 10 . 由 a b c 及 a b c 30得30 a b c 2c ,所以 c 15. 又因为 c 为整数,所以11 c 14.
第一试
一、选择题:(本题满分 42 分,每小题 7 分) 1.已知 a A. a
相关文档
最新文档