11基于遗传算法的机器人路径规划MATLAB源代码【精品毕业设计】(完整版)

合集下载

基于遗传算法的机器人路径规划研究

基于遗传算法的机器人路径规划研究

基于遗传算法的机器人路径规划研究机器人技术的发展越来越成熟,机器人已经广泛应用于生产、医疗、军事等领域,成为现代社会的一大利器。

在机器人的应用领域中,机器人的路径规划是一个非常关键的环节。

基于遗传算法的机器人路径规划,是近几年来机器人路径规划领域的研究热点之一。

本文将从以下几个方面来探讨基于遗传算法的机器人路径规划的研究现状。

一、机器人路径规划的背景机器人路径规划在机器人技术中占据着非常重要的地位。

机器人路径规划的主要任务是规划机器人从起点到达终点的路线,并且在此过程中尽量减小机器人的代价。

机器人路径规划的过程涉及到许多技术领域,如图像处理、人工智能、计算机视觉等。

早在20世纪50年代,机器人就已经出现在人们的视野中。

但当时的机器人主要是应用于工业制造领域。

另外,这些机器人多数是只能进行简单的重复性工作。

随着计算机技术的不断发展,机器人技术也得到了大力的推广,为机器人技术的发展提供了强有力的支持。

在未来的发展过程中,机器人技术将会在更广泛的领域得到应用。

二、遗传算法简介遗传算法是一种模拟自然界生物进化过程的优化算法。

它是建立在基因遗传和自然选择等生物进化规律上的一种算法。

遗传算法通过种群的遗传操作来寻找最优解,具有简单、易于理解、鲁棒性强等特点。

遗传算法(Genetic Algorithm,GA)是一种通过模拟自然选择和遗传机制进行优化的搜索算法。

它最早由 J. Holland 于 1975 年提出。

遗传算法是模拟自然选择的一种适应性优化搜索技术,借鉴了生物界的遗传、进化和自然选择等思想,能够在搜索过程中不断寻找最优解。

遗传算法的基本操作包括选择、交叉、变异。

个体适应度越高,其在选择过程中被选中的概率就越大,从而被保留到下一代。

三、遗传算法在机器人路径规划中的应用机器人的路径规划过程一般是一个优化问题,需要根据机器人的特殊任务和环境,采用合适的方法来进行规划。

当前,有一些常用的路径规划方法,如A*算法、Dijkstra算法、拉普拉斯最小曲率算法等。

11基于遗传算法的机器人路径规划MATLAB源代码

11基于遗传算法的机器人路径规划MATLAB源代码

基于遗传算法的机器人路径规划MATLAB源代码基本思路是:取各障碍物顶点连线的中点为路径点,相互连接各路径点,将机器人移动的起点和终点限制在各路径点上,利用最短路径算法来求网络图的最短路径,找到从起点P1到终点Pn的最短路径。

上述算法使用了连接线中点的条件,因此不是整个规划空间的最优路径,然后利用遗传算法对找到的最短路径各个路径点Pi (i=1,2,…n)调整,让各路径点在相应障碍物端点连线上滑动,利用Pi= Pi1+ti×(Pi2-Pi1)(ti∈[0,1] i=1,2,…n)即可确定相应的Pi,即为新的路径点,连接此路径点为最优路径。

function [L1,XY1,L2,XY2]=JQRLJGH(XX,YY)%% 基于Dijkstra和遗传算法的机器人路径规划% GreenSim团队——专业级算法设计&代写程序% 欢迎访问GreenSim团队主页→/greensim%输入参数在函数体内部定义%输出参数为% L1 由Dijkstra算法得出的最短路径长度% XY1 由Dijkstra算法得出的最短路径经过节点的坐标% L2 由遗传算法得出的最短路径长度% XY2 由遗传算法得出的最短路径经过节点的坐标%程序输出的图片有% Fig1 环境地图(包括:边界、障碍物、障碍物顶点之间的连线、Dijkstra的网络图结构)% Fig2 由Dijkstra算法得到的最短路径% Fig3 由遗传算法得到的最短路径% Fig4 遗传算法的收敛曲线(迄今为止找到的最优解、种群平均适应值)%% 画Fig1figure(1);PlotGraph;title('地形图及网络拓扑结构')PD=inf*ones(26,26);for i=1:26for j=1:26if D(i,j)==1x1=XY(i,5);y1=XY(i,6);x2=XY(j,5);y2=XY(j,6);dist=((x1-x2)^2+(y1-y2)^2)^0.5;PD(i,j)=dist;endendend%% 调用最短路算法求最短路s=1;%出发点t=26;%目标点[L,R]=ZuiDuanLu(PD,s,t);L1=L(end);XY1=XY(R,5:6);%% 绘制由最短路算法得到的最短路径figure(2);PlotGraph;hold onfor i=1:(length(R)-1)x1=XY1(i,1);y1=XY1(i,2);x2=XY1(i+1,1);y2=XY1(i+1,2);plot([x1,x2],[y1,y2],'k');hold onendtitle('由Dijkstra算法得到的初始路径')%% 使用遗传算法进一步寻找最短路%第一步:变量初始化M=50;%进化代数设置N=20;%种群规模设置Pm=0.3;%变异概率设置LC1=zeros(1,M);LC2=zeros(1,M);Yp=L1;%第二步:随机产生初始种群X1=XY(R,1);Y1=XY(R,2);X2=XY(R,3);Y2=XY(R,4);for i=1:Nfarm{i}=rand(1,aaa);end% 以下是进化迭代过程counter=0;%设置迭代计数器while counter<M%停止条件为达到最大迭代次数%% 第三步:交叉%交叉采用双亲双子单点交叉newfarm=cell(1,2*N);%用于存储子代的细胞结构Ser=randperm(N);%两两随机配对的配对表A=farm{Ser(1)};%取出父代AB=farm{Ser(2)};%取出父代BP0=unidrnd(aaa-1);%随机选择交叉点a=[A(:,1:P0),B(:,(P0+1):end)];%产生子代ab=[B(:,1:P0),A(:,(P0+1):end)];%产生子代bnewfarm{2*N-1}=a;%加入子代种群newfarm{2*N}=b;for i=1:(N-1)A=farm{Ser(i)};B=farm{Ser(i+1)};newfarm{2*i}=b;endFARM=[farm,newfarm];%新旧种群合并%% 第四步:选择复制SER=randperm(2*N);FITNESS=zeros(1,2*N);fitness=zeros(1,N);for i=1:(2*N)PP=FARM{i};FITNESS(i)=MinFun(PP,X1,X2,Y1,Y2);%调用目标函数endfor i=1:Nf1=FITNESS(SER(2*i-1));f2=FITNESS(SER(2*i));if f1<=f2elsefarm{i}=FARM{SER(2*i)};fitness(i)=FITNESS(SER(2*i));endend%记录最佳个体和收敛曲线minfitness=min(fitness);meanfitness=mean(fitness);if minfitness<Yppos=find(fitness==minfitness);Xp=farm{pos(1)};Yp=minfitness;endif counter==10PPP=[0.5,Xp,0.5]';PPPP=1-PPP;X=PPP.*X1+PPPP.*X2;Y=PPP.*Y1+PPPP.*Y2;XY2=[X,Y];figure(3)PlotGraph;hold onfor i=1:(length(R)-1)x1=XY2(i,1);y1=XY2(i,2);x2=XY2(i+1,1);y2=XY2(i+1,2);plot([x1,x2],[y1,y2],'k');hold onendtitle('遗传算法第10代')hold onfor i=1:(length(R)-1)x1=XY1(i,1);y1=XY1(i,2);x2=XY1(i+1,1);y2=XY1(i+1,2);plot([x1,x2],[y1,y2],'k','LineWidth',1);hold onendendif counter==20PPP=[0.5,Xp,0.5]';PPPP=1-PPP;X=PPP.*X1+PPPP.*X2;Y=PPP.*Y1+PPPP.*Y2;XY2=[X,Y];figure(4)PlotGraph;hold onfor i=1:(length(R)-1)x1=XY2(i,1);y2=XY2(i+1,2);plot([x1,x2],[y1,y2],'k');hold onendtitle('遗传算法第20代')hold onx1=XY1(i,1);y1=XY1(i,2);x2=XY1(i+1,1);y2=XY1(i+1,2);plot([x1,x2],[y1,y2],'k','LineWidth',1);hold onendendif counter==30PPP=[0.5,Xp,0.5]';PPPP=1-PPP;X=PPP.*X1+PPPP.*X2;Y=PPP.*Y1+PPPP.*Y2;XY2=[X,Y];figure(5)PlotGraph;hold onfor i=1:(length(R)-1)x1=XY2(i,1);y1=XY2(i,2);x2=XY2(i+1,1);y2=XY2(i+1,2);plot([x1,x2],[y1,y2],'k');hold onendtitle('遗传算法第30代')hold onfor i=1:(length(R)-1)x1=XY1(i,1);y2=XY1(i+1,2);plot([x1,x2],[y1,y2],'k','LineWidth',1);hold onendendif counter==40PPP=[0.5,Xp,0.5]';PPPP=1-PPP;X=PPP.*X1+PPPP.*X2;Y=PPP.*Y1+PPPP.*Y2;XY2=[X,Y];figure(6)PlotGraph;hold onx1=XY2(i,1);y1=XY2(i,2);x2=XY2(i+1,1);y2=XY2(i+1,2);plot([x1,x2],[y1,y2],'k');hold onendtitle('遗传算法第40代')hold onfor i=1:(length(R)-1)x1=XY1(i,1);y1=XY1(i,2);x2=XY1(i+1,1);y2=XY1(i+1,2);plot([x1,x2],[y1,y2],'k','LineWidth',1);hold onendendif counter==50PPP=[0.5,Xp,0.5]';PPPP=1-PPP;X=PPP.*X1+PPPP.*X2;Y=PPP.*Y1+PPPP.*Y2;XY2=[X,Y];figure(7)PlotGraph;hold onfor i=1:(length(R)-1)x1=XY2(i,1);y1=XY2(i,2);x2=XY2(i+1,1);y2=XY2(i+1,2);plot([x1,x2],[y1,y2],'k');hold onendtitle('遗传算法第50代')hold onfor i=1:(length(R)-1)x1=XY1(i,1);y1=XY1(i,2);x2=XY1(i+1,1);y2=XY1(i+1,2);plot([x1,x2],[y1,y2],'k','LineWidth',1);hold onendendLC2(counter+1)=Yp;LC1(counter+1)=meanfitness;%% 第五步:变异for i=1:Nif Pm>rand&&pos(1)~=iAA=farm{i};AA(POS)=rand;farm{i}=AA;endendcounter=counter+1;disp(counter);end%% 输出遗传算法的优化结果PPP=[0.5,Xp,0.5]';PPPP=1-PPP;X=PPP.*X1+PPPP.*X2;Y=PPP.*Y1+PPPP.*Y2;XY2=[X,Y];L2=Yp;%% 绘制Fig3figure(8)PlotGraph;hold onhold onfor i=1:(length(R)-1)x1=XY1(i,1);y1=XY1(i,2);x2=XY1(i+1,1);y2=XY1(i+1,2);plot([x1,x2],[y1,y2],'k','LineWidth',1);hold onendfor i=1:(length(R)-1)x1=XY2(i,1);y1=XY2(i,2);x2=XY2(i+1,1);y2=XY2(i+1,2);plot([x1,x2],[y1,y2],'k');hold onendtitle('遗传算法最终结果')figure(9)PlotGraph;hold onfor i=1:(length(R)-1)x1=XY1(i,1);y1=XY1(i,2);x2=XY1(i+1,1);y2=XY1(i+1,2);plot([x1,x2],[y1,y2],'k','LineWidth',1);hold onendhold onfor i=1:(length(R)-1)x1=XY2(i,1);y1=XY2(i,2);x2=XY2(i+1,1);y2=XY2(i+1,2);plot([x1,x2],[y1,y2],'k','LineWidth',2);hold onendtitle('遗传算法优化前后结果比较')%% 绘制Fig4figure(10);plot(LC1);hold onplot(LC2);xlabel('迭代次数');title('收敛曲线');源代码运行结果展示。

