3.简单的逻辑连接词,全称量词和特称量词
2018年数学第一章集合与常用逻辑用语第三讲简单的逻辑联结词、全称量词与存在量词学案
第三讲 简单的逻辑联结词、全称量词与存在量词【考点梳理】 1.简单的逻辑联结词(1)命题中的“或”“且”“非”叫做逻辑联结词. (2)命题p ∧q ,p ∨q ,綈p 的真假判断2.全称量词与存在量词(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,用符号“∀”表示. (2)全称命题:含有全称量词的命题,叫做全称命题.全称命题“对M 中任意一个x ,有p (x )成立"简记为∀x ∈M ,p (x ).(3)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,用符号“∃”表示.(4)特称命题:含有存在量词的命题,叫做特称命题.特称命题“存在M 中的一个元素x 0,使p (x 0)成立”,简记为∃x 0∈M ,p (x 0).3.含有一个量词的命题的否定【教材改编】1.(选修2-1 P 22例1改编)下列命题是真命题的是( ) A .所有素数都是奇数 B .∀x ∈R,x 2+1≥0C .对于每一个无理数x ,x 2是有理数 D .∀x ∈Z,1x∉Z2.(选修2-1 P16例3(1)改编)有下列两命题:①2≥2;②2≥1,则下列正确的为()A.①真②真B.①真②假C.①假②真D.①假②假【答案】 A【解析】∵命题“2≥2”由命题p:2=2,q:2>2用“或”联结后构成的新命题,且p真q假,∴p∨q为真,即①真,同理②也真,故选A。
3.(选修2-1 P27 A组T3(3)改编)命题p:∃x0∈R,x2,0-x0+1≤0的否定是()A.∃x0∈R,x错误!-x0+1>0B.∀x∈R,x2-x+1>0C.∃x0∈R,x20-x0+1≥0D.∀x∈R,x2-x+1≤0【答案】 B【解析】∵命题∃x0∈M,p(x0)的否定是∀x∈M,﹁p(x),故选B.4.(选修2-1 P27 A组T3(1)改编)命题p:∀x∈N,x2>x3的否定是( )A.∃x0∈N,x错误!>x错误!B.∀x∈N,x2≤x3C.∃x0∈N,x2,0≤x30D.∀x∈N,x2<x3【答案】 C【解析】∵命题∀x∈M,p(x)的否定是∃x0∈M,﹁p(x0),故选C.5.(选修2-1 P18 B组T(3)(4)改编)命题p:2>3,q:8+7≠15,则“p∧q”的否定是( )A.2≤3且8+7=15 B.2≤3或8+7=15C.2>3或8+7≠15 D.2≤3且8+7≠15【答案】 B【解析】因为“p∧q”的否定是“(﹁p)∨(﹁q)”,故选B.【考点突破】考点一、含有逻辑联结词的命题的真假判断(1) 设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是( )A.p∨q B.p∧qC.(綈p)∧(綈q) D.p∧(綈q)【答案】 A【类题通法】1。
考点03 逻辑联结词及数学归纳法(解析版)
考点48 逻辑联结词及数学归纳法一.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词. (2)命题p 且q 、p 或q 、非p 的真假判断二.量词2.全称量词和存在量词(1)全称量词:“所有”、“任意”、“每一个”等表示全体的量词在逻辑中称为全称量词,用符号“∀”表示. (2)存在量词:“有一个”、“有些”、“存在一个”等表示部分的量词在逻辑中称为存在量词,用符号“∃”表示.3.全称命题、存在性命题及含一个量词的命题的否定三.数学归纳法1.由一系列有限的特殊现象得出一般性的结论的推理方法,通常叫做归纳法. 2.用数学归纳法证明一个与正整数有关的命题时,其步骤如下: (1)归纳奠基:证明取第一个自然数n 0时命题成立;(2)归纳递推:假设n =k (k ∈N *,k ≥n 0)时命题成立,证明当n =k +1时,命题成立; (3)由(1)(2)得出结论.知识理解考向一 命题的否定【例1】(2021·四川成都市·高三二模(理))命题“0x ∀>,210x x ++>”的否定为( )A .00x ∃≤,20010x x ++≤ B .0x ∀≤,210x x ++≤ C .00x ∃>,20010x x ++≤D .0x ∀>,210x x ++≤【答案】C【解析】因为全称命题的否定是特称命题,所以,命题“0x ∀>,210x x ++>”的否定是:00x ∃>,20010x x ++≤.故选:C .【举一反三】1.(2021·全国高三月考(理))命题“0x R ∃∈,002ln 0x x +≤”的否定是( ) A .x R ∀∈,2ln 0x x+≥ B .x R ∀∈,2ln 0x x+> C .0x R ∃∈,002ln 0x x +≥ D .0002,0x R lnx x ∃∈+> 【答案】B【解析】命题“0x R ∃∈,002ln 0x x +≤”为特称命题,该命题的否定为“x R ∀∈,2ln 0x x+>”. 故选:B.2.(2021·湖南岳阳市)命题“()1,x ∀∈+∞,21x e x ≥+”的否定是( ) A .()1,x ∃∈+∞,21x e x ≥+ B .()1,x ∀∈+∞,21x e x <+ C .()1,x ∃∈+∞,21x e x <+ D .()1,x ∀∈+∞,21x e x ≥+【答案】C【解析】命题“()1,x ∀∈+∞,21x e x ≥+”为全称命题,该命题的否定为“()1,x ∃∈+∞,21x e x <+”. 故选:C.考向分析3.(2021·泰州市第二中学)巳知命题p :0x ∃>,10x e x --≤,则命题p 的否定为( ) A .0x ∀≤,10x e x --> B .0x ∀>,10x e x --> C .0x ∃>,10x e x --≥ D .0x ∃≤,10x e x -->【答案】B【解析】命题p :0x ∃>,10x e x --≤,则命题p 的否定为0x ∀>,10x e x -->. 故选:B考向二 逻辑连接词求参数【例2】(2021·全国高三专题练习)若命题“200[1,2],2x x a ∃∈--+”是假命题,则实数a 的范围是( ) A .2a > B .2a C .2a >- D .2a -【答案】A【解析】若命题“200[1,2],2x x a ∃∈--+”是假命题,则命题“2[1,2],2x x a ∀∈--+<”是真命题, 当0x =时,()2max22x -+=,所以2a >.故选:A. 【举一反三】1.(2021·天水市第一中学高三月考(理))已知命题():1,3p x ∃∈-,220x a --≤.若p 为假命题,则a 的取值范围为( ) A .(),2-∞- B .(),1-∞-C .(),7-∞D .(),0-∞【答案】A 【解析】p 为假命题,∴():1,3p x ⌝∀∈-,220x a -->为真命题,故22a x <-恒成立,22y x =-在()1,3x ∈-的最小值为2-,∴2a <-. 故选:A.2.(2020·北京人大附中高三月考)若命题“x R ∃∈,使得2210ax x ++<成立”为假命题,则实数a 的取值范围是( ) A .[1,+∞) B .[0,+∞)C .(-∞,1)D .(-∞,0]【答案】A 【解析】命题“x R ∃∈,使得2210ax x ++<成立”为假命题, 则它的否定命题: “x R ∀∈,2210ax x ++≥”为真命题所以0440a a >⎧⎨∆=-≤⎩ 解得1a ≥,所以实数a 的取值范围是[1,)+∞ 故选:A.3.(2020·江西高三期中(文))存在[1,1]x ∈-,使得230x mx m +-≥,则m 的最大值为( ) A .1 B .14C .12D .-1【答案】C【解析】由不等式230x mx m +-≥,可化为23x m x≤-,设()[]2,1,13x f x x x=∈--,则()()()2226(6)33x x x x f x x x ---'==--,当[1,0)x ∈-时,()0f x '<,()f x 单调递减; 当(0,1]x ∈时,()0f x '>,()f x 单调递增,又由()11(1),142f f -==,所以函数()f x 的最大值为()112f =, 要使得存在[1,1]x ∈-,使得230x mx m +-≥,则12m ≤,则m 的最大值为12. 故选:C.考向三 数学归纳法【例3-1】(2020·全国高三专题练习(理))用数学归纳法证明不等式“1+12+13+…+121n -<n (n ∴N *,n ≥2)”时,由n =k (k ≥2)时不等式成立,推证n =k +1时,左边应增加的项数是( ) A .2k -1 B .2k -1 C .2k D .2k +1【答案】C【解析】n k =时,左边=1111 (2321)k ++++-,而n =k +1时,左边=11111111 (232122121)k k k k +++++++++-+-,增加了1111 (22121)k k k +++++-,共(2k +1-1)-(2k -1)=2k 项, 故选:C.【例3-2】.(2020·全国高三专题练习)设等比数列{}n a 满足113,34n n a a a n +==-. (1)计算23,a a ,猜想{}n a 的通项公式并加以证明; (2)求数列{}2nn a 的前n 项和n S .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-+. 【解析】(1)由题意,等比数列{}n a 满足113,34n n a a a n +==-, 可得21345a a =-= ,323427a a =-⨯=,,猜想{}n a 的通项公式为21n a n =+,证明如下:(数学归纳法)当1,2,3n =时,显然成立; ∴ 假设n k =时,即21k a k =+成立;其中*(N )k ∈, 由134k k a a k +=-3(21)4k k =+-2(1)1k =++ ∴故假设成立,综上(1)(2),数列{}n a 的通项公式21n a n =+*()n N ∈.(2)令2(21)2n nn n b a n ==+,则前项和1212...3252...(21)2n n n S b b b n =+++=⨯+⨯+++ ∴由∴两边同乘以2得:23123252...