基于遗传算法的机器人路径规划

基于遗传算法的机器人路径规划

4.3 基于遗传算法的机器人路径规划4.3.1 遗传算法简介[50] [51]在1975年前后,美国Michigan大学John H Holland教授根据达尔文的适者生存的进化理论研究出一种人工智能的方法——遗传算法,这种算法以生物进化、遗传原理来设计算法的原理,在算法里面还添加了统计理论学随机过程等数学方法,最终形成了该算法一种独特的理论。

遗传算法在求解时,先从一个初始群体的变量开始,依次求解出最佳解,最后得出满足预设的算法要求的迭代次数为最后结果。

这种算法是迭代算法的一种。

遗传算法是模拟大自然中生物生存的理念而产生的一种自然选择和群体遗传理论的查找式算法。

在这个算法里面把每一个需要求解决的问题尽量编码设计成“染色体”,多个染色体接着可以形成种群,在这个过程会出现选择、变异、交叉、复制等遗传操作。

遗传算法初始设定时,首先随机产生一个初值即一个种群,然后依照算法的函数对种群内的个体进行处理评估,并产生相应的对环境适应度数值。

接着算法会根据这些适应度值选择优秀的个体进行下一代衍生,然后把选出来的优秀进行变异、交叉处理。

目前在机器人的路径设计里面遗传算法得到广泛的应用,而且应用范围不仅在单个机器人的行进里面,而是在多个机器人的合作里面也有广泛应用,并且都取得不错的效果。

遗传算法是一种鲁棒性的应用于复杂系统优化的查询式算法,遗传算法与其他只能优化算法相比时,他有以下特点:(1)把决策变量编码化,以一编码做算法处理的对象。

(2)在算法里面以计算出的适应值为查询其他数据的信息。

(3)遗传算法的查询过程从一个种群开始查询,而不从一个一个体开始。

(4)遗传算法的查询是一种依据概率查询,而非确定值查询。

遗传算法的基本流程如下图4.10所示:图4.10 基本遗传算法的流程图4.3.2利用遗传算法进行路径规划4.3.2.1 规划空间的栅格法建模假设机器人工作空间为二维结构化空间, 障碍物位置、大小已知, 且在机器人运动过程中, 障碍物的位置、大小均不发生变化。

遗传算法matlab程序代码

遗传算法matlab程序代码

遗传算法matlab程序代码遗传算法是一种优化算法,用于在给定的搜索空间中寻找最优解。

在Matlab中,可以通过以下代码编写一个基本的遗传算法:% 初始种群大小Npop = 100;% 搜索空间维度ndim = 2;% 最大迭代次数imax = 100;% 初始化种群pop = rand(Npop, ndim);% 最小化目标函数fun = @(x) sum(x.^2);for i = 1:imax% 计算适应度函数fit = 1./fun(pop);% 选择操作[fitSort, fitIndex] = sort(fit, 'descend');pop = pop(fitIndex(1:Npop), :);% 染色体交叉操作popNew = zeros(Npop, ndim);for j = 1:Npopparent1Index = randi([1, Npop]);parent2Index = randi([1, Npop]);parent1 = pop(parent1Index, :);parent2 = pop(parent2Index, :);crossIndex = randi([1, ndim-1]);popNew(j,:) = [parent1(1:crossIndex),parent2(crossIndex+1:end)];end% 染色体突变操作for j = 1:NpopmutIndex = randi([1, ndim]);mutScale = randn();popNew(j, mutIndex) = popNew(j, mutIndex) + mutScale;end% 更新种群pop = [pop; popNew];end% 返回最优解[resultFit, resultIndex] = max(fit);result = pop(resultIndex, :);以上代码实现了一个简单的遗传算法,用于最小化目标函数x1^2 + x2^2。

遗传算法及其MATLAB程序代码

遗传算法及其MATLAB程序代码

遗传算法及其MATLAB程序代码遗传算法及其MATLAB实现主要参考书:MATLAB 6.5 辅助优化计算与设计飞思科技产品研发中⼼编著电⼦⼯业出版社2003.1遗传算法及其应⽤陈国良等编著⼈民邮电出版社1996.6主要内容:遗传算法简介遗传算法的MATLAB实现应⽤举例在⼯业⼯程中,许多最优化问题性质⼗分复杂,很难⽤传统的优化⽅法来求解.⾃1960年以来,⼈们对求解这类难解问题⽇益增加.⼀种模仿⽣物⾃然进化过程的、被称为“进化算法(evolutionary algorithm)”的随机优化技术在解这类优化难题中显⽰了优于传统优化算法的性能。

⽬前,进化算法主要包括三个研究领域:遗传算法、进化规划和进化策略。

其中遗传算法是迄今为⽌进化算法中应⽤最多、⽐较成熟、⼴为⼈知的算法。

⼀、遗传算法简介遗传算法(Genetic Algorithm, GA)最先是由美国Mic-hgan⼤学的John Holland于1975年提出的。

遗传算法是模拟达尔⽂的遗传选择和⾃然淘汰的⽣物进化过程的计算模型。

它的思想源于⽣物遗传学和适者⽣存的⾃然规律,是具有“⽣存+检测”的迭代过程的搜索算法。

遗传算法以⼀种群体中的所有个体为对象,并利⽤随机化技术指导对⼀个被编码的参数空间进⾏⾼效搜索。

其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定等5个要素组成了遗传算法的核⼼内容。

遗传算法的基本步骤:遗传算法是⼀种基于⽣物⾃然选择与遗传机理的随机搜索算法,与传统搜索算法不同,遗传算法从⼀组随机产⽣的称为“种群(Population)”的初始解开始搜索过程。

种群中的每个个体是问题的⼀个解,称为“染⾊体(chromos ome)”。

染⾊体是⼀串符号,⽐如⼀个⼆进制字符串。

这些染⾊体在后续迭代中不断进化,称为遗传。

在每⼀代中⽤“适值(fitness)”来测量染⾊体的好坏,⽣成的下⼀代染⾊体称为后代(offspring)。

遗传算法matlab函数的源程序

遗传算法matlab函数的源程序
chi(j,i)=rand();
end
end
end
%确定下一代父代个体
%确定实际子代个体数值
chi_fact=zeros(x_num,chi_num*3);
for j=1:x_num
chi_fact(j,:)=x_range(j,1)+(x_range(j,2)-x_range(j,1))*chi(j,:);
par=chi(:,chi_ada_no(1:par_num));
end ');
par_fac_exc(:,1)=x_range(:,1)+(x_range(:,2)-x_range(:,1)).*par(:,1);%父代个体最优函数值
par_fun_exc=fun(par_fac_exc);
%输出父代样本实际值
par_fact=zeros(x_num,par_num);
for i=1:x_num
par_fact(i,:)=x_range(i,1)+(x_range(i,2)-x_range(i,1))*par(i,:);
if chi_ran(3)<0.5
chi(j,i)=chi_ran(1)*par(j,chi_sel1)+(1-chi_ran(1))*par(j,chi_sel2);
else
chi(j,i)=chi_ran(2)*par(j,chi_sel1)+(1-chi_ran(2))*par(j,chi_sel2);
%例子2:
%fun=@(x) sum(x.*x-cos(18*x))+5;
%x_range=[-1,1;-1,1;-1,1;-1,1;-1,1];