(21)2(21)2n n n S n n +=⨯+⨯++-++ ∴由∴-∴的322112(12)3222...2(21)26(21)212n n n n n S n n -++--=⨯+⨯++-+=+-+-, 化简得1(21)22n n S n +=-+. 【举一反三】1.(2020·全国高三专题练习(理))用数学归纳法证明等式123(21)(1)(21)n n n +++++=++时,从n k=到1n k =+等式左边需增添的项是( ) A .22k + B .[]2(1)1k ++ C .[(22)(23)]k k +++ D .[][](1)12(1)1k k ++++ 【答案】C【解析】当n k =时,左边123(21)k =+++++,共21k +个连续自然数相加,当1n k =+时,左边123(21)(22)(23)k k k =+++++++++,所以从n k =到1n k =+,等式左边需增添的项是[(22)(23)]k k +++. 故选:C.2.(2021·全国高三专题练习)设集合T n ={1,2,3,…,n }(其中n ≥3,n ∴N *),将T n 的所有3元子集(含有3个元素的子集)中的最小元素的和记为S n . (1)求S 3,S 4,S 5的值; (2)试求S n 的表达式.【答案】(1)S 3=1,S 4=5,S 5=15;(2)41n C + .【解析】(1)当n =3时,T 3={1,2,3},3元子集有:{1,2,3},∴S 3=1;当n =4时,T 4={1,2,3,4},3元子集有:{1,2,3},{1,2,4},{1,3,4},{2,3,4},∴S 4=1×3+2=5;当n =5时,T 5={1,2,3,4,5},3元子集有:{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},222543212315S C C C ∴=⨯+⨯+⨯=.(2)由S 3=1,S 4=5,S 5=15,S 6=35…归纳猜想出41n n S C +=(n ≥3).下面用数学归纳法证明猜想:∴当n =3时,S 3=1=44C ,结论成立;∴假设n =k (k ≥3,k ∴N *)时,结论成立,即S k =41k C +,则当n =k +1时,T k +1={1,2,3,4,…,k ,k +1},()()1111111232123...21k k k k k S S C C C k C k C +---⎡⎤=+++++-+-⎣⎦()()()(){}411111122112...21k k k C k C k C k k C k k C +--=+-+-++--+--⎡⎤⎡⎤⎣⎦⎣⎦ ()(){}4111111111211231...23...1k k k C k C C C C C C k C +--⎡⎤=++++-++++-⎣⎦ ()422311k k k k C kC kC C ++⎡⎤=+--⎣⎦ ()4341111k k k C C C ++++=+=∴当n =k +1时,结论成立. 综上:由∴∴可得()413n n S C n +=≥.1.(2021·涡阳县育萃高级中学)已知命题:p x R ∀∈,2104x x -+,则p ⌝( ) A .21,04x x x ∃∈-+R B .21,04x x x ∃∈-+>R C .21,04x x x ∀∈-+>R D .21,04x x x ∀∈-+<R 【答案】B【解析】命题p 为全称命题,根据全称命题的否定为特称命题,可得:p ⌝: 21,04x x x ∃∈-+>R 故选:B2.(2021·漠河市高级中学高三月考(文))下列说法正确的是( ) A .若p q ∨为真命题,则p q ∧为真命题B .命题“若cos cos x y ≠,则x y ≠”的否命题是“若cos cos x y =,则x y ≠”C .“0x <”是“20x x ->”的充要条件强化练习D .若p :x ∀∈R ,2320x x --<,则p ⌝:0x ∃∈R ,200320x x --.【答案】D【解析】对于A 选项,若p q ∨为真命题,可能p 真q 假,则p q ∧为假,故A 选项错误.对于B 选项,命题“若cos cos x y ≠,则x y ≠”的否命题是“若cos cos x y =,则x y =”,故B 选项错误. 对于C 选项,当2x =时,20x x ->,所以“0x <”不是“20x x ->”的充要条件,C 选项错误. 根据全称量词命题的否定的知识可知,D 选项正确. 故选:D3.(2021·全国高三专题练习)下列关于命题的说法中正确的是( )∴对于命题P :x R ∃∈,使得210x x ++<,则:P x R ⌝∀∈,均有210x x ++≥ ∴“1x =”是“2320x x -+=”的充分不必要条件∴命题“若2320x x -+=,则1x =”的逆否命题是“若1x ≠,则2320x x -+≠” ∴若p q ∧为假命题,则p 、q 均为假命题 A .∴∴∴ B .∴∴∴ C .∴∴∴∴ D .∴∴【答案】A【解析】∴对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∀∈均有210x x ++,故∴正确;∴由“1x =”可推得“2320x x -+=”,反之由“2320x x -+=”可能推出2x =,则“1x =”是“2320x x -+=”的充分不必要条件,故∴正确;∴命题“若2320x x -+=,则1x =”的逆否命题是“若1x ≠,则2320x x -+≠”,故∴正确; ∴若p q ∧为假命题,则p ,q 至少有一个为假命题,故∴错误. 则正确的命题的有∴∴∴. 故选:A4.(2021·河南高三其他模拟(文))命题:p “0,2sin 0x x x ∀≥-≥”的否定为( )A .0,2sin 0x x x ∀≥-<B .0,2sin 0x x x ∀<-<C .0000,2sin 0xx x ∃≥-< D .0000,2sin 0xx x ∃<-<【答案】C【解析】命题:p “0,2sin 0xx x ∀≥-≥”是全称命题,又全称命题的否定是特称命题,故“0x ∀≥,2sin 0x x -≥”的否定是“0000,2sin 0xx x ∃≥-<”.故选:C.5.(2021·山东菏泽市·高三一模)命题“2,0∈≥∀x R x ”的否定是( )A .2,0x R x ∃∈≥B .2,0x R x ∀∈<C .2,0x R x ∃∈<D .2,0x R x ∃∈≤【答案】C【解析】因为全称命题的否定是特称命题,所以命题:x R ∀∈,20x ≥的否定是:x R ∃∈,20x <.故选:C6.(2021·四川成都市·石室中学高三月考(理))设命题:0p x ∀≤x =-,则p ⌝为( ) A .0x ∀≤x ≠- B .00x ∃≤0x =- C .0x ∀>x =- D .00x ∃≤0x ≠-【答案】D【解析】命题p 为全称命题,该命题的否定为0:0p x ⌝∃≤0x ≠-. 故选:D.7.(2020·湖北武汉市·华中师大一附中高三期中)“0m >”是“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】由题意,命题“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题” 可得命题“x R ∀∈,2(1)2(1)30m x m x -+-+>是真命题” 当10m -=时,即1m =时,不等式30>恒成立;当10m -≠时,即1m ≠时,则满足()()210214130m m m ->⎧⎪⎨⎡⎤---⨯<⎪⎣⎦⎩,解得14m <<,综上可得,实数14m ≤<,即命题“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题”时,实数m 的取值范围是[1,4),又由“0m >”是“14m ≤<”的必要不充分条件,所以“0m >”是“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题”的必要不充分条件, 故选:B.8.(2021·全国高三专题练习)若命题“∀[]1,4x ∈时,240x x m --≠”是假命题,则m 的取值范围( ) A .[4,3]-- B .()-∞,-4 C .[4,)-+∞ D .[4,0]-【答案】D【解析】若命题“[1x ∀∈,4]时,240x x m --≠”是假命题, 则命题“[1x ∃∈,4]时,240x x m --=”是真命题, 则24m x x =-,设22()4(2)4f x x x x =-=--, 当14x 时,4()0f x -,则40m -. 故选:D .9.(2020·江苏海门市·高三月考)命题“[]21220x x a ∀∈-≤,,”为真命题的一个充分不必要条件是( )A .2a ≤B .2a ≥C .4a ≤D .4a ≥【答案】D【解析】“[]21220x x a ∀∈-≤,,”为真命题,可得2a ≥,因为[)[)4,2,+∞⊂+∞ , 故选:D .10.(2021·全国高三专题练习)已知命题“02x ∃>,20040ax ax --<”是假命题,则a 的取值范围是( )A .[)2,+∞B .()2,+∞C .(],2-∞D .(),2-∞【答案】A【解析】因为命题“02x ∃>,20040ax ax --<”是假命题,所以240ax ax --≥对2x >恒成立, 所以()242a x x x≥>-恒成立.因为2x >, 所以22x x ->,则242x x<-, 故2a ≥. 故选:A11.(2020·全国高三专题练习)用数学归纳法证明“(1)(2)()213(21)nn n n n n ++⋅⋅⋅⋅⋅+=⋅⋅⋅⋅⋅⋅⋅-”,从“k到1k +”左端需增乘的代数式为( ) A .21k + B .2(21)k +C .211k k ++ D .231k k ++ 【答案】B【解析】当n k =时,等式的左边(1)(2)()k k k k =++⋅⋅⋅⋅⋅+,当1n k =+时,等式的左边(11)(12)()(1)(2)k k k k k k k k =++++⋅⋅⋅⋅⋅+++++, 所以当从“k 到1k +”左端增乘的代数式为(1)(2)2(21)1k k k k k k ++++=++.故选:B.12.(多选)(2021·恩施市第一中学)下列命题正确的有( ) A .命题“x R ∀∈,20x ≥”的否定是“x R ∃∈,20x <”. B .函数()cos f x x =向右平移2π个单位得到函数解析式为()sin g x x =. C .函数()21f x x =-的零点为()1,0-,()1,0.D .1弧度角表示:在任意圆中,等于半径长的弦所对的圆心角. 【答案】AB【解析】对A ,根据全称命题的否定性质,A 为正确的; 对B ,()cos f x x =向右平移2π个单位得到函数()cos()sin 2g x x x π=-=;对C ,函数零点是数而不是点,故C 错误;对D ,1弧度角表示为在任意圆中,等于半径长的弧所对的圆心角,故D 错误; 故选:AB.13.(多选)(2021·全国高三专题练习)下列命题中正确的是( ) A .(0,)x ∃∈+∞,23x x >B .(0,1)x ∃∈,23log log x x <C .(0,)x ∀∈+∞,121()log 2xx >D .1(0,)3x ∀∈,131()log 2xx < 【答案】BD【解析】对于选项A :当0x >时,22133xx x ⎛⎫=< ⎪⎝⎭,所以23x x <恒成立,故选项A 不正确;对于选项B :当(0,1)x ∈时,23log lg lg 3lg 31log lg 2lg lg 2x x x x =⨯=>,且3log 0x <,所以23log log x x <,故选项B 正确;对于选项C :当12x =时,1211()()222x ==,11221log log 12x ==,则121log ()2x x >,故选项C 不正确; 对于选项D :当13x =时,131log 13=,由对数函数和指数函数的性质可知,当1(0,)3x ∈时,131()1log 2x x <<,故选项D 正确; 故选:BD14.(多选)(2021·全国高三专题练习)若01,22x ⎡⎤∃∈⎢⎥⎣⎦,使得200210x x λ-+<成立是假命题,则实数λ可能取值是( ) A .32B.C .3 D .92【答案】AB【解析】由条件可知1,22x ⎡⎤∀∈⎢⎥⎣⎦,2210x x λ-+≥是真命题, 即22112x x x xλ+≤=+,即min 112,,22x x x λ⎛⎫⎡⎤≤+∈ ⎪⎢⎥⎝⎭⎣⎦,设()112,22f x x x x ⎡⎤=+≥=∈⎢⎥⎣⎦等号成立的条件是112,222x x x ⎡⎤=⇒=∈⎢⎥⎣⎦,所以()f x的最小值是即λ≤AB. 故选:AB15.(2021·江西高三其他模拟(文))已知命题“存在x ∈R ,使220ax x -+≤”是假命题,则实数a 的取值范围是___________. 【答案】18a >【解析】因为命题“存在x ∈R ,使220ax x -+≤”是假命题, 所以命题“R x ∀∈,使得220ax x -+>”是真命题,当0a =时,得2x <,故命题“R x ∀∈,使得220ax x -+>”是假命题,不合题意;当0a ≠时,得0180a a >⎧⎨∆=-<⎩,解得18a >.故答案为:18a >16.(2021·全国高三专题练习)若“存在x ∴[﹣1,1],3210x x a ⋅++>成立”为真命题,则a 的取值范围是___.【答案】9(,)2-+∞【解析】存在x ∴[﹣1,1],3210xxa ⋅++>成立,即213x xa +-<在[1,1]x ∈-上有解, 设2121()333x xx xf x +⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭,[1,1]x ∈-, 易得y =f (x )在[﹣1,1]为减函数, 所以()[(1),(1)]f x f f ∈-,即213()3332f x +≤≤+,即91()2f x ≤≤, 即92a -<,所以92a >-, 故答案为:9(,)2-+∞.17.(2020·江西高三其他模拟(文))若命题:p x R ∃∈,210x mx -+<为假命题,则m 的取值范围是______. 【答案】[]22-,【解析】命题:p x R ∃∈,210x mx -+<为假命题,p ∴⌝:x R ∀∈,210x mx -+≥为真命题,则240m ∆=-≤,解得22m -≤≤,即m 的取值范围是[]22-,. 故答案为:[]22-,. 18.(2020·北京密云区·高三期中)若“01x ∃>,使得11x a x +<-.”为假命题,则实数a 的最大值为___________. 【答案】3【解析】由“∴x 0>1,使得11x a x +<-.”为假命题,可知,“11,1x x a x ∀>+≥-”为真命题, 11a x x ∴≤+-恒成立,由11111311x x x x +=-++≥=--,当且仅当2x =时取等号, 即a 的最大值为3. 故答案为:3.19.(2021·湖南永州市·高三二模)若对[]1,2x ∀∈,都有20ax x -≤,则实数a 的取值范围是___________. 【答案】1,2⎛⎤-∞ ⎥⎝⎦【解析】解:因为[]1,2x ∀∈,都有20ax x -≤,所以[]1,2x ∀∈,都有1a x≤,令()1g x x =,[]1,2x ∈,因为()1g x x=,在[]1,2x ∈上单调递减,所以()()min 122g x g ==,所以12a ≤,即实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦;故答案为:1,2⎛⎤-∞ ⎥⎝⎦20.(2020·全国高三月考(文))已知命题():0,p x ∀∈+∞,2230x mx -+>,命题:q m a <;若p 是q 的充分不必要条件,则实数a 的取值范围为______.【答案】()+∞【解析】设命题():0,p x ∀∈+∞,2230x mx -+>成立对应的m 的范围为集合A ,{}|B m m a =<若()0,x ∀∈+∞,223x mx +>,则32x m x +>,所以min 32m x x ⎛⎫<+ ⎪⎝⎭而32x x +≥32x x =,即x =时等号成立,所以min32x x ⎛⎫+= ⎪⎝⎭m <{|A m m =<,因为p 是q 的充分不必要条件,所以A B,所以a > 即实数a的取值范围为()+∞.故选答案为:()+∞21.(2020·凌海市第二高级中学高三月考)命题“2,1x R x t ∀∈>+”为真命题,则实数t 的取值范围是__________. 【答案】(),1-∞- 【解析】命题“2,1x R x t ∀∈>+”为真命题,且20x ≥,10t ∴+<,则1t <-,故实数t 的取值范围是(),1-∞-.故答案为:(),1-∞-.22.(2020·上海徐汇区·高三一模)用数学归纳法证明()2511222n n N -*++++∈能被31整除时,从k 到1k +添加的项数共有__________________项(填多少项即可). 【答案】5【解析】当n k =时,原式为:251122...2k -++++,当1n k =+时,原式为251551525354122...222222k k k k k k -+++++++++++++, 比较后可知多了55152535422222k k k k k ++++++++,共5项. 故答案为:523.(2020·浙江高三其他模拟)用数学归纳法证明:111111111234212122n n n n n-+-++-=+++-++,第一步应验证的等式是__________;从“n k =”到“1n k =+”左边需增加的等式是_________.【答案】11122-=()()1121121k k -+-+ 【解析】当1n =时,应当验证的第一个式子是11122-=,从“n k =”到“1n k =+”左边需增加的式子是()()1121121k k -+-+24.(2021·全国高三专题练习)设数列{}n a 满足11a =,12(23)n n a a n +=--. (1)计算2a ,3a .猜想{}n a 的通项公式并利用数学归纳法加以证明; (2)记2n nn b a =⋅,求数列{}n b 的前n 项和n S .【答案】(1)23a =,35a =,21n a n =-;证明见解析;(2)1(23)26n n S n +=-⨯+.【解析】(1)由题意可得2121213a a =+=+=,3221615a a =-=-=, 由数列{}n a 的前三项可猜想数列{}n a 是以1为首项,2为公差的等差数列, 即21n a n =-, 证明如下:当1n =时,12111a =⨯-=成立; 假设n k =时,21k a k =-成立.那么1n k =+时,12(23)2(21)(23)212(1)1k k a a k k k k k +=--=---=+=+-也成立. 则对任意的*n ∈N ,都有21n a n =-成立;(2)因为(21)2n n b n =-.∴23123252(21)2n n S n =⨯+⨯+⨯++-⨯,∴ 23412123252(21)2n n S n +=⨯+⨯+⨯++-⨯,∴∴-∴得:2341222222222(21)2n n n S n +-=+⨯+⨯+⨯++⨯--⨯()211122122(21)26(23)212n n n n n -++⨯-=+--⨯=---⨯-.∴1(23)26n n S n +=-⨯+.25.(2020·全国高三专题练习)已知数列{}n a 满足:11a =,点()()*1,n n a a n +∈N 在直线21y x =+上.(1)求2a ,3a ,4a 的值,并猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中你的猜想.【答案】(1)2343,7,15a a a ===,21n n a =-;(2)证明见解析.【解析】(1)因为点()()*1,n n a a n N +∈在直线21y x =+上所以121n n a a +=+, 因为11a =,故22113a =⨯+=,32317a =⨯+=, 427115a =⨯+=,由上述结果,猜想:21nn a =-.