基于改进遗传算法的路径规划MATLAB实现

基于改进遗传算法的路径规划MATLAB实现

基于遗传算法的路径规划MATLAB实现主程序:clear all;close all;t=23; %过程点个数=t-1s=500; %种群规模pc=0.90; %交叉概率pm=0.20; %变异概率pop=zeros(s,t);for i=1:spop(i,1:t-1)=randperm(t-1);endfor k=1:1:2000 %进化代次数kif mod(k,10)==1kendpop=lujingdis(pop);c=15;%选择淘汰个数pop=lujingselect(pop,c);p=rand;if p>=pcpop=lujingcross(pop);endif p>=pmpop=lujingmutate(pop);Endendpopmin(pop(:,t))J=pop(:,t);fi=1./J;[Oderfi,Indexfi]=sort(fi); %安排fi从小到大BestS=pop(Indexfi(s),:); %使BestS=E(m),m即是属于max(fi)的Indexfi I=BestS;x=[2 3 6 10 14 17 22 20 23 25 30 28 25 21 29 16 18 15 9 11 6 5 ];y=[5 26 14 29 27 24 28 22 26 30 30 17 13 15 4 13 3 1 6 2 2 7];%过程点坐标% x=[1 2 3 4 6 9 11 10 8 9 6 4]; %12个过程点的坐标% y=[1 2 3 4 8 10 11 9 5 2 1 2];for i=1:1:t-1x1(i)=x(I(i));y1(i)=y(I(i));endx(t)=x(I(1));y(t)=y(I(1));a = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 11 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 11 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 11 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 11 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 11 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1];%31*31栅格%a = [1 1 1 1 1 1 1 1 1 11 1 1 0 0 1 1 1 0 01 0 1 0 0 1 1 1 1 10 0 1 1 1 1 0 1 1 01 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 11 0 0 1 1 0 1 1 1 11 1 1 1 1 1 1 1 1 01 1 1 1 1 1 1 1 1 10 1 1 1 1 1 0 0 1 1];%11*11栅格b = a;b(end+1,end+1) = 0;colormap([0 0 0;1 1 1]),pcolor(b)axis image xy;%绘制栅格图hold on;figure(1);plot(x,y,'-or');适应度函数程序:lujingdis.mfunction [pop]=qiujuli(pop)[s,t]=size(pop);for i=1:1:sdd=0;for j=1:1:t-2dd=dd+lujingcalculate(pop(i,j),pop(i,j+1));endpop(i,t)=dd;End距离计算程序:lujingcalculate.mfunction [d]=juli(m,n)x=[2 3 6 10 14 17 22 20 23 25 30 28 25 21 29 16 18 15 9 11 6 5 ]; y=[5 26 14 29 27 24 28 22 26 30 30 17 13 15 4 13 3 1 6 2 2 7]; %x=[1 2 3 4 6 9 11 10 8 9 6 4];% y=[1 2 3 4 8 10 11 9 5 2 1 2];d=sqrt((x(m)-x(n))^2+(y(m)-y(n))^2);选择算子程序:lujingselect.mfunction [pop]=select(pop,k)[s,t]=size(pop);m11=(pop(:,t));m11=m11';mmax=zeros(1,k);mmin=zeros(1,k);num=1;while num<k+1[a,mmax(num)]=max(m11);m11(mmax(num))=a;num=num+1;endnum=1;while num<k+1[b,mmin(num)]=min(m11);m11(mmin(num))=a;num=num+1;endfor i=1:kpop(mmax(i),:)=pop(mmin(i),:);End交叉算子程序:lujingcross.mfunction [pop]=cross(pop)[s,t]=size(pop);pop1=pop;for i=1:2:sm=randperm(t-3)+1;crosspoint(1)=min(m(1),m(2));crosspoint(2)=max(m(1),m(2));for j=1:crosspoint(1)while find(pop(i,crosspoint(1)+1:crosspoint(2))==pop(i,j))zhi=find(pop(i,crosspoint(1)+1:crosspoint(2))==pop(i,j));y=pop(i+1,crosspoint(1)+zhi);pop(i,j)=y;endendfor j=crosspoint(2)+1:t-1while find(pop(i,crosspoint(1)+1:crosspoint(2))==pop(i,j))zhi=find(pop(i,crosspoint(1)+1:crosspoint(2))==pop(i,j));y=pop(i+1,crosspoint(1)+zhi);pop(i,j)=y;endendend[pop]=lujingdis(pop);for i=1:sif pop1(i,t)<pop(i,t)pop(i,:)=pop1(i,:);endEnd变异算子程序:lujingmutate.mfunction [pop] = mutate(pop)[s,t]=size(pop);pop1=pop;for i=1:2:sm=randperm(t-3)+1;mutatepoint(1)=min(m(1),m(2));mutatepoint(2)=max(m(1),m(2));mutate =round((mutatepoint(2)-mutatepoint(1))/2-0.5);for j=1:mutatezhong=pop(i,mutatepoint(1)+j);pop(i,mutatepoint(1)+j)=pop(i,mutatepoint(2)-j);pop(i,mutatepoint(2)-j)=zhong;endend[pop]=lujingdis(pop);for i=1:sif pop1(i,t)<pop(i,t)pop(i,:)=pop1(i,:);endend。

遗传算法matlab代码

遗传算法matlab代码

function youhuafunD=code;N=50; % Tunablemaxgen=50; % Tunablecrossrate=0.5; %Tunablemuterate=0.08; %Tunablegeneration=1;num = length(D);fatherrand=randint(num,N,3);score = zeros(maxgen,N);while generation<=maxgenind=randperm(N-2)+2; % 随机配对交叉A=fatherrand(:,ind(1:(N-2)/2));B=fatherrand(:,ind((N-2)/2+1:end));% 多点交叉rnd=rand(num,(N-2)/2);ind=rnd tmp=A(ind);A(ind)=B(ind);B(ind)=tmp;% % 两点交叉% for kk=1:(N-2)/2% rndtmp=randint(1,1,num)+1;% tmp=A(1:rndtmp,kk);% A(1:rndtmp,kk)=B(1:rndtmp,kk);% B(1:rndtmp,kk)=tmp;% endfatherrand=[fatherrand(:,1:2),A,B];% 变异rnd=rand(num,N);ind=rnd [m,n]=size(ind);tmp=randint(m,n,2)+1;tmp(:,1:2)=0;fatherrand=tmp+fatherrand;fatherrand=mod(fatherrand,3);% fatherrand(ind)=tmp;%评价、选择scoreN=scorefun(fatherrand,D);% 求得N个个体的评价函数score(generation,:)=scoreN;[scoreSort,scoreind]=sort(scoreN);sumscore=cumsum(scoreSort);sumscore=sumscore./sumscore(end);childind(1:2)=scoreind(end-1:end);for k=3:Ntmprnd=rand;tmpind=tmprnd difind=[0,diff(t mpind)];if ~any(difind)difind(1)=1;endchildind(k)=scoreind(logical(difind));endfatherrand=fatherrand(:,childind);generation=generation+1;end% scoremaxV=max(score,[],2);minV=11*300-maxV;plot(minV,'*');title('各代的目标函数值');F4=D(:,4);FF4=F4-fatherrand(:,1);FF4=max(FF4,1);D(:,5)=FF4;save DData Dfunction D=codeload youhua.mat% properties F2 and F3F1=A(:,1);F2=A(:,2);F3=A(:,3);if (max(F2)>1450)||(min(F2)<=900)error('DATA property F2 exceed it''s range(900,1450]')end% get group property F1 of data, according to F2 value F4=zeros(size(F1));for ite=11:-1:1index=find(F2<=900+ite*50);F4(index)=ite;endD=[F1,F2,F3,F4];function ScoreN=scorefun(fatherrand,D)F3=D(:,3);F4=D(:,4);N=size(fatherrand,2);FF4=F4*ones(1,N);FF4rnd=FF4-fatherrand;FF4rnd=max(FF4rnd,1);ScoreN=ones(1,N)*300*11;% 这里有待优化for k=1:NFF4k=FF4rnd(:,k);for ite=1:11F0index=find(FF4k==ite);if ~isempty(F0index)tmpMat=F3(F0index);tmpSco=sum(tmpMat);ScoreBin(ite)=mod(tmpSco,300);endendScorek(k)=sum(ScoreBin);endScoreN=ScoreN-Scorek;遗传算法实例:% 下面举例说明遗传算法 %% 求下列函数的最大值 %% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %% 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。

遗传算法matlab实现源程序

遗传算法matlab实现源程序

clc;clear;%各份订单基本数据phen=[1 2 3 4 5 6 7 8 9 10 11 12 13 1441,52,-23,-46,-143,-74,-56,101,73,74,95,86,-35,3265,23,-76,104,34,38,4,-23,55,-49,39,89,-86,527716,9887,12188,8819,4002,6119,3284,4607,5600,4587,9821,13024,6547,26 84500,400,1000,120,0,235,654,241,0,361,120,254,300,1501,4,2,2,4,4,3,3,3,1,4,5,1,32.7,1.8,4,2.5,1.6,1,3.6,5,4.2,1.9,6.4,2.8,1.4,8];hromlength=14;popsize=30;maxgen=500; p c=0.8;pm=0.04;for kem=1:popsizepopulation(kem,:)=randperm(hromlength);endpopulation;%评价目标函数值for uim=1:popsizevector=population(uim,:);obj(uim)=hanshu(hromlength,vector,phen);end%obj%min(obj)clear uim;objmin=min(obj);for sequ=1:popsizeif obj(sequ)==objminopti=population(sequ,:);endendclear sequ;fmax=22000;%==for gen=1:maxgen%选择操作%将求最小值的函数转化为适应度函数for indivi=1:popsizeobj1(indivi)=1/obj(indivi);endclear indivi;%适应度函数累加总合total=0;for indivi=1:popsizetotal=total+obj1(indivi);endclear indivi;%每条染色体被选中的几率for indivi=1:popsizefitness1(indivi)=obj1(indivi)/total;endclear indivi;%各条染色体被选中的范围for indivi=1:popsizefitness(indivi)=0;for j=1:indivifitness(indivi)=fitness(indivi)+fitness1(j);endendclear j;fitness;%选择适应度高的个体for ranseti=1:popsizeran=rand;while (ran>1||ran<0)ran=rand;endran;if ran<=fitness(1)newpopulation(ranseti,:)=population(1,:);elsefor fet=2:popsizeif (ran>fitness(fet-1))&&(ran<=fitness(fet))newpopulation(ranseti,:)=population(fe t,:);endendendendclear ran;newpopulation;%交叉for int=1:2:popsize-1popmoth=newpopulation(int,:);popfath=newpopulation(int+1,:);popcross(int,:)=popmoth;popcross(int+1,:)=popfath;randnum=rand;if(randnum< P>cpoint1=round(rand*hromlength);cpoint2=round(rand*hromlength);while (cpoint2==cpoint1)cpoint2=round(rand*hromlength);endif cpoint1>cpoint2tem=cpoint1;cpoint1=cpoint2;cpoint2=tem;endcpoint1;cpoint2;for term=cpoint1+1:cpoint2for ss=1:hromlengthif popcross(int,ss)==popfath(term)tem1=popcross(int,ss);popcross(int,ss)=popcross(int, term);popcross(int,term)=tem1;endendclear tem1;endfor term=cpoint1+1:cpoint2for ss=1:hromlengthif popcross(int+1,ss)==popmoth(term)tem1=popcross(int+1,ss);popcross(int+1,ss)=popcross(in t+1,term);popcross(int+1,term)=tem1;endendclear tem1;endendclear term;endclear randnum;popcross;%变异操作newpop=popcross;for int=1:popsizerandnum=rand;if randnumcpoint12=round(rand*hromlength);cpoint22=round(rand*hromlength);if (cpoint12==0)cpoint12=1;endif (cpoint22==0)cpoint22=1;endwhile (cpoint22==cpoint12)cpoint22=round(rand*hromlength);if cpoint22==0;cpoint22=1;endendtemp=newpop(int,cpoint12);newpop(int,cpoint12)=newpop(int,cpoint22);newpop(int,cpoint22)=temp;endendnewpop;clear cpoint12;clear cpoint22;clear randnum;clear int;for ium=1:popsizevector1=newpop(ium,:);obj1(ium)=hanshu(hromlength,vector1,phen); endclear ium;obj1max=max(obj1);for ar=1:popsizeif obj1(ar)==obj1maxnewpop(ar,:)=opti;endendclear population;clear objmin;clear objmean;%遗传操作结束population=newpop;for ium=1:popsizevector2=population(ium,:);obj(ium)=object(hromlength,vector2,phen); endobjmin=min(obj);objmean=mean(obj);clear opti;for sequ1=1:popsizeif obj(sequ1)==objminopti=population(sequ1,:);endendsolution=objmin;final(gen)=objmin;final1(gen)=objmean;endoptisolutionplot(final);hold on;plot(final1,'--')hold off%目标函数值子函数function[cost]=hanshu(hromlength,vector,phen)wmax=20000;ct=1.2;ch=0.5;for num=1:hromlengthline=vector(num);s(:,num)=phen(:,line);endm=1;cshort=0;chold=0;ctrans=0;while m<=hromlengthj=m;weight=s(4,j);day=s(6,j);dis=sqrt(s(2,j)^2+s(3,j)^2);while ((j< P>weight=weight+s(4,j+1);if (s(6,j+1)< P>cshort=(s(5,j+1))*(s(7,j+1))*0.1+cshor t;chold=(s(4,j+1))*ch+chold;enddis=sqrt((s(2,j)-s(2,j+1))^2+(s(3,j)-s(3,j+1)) ^2);j=j+1;enddis=dis+sqrt(s(2,j)^2+s(3,j)^2);ctrans=ctrans+dis*weight*ct;m=j+1;endcost=cshort+chold+ctrans;。