(2)1︒,当1n =时,1211a =-=成立,2︒,假设当()1,n k k k N =≥∈时,21kk a =-成立,那么,当1n k =+时,()1121221121kk k k a a ++=+=-+=-成立,由1︒,2︒可得21nn a =-.26.(2020·黑龙江哈尔滨市·高三月考(理))已知数列{}n a 满足1a m =,2n a ≠,11210n n n a a a ++-⋅-=. (1)求2a ,3a ,4a ;(2)猜想{}n a 的通项公式,并用数学归纳法加以证明. 【答案】(1)212a m =-,3232m a m -=-,43243ma m-=-;(2)()()()121n n n m a n n m ---=--;证明见解析.【解析】1)因为11210n n n a a a ++-⋅-=,2n a ≠,所以112n na a +=-,又因为1a m = 211122a a m ==--,3212232m a a m -==--,43132243ma a m-==-- (2)()()()121n n n ma n n m---=--证明:1n =时,()1011ma m --==,结论成立 假设n k =时,结论成立,即()()()121k k k ma k k m---=--当1n k =+时:()()()()()()()()()11111122211221211k kk k m a k k m k k m k k m a k km k k m k k m+--====-------+--+------ 结论成立.综上,数列通项为()()()121n n n m a n n m---=-- 27(2020·云南师大附中高三月考(理))设数列{}n a 满足11a =,23a =,当()11112n n n n n a a a n a a -+-+=+++.(1)计算3a ,4a ,猜想{}n a 的通项公式,并加以证明. (2)求证:()()()2221244474111n a a a +++<+++. 【答案】(1)35a =,47a =,21n a n =-,证明见解析;(2)证明见解析. 【解析】(1)解:由11a =,23a =, 所以()123121225a a a a a +=++=+,()234231327a a a a a +=++=+. 猜想:21n a n =-,证明:当2n =时,由11a =,23a =,故成立;假设n k =(2k ≥)时成立,即21k a k =-, 所以()()1111221211k k k k k a a a k k k a a -+-+=++=+=+-+,即当1n k =+时成立,综上所述,21n a n =-. (2)证明:由(1)知,()22411n n a =+, 所以()()()22212444111n a a a ++++++22222211111111221311n n =+++<++++--- ()()1111132411n n =++++⨯⨯-+111111111111232435211n n n n ⎛⎫=+-+-+-++-+- ⎪--+⎝⎭11117112214n n ⎛⎫=++--< ⎪+⎝⎭,证毕.。
大一轮之简单逻辑连接词
简单的逻辑联结词、全称量词与存在量词[知识梳理]1.简单的逻辑联结词(1)逻辑联结词有“或”“且”“非”,符号表示为“∨”“∧”“¬”.(2)命题p∧q,p∨q,¬p的真假判断简记为:p才假;p与¬p真假性相反.2.全称量词和存在量词3.一.思维辨析(在括号内打“√”或“×”).(1)命题“5>6或5>2”是假命题.()(2)若命题p∧q为真,则p为真或q为真.()(3)“长方形的对角线相等”是特称命题.()(4)命题“菱形的对角线相等”的否定是“菱形的对角线不相等”.()(5)若命题p∧q为假命题,则命题p,q都是假命题.()(6)命题p和綈p不可能都是真命题.()(7)若命题p,q至少有一个是真命题,则p∨q是真命题.()(8)在全称命题和特称命题中,量词都可以省略.()(9)“有的等差数列也是等比数列”是特称命题.()(10)“三角形内角和是180°”是全称命题.()解析(1)错误.命题p∨q中有一真则p∨q为真.(2)错误.p∧q为真,则p,q同时为真.(3)错误.命题“长方形的对角线相等”可叙述为“任意长方形的对角线相等”,是全称命题.(4)错误.“菱形的对角线相等”是全称命题,其否定为“有的菱形的对角线不相等”.答案 (1)× (2)× (3)× (4)×答案:(5)× (6)√ (7)√答案:(8)× (9)√ (10)√二.考点突破考点一 含有逻辑联结词的命题的真假判断例1. (1)(2019·山西临汾一中等五校联考)已知命题p :∀x ≥4,log 2x ≥2;命题q :在△ABC 中,若A >π3,则sin A >32.则下列命题为真命题的是( B )A .p ∧qB .p ∧(綈q )C .(綈p )∧(綈q )D .(綈p )∨q解析:∀x ≥4,log 2x ≥log 24=2,所以命题p 为真命题;A =2π3>π3,sin A =32,所以命题q 为假命题,故p ∧(綈q )为真命题,故选B.(2)(2019·郑州调研)命题p :函数y =log 2(x -2)的单调增区间是[1,+∞),命题q :函数y =13x +1的值域为(0,1).下列命题是真命题的为( B )A .p ∧qB .p ∨qC .p ∧(綈q )D .綈q 解析:由于y =log 2(x -2)在(2,+∞)上是增函数,∴命题p 是假命题.由3x >0,得3x +1>1,所以0<13x +1<1,所以函数y=13x+1的值域为(0,1),故命题q为真命题.所以p∧q为假命题,p∨q为真命题,p∧(綈q)为假命题,綈q 为假命题.方法与技巧1.判断含有逻辑联结词命题真假的步骤2.含逻辑联结词命题真假的5种等价关系(1)p∨q真⇔p,q至少一个真⇔(綈p)∧(綈q)假.(2)p∨q假⇔p,q均假⇔(綈p)∧(綈q)真.(3)p∧q真⇔p,q均真⇔(綈p)∨(綈q)假.(4)p∧q假⇔p,q至少一个假⇔(綈p)∨(綈q)真.(5)綈p真⇔p假;綈p假⇔p真.跟踪训练一(1)设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中是真命题的是(A)A.p∨q B.p∧qC.(綈p)∧(綈q) D.p∧(綈q)解析:取a=c=(1,0),b=(0,1),显然a·b=0,b·c=0,但a·c=1≠0,∴p是假命题.又a,b,c是非零向量,由a∥b知a=x b,由b∥c知b=y c,∴a=xy c,∴a∥c,∴q是真命题.综上知p∨q是真命题,p∧q是假命题.又∵綈p 为真命题,綈q 为假命题.∴(綈p )∧(綈q ),p ∧(綈q )都是假命题.(2)(2019·深圳联考)已知命题p :不等式ax 2+ax +1>0的解集为R ,则实数a ∈(0,4),命题q :“x 2-2x -8>0”是“x >5”的必要不充分条件,则下列命题正确的是( D )A .p ∧qB .p ∧(綈q )C .(綈p )∧(綈q )D .(綈p )∧q解析:命题p :当a =0时,有1>0恒成立;当a ≠0时,得⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0,解之得0<a <4. ∴实数a ∈[0,4),因此p 假,綈p 是真命题.命题q :由x 2-2x -8>0,得x >4或x <-2.因此“x 2-2x -8>0”是“x >5”的必要不充分条件,q 为真命题.故(綈p )∧q 为真命题.考点二 全称命题与特称命题角度1 全称、特称命题的否定例2. (2016·浙江卷)命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( D )A .∀x ∈R ,∃n ∈N *,使得n <x 2B .∀x ∈R ,∀n ∈N *,使得n <x 2C .∃x ∈R ,∃n ∈N *,使得n <x 2D .∃x ∈R ,∀n ∈N *,使得n <x 2解析:原命题是全称命题,其否定应为特称命题.其否定形式应为∃x ∈R ,∀n ∈N *,使得n <x 2,故选D.角度2 全称、特称命题的真假判断例3. 下列命题中为假命题的是( B )A .∃α,β∈R ,sin(α+β)=sin α+sin βB .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数C .∃x 0∈R ,x 30+ax 20+bx 0+c =0(a ,b ,c ∈R 且为常数)D .∀a >0,函数f (x )=(ln x )2+ln x -a 有零点解析:当α=0,β=π2时,sin(α+β)=sin α+sin β,A 为真命题;当φ=π2时,函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π2=cos2x 是偶函数,B 为假命题;对于三次函数y =x 3+ax 2+bx +c ,当x →-∞时,y →-∞,当x →+∞时,y →+∞,又该函数的图象在R 上连续不断,故∃x 0∈R ,x 30+ax 20+bx 0+c =0,C 为真命题;当f (x )=0时,(ln x )2+ln x -a =0,则有a=(ln x )2+ln x =⎝ ⎛⎭⎪⎫ln x +122-14≥-14,所以∀a >0,函数f (x )=(ln x )2+ln x -a 有零点,D 为真命题.综上可知选B.方法与技巧 1.对全(特)称命题进行否定的方法(1)改写量词:全称量词改写为存在量词,存在量词改写为全称量词;(2)否定结论:对于一般命题的否定只需直接否定结论即可. 提醒:对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再写出命题的否定.2.全(特)称命题真假的判断方法跟踪训练二(1)(2019·陕西师大附中二模)若命题p:对任意的x∈R,都有x3-x2+1<0,则綈p为(D)A.不存在x0∈R,使得x30-x20+1<0B.存在x0∈R,使得x30-x20+1<0C.对任意的x∈R,都有x3-x2+1≥0D.存在x0∈R,使得x30-x20+1≥0解析:命题p:对任意的x∈R,都有x3-x2+1<0的否定为綈p:存在x0∈R,使得x30-x20+1≥0,故选D.(2)下列四个命题:其中真命题是( D )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4考点三 由命题的真假求参数的取值范围例4. 已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,则实数m 的取值范围为[2,+∞) .解析:依题意知p ,q 均为假命题,当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是真命题时,则有Δ=m 2-4<0,-2<m <2.因此由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2. 所以实数m 的取值范围为[2,+∞).【条件探究】 本典例中的条件q 变为:存在x 0∈R ,x 20+mx 0+1<0,其他不变,则实数m 的取值范围为[0,2] .解析:依题意,当q 是真命题时,Δ=m 2-4>0,所以m >2或m <-2.由⎩⎪⎨⎪⎧m ≥0,-2≤m ≤2,得0≤m ≤2,所以m 的取值范围是[0,2].【结论探究】 本典例条件不变,若p 且q 为假,p 或q 为真,则实数m 的取值范围为(-∞,-2]∪[0,2) .解析:若p 且q 为假,p 或q 为真,则p ,q 一真一假.当p 真q 假时⎩⎪⎨⎪⎧ m <0,m ≥2或m ≤-2,所以m ≤-2; 当p 假q 真时⎩⎪⎨⎪⎧m ≥0,-2<m <2,所以0≤m <2. 所以m 的取值范围是(-∞,-2]∪[0,2).方法与技巧 根据命题的真假求参数取值范围的策略1.全称命题可转化为恒成立问题,特称命题可转化为存在性问题.2.根据含逻辑联结词的命题真假求参数的方法步骤:(1)根据题目条件,推出每一个命题的真假(有时不一定只有一种情况);(2)求出每个命题是真命题时参数的取值范围;(3)根据每个命题的真假情况,求出参数的取值范围.跟踪训练3(1)(2019·广东汕头模拟)已知命题p :关于x 的方程x 2+ax +1=0有实根;命题q :a >0.若“綈(p ∨q )”是假命题,“p ∧q ”是假命题,则实数a 的取值范围是(-∞,-2]∪(0,2) .解析:当命题p 为真时,有Δ=a 2-4≥0,解得a ≤-2或a ≥2.∵“綈(p ∨q )”是假命题,∴p ∨q 是真命题.又“p ∧q ”是假命题,∴p ,q 一个为真命题,一个为假命题.①当p 真q 假时,则⎩⎪⎨⎪⎧ a ≤-2或a ≥2,a ≤0,解得a ≤-2; ②当p 假q 真时,则⎩⎪⎨⎪⎧-2<a <2,a >0,解得0<a <2. 综上可得实数a 的取值范围是(-∞,-2]∪(0,2).(2)(2019·洛阳模拟)已知p :∀x ∈⎣⎢⎡⎦⎥⎤14,12,2x <m (x 2+1),q :函数f (x )=4x +2x +1+m -1存在零点,若“p 且q ”为真命题,则实数m 的取值范围是⎝ ⎛⎭⎪⎫45,1 . 解析:由2x <m (x 2+1),可得m >2x x 2+1, 又x ∈⎣⎢⎡⎦⎥⎤14,12时,⎝ ⎛⎭⎪⎫2x x 2+1max =45, 故当p 为真时,m >45;函数f (x )=4x +2x +1+m -1=(2x +1)2+m -2,令f (x )=0,得2x =2-m -1,若f (x )存在零点,则2-m -1>0,解得m <1,故当q 为真时,m <1.若“p 且q ”为真命题,则实数m 的取值范围是⎝ ⎛⎭⎪⎫45,1. 三.真题练习1.(2015·全国卷Ⅰ)设命题p :∃n ∈N ,n 2>2n ,则綈p 为( C )A .∀n ∈N ,n 2>2nB .∃n ∈N ,n 2≤2nC .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解析:根据特称命题的否定为全称命题,知綈p :∀n ∈N ,n 2≤2n ,故选C.2.(2015·浙江卷)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( D )A .∀n ∈N *,f (n )∉N *且f (n )>nB .∀n ∈N *,f (n )∉N *或f (n )>nC .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0解析:“f (n )∈N *且f (n )≤n ”的否定为“f (n )∉N *或f (n )>n ”,全称命题的否定为特称命题,故选D.3.(2019·广东汕头一模)已知命题p :关于x 的方程x 2+ax +1=0没有实根;命题q :∀x >0,2x -a >0.若“綈p ”和“p ∧q ”都是假命题,则实数a 的取值范围是( C )A .(-∞,-2)∪(1,+∞)B .(-2,1]C .(1,2)D .(1,+∞)解析:方程x 2+ax +1=0无实根等价于Δ=a 2-4<0,即-2<a <2;∀x >0,2x -a >0等价于a <2x 在(0,+∞)上恒成立,即a ≤1.因“綈p ”是假命题,则p 是真命题,又因“p ∧q ”是假命题,则q是假命题,∴⎩⎪⎨⎪⎧-2<a <2,a >1,得1<a <2,所以实数a 的取值范围是(1,2),故选C.4.(2019·广东七校联考)已知命题p :∃a ∈⎝ ⎛⎭⎪⎫-∞,-14,函数f (x )=⎪⎪⎪⎪⎪⎪x +a x +1在⎣⎢⎡⎦⎥⎤12,3上单调递增;命题q :函数g (x )=x +log 2x 在区间⎝ ⎛⎭⎪⎫12,+∞上无零点.则下列命题中是真命题的是( D ) A .綈pB .p ∧qC .(綈p )∨qD .p ∧(綈q )解析:设h (x )=x +a x +1.易知当a =-12时,函数h (x )为增函数,且h ⎝ ⎛⎭⎪⎫12=16>0,则此时函数f (x )在⎣⎢⎡⎦⎥⎤12,3上必单调递增,即p 是真命题;∵g ⎝ ⎛⎭⎪⎫12=-12<0,g (1)=1>0,∴g (x )在⎝ ⎛⎭⎪⎫12,+∞上有零点,即q 是假命题,根据真值表可知p ∧(綈q )是真命题,故选D.四.课时跟踪检测1.(2019·河南教学质量监测)已知命题p :∀x ∈(1,+∞),x 2+16>8x ,则命题p 的否定为( )A .綈p :∀x ∈(1,+∞),x 2+16≤8xB .綈p :∀x ∈(1,+∞),x 2+16<8xC .綈p :∃x 0∈(1,+∞),x 20+16≤8x 0D .綈p :∃x 0∈(1,+∞),x 20+16<8x 0解析:选C 全称命题的否定为特称命题,故命题p 的否定綈p :∃x 0∈(1,+∞),x 20+16≤8x 0.故选C.2.(2019·太原一模)已知命题p :∃x 0∈R ,x 20-x 0+1≥0;命题q :若a <b ,则1a >1b .则下列为真命题的是( )A .p ∧qB .p ∧(綈q )C .(綈p )∧qD .(綈p )∧(綈q ) 解析:选B 因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,所以p 为真命题,则綈p 为假命题;当a =-2,b =1时,1a <1b ,所以q 为假命题,则綈q 为真命题.故p ∧q 为假命题,p ∧(綈q )为真命题,(綈p )∧q 为假命题,(綈p )∧(綈q )为假命题.故选B.3.(2019·惠州调研)已知命题p ,q ,则“綈p 为假命题”是“p ∧q 是真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 充分性:若綈p 为假命题,则p 为真命题,由于不知道q 的真假性,所以推不出p ∧q 是真命题.必要性:p ∧q 是真命题,则p ,q 均为真命题,则綈p 为假命题.所以“綈p 为假命题”是“p ∧q 是真命题”的必要不充分条件.故选B.4.如果命题“(綈q )∨p ”与“(綈p )∨q ”都是真命题,则下列结论中一定不成立的是( )A .命题“p ∧q ”是真命题B .命题“p ∨q ”是假命题C .命题“(綈p )∧q ”是假命题D .命题“(綈p )∧q ”是真命题 解析:选D 若命题“(綈q )∨p ”与“(綈p )∨q ”都是真命题,则p ,q 全为真命题或全为假命题,所以命题“(綈p )∧q ”一定为假命题,故选D.5.(2018·渭南尚德中学一模)如果命题“p 且q ”的否定为假命题,则( )A .p ,q 均为真命题B .p ,q 中至少有一个为真命题C .p ,q 均为假命题D .p ,q 中至多有一个为真命题解析:选A 若“p 且q ”的否定是假命题,则“p 且q ”是真命题,故p ,q 均是真命题.故选A.6.(2018·益阳市、湘潭高三调考)已知命题p :若复数z 满足(z-i)(-i)=5,则z =6i ;命题q :复数1+i 1+2i的虚部为-15i ,则下面为真命题的是( )A .(綈p )∧(綈q )B .(綈p )∧qC .p ∧(綈q )D .p ∧q解析:选C 由已知可得,复数z 满足(z -i)(-i)=5,所以z =5-i+i =6i ,所以命题p 为真命题;复数1+i 1+2i =(1+i )(1-2i )(1+2i )(1-2i )=3-i 5,其虚部为-15,故命题q 为假命题,命题綈q 为真命题,所以p ∧(綈q )为真命题,故选C.7.(2018·河南师范大学附属中学开学考)已知命题p :“∀x ∈[0,1],a ≥e x ”,命题q :“∃x ∈R ,x 2+4x +a =0”,若命题“p ∧q ”是真命题,则实数a 的取值范围是( )A .(4,+∞)B .[1,4]C .(-∞,1]D .[e,4]解析:选D 命题p 等价于ln a ≥x 对x ∈[0,1]恒成立,所以ln a ≥1,解得a ≥e ;命题q 等价于关于x 的方程x 2+4x +a =0有实根,则Δ=16-4a ≥0,所以a ≤4.因为命题“p ∧q ”是真命题,所以命题p 真,命题q 真,所以实数a 的取值范围是[e,4],故选D.8.(2019·武汉部分学校调研)给出下列四个说法:①命题“∀x ∈(0,2),3x >x 3”的否定是“∃x 0∈(0,2),3x 0≤x 30”;②“若θ=π3,则cos θ=12”的否命题是“若θ≠π3,则cos θ≠12”;③p ∨q 是真命题,则命题p ,q 一真一假;④“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的充要条件.