遗传算法matlab代码

遗传算法matlab代码

function youhuafunD=code;N=50; % Tunablemaxgen=50; % Tunablecrossrate=0.5; %Tunablemuterate=0.08; %Tunablegeneration=1;num = length(D);fatherrand=randint(num,N,3);score = zeros(maxgen,N);while generation<=maxgenind=randperm(N-2)+2; % 随机配对交叉A=fatherrand(:,ind(1:(N-2)/2));B=fatherrand(:,ind((N-2)/2+1:end));% 多点交叉rnd=rand(num,(N-2)/2);ind=rnd tmp=A(ind);A(ind)=B(ind);B(ind)=tmp;% % 两点交叉% for kk=1:(N-2)/2% rndtmp=randint(1,1,num)+1;% tmp=A(1:rndtmp,kk);% A(1:rndtmp,kk)=B(1:rndtmp,kk);% B(1:rndtmp,kk)=tmp;% endfatherrand=[fatherrand(:,1:2),A,B];% 变异rnd=rand(num,N);ind=rnd [m,n]=size(ind);tmp=randint(m,n,2)+1;tmp(:,1:2)=0;fatherrand=tmp+fatherrand;fatherrand=mod(fatherrand,3);% fatherrand(ind)=tmp;%评价、选择scoreN=scorefun(fatherrand,D);% 求得N个个体的评价函数score(generation,:)=scoreN;[scoreSort,scoreind]=sort(scoreN);sumscore=cumsum(scoreSort);sumscore=sumscore./sumscore(end);childind(1:2)=scoreind(end-1:end);for k=3:Ntmprnd=rand;tmpind=tmprnd difind=[0,diff(tmpind)];if ~any(difind)difind(1)=1;endchildind(k)=scoreind(logical(difind));endfatherrand=fatherrand(:,childind);generation=generation+1;end% scoremaxV=max(score,[],2);minV=11*300-maxV;plot(minV,'*');title('各代的目标函数值');F4=D(:,4);FF4=F4-fatherrand(:,1);FF4=max(FF4,1);D(:,5)=FF4;save DData Dfunction D=codeload youhua.mat% properties F2 and F3F1=A(:,1);F2=A(:,2);F3=A(:,3);if (max(F2)>1450)||(min(F2)<=900)error('DATA property F2 exceed it''s range (900,1450]') end% get group property F1 of data, according to F2 value F4=zeros(size(F1));for ite=11:-1:1index=find(F2<=900+ite*50);F4(index)=ite;endD=[F1,F2,F3,F4];function ScoreN=scorefun(fatherrand,D)F3=D(:,3);F4=D(:,4);N=size(fatherrand,2);FF4=F4*ones(1,N);FF4rnd=FF4-fatherrand;FF4rnd=max(FF4rnd,1);ScoreN=ones(1,N)*300*11;% 这里有待优化for k=1:NFF4k=FF4rnd(:,k);for ite=1:11F0index=find(FF4k==ite);if ~isempty(F0index)tmpMat=F3(F0index);tmpSco=sum(tmpMat);ScoreBin(ite)=mod(tmpSco,300);endendScorek(k)=sum(ScoreBin);endScoreN=ScoreN-Scorek;遗传算法实例:% 下面举例说明遗传算法%% 求下列函数的最大值%% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %% 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01 。

遗传算法matlab代码

遗传算法matlab代码

遗传算法matlab代码以下是一个简单的遗传算法的MATLAB 代码示例:matlab复制代码% 遗传算法参数设置pop_size = 50; % 种群大小num_vars = 10; % 变量数目num_generations = 100; % 进化的代数mutation_rate = 0.01; % 变异率crossover_rate = 0.8; % 交叉率% 初始化种群population = rand(pop_size, num_vars);% 开始进化for i = 1:num_generations% 计算适应度fitness = evaluate_fitness(population);% 选择操作selected_population = selection(population, fitness);% 交叉操作offspring_population = crossover(selected_population,crossover_rate);% 变异操作mutated_population = mutation(offspring_population,mutation_rate);% 生成新种群population = [selected_population; mutated_population];end% 选择最优解best_solution = population(find(fitness == max(fitness)), :);% 适应度函数function f = evaluate_fitness(population)f = zeros(size(population));for i = 1:size(population, 1)f(i) = sum(population(i, :));endend% 选择函数function selected_population = selection(population, fitness)% 轮盘赌选择total_fitness = sum(fitness);probabilities = fitness / total_fitness;selected_indices = zeros(pop_size, 1);for i = 1:pop_sizer = rand();cumulative_probabilities = cumsum(probabilities);for j = 1:pop_sizeif r <= cumulative_probabilities(j)selected_indices(i) = j;break;endendendselected_population = population(selected_indices, :);end% 交叉函数function offspring_population = crossover(parental_population, crossover_rate)offspring_population = zeros(size(parental_population));num_crossovers = ceil(size(parental_population, 1) *crossover_rate);crossover_indices = randperm(size(parental_population, 1),num_crossovers);以下是另一个一个简单的遗传算法的MATLAB 代码示例:matlab复制代码% 初始化种群population = rand(nPopulation, nGenes);% 进化迭代for iGeneration = 1:nGeneration% 计算适应度fitness = evaluateFitness(population);% 选择父代parentIdx = selection(fitness);parent = population(parentIdx, :);% 交叉产生子代child = crossover(parent);% 变异子代child = mutation(child);% 更新种群population = [parent; child];end% 评估最优解bestFitness = -Inf;for i = 1:nPopulationf = evaluateFitness(population(i, :));if f > bestFitnessbestFitness = f;bestIndividual = population(i, :);endend% 可视化结果plotFitness(fitness);其中,nPopulation和nGenes分别是种群大小和基因数;nGeneration是迭代次数;evaluateFitness函数用于计算个体的适应度;selection函数用于选择父代;crossover函数用于交叉产生子代;mutation函数用于变异子代。

(完整版)遗传算法matlab实现源程序

(完整版)遗传算法matlab实现源程序

附页:一.遗传算法源程序:clc; clear;population;%评价目标函数值for uim=1:popsizevector=population(uim,:);obj(uim)=hanshu(hromlength,vector,phen);end%obj%min(obj)clear uim;objmin=min(obj);for sequ=1:popsizeif obj(sequ)==objminopti=population(sequ,:);endendclear sequ;fmax=22000;%==for gen=1:maxgen%选择操作%将求最小值的函数转化为适应度函数for indivi=1:popsizeobj1(indivi)=1/obj(indivi);endclear indivi;%适应度函数累加总合total=0;for indivi=1:popsizetotal=total+obj1(indivi);endclear indivi;%每条染色体被选中的几率for indivi=1:popsizefitness1(indivi)=obj1(indivi)/total;endclear indivi;%各条染色体被选中的范围for indivi=1:popsizefitness(indivi)=0;for j=1:indivifitness(indivi)=fitness(indivi)+fitness1(j);endendclear j;fitness;%选择适应度高的个体for ranseti=1:popsizeran=rand;while (ran>1||ran<0)ran=rand;endran;if ran〈=fitness(1)newpopulation(ranseti,:)=population(1,:);elsefor fet=2:popsizeif (ran〉fitness(fet—1))&&(ran<=fitness(fet))newpopulation(ranseti,:)=population(fet,:);endendendendclear ran;newpopulation;%交叉for int=1:2:popsize-1popmoth=newpopulation(int,:);popfath=newpopulation(int+1,:);popcross(int,:)=popmoth;popcross(int+1,:)=popfath;randnum=rand;if(randnum〈 P>cpoint1=round(rand*hromlength);cpoint2=round(rand*hromlength);while (cpoint2==cpoint1)cpoint2=round(rand*hromlength);endif cpoint1>cpoint2tem=cpoint1;cpoint1=cpoint2;cpoint2=tem;endcpoint1;cpoint2;for term=cpoint1+1:cpoint2for ss=1:hromlengthif popcross(int,ss)==popfath(term)tem1=popcross(int,ss);popcross(int,ss)=popcross(int,term);popcross(int,term)=tem1;endendclear tem1;endfor term=cpoint1+1:cpoint2for ss=1:hromlengthif popcross(int+1,ss)==popmoth(term)tem1=popcross(int+1,ss);popcross(int+1,ss)=popcross(int+1,term);popcross(int+1,term)=tem1;endendclear tem1;endendclear term;endclear randnum;popcross;%变异操作newpop=popcross;for int=1:popsizerandnum=rand;if randnumcpoint12=round(rand*hromlength);cpoint22=round(rand*hromlength);if (cpoint12==0)cpoint12=1;endif (cpoint22==0)cpoint22=1;endwhile (cpoint22==cpoint12)cpoint22=round(rand*hromlength);if cpoint22==0;cpoint22=1;endendtemp=newpop(int,cpoint12);newpop(int,cpoint12)=newpop(int,cpoint22);newpop(int,cpoint22)=temp;。

(完整版)基于改进遗传算法的路径规划MATLAB实现

(完整版)基于改进遗传算法的路径规划MATLAB实现

基于遗传算法的路径规划MATLAB实现主程序:clear all;close all;t=23; %过程点个数=t-1s=500; %种群规模pc=0.90; %交叉概率pm=0.20; %变异概率pop=zeros(s,t);for i=1:spop(i,1:t-1)=randperm(t-1);endfor k=1:1:2000 %进化代次数kif mod(k,10)==1kendpop=lujingdis(pop);c=15;%选择淘汰个数pop=lujingselect(pop,c);p=rand;if p>=pcpop=lujingcross(pop);endif p>=pmpop=lujingmutate(pop);Endendpopmin(pop(:,t))J=pop(:,t);fi=1./J;[Oderfi,Indexfi]=sort(fi); %安排fi从小到大BestS=pop(Indexfi(s),:); %使BestS=E(m),m即是属于max(fi)的Indexfi I=BestS;x=[2 3 6 10 14 17 22 20 23 25 30 28 25 21 29 16 18 15 9 11 6 5 ];y=[5 26 14 29 27 24 28 22 26 30 30 17 13 15 4 13 3 1 6 2 2 7];%过程点坐标% x=[1 2 3 4 6 9 11 10 8 9 6 4]; %12个过程点的坐标% y=[1 2 3 4 8 10 11 9 5 2 1 2];for i=1:1:t-1x1(i)=x(I(i));y1(i)=y(I(i));endx(t)=x(I(1));y(t)=y(I(1));a = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 11 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 11 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 11 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 11 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 11 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1];%31*31栅格%a = [1 1 1 1 1 1 1 1 1 11 1 1 0 0 1 1 1 0 01 0 1 0 0 1 1 1 1 10 0 1 1 1 1 0 1 1 01 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 11 0 0 1 1 0 1 1 1 11 1 1 1 1 1 1 1 1 01 1 1 1 1 1 1 1 1 10 1 1 1 1 1 0 0 1 1];%11*11栅格b = a;b(end+1,end+1) = 0;colormap([0 0 0;1 1 1]),pcolor(b)axis image xy;%绘制栅格图hold on;figure(1);plot(x,y,'-or');适应度函数程序:lujingdis.mfunction [pop]=qiujuli(pop)[s,t]=size(pop);for i=1:1:sdd=0;for j=1:1:t-2dd=dd+lujingcalculate(pop(i,j),pop(i,j+1));endpop(i,t)=dd;End距离计算程序:lujingcalculate.mfunction [d]=juli(m,n)x=[2 3 6 10 14 17 22 20 23 25 30 28 25 21 29 16 18 15 9 11 6 5 ]; y=[5 26 14 29 27 24 28 22 26 30 30 17 13 15 4 13 3 1 6 2 2 7]; %x=[1 2 3 4 6 9 11 10 8 9 6 4];% y=[1 2 3 4 8 10 11 9 5 2 1 2];d=sqrt((x(m)-x(n))^2+(y(m)-y(n))^2);选择算子程序:lujingselect.mfunction [pop]=select(pop,k)[s,t]=size(pop);m11=(pop(:,t));m11=m11';mmax=zeros(1,k);mmin=zeros(1,k);num=1;while num<k+1[a,mmax(num)]=max(m11);m11(mmax(num))=a;num=num+1;endnum=1;while num<k+1[b,mmin(num)]=min(m11);m11(mmin(num))=a;num=num+1;endfor i=1:kpop(mmax(i),:)=pop(mmin(i),:);End交叉算子程序:lujingcross.mfunction [pop]=cross(pop)[s,t]=size(pop);pop1=pop;for i=1:2:sm=randperm(t-3)+1;crosspoint(1)=min(m(1),m(2));crosspoint(2)=max(m(1),m(2));for j=1:crosspoint(1)while find(pop(i,crosspoint(1)+1:crosspoint(2))==pop(i,j))zhi=find(pop(i,crosspoint(1)+1:crosspoint(2))==pop(i,j));y=pop(i+1,crosspoint(1)+zhi);pop(i,j)=y;endendfor j=crosspoint(2)+1:t-1while find(pop(i,crosspoint(1)+1:crosspoint(2))==pop(i,j))zhi=find(pop(i,crosspoint(1)+1:crosspoint(2))==pop(i,j));y=pop(i+1,crosspoint(1)+zhi);pop(i,j)=y;endendend[pop]=lujingdis(pop);for i=1:sif pop1(i,t)<pop(i,t)pop(i,:)=pop1(i,:);endEnd变异算子程序:lujingmutate.mfunction [pop] = mutate(pop)[s,t]=size(pop);pop1=pop;for i=1:2:sm=randperm(t-3)+1;mutatepoint(1)=min(m(1),m(2));mutatepoint(2)=max(m(1),m(2));mutate =round((mutatepoint(2)-mutatepoint(1))/2-0.5);for j=1:mutatezhong=pop(i,mutatepoint(1)+j);pop(i,mutatepoint(1)+j)=pop(i,mutatepoint(2)-j);pop(i,mutatepoint(2)-j)=zhong;endend[pop]=lujingdis(pop);for i=1:sif pop1(i,t)<pop(i,t)pop(i,:)=pop1(i,:);endend。

基于遗传算法的机器人路径规划研究

基于遗传算法的机器人路径规划研究

基于遗传算法的机器人路径规划研究机器人的路径规划是人工智能领域的一个重要研究方向,通过设计合理的路径规划算法,可以让机器人有效地避开障碍物,快速到达目标位置。

遗传算法作为一种优化算法,被广泛应用于机器人路径规划研究中。

本文将介绍基于遗传算法的机器人路径规划的研究进展和相关方法。

一、遗传算法原理简介遗传算法是模拟自然界的生物进化过程,通过模拟遗传、突变、选择等操作,求解优化问题的近似最优解。

遗传算法的基本思想是将问题的解表示为染色体,然后通过交叉、变异等操作改变染色体,找到最优解。

在机器人路径规划中,可以将机器人的路径表示为染色体,每个染色体由一系列路径点组成。

目标是找到一条从起点到终点的最优路径。

二、基于遗传算法的机器人路径规划方法1. 初始化种群:根据机器人的环境和优化目标,生成初始种群,每个个体表示一条路径。

2. 适应度评价:根据路径长度、碰撞风险等指标,评估每个个体的适应度。

3. 选择操作:根据适应度的大小,选择部分个体作为父代,保留优秀的解。

4. 交叉操作:选取父代中的两个个体,通过交叉操作生成新的个体。

可以采用单点交叉、多点交叉等交叉方式。

5. 变异操作:对新生成的个体进行变异操作,引入一定的随机性,增加解的多样性。

6. 更新种群:将父代和后代合并,形成新的种群。

7. 重复执行3-6步骤,直到满足停止条件。

8. 获取最优解:从最终种群中选择适应度最高的个体作为机器人的最优路径。

三、实验结果与应用许多研究者通过实验验证了基于遗传算法的机器人路径规划方法的有效性。

例如,针对复杂的环境和多目标路径规划问题,研究者通过遗传算法得到了高效的路径规划方案。

此外,基于遗传算法的机器人路径规划也得到了广泛的应用。

在工业自动化领域,机器人路径规划是保证生产线高效运行的关键技术之一。

利用遗传算法可以快速求解复杂的路径规划问题,提高生产线的自动化水平。

四、存在的问题与展望尽管基于遗传算法的机器人路径规划方法在很多情况下表现良好,但仍然存在一些问题需要解决。

遗传算法解决TSP问题的matlab程序【精品毕业设计】(完整版)

遗传算法解决TSP问题的matlab程序【精品毕业设计】(完整版)

1.遗传算法解决TSP 问题(附matlab源程序)2.知n个城市之间的相互距离,现有一个推销员必须遍访这n个城市,并且每个城市3.只能访问一次,最后又必须返回出发城市。

如何安排他对这些城市的访问次序,可使其4.旅行路线的总长度最短?5.用图论的术语来说,假设有一个图g=(v,e),其中v是顶点集,e是边集,设d=(dij)6.是由顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶7.点且每个顶点只通过一次的具有最短距离的回路。

8.这个问题可分为对称旅行商问题(dij=dji,,任意i,j=1,2,3,…,n)和非对称旅行商9.问题(dij≠dji,,任意i,j=1,2,3,…,n)。

10.若对于城市v={v1,v2,v3,…,vn}的一个访问顺序为t=(t1,t2,t3,…,ti,…,tn),其中11.ti∈v(i=1,2,3,…,n),且记tn+1= t1,则旅行商问题的数学模型为:12.min l=σd(t(i),t(i+1)) (i=1,…,n)13.旅行商问题是一个典型的组合优化问题,并且是一个np难问题,其可能的路径数目14.与城市数目n是成指数型增长的,所以一般很难精确地求出其最优解,本文采用遗传算法15.求其近似解。

16.遗传算法:17.初始化过程:用v1,v2,v3,…,vn代表所选n个城市。

定义整数pop-size作为染色体的个数18.,并且随机产生pop-size个初始染色体,每个染色体为1到18的整数组成的随机序列。

19.适应度f的计算:对种群中的每个染色体vi,计算其适应度,f=σd(t(i),t(i+1)).20.评价函数eval(vi):用来对种群中的每个染色体vi设定一个概率,以使该染色体被选中21.的可能性与其种群中其它染色体的适应性成比例,既通过轮盘赌,适应性强的染色体被22.选择产生后台的机会要大,设alpha∈(0,1),本文定义基于序的评价函数为eval(vi)=al23.pha*(1-alpha).^(i-1) 。