其中正确说法的个数为( )A .1B .2C .3D .4解析:选B 对于①,根据全称命题的否定,可知①正确;对于②,原命题的否命题为“若θ≠π3,则cos θ≠12”,所以②正确;对于③,若p ∨q 是真命题,则命题p ,q 至少有一个是真命题,故③错误;对于④,由函数y =2x +m -1有零点,得1-m =2x >0,解得m <1,若函数y =log m x 在(0,+∞)上是减函数,则0<m <1,所以④错误.综上,正确说法的个数为2,故选B.9.(2019·宜昌葛洲坝中学月考)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(綈p )∨(綈q )B .p ∨(綈q )C .(綈p )∧(綈q )D .p ∨q解析:选A “至少有一位学员没有降落在指定范围”表示学员甲、乙两人中有人没有降落在指定范围,所以应该是(綈p )∨(綈q ).故选A.10.(2018·汕头一模)已知命题p :关于x 的方程x 2+ax +1=0没有实根;命题q :∀x >0,2x -a >0.若“綈p ”和“p ∧q ”都是假命题,则实数a 的取值范围是( )A .(-∞,-2)∪(1,+∞)B .(-2,1]C .(1,2)D .(1,+∞)解析:选C 方程x 2+ax +1=0无实根等价于Δ=a 2-4<0,即-2<a <2;∀x >0,2x -a >0等价于a <2x 在(0,+∞)上恒成立,即a ≤1.因为“綈p ”是假命题,则p 是真命题,又“p ∧q ”是假命题,则q是假命题,∴⎩⎪⎨⎪⎧-2<a <2,a >1,得1<a <2,所以实数a 的取值范围是(1,2),故选C.11.命题p 的否定是“对所有正数x ,x >x +1”,则命题p 可写为________________________.解析:因为p 是綈p 的否定,所以只需将全称量词变为存在量词,再对结论否定即可.答案:∃x 0∈(0,+∞),x 0≤x 0+112.已知命题p :x 2+4x +3≥0,q :x ∈Z ,且“p ∧q ”与“綈q ”同时为假命题,则x =________.解析:若p 为真,则x ≥-1或x ≤-3,因为“綈q ”为假,则q 为真,即x ∈Z ,又因为“p ∧q ”为假,所以p 为假,故-3<x <-1,由题意,得x =-2.答案:-213.若命题p :存在x ∈R ,ax 2+4x +a <-2x 2+1是假命题,则实数a 的取值范围是________.解析:若命题p :存在x ∈R ,ax 2+4x +a <-2x 2+1是假命题,则綈p :任意x ∈R ,ax 2+4x +a ≥-2x 2+1是真命题,即(2+a )x 2+4x +a -1≥0恒成立,当a =-2时不成立,舍去,则有⎩⎪⎨⎪⎧2+a >0,16-4(2+a )(a -1)≤0,解得a ≥2. 答案:[2,+∞)14.(2019·济南模拟)给定命题p :对任意实数x ,都有ax 2+ax +1>0成立;命题q :关于x 的方程x 2-x +a =0有实数根,若p ∧q 为真,则a 的取值范围是________.解析:当p 为真命题时,对任意实数x 都有ax 2+ax +1>0成立⇔a =0或⎩⎪⎨⎪⎧a >0,Δ<0, ∴0≤a <4.当q 为真命题时,关于x 的方程x 2-x +a =0有实数根⇔Δ=1-4a ≥0,∴a ≤14.p ∧q 为真时,0≤a ≤14.答案:⎣⎢⎡⎦⎥⎤0,14 15.已知p :-1<log 2x <2,q :⎝ ⎛⎭⎪⎫23x +a >1,綈q 是綈p 的充分不必要条件,求实数a 的取值范围.解:由-1<log 2x <2,得12<x <4,所以綈p :x ≤12或x ≥4,设集合A =⎩⎨⎧⎭⎬⎫x |x ≤12或x ≥4;由⎝ ⎛⎭⎪⎫23x +a >1,得x +a <0,解得x <-a ,所以綈q :x ≥-a ,设集合B ={x |x ≥-a }.又綈q 是綈p 的充分不必要条件,所以B A ,所以-a ≥4,解得a ≤-4,所以实数a 的取值范围是(-∞,-4].。
简单的逻辑联结词、全称量词与存在量词讲义
简单的逻辑联结词、全称量词与存在量词讲义一、知识梳理1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p且q、p或q、非p的真假判断(1)全称量词:短语“所有的”“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.(2)存在量词:短语“存在一个”“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.3.全称命题、特称命题及含一个量词的命题的否定1.含有逻辑联结词的命题真假的判断规律(1)p∨q:p,q中有一个为真,则p∨q为真,即有真为真.(2)p∧q:p,q中有一个为假,则p∧q为假,即有假即假.(3)綈p:与p的真假相反,即一真一假,真假相反.2.含有一个量词的命题的否定的规律是“改量词,否结论”.3.命题的否定和否命题的区别:命题“若p,则q”的否定是“若p,则綈q”,否命题是“若綈p,则綈q”.二、基础检验题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题“3≥2”是真命题.()(2)命题p和綈p不可能都是真命题.()(3)若命题p,q中至少有一个是真命题,则p∨q是真命题.()(4)“全等三角形的面积相等”是特称命题.()(5)命题綈(p∧q)是假命题,则命题p,q中至少有一个是真命题.()题组二:教材改编2.已知p:2是偶数,q:2是质数,则命题綈p,綈q,p∨q,p∧q中真命题的个数为()A.1 B.2 C.3 D.43.命题“正方形都是矩形”的否定是____________________.题组三易错自纠4.已知命题p,q,“綈p为真”是“p∧q为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.下列命题中的假命题是()A.∃x0∈R,lg x0=1 B.∃x0∈R,sin x0=0C.∀x∈R,x3>0 D.∀x∈R,2x>06.已知命题p:∀x∈R,x2-a≥0;命题p:∃x0∈R,x20+2ax0+2-a=0.若命题“p∧q”是真命题,则实数a的取值范围为__________.三、典型例题题型一:含有逻辑联结词的命题的真假判断1.设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中的真命题是()A.p∨q B.p∧qC.(綈p)∧(綈q) D.p∨(綈q)2.已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是()A.p∧q B.p∧(綈q)C.(綈p)∧q D.(綈p)∧(綈q)3.已知命题p:若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q:在空间中,对于三条不同的直线a,b,c,若a⊥b,b⊥c,则a∥c.对以上两个命题,有以下命题:①p∧q为真;②p∨q为假;③p∨q为真;④(綈p)∨(綈q)为假.其中,正确的是________.(填序号)思维升华:“p∨q”“p∧q”“綈p”等形式命题真假的判断步骤(1)确定命题的构成形式;(2)判断其中命题p、q的真假;(3)确定“p∧q”“p∨q”“綈p”等形式命题的真假.题型二:含有一个量词的命题命题点1:全称命题、特称命题的真假典例下列四个命题:p 1:∃x 0∈(0,+∞),0011()()23x x <; p 2:∃x 0∈(0,1),101023log log x x >;p 3:∀x ∈(0,+∞),x )21(>12log x ; p 4:∀x ∈)310(,,x)21(<13log x .其中真命题是( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4命题点2 含一个量词的命题的否定典例 (1)命题“∀x ∈R ,x)31(>0”的否定是( ) A .∃x 0∈R ,01()3x <0 B .∀x ∈R ,x)31(≤0 C .∀x ∈R ,x)31(<0D .∃x 0∈R ,01()3x ≤0.(2)命题“∃x 0∈R ,1<f (x 0)≤2”的否定形式是( )A .∀x ∈R ,1<f (x )≤2B .∃x 0∈R ,1<f (x 0)≤2C .∃x 0∈R ,f (x 0)≤1或f (x 0)>2D .∀x ∈R ,f (x )≤1或f (x )>2思维升华:(1)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内找到一个x =x 0,使p (x 0)成立. (2)对全(特)称命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词; ②对原命题的结论进行否定.跟踪训练 (1)下列命题是假命题的是( ) A .∃α,β∈R ,使cos(α+β)=cos α+cos β B .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数C .∃x 0∈R ,使x 30+ax 20+bx 0+c =0(a ,b ,c ∈R 且为常数)D .∀a >0,函数f (x )=ln 2x +ln x -a 有零点(2)已知命题p :“∃x 0∈R ,0e x -x 0-1≤0”,则綈p 为( ) A .∃x 0∈R ,0e x -x 0-1≥0 B .∃x 0∈R ,0e x -x 0-1>0 C .∀x ∈R ,e x -x -1>0 D .∀x ∈R ,e x -x -1≥0 题型三 含参命题中参数的取值范围典例 (1)已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数,若p ∧q 是真命题,则实数a 的取值范围是________________.