遗传算法Matlab源代码

遗传算法Matlab源代码

遗传算法Matlab源代码完整可以运行的数值优化遗传算法源代码function[X,MaxFval,BestPop,Trace]=fga(FUN,bounds,MaxEranum,PopSiz e,options,pCross,pMutation,pInversion)%[X,MaxFval,BestPop,Trace]=fga(FUN,bounds,MaxEranum,PopSiz e,options,pCross,pMutation,pInversion)% Finds a maximum of a function of several variables.% fga solves problems of the form:% max F(X) subject to: LB = X = UB (LB=bounds(:,1),UB=bounds(:,2))% X - 最优个体对应自变量值% MaxFval - 最优个体对应函数值% BestPop - 最优的群体即为最优的染色体群% Trace - 每代最佳个体所对应的目标函数值% FUN - 目标函数% bounds - 自变量范围% MaxEranum - 种群的代数,取50--500(默认200)% PopSize - 每一代种群的规模;此可取50--200(默认100)% pCross - 交叉概率,一般取0.5--0.85之间较好(默认0.8)% pMutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1)% pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2) % options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编码,option(2)设定求解精度(默认1e-4)T1=clock;%检验初始参数if nargin2, error('FMAXGA requires at least three input arguments'); endif nargin==2, MaxEranum=150;PopSize=100;options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==3, PopSize=100;options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==4, options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==5, pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==6, pMutation=0.1;pInversion=0.25;endif nargin==7, pInversion=0.25;endif (options(1)==0|options(1)==1)find((bounds(:,1)-bounds(:,2))0)error('数据输入错误,请重新输入:');end% 定义全局变量global m n NewPop children1 children2 VarNum% 初始化种群和变量precision = options(2);bits = ceil(log2((bounds(:,2)-bounds(:,1))' ./ precision));%由设定精度划分区间VarNum = size(bounds,1);[Pop] = InitPop(PopSize,bounds,bits,options);%初始化种群[m,n] = size(Pop);fit = zeros(1,m);NewPop = zeros(m,n);children1 = zeros(1,n);children2 = zeros(1,n);pm0 = pMutation;BestPop = zeros(MaxEranum,n);%分配初始解空间BestPop,TraceTrace = zeros(1,MaxEranum);完整可以运行的数值优化遗传算法源代码Lb = ones(PopSize,1)*bounds(:,1)';Ub = ones(PopSize,1)*bounds(:,2)';%二进制编码采用多点交叉和均匀交叉,并逐步增大均匀交叉概率%浮点编码采用离散交叉(前期)、算术交叉(中期)、AEA重组(后期)OptsCrossOver = [ones(1,MaxEranum)*options(1);...round(unidrnd(2*(MaxEranum-[1:MaxEranum]))/MaxEranum)]';%浮点编码时采用两种自适应变异和一种随机变异(自适应变异发生概率为随机变异发生的2倍)OptsMutation = [ones(1,MaxEranum)*options(1);unidrnd(5,1,MaxEranum)]';if options(1)==3D=zeros(n);CityPosition=bounds;D = sqrt((CityPosition(:, ones(1,n)) - CityPosition(:, ones(1,n))').^2 +...(CityPosition(:,2*ones(1,n)) - CityPosition(:,2*ones(1,n))').^2 );end%========================================================================== % 进化主程序%%===================================== ===================================== eranum = 1;H=waitbar(0,'Please wait...');while(eranum=MaxEranum)for j=1:mif options(1)==1%eval(['[fit(j)]=' FUN '(Pop(j,:));']);%但执行字符串速度比直接计算函数值慢fit(j)=feval(FUN,Pop(j,:));%计算适应度elseif options(1)==0%eval(['[fit(j)]=' FUN '(b2f(Pop(j,:),bounds,bits));']);fit(j)=feval(FUN,(b2f(Pop(j,:),bounds,bits)));elsefit(j)=-feval(FUN,Pop(j,:),D);endend[Maxfit,fitIn]=max(fit);%得到每一代最大适应值Meanfit(eranum)=mean(fit);BestPop(eranum,:)=Pop(fitIn,:);Trace(eranum)=Maxfit;if options(1)==1Pop=(Pop-Lb)./(Ub-Lb);%将定义域映射到[0,1]:[Lb,Ub]--[0,1] ,Pop--(Pop-Lb)./(Ub-Lb)endswitch round(unifrnd(0,eranum/MaxEranum))%进化前期尽量使用实行锦标赛选择,后期逐步增大非线性排名选择case {0} [selectpop]=TournamentSelect(Pop,fit,bits);%锦标赛选择case {1}[selectpop]=NonlinearRankSelect(Pop,fit,bits);%非线性排名选择end完整可以运行的数值优化遗传算法源代码[CrossOverPop]=CrossOver(selectpop,pCross,OptsCrossOver(er anum,:));%交叉[MutationPop]=Mutation(CrossOverPop,fit,pMutation,VarNum,O ptsMutation(eranum,:)); %变异[InversionPop]=Inversion(MutationPop,pInversion);%倒位%更新种群if options(1)==1Pop=Lb+InversionPop.*(Ub-Lb);%还原PopelsePop=InversionPop;endpMutation=pm0+(eranum^3)*(pCross/2-pm0)/(eranum^4); %逐步增大变异率至1/2交叉率percent=num2str(round(100*eranum/MaxEranum));waitbar(eranum/MaxEranum,H,['Evolution complete ',percent,'%']);eranum=eranum+1;endclose(H);% 格式化输出进化结果和解的变化情况t=1:MaxEranum;plot(t,Trace,t,Meanfit);legend('解的变化','种群的变化');title('函数优化的遗传算法');xlabel('进化世代数');ylabel('每一代最优适应度');[MaxFval,MaxFvalIn]=max(Trace);if options(1)==1|options(1)==3X=BestPop(MaxFvalIn,:);elseif options(1)==0X=b2f(BestPop(MaxFvalIn,:),bounds,bits);endhold on;plot(MaxFvalIn,MaxFval,'*');text(MaxFvalIn+5,MaxFval,['FMAX=' num2str(MaxFval)]);str1=sprintf(' Best generation:\n %d\n\n Best X:\n %s\n\n MaxFval\n %f\n',...MaxFvalIn,num2str(X),MaxFval);disp(str1);% -计时T2=clock;elapsed_time=T2-T1;if elapsed_time(6)0elapsed_time(6)=elapsed_time(6)+60;elapsed_time(5)=elapsed_time(5)-1;endif elapsed_time(5)0elapsed_time(5)=elapsed_time(5)+60;elapsed_time(4)=elapsed_t ime(4)-1;end完整可以运行的数值优化遗传算法源代码str2=sprintf('elapsed_time\n %d (h) %d (m) %.4f (s)',elapsed_time(4),elapsed_time(5),elapsed_time(6));disp(str2);%===================================== ===================================== % 遗传操作子程序%%===================================== ===================================== % -- 初始化种群--% 采用浮点编码和二进制Gray编码(为了克服二进制编码的Hamming悬崖缺点)function [initpop]=InitPop(popsize,bounds,bits,options)numVars=size(bounds,1);%变量数目rang=(bounds(:,2)-bounds(:,1))';%变量范围if options(1)==1initpop=zeros(popsize,numVars);initpop=(ones(popsize,1)*rang).*(rand(popsize,numVars))+(ones (popsize,1)*bounds(:,1)');elseif options(1)==0precision=options(2);%由求解精度确定二进制编码长度len=sum(bits);initpop=zeros(popsize,len);%The whole zero encoding individualfor i=2:popsize-1pop=round(rand(1,len));pop=mod(([0 pop]+[pop 0]),2);%i=1时,b(1)=a(1);i1时,b(i)=mod(a(i-1)+a(i),2)%其中原二进制串:a(1)a(2)...a(n),Gray串:b(1)b(2)...b(n)initpop(i,:)=pop(1:end-1);endinitpop(popsize,:)=ones(1,len);%The whole one encoding individualelsefor i=1:popsizeinitpop(i,:)=randperm(numVars);%为Tsp问题初始化种群endend% -- 二进制串解码--function [fval] = b2f(bval,bounds,bits)% fval - 表征各变量的十进制数% bval - 表征各变量的二进制编码串% bounds - 各变量的取值范围% bits - 各变量的二进制编码长度scale=(bounds(:,2)-bounds(:,1))'./(2.^bits-1); %The range of the variablesnumV=size(bounds,1);cs=[0 cumsum(bits)];for i=1:numVa=bval((cs(i)+1):cs(i+1));fval(i)=sum(2.^(size(a,2)-1:-1:0).*a)*scale(i)+bounds(i,1);end% -- 选择操作--完整可以运行的数值优化遗传算法源代码% 采用基于轮盘赌法的非线性排名选择% 各个体成员按适应值从大到小分配选择概率:% P(i)=(q/1-(1-q)^n)*(1-q)^i, 其中P(0)P(1)...P(n), sum(P(i))=1function [NewPop]=NonlinearRankSelect(OldPop,fit,bits) global m n NewPopfit=fit';selectprob=fit/sum(fit);%计算各个体相对适应度(0,1)q=max(selectprob);%选择最优的概率x=zeros(m,2);x(:,1)=[m:-1:1]';[y x(:,2)]=sort(selectprob);r=q/(1-(1-q)^m);%标准分布基值newfit(x(:,2))=r*(1-q).^(x(:,1)-1);%生成选择概率newfit=[0 cumsum(newfit)];%计算各选择概率之和rNums=rand(m,1);newIn=1;while(newIn=m)NewPop(newIn,:)=OldPop(length(find(rNums(newIn)newfit)),:);newIn=newIn+1;end% -- 锦标赛选择(含精英选择) --function [NewPop]=TournamentSelect(OldPop,fit,bits)global m n NewPopnum=floor(m./2.^(1:10));num(find(num==0))=[];L=length(num);a=sum(num);b=m-a;PopIn=1;while(PopIn=L)r=unidrnd(m,num(PopIn),2^PopIn);[LocalMaxfit,In]=max(fit(r),[],2);SelectIn=r((In-1)*num(PopIn)+[1:num(PopIn)]');NewPop(sum(num(1:PopIn))-num(PopIn)+1:sum(num(1:PopIn)),:)=OldPop(SelectIn,:);PopIn=PopIn+1;r=[];In=[];LocalMaxfit=[];endif b1NewPop((sum(num)+1):(sum(num)+b-1),:)=OldPop(unidrnd(m,1,b-1),:);end[GlobalMaxfit,I]=max(fit);%保留每一代中最佳个体NewPop(end,:)=OldPop(I,:);% -- 交叉操作--function [NewPop]=CrossOver(OldPop,pCross,opts)global m n NewPopr=rand(1,m);完整可以运行的数值优化遗传算法源代码y1=find(rpCross);y2=find(r=pCross);len=length(y1);if len==1|(len2mod(len,2)==1)%如果用来进行交叉的染色体的条数为奇数,将其调整为偶数y2(length(y2)+1)=y1(len);y1(len)=[];endi=0;if length(y1)=2if opts(1)==1%浮点编码交叉while(i=length(y1)-2)NewPop(y1(i+1),:)=OldPop(y1(i+1),:);NewPop(y1(i+2),:)=OldPop(y1(i+2),:);if opts(2)==0n1%discret crossoverPoints=sort(unidrnd(n,1,2));NewPop(y1(i+1),Points(1):Points(2))=OldPop(y1(i+2),Points(1):Po ints(2));NewPop(y1(i+2),Points(1):Points(2))=OldPop(y1(i+1),Points(1):Po ints(2));elseif opts(2)==1%arithmetical crossoverPoints=round(unifrnd(0,pCross,1,n));CrossPoints=find(Points==1);r=rand(1,length(CrossPoints));NewPop(y1(i+1),CrossPoints)=r.*OldPop(y1(i+1),CrossPoints)+(1 -r).*OldPop(y1(i+2),CrossPoints);NewPop(y1(i+2),CrossPoints)=r.*OldPop(y1(i+2),CrossPoints)+(1 -r).*OldPop(y1(i+1),CrossPoints); else %AEA recombination Points=round(unifrnd(0,pCross,1,n));CrossPoints=find(Points==1);v=unidrnd(4,1,2);NewPop(y1(i+1),CrossPoints)=(floor(10^v(1)*OldPop(y1(i+1),Cro ssPoints))+...10^v(1)*OldPop(y1(i+2),CrossPoints)-floor(10^v(1)*OldPop(y1(i+2),CrossPoints)))/10^v(1);NewPop(y1(i+2),CrossPoints)=(floor(10^v(2)*OldPop(y1(i+2),Cro ssPoints))+...10^v(2)*OldPop(y1(i+1),CrossPoints)-floor(10^v(2)*OldPop(y1(i+1),CrossPoints)))/10^v(2);endi=i+2;endelseif opts(1)==0%二进制编码交叉while(i=length(y1)-2)if opts(2)==0[NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=EqualCrossOver(OldPop( y1(i+1),:),OldPop(y1(i+2),:)); else[NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=MultiPointCross(OldPop( y1(i+1),:),OldPop(y1(i+2),:)); endi=i+2;endelse %Tsp问题次序杂交for i=0:2:length(y1)-2xPoints=sort(unidrnd(n,1,2));NewPop([y1(i+1)y1(i+2)],xPoints(1):xPoints(2))=OldPop([y1(i+2)y1(i+1)],xPoints(1):xPoints(2));完整可以运行的数值优化遗传算法源代码%NewPop(y1(i+2),xPoints(1):xPoints(2))=OldPop(y1(i+1),xPo ints(1):xPoints(2));temp=[OldPop(y1(i+1),xPoints(2)+1:n)OldPop(y1(i+1),1:xPoints(2))];for del1i=xPoints(1):xPoints(2)temp(find(temp==OldPop(y1(i+2),del1i)))=[];endNewPop(y1(i+1),(xPoints(2)+1):n)=temp(1:(n-xPoints(2)));NewPop(y1(i+1),1:(xPoints(1)-1))=temp((n-xPoints(2)+1):end);temp=[OldPop(y1(i+2),xPoints(2)+1:n)OldPop(y1(i+2),1:xPoints(2))];for del2i=xPoints(1):xPoints(2)temp(find(temp==OldPop(y1(i+1),del2i)))=[];endNewPop(y1(i+2),(xPoints(2)+1):n)=temp(1:(n-xPoints(2)));NewPop(y1(i+2),1:(xPoints(1)-1))=temp((n-xPoints(2)+1):end);endendendNewPop(y2,:)=OldPop(y2,:);% -二进制串均匀交叉算子function[children1,children2]=EqualCrossOver(parent1,parent2) global n children1 children2hidecode=round(rand(1,n));%随机生成掩码crossposition=find(hidecode==1);holdposition=find(hidecode==0);children1(crossposition)=parent1(crossposition);%掩码为1,父1为子1提供基因children1(holdposition)=parent2(holdposition);%掩码为0,父2为子1提供基因children2(crossposition)=parent2(crossposition);%掩码为1,父2为子2提供基因children2(holdposition)=parent1(holdposition);%掩码为0,父1为子2提供基因% -二进制串多点交叉算子function[Children1,Children2]=MultiPointCross(Parent1,Parent2)%交叉点数由变量数决定global n Children1 Children2 VarNumChildren1=Parent1;Children2=Parent2;Points=sort(unidrnd(n,1,2*VarNum));for i=1:VarNumChildren1(Points(2*i-1):Points(2*i))=Parent2(Points(2*i-1):Points(2*i));Children2(Points(2*i-1):Points(2*i))=Parent1(Points(2*i-1):Points(2*i));end% -- 变异操作--function[NewPop]=Mutation(OldPop,fit,pMutation,VarNum,opts) global m n NewPopNewPop=OldPop;r=rand(1,m);MutIn=find(r=pMutation);L=length(MutIn);完整可以运行的数值优化遗传算法源代码i=1;if opts(1)==1%浮点变异maxfit=max(fit);upfit=maxfit+0.05*abs(maxfit);if opts(2)==1|opts(2)==3while(i=L)%自适应变异(自增或自减)Point=unidrnd(n);T=(1-fit(MutIn(i))/upfit)^2;q=abs(1-rand^T);%if q1%按严格数学推理来说,这段程序是不能缺少的% q=1%endp=OldPop(MutIn(i),Point)*(1-q);if unidrnd(2)==1NewPop(MutIn(i),Point)=p+q;elseNewPop(MutIn(i),Point)=p;endi=i+1;endelseif opts(2)==2|opts(2)==4%AEA变异(任意变量的某一位变异)while(i=L)Point=unidrnd(n);T=(1-abs(upfit-fit(MutIn(i)))/upfit)^2;v=1+unidrnd(1+ceil(10*T));%v=1+unidrnd(5+ceil(10*eranum/MaxEranum));q=mod(floor(OldPop(MutIn(i),Point)*10^v),10);NewPop(MutIn(i),Point)=OldPop(MutIn(i),Point)-(q-unidrnd(9))/10^v;i=i+1;endelsewhile(i=L)Point=unidrnd(n);if round(rand)NewPop(MutIn(i),Point)=OldPop(MutIn(i),Point)*(1-rand);elseNewPop(MutIn(i),Point)=OldPop(MutIn(i),Point)+(1-OldPop(MutIn(i),Point))*rand; endi=i+1;endendelseif opts(1)==0%二进制串变异if L=1while i=Lk=unidrnd(n,1,VarNum); %设置变异点数(=变量数)for j=1:length(k)if NewPop(MutIn(i),k(j))==1NewPop(MutIn(i),k(j))=0;else完整可以运行的数值优化遗传算法源代码NewPop(MutIn(i),k(j))=1;endendi=i+1;endendelse%Tsp变异if opts(2)==1|opts(2)==2|opts(2)==3|opts(2)==4numMut=ceil(pMutation*m);r=unidrnd(m,numMut,2);[LocalMinfit,In]=min(fit(r),[],2);SelectIn=r((In-1)*numMut+[1:numMut]');while(i=numMut)mPoints=sort(unidrnd(n,1,2));if mPoints(1)~=mPoints(2)NewPop(SelectIn(i),1:mPoints(1)-1)=OldPop(SelectIn(i),1:mPoints(1)-1);NewPop(SelectIn(i),mPoints(1):mPoints(2)-1)=OldPop(SelectIn(i),mPoints(1)+1:mPoints(2));NewPop(SelectIn(i),mPoints(2))=OldPop(SelectIn(i),mPoints(1));NewPop(SelectIn(i),mPoints(2)+1:n)=OldPop(SelectIn(i),mPoints( 2)+1:n);elseNewPop(SelectIn(i),:)=OldPop(SelectIn(i),:);endi=i+1;endr=rand(1,m);MutIn=find(r=pMutation);L=length(MutIn);while i=LmPoints=sort(unidrnd(n,1,2));rIn=randperm(mPoints(2)-mPoints(1)+1);NewPop(MutIn(i),mPoints(1):mPoints(2))=OldPop(MutIn(i),mPoin ts(1)+rIn-1);i=i+1;endendend% -- 倒位操作--function [NewPop]=Inversion(OldPop,pInversion)global m n NewPopNewPop=OldPop;r=rand(1,m);PopIn=find(r=pInversion);len=length(PopIn);if len=1while(i=len)d=sort(unidrnd(n,1,2));完整可以运行的数值优化遗传算法源代码NewPop(PopIn(i),d(1):d(2))=OldPop(PopIn(i),d(2):-1:d(1)); i=i+1;。