(2)已知f (x )=ln(x 2+1),g (x )=x)21(-m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________________.引申探究本例(2)中,若将“∃x 2∈[1,2]”改为“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是___________. 思维升华:(1)已知含逻辑联结词的命题的真假,可根据每个命题的真假,利用集合的运算求解参数的取值范围.(2)对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.跟踪训练 (1)已知命题“∃x 0∈R ,使2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是( ) A .(-∞,-1) B .(-1,3) C .(-3,+∞)D .(-3,1)(2)(2017·洛阳模拟)已知p :∀x ∈]2141[,,2x <m (x 2+1),q :函数f (x )=4x +2x +1+m -1存在零点,若“p且q ”为真命题,则实数m 的取值范围是__________..四、高频考点一、命题的真假判断典例1(1)(已知a ,b 都是实数,那么“a >b ”是“ln a >ln b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 由ln a >ln b ⇒a >b >0⇒a >b ,故必要性成立.当a =1,b =0时,满足a >b ,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立.(2)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x <0,m -x 2,x ≥0,给出下列两个命题:命题p :∃m ∈(-∞,0),方程f (x )=0有解,命题q :若m =19,则f (f (-1))=0,则下列命题为真命题的是( )A .p ∧qB .(綈p )∧qC .p ∧(綈q )D .(綈p )∧(綈q )二、充要条件的判断典例2 (1)已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 (2)已知圆C :(x -1)2+y 2=r 2(r >0).设p :0<r <3,q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件三、求参数的取值范围典例3(1)已知命题p :∀x ∈[0,1],a ≥e x ,命题q :∃x 0∈R ,x 20+4x 0+a =0,若命题“p ∧q ”是真命题,则实数a 的取值范围是__________.(2)已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈]3,21[,∃x 2∈[2,3]使得f (x 1)≥g (x 2),则实数a 的取值范围是________.五、反馈练习1.命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是( ) A .p ∧q B .(綈p )∧(綈q ) C .(綈p )∧qD .p ∧(綈q )2.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是( ) A .p 为真 B .綈q 为假 C .p ∧q 为假D .p ∨q 为真3.下列命题中为假命题的是( ) A .∀x ∈)2,0(,x >sin x B .∃x 0∈R ,sin x 0+cos x 0=2C .∀x ∈R ,3x >0D .∃x 0∈R ,lg x 0=04.若定义域为R 的函数f (x )不是偶函数,则下列命题中一定为真命题的是( ) A .∀x ∈R ,f (-x )≠f (x ) B .∀x ∈R ,f (-x )=-f (x ) C .∃x 0∈R ,f (-x 0)≠f (x 0) D .∃x 0∈R ,f (-x 0)=-f (x 0)5.设命题p :∃x 0∈(0,+∞),x 0+1x 0>3;命题q :∀x ∈(2,+∞),x 2>2x ,则下列命题为真的是( )A .p ∧(綈q )B .(綈p )∧qC .p ∧qD .(綈p )∨q6.已知命题p :∃x 0∈R ,cos x 0=54;命题q :∀x ∈R ,x 2-x +1>0.则下列结论正确的是( )A .命题p ∧q 是真命题B .命题p ∧(綈q )是真命题C .命题(綈p )∧q 是真命题D .命题(綈p )∨(綈q )是假命题 7.下列命题中,真命题是( )A .∃x 0∈R ,0e x ≤0B .∀x ∈R ,2x >x 2C .a +b =0的充要条件是ab =-1 D .“a >1,b >1”是“ab >1”的充分条件8.命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( ) A .(0,4]B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)9.命题p 的否定是“对所有正数x ,x >x +1”,则命题p 可写为____________________.10.已知函数f (x )的定义域为(a ,b ),若“∃x 0∈(a ,b ),f (x 0)+f (-x 0)≠0”是假命题,则f (a +b )=________. 11.以下四个命题:①∀x ∈R ,x 2-3x +2>0恒成立;②∃x 0∈Q ,x 20=2;③∃x 0∈R ,x 20+1=0;④∀x ∈R,4x 2>2x -1+3x 2.其中真命题的个数为________.12.已知命题p :∃x 0∈R ,(m +1)·(x 20+1)≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立.若p ∧q 为假命题,则实数m 的取值范围为____________.13.已知命题p :x 2+2x -3>0;命题q :13-x >1,若“(綈q )∧p ”为真,则x 的取值范围是___.14.下列结论:①若命题p :∃x 0∈R ,tan x 0=1;命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(綈q )”是假命题; ②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab =-3;③命题“若x 2-3x +2=0,则x =1”的逆否命题是“若x ≠1,则x 2-3x +2≠0”. 其中正确结论的序号为________.15.已知命题p :∃x 0∈R ,0e x-mx 0=0,命题q :∀x ∈R ,x 2+mx +1≥0,若p ∨(綈q )为假命题,则实数m 的取值范围是____.16.已知函数f (x )=x 2-x +1x -1(x ≥2),g (x )=a x (a >1,x ≥2).(1)若∃x 0∈[2,+∞),使f (x 0)=m 成立,则实数m 的取值范围为________________;(2)若∀x 1∈[2,+∞),∃x 2∈[2, +∞),使得f (x 1)=g (x 2),则实数a 的取值范围为________________.。
简单的逻辑用语、全称量词和特称量词
简单的逻辑⽤语、全称量词和特称量词⾼⼆年级数学科辅导讲义(第讲)学⽣姓名:授课教师:授课时间: 12.14第⼀部分基础知识梳理1.命题p∧q、p∨q、?p的真假判定2.全称量词和存在量词(1)全称量词有:所有的,任意⼀个,任给,⽤符号“?”表⽰;存在量词有:存在⼀个,⾄少有⼀个,有些,⽤符号“?”表⽰.(2)含有全称量词的命题,叫做全称命题.“对M中任意⼀个x,有p(x)成⽴”⽤符号简记为:?x∈M,p(x).(3)含有存在量词的命题,叫做特称命题.“存在M中元素x0,使p(x0)成⽴”⽤符号简记为:?x0∈M,p(x0).3.含有⼀个量词的命题的否定第⼆部分例题解析(⼀)“p∧q”“p∨q”“?p”形式命题的真假判断步骤(1)准确判断简单命题p、q的真假;(2)判断“p∧q”“p∨q”“?p”命题的真假.2.含有逻辑联结词的命题的真假判断规律(1)p∨q:p、q中有⼀个为真,则p∨q为真,即⼀真全真;(2)p∧q:p、q中有⼀个为假,则p∧q为假,即⼀假即假;(3)綈p:与p的真假相反,即⼀真⼀假,真假相反.例1.下列命题是真命题的是( )①27是3的倍数或27是9的倍数;②27是3的倍数且27是9的倍数;③平⾏四边形的对⾓线互相垂直且平分;④平⾏四边形的对⾓线互相垂直或平分;⑤1是⽅程x-1=0的根,且是⽅程x2-5x+4=0的根.A.①③⑤B.①②③⑤ C.①②④⑤ D.①②③④⑤2.已知命题p:?x0∈R,x20+1x20≤2;命题q是命题p的否定,则命题p、q、p∧q、p∨q中是真命题的是________.变式练习1.若p是真命题,q是假命题,则( )A.p∧q是真命题B.p∨q是假命题C.?p是真命题D.?q是真命题2.如果命题“⾮p或⾮q”是假命题,给出下列四个结论:①命题“p且q”是真命题;②命题“p且q”是假命题;③命题“p或q”是真命题;④命题“p或q”是假命题.其中正确的结论是( ) A.①③B.②④ C.②③ D.①④3.已知命题p:(a-2)2+|b-3|≥0(a,b∈R),命题q:x2-3x+2<0的解集是{x|1①命题“p∧q”是真命题;②命题“p∧?q”是假命题;③命题“?p∨q”是真命题;④命题“?p∨?q”是假命题.其中正确的是( )A.②③B.①②④C.①③④D.①②③④(⼆)1.全称命题真假的判断⽅法(1)要判断⼀个全称命题是真命题,必须对限定的集合M中的每⼀个元素x,证明p(x)成⽴;(2)要判断⼀个全称命题是假命题,只要能举出集合M中的⼀个特殊值x=x0,使p(x0)不成⽴即可.2.特称命题真假的判断⽅法要判断⼀个特称命题是真命题,只要在限定的集合M中,找到⼀个x=x0,使p(x0)成⽴即可,否则这⼀特称命题就是假命题.例3.下列命题中的假命题是( )A.?x0∈R,x0+1x0=2 B.?x0∈R,sin x0=-1 C.?x∈R,x2>0 D.?x∈R,2x>0例4.