基于遗传算法的机器人路径规划

基于遗传算法的机器人路径规划

基于遗传算法的机器人路径规划机器人已经成为现代工业和生活的重要组成部分,广泛应用于自动化生产和服务领域。

机器人路径规划是机器人实现自主移动的重要技术之一,它可以帮助机器人避开障碍物,找到最短路径,提高机器人的运动效率和安全性。

而基于遗传算法的机器人路径规划是一种有效的解决方法,本文将对这一技术进行介绍和分析。

一、遗传算法概述遗传算法是一种启发式搜索算法,常用于求解复杂的优化问题。

遗传算法的基本思想是模拟生物遗传和进化过程中的基本原理,通过模拟交叉、变异、选择等遗传操作,不断地对种群中的个体进行进化,最终得到最优解。

遗传算法一般由以下步骤组成:1. 初始化种群:随机生成一组初始个体并形成初始种群;2. 适应度函数:根据问题的特定需求和目标,设计适应度函数评价每个个体的优劣程度;3. 选择操作:根据适应度函数的评价结果,选择优秀的个体参与下一代进化;4. 遗传操作:包括交叉和变异两种操作,交叉操作模拟生物交配和染色体交换,变异操作模拟基因突变。

5. 收敛判断:通过设定迭代次数或适应度函数的收敛精度,判断算法是否终止。

二、机器人路径规划中的遗传算法机器人路径规划一般可分为静态路径规划和动态路径规划两种,其中动态路径规划又可分为全局路径规划和局部路径规划。

全局路径规划是指在未知环境中,机器人需要从起点到终点找到一条最近、最短、最安全的路径。

全局路径规划一般采用比较复杂的路徑规劃算法解决,例如A*算法、Dijstra算法、基于遗传算法的路径规划算法等。

局部路径规划是指机器人在已知环境中,需要在运动中避开障碍物和遵守运动规则,实现安全有效的路径规划。

局部路径规划一般采用比较简单的算法解决,例如最近邻居算法、虚拟势场法、动态窗口算法等。

基于遗传算法的机器人路径规划一般应用于全局路径规划中,它可以不断优化机器人的行进路径,找到最优解。

具体过程如下:1. 环境建模:将机器人运动环境转化为网络图,确定起点和终点,将网格分为障碍物和可行走区域。

遗传算法MATLAB完整代码

遗传算法MATLAB完整代码

遗传算法解决简单问题%主程序:用遗传算法求解y=200*exp*x).*sin(x)在区间[-2,2]上的最大值clc;clear all;close all;global BitLengthglobal boundsbeginglobal boundsendbounds=[-2,2];precision=;boundsbegin=bounds(:,1);boundsend=bounds(:,2);%计算如果满足求解精度至少需要多长的染色体BitLength=ceil(log2((boundsend-boundsbegin)'./precision));popsize=50; %初始种群大小Generationmax=12; %最大代数pcrossover=; %交配概率pmutation=; %变异概率%产生初始种群population=round(rand(popsize,BitLength));%计算适应度,返回适应度Fitvalue和累计概率cumsump [Fitvalue,cumsump]=fitnessfun(population);Generation=1;while Generation<Generationmax+1for j=1:2:popsize%选择操作seln=selection(population,cumsump);%交叉操作scro=crossover(population,seln,pcrossover);scnew(j,:)=scro(1,:);scnew(j+1,:)=scro(2,:);%变异操作smnew(j,:)=mutation(scnew(j,:),pmutation);smnew(j+1,:)=mutation(scnew(j+1,:),pmutation);endpopulation=scnew; %产生了新的种群%计算新种群的适应度[Fitvalue,cumsump]=fitnessfun(population);%记录当前代最好的适应度和平均适应度[fmax,nmax]=max(Fitvalue);fmean=mean(Fitvalue);ymax(Generation)=fmax;ymean(Generation)=fmean;%记录当前代的最佳染色体个体x=transform2to10(population(nmax,:));%自变量取值范围是[-2,2],需要把经过遗传运算的最佳染色体整合到[-2,2]区间xx=boundsbegin+x*(boundsend-boundsbegin)/(power((boundsend),BitLength)-1);xmax(Generation)=xx;Generation=Generation+1;endGeneration=Generation-1;Bestpopulation=xx;Besttargetfunvalue=targetfun(xx);%绘制经过遗传运算后的适应度曲线。

遗传算法matlab程序代码

遗传算法matlab程序代码

function [R,Rlength]= GA_TSP(xyCity,dCity,Population,nPopulation,pCrossover,percent,pMutation,generation,nR,rr,rang eCity,rR,moffspring,record,pi,Shock,maxShock)clear allA=load('d.txt');AxyCity=[A(1,:);A(2,:)]; %x,y为各地点坐标xyCityfigure(1)grid onhold onscatter(xyCity(1,:),xyCity(2,:),'b+')grid onnCity=50;nCityfor i=1:nCity %计算城市间距离for j=1:nCitydCity(i,j)=abs(xyCity(1,i)-xyCity(1,j))+abs(xyCity(2,i)-xyCity(2,j));endend %计算城市间距离xyCity; %显示城市坐标dCity %显示城市距离矩阵%初始种群k=input('取点操作结束'); %取点时对操作保护disp('-------------------')nPopulation=input('种群个体数量:'); %输入种群个体数量if size(nPopulation,1)==0nPopulation=50; %默认值endfor i=1:nPopulationPopulation(i,:)=randperm(nCity-1); %产生随机个体endPopulation %显示初始种群pCrossover=input('交叉概率:'); %输入交叉概率percent=input('交叉部分占整体的百分比:'); %输入交叉比率pMutation=input('突变概率:'); %输入突变概率nRemain=input('最优个体保留最大数量:');pi(1)=input('选择操作最优个体被保护概率:');%输入最优个体被保护概率pi(2)=input('交叉操作最优个体被保护概率:');pi(3)=input('突变操作最优个体被保护概率:');maxShock=input('最大突变概率:');if size(pCrossover,1)==0pCrossover=0.85;endif size(percent,1)==0percent=0.5;endif size(pMutation,1)==0pMutation=0.05;endShock=0;rr=0;Rlength=0;counter1=0;counter2=0;R=zeros(1,nCity-1);[newPopulation,R,Rlength,counter2,rr]=select(Population,nPopulation,nCity,dCity,Rlength,R,coun ter2,pi,nRemain);R0=R;record(1,:)=R;rR(1)=Rlength;Rlength0=Rlength;generation=input('算法终止条件A.最多迭代次数:');%输入算法终止条件if size(generation,1)==0generation=200;endnR=input('算法终止条件B.最短路径连续保持不变代数:');if size(nR,1)==0nR=10;endwhile counter1<generation&counter2<nRif counter2<nR*1/5Shock=0;elseif counter2<nR*2/5Shock=maxShock*1/4-pMutation;elseif counter2<nR*3/5Shock=maxShock*2/4-pMutation;elseif counter2<nR*4/5Shock=maxShock*3/4-pMutation;elseShock=maxShock-pMutation;endcounter1newPopulationoffspring=crossover(newPopulation,nCity,pCrossover,percent,nPopulation,rr,pi,nRemain);offspringmoffspring=Mutation(offspring,nCity,pMutation,nPopulation,rr,pi,nRemain,Shock);[newPopulation,R,Rlength,counter2,rr]=select(moffspring,nPopulation,nCity,dCity,Rlength,R,coun ter2,pi,nRemain);counter1=counter1+1;rR(counter1+1)=Rlength;record(counter1+1,:)=R;endR0;Rlength0;R;Rlength;minR=min(rR);disp('最短路经出现代数:')rr=find(rR==minR)disp('最短路经:')record(rr,:);mR=record(rr(1,1),:)disp('终止条件一:')counter1disp('终止条件二:')counter2disp('最短路经长度:')minRdisp('最初路经长度:')rR(1)figure(2)plotaiwa(xyCity,mR,nCity)figure(3)i=1:counter1+1;plot(i,rR(i))grid onfunction[newPopulation,R,Rlength,counter2,rr]=select(Population,nPopulation,nCity,dCity,Rlength,R,coun ter2,pi,nRemain)Distance=zeros(nPopulation,1); %零化路径长度Fitness=zeros(nPopulation,1); %零化适应概率Sum=0; %路径长度for i=1:nPopulation %计算个体路径长度for j=1:nCity-2Distance(i)=Distance(i)+dCity(Population(i,j),Population(i,j+1));end %对路径长度调整,增加起始点到路径首尾点的距离Distance(i)=Distance(i)+dCity(Population(i,1),nCity)+dCity(Population(i,nCity-1),nCity);Sum=Sum+Distance(i); %累计总路径长度end %计算个体路径长度if Rlength==min(Distance)counter2=counter2+1;elsecounter2=0;endRlength=min(Distance); %更新最短路径长度Rlength;rr=find(Distance==Rlength);R=Population(rr(1,1),:); %更新最短路径for i=1:nPopulationFitness(i)=(max(Distance)-Distance(i)+0.001)/(nPopulation*(max(Distance)+0.001)-Sum); %适应概率=个体/总和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于遗传算法的机器人路径规划MATLAB源代码基本思路是:取各障碍物顶点连线的中点为路径点,相互连接各路径点,将机器人移动的起点和终点限制在各路径点上,利用最短路径算法来求网络图的最短路径,找到从起点P1到终点Pn的最短路径。

上述算法使用了连接线中点的条件,因此不是整个规划空间的最优路径,然后利用遗传算法对找到的最短路径各个路径点Pi (i=1,2,…n)调整,让各路径点在相应障碍物端点连线上滑动,利用Pi= Pi1+ti×(Pi2-Pi1)(ti∈[0,1] i=1,2,…n)即可确定相应的Pi,即为新的路径点,连接此路径点为最优路径。

function [L1,XY1,L2,XY2]=JQRLJGH(XX,YY)
%% 基于Dijkstra和遗传算法的机器人路径规划
% GreenSim团队——专业级算法设计&代写程序
% 欢迎访问GreenSim团队主页→/greensim
%输入参数在函数体内部定义
%输出参数为
% L1 由Dijkstra算法得出的最短路径长度
% XY1 由Dijkstra算法得出的最短路径经过节点的坐标
% L2 由遗传算法得出的最短路径长度
% XY2 由遗传算法得出的最短路径经过节点的坐标
%程序输出的图片有
% Fig1 环境地图(包括:边界、障碍物、障碍物顶点之间的连线、Dijkstra的网络图结构)
% Fig2 由Dijkstra算法得到的最短路径
% Fig3 由遗传算法得到的最短路径
% Fig4 遗传算法的收敛曲线(迄今为止找到的最优解、种群平均适应值)
%% 画Fig1
figure(1);
PlotGraph;
title('地形图及网络拓扑结构')
PD=inf*ones(26,26);
for i=1:26
for j=1:26
if D(i,j)==1
x1=XY(i,5);
y1=XY(i,6);
x2=XY(j,5);
y2=XY(j,6);
dist=((x1-x2)^2+(y1-y2)^2)^0.5;
PD(i,j)=dist;
end
end
end
%% 调用最短路算法求最短路
s=1;%出发点
t=26;%目标点
[L,R]=ZuiDuanLu(PD,s,t);
L1=L(end);
XY1=XY(R,5:6);
%% 绘制由最短路算法得到的最短路径figure(2);
PlotGraph;
hold on
for i=1:(length(R)-1)
x1=XY1(i,1);
y1=XY1(i,2);
x2=XY1(i+1,1);
y2=XY1(i+1,2);
plot([x1,x2],[y1,y2],'k');
hold on
end
title('由Dijkstra算法得到的初始路径')
%% 使用遗传算法进一步寻找最短路
%第一步:变量初始化
M=50;%进化代数设置
N=20;%种群规模设置
Pm=0.3;%变异概率设置
LC1=zeros(1,M);
LC2=zeros(1,M);
Yp=L1;
%第二步:随机产生初始种群
X1=XY(R,1);
Y1=XY(R,2);
X2=XY(R,3);
Y2=XY(R,4);
for i=1:N
farm{i}=rand(1,aaa);
end
% 以下是进化迭代过程
counter=0;%设置迭代计数器
while counter<M%停止条件为达到最大迭代次数
%% 第三步:交叉
%交叉采用双亲双子单点交叉
newfarm=cell(1,2*N);%用于存储子代的细胞结构
Ser=randperm(N);%两两随机配对的配对表
A=farm{Ser(1)};%取出父代A
B=farm{Ser(2)};%取出父代B
P0=unidrnd(aaa-1);%随机选择交叉点
a=[A(:,1:P0),B(:,(P0+1):end)];%产生子代a
b=[B(:,1:P0),A(:,(P0+1):end)];%产生子代b
newfarm{2*N-1}=a;%加入子代种群
newfarm{2*N}=b;
for i=1:(N-1)
A=farm{Ser(i)};
B=farm{Ser(i+1)};
newfarm{2*i}=b;
end
FARM=[farm,newfarm];%新旧种群合并
%% 第四步:选择复制
SER=randperm(2*N);
FITNESS=zeros(1,2*N);
fitness=zeros(1,N);
for i=1:(2*N)
PP=FARM{i};
FITNESS(i)=MinFun(PP,X1,X2,Y1,Y2);%调用目标函数end
for i=1:N
f1=FITNESS(SER(2*i-1));
f2=FITNESS(SER(2*i));
if f1<=f2
else
farm{i}=FARM{SER(2*i)};
fitness(i)=FITNESS(SER(2*i));
end
end
%记录最佳个体和收敛曲线
minfitness=min(fitness);
meanfitness=mean(fitness);
if minfitness<Yp
pos=find(fitness==minfitness);
Xp=farm{pos(1)};
Yp=minfitness;
end
if counter==10
PPP=[0.5,Xp,0.5]';
PPPP=1-PPP;
X=PPP.*X1+PPPP.*X2;
Y=PPP.*Y1+PPPP.*Y2;
XY2=[X,Y];
figure(3)
PlotGraph;
hold on
for i=1:(length(R)-1)
x1=XY2(i,1);
y1=XY2(i,2);
x2=XY2(i+1,1);
y2=XY2(i+1,2);
plot([x1,x2],[y1,y2],'k');
hold on
end
title('遗传算法第10代')
hold on
for i=1:(length(R)-1)
x1=XY1(i,1);
y1=XY1(i,2);
x2=XY1(i+1,1);
y2=XY1(i+1,2);
plot([x1,x2],[y1,y2],'k','LineWidth',1);
hold on
end
end
if counter==20
PPP=[0.5,Xp,0.5]';
PPPP=1-PPP;
X=PPP.*X1+PPPP.*X2;
Y=PPP.*Y1+PPPP.*Y2;
XY2=[X,Y];
figure(4)
PlotGraph;
hold on
for i=1:(length(R)-1)
x1=XY2(i,1);
y2=XY2(i+1,2);
plot([x1,x2],[y1,y2],'k');
hold on
end
title('遗传算法第20代')
hold on
for i=1:(length(R)-1)
x1=XY1(i,1);
y1=XY1(i,2);
x2=XY1(i+1,1);
y2=XY1(i+1,2);
plot([x1,x2],[y1,y2],'k','LineWidth',1);
hold on
end
end
if counter==30
PPP=[0.5,Xp,0.5]';
PPPP=1-PPP;
X=PPP.*X1+PPPP.*X2;
Y=PPP.*Y1+PPPP.*Y2;
XY2=[X,Y];
figure(5)
PlotGraph;
hold on
for i=1:(length(R)-1)
x1=XY2(i,1);
y1=XY2(i,2);
x2=XY2(i+1,1);
y2=XY2(i+1,2);
plot([x1,x2],[y1,y2],'k');
hold on
end
title('遗传算法第30代')
hold on
for i=1:(length(R)-1)
x1=XY1(i,1);
y2=XY1(i+1,2);
plot([x1,x2],[y1,y2],'k','LineWidth',1);
hold on
end
end
if counter==40
PPP=[0.5,Xp,0.5]';
PPPP=1-PPP;
X=PPP.*X1+PPPP.*X2;
Y=PPP.*Y1+PPPP.*Y2;
XY2=[X,Y];
figure(6)
PlotGraph;
hold on。

相关文档
最新文档