命题“?x0∈R,2x20-3ax0+9<0”为假命题,则实数a的取值范围为________.变式练习1.下列命题中的假命题是( ) A.?x∈R,2x-1>0 B.?x∈N*,(x-1)2>0C.?x0∈R,lg x0<1 D.?x0∈R,tan x0=22.下列命题中的假命题是( )A.?a,b∈R,a n=an+b,有{a n}是等差数列 B.?x0∈(-∞,0),2x0<3x0 C.?x∈R,3x≠0 D.?x0∈R,lg x0=03.下列命题中的真命题是( )A.?x0∈R,使得sin x0cos x0=35B.?x0∈(-∞,0),2x0>1C.?x∈R,x2≥x-1 D.?x∈(0,π),sin x>cos x(三)1.对含有⼀个量词的命题进⾏否定的⽅法⼀般地,写含有⼀个量词的命题的否定,⾸先要明确这个命题是全称命题还是特称命题,并找到其量词的位置及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论.2.常见词语的否定形式例4.命题“?x0∈?R Q,x30∈Q”的否定是( )A.?x0??R Q,x30∈Q B.?x0∈?R Q,x30?QC.?x??R Q,x3∈Q D.?x∈?R Q,x3?Q例5.命题p:有的三⾓形是等边三⾓形.命题?p:__________________.变式练习1.(1)命题p:任意两个等边三⾓形都是相似的,则?p:__________.(2)命题p:?x0∈R,x20+2x0+2=0,则?p:__________.2.命题“所有不能被2整除的整数都是奇数”的否定是( )A.所有能被2整除的整数都是奇数 B.所有不能被2整除的整数都不是奇数C.存在⼀个能被2整除的整数是奇数 D.存在⼀个不能被2整除的整数不是奇数3.若命题改为“存在⼀个能被2整除的整数是奇数”,其否定为________.4.写出下列命题的否定,并判断其真假.(1)p:?x∈R,x2-x+14≥0; (2)q:所有的正⽅形都是矩形;(3)r :?x 0∈R ,x 20+2x 0+2≤0; (4)s :⾄少有⼀个实数x 0,使x 30+1=0.6.命题“能被5整除的数,末位是0”的否定是.第三部分巩固练习1.设p 、q 是两个命题,则“复合命题p 或q 为真,p 且q 为假”的充要条件是( )A .p 、q 中⾄少有⼀个为真B .p 、q 中⾄少有⼀个为假C .p 、q 中有且只有⼀个为真D .p 为真,q 为假2.下列四个命题中的真命题为( )A .?x 0∈Z,1<4x 0<3B .?x 0∈Z,5x 0+1=0C .?x ∈R ,x 2-1=0D .?x ∈R ,x 2+x +2>03.已知命题p :?x 0∈R ,cos x 0=54;命题q :?x ∈R ,x 2-x +1>0,则下列结论正确的是( )A .命题p ∧q 是真命题B .命题p ∧?q 是真命题C .命题?p ∧q 是真命题D .命题?p ∨?q 是假命题 4.已知命题p :?x 0∈?0,π2,sin x 0=12,则?p 为( ) A .?x ∈? ????0,π2,sin x =12 B .?x ∈? ????0,π2,sin x ≠12C .?x 0∈? ????0,π2,sin x 0≠12D .?x 0∈?0,π2,sin x 0>12 5.已知命题p :抛物线y =2x 2的准线⽅程为y =-12;命题q :若函数f (x +1)为偶函数,则f (x )关于x=1对称.则下列命题是真命题的是( )A .p ∧qB .p ∨(?q )C .(?p )∧(?q )D .p ∨q6.下列命题正确的是( )A .已知p :1x +1>0,则?p :1x +1≤0 B .在△ABC 中,⾓A 、B 、C 的对边分别是a 、b 、c ,则a >b 是cos A+x +1>0,则?p :对任意的x ∈R ,x 2+x +1≤0D .存在实数x ∈R ,使sin x +cos x =π2成⽴7.命题“对任何x ∈R ,|x -2|+|x -4|>3”的否定是____________.8.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件,命题q :函数y =x -3的定义域是[3,+∞),则“p∨q”、“p∧q”、“?p”中是真命题的有________.9.若命题“?x∈R,ax2-ax-2≤0”是真命题,则实数a的取值范围是________.10.写出下列命题的否定,并判断真假.(1)q:?x∈R,x不是5x-12=0的根;(2)r:有些素数是奇数;(3)s:?x0∈R,|x0|>0.11.已知命题p:?x∈[1,2],x2-a≥0,命题q:?x0∈R,x20+2ax0+2-a=0,若“p且q”为真命题,求实数a的取值范围.12.已知命题p:存在实数m,使⽅程x2+mx+1=0有两个不等的负根;命题q:存在实数m,使⽅程4x2+4(m-2)x+1=0⽆实根.若“p∨q”为真,“p∧q”为假,求m的取值范围.第四部分课后作业1.将a2+b2+2ab=(a+b)2改写成全称命题是( )A.?a,b∈R,a2+b2+2ab=(a+b)2 B.?a<0,b>0,a2+b2+2ab=(a+b)2C.?a>0,b>0,a2+b2+2ab=(a+b)2 D.?a,b∈R,a2+b2+2ab=(a+b)22.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是( ) A.(?p)∨q B.p∧q C.(?p)∧(?q) D.?p)∨(?q)3.下列命题中,真命题是( )A.?m∈R,使函数f(x)=x2+mx(x∈R)是偶函数B .?m ∈R ,使函数f (x )=x 2+mx (x ∈R)是奇函数 C .?m ∈R ,函数f (x )=x 2+mx (x ∈R)`都是偶函数 D .?m ∈R ,函数f (x )=x 2+mx (x ∈R)都是奇函数 4.下列命题中,真命题是( )A .?x 0∈R ,e x 0≤0B .?x ∈R,2x >x 2C .a +b =0的充要条件是a b=-1 D .a >1,b >1是ab >1的充分条件5.已知命题p 1:?x 0∈R ,x 20+x 0+1<0;p 2:?x ∈[1,2],x 2-1≥0.以下命题为真命题的是( )A .(?p 1)∧(?p 2)B .p 1∨(?p 2)C .(?p 1)∧p 2D .p 1∧p 26.下列说法中错误的是( )A .对于命题p :?x 0∈R ,使得x 0+1x 0>2,则?p :?x ∈R ,均有x +1x≤2B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0” D .若p ∧q 为假命题,则p ,q 均为假命题7.已知命题p :?x ∈[1,2],x 2-a ≥0,命题q :?x 0∈R ,x 20+2ax 0+2-a =0,若“p 且q ”为真命题,则实数a 的取值范围是( )A .a =1或a ≤-2B .a ≤-2或1≤a ≤2C .a ≥1D .-2≤a ≤18.命题“存在x 0∈R ,使得x 20+2x 0+5=0”的否定是________.9.已知命题p :“?x ∈N *,x >1x”,命题p 的否定为命题q ,则q 是“________”;q 的真假为________(填“真”或“假”).10.若命题“存在实数x 0,使x 20+ax 0+1<0”的否定是假命题,则实数a 的取值范围为________.。
第3讲 简单的逻辑联结词 全称命题与特称命题
强化补请
完成状元之路课时作业
1.(教材改编题)下列命题中的假命题是( )
A.∃x0∈R,lg x0=0 C.∀x∈R,x3>0
B.∃x0∈R,tan x0=1 D.∀x∈R,2x>0
【解析】 当 x=1 时,lg x=0;当 x=π4时,tan x=1. ∴A、B 均为真命题.显然 D 为真命题. 当 x=0 时,x3=0.∴C 为假命题.
p∨q是真命题,p∧q是假命题,求实数a的取值范围.
[解答] p真:当0<a<1时,由ax>1⇒x<0, 可得{a| 0<a<1}. q真:由ax2-x+a>0恒成立,可得解得
a>1/2
由p∨q是真命题,p∧q是假命题,
得p、q两命题一真一假. 当p真q假时,可得此时0<a≤1/2;
当p假q真时,可知此时a≥1.
又p或q为真命题时,命题p且q为假命题,
所以命题p与q必有一真一假,
∴aa
2 0
或aa
2 0
解得0≤a≤2.
综上所述,实数a的取值范围是[0,2].
已知命题p:函数f (x)=-(5-2m)x是减函数.若p
为真命题,求实数m的取值范围.
错解∵命题p:f (x)=-(5-2m)x是减函数,
5;命题 2
q:∀x∈R,
都有 x2+x+1<0.给出下列结论:①命题“p∧q”是真命
题;②命题“p∧┓q”是假命题;③命题“┓p∨q”是真命
题;④命题“┓p∨┓q”是真命题.
其中正确的是( )
A.②④
B.②③
C.③④
D.①②③
3简单的逻辑联结词、全称量词与存在量词
考点三简单的逻辑联结词、全称量词与存在量词知识梳理1.简单的逻辑联结词(1) 逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联接词.(2) 用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.(3) 用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.(4) 一个命题p的否定记作¬p,读作“非p”或“p的否定”.2.复合命题及其真假判断(1) 复合命题:由简单命题再加上一些逻辑联结词构成的命题叫复合命题.(2) 复合命题p∧q,p∨q,非p以及其真假判断:简记为:p∧q中p、q有假则假,同真则真;p∨q有真为真,同假则假;p与¬p必定是一真一假.3. 全称量词与存在量词(1) 全称量词与全称命题短语“所有”“任意”“每一个”等表示全体的量词在逻辑中称为全称量词,并用符号“∀”表示.含有全称量词的命题,叫做全称命题.全称命题“对M中任意一个x,都有p(x)成立”可用符号简记为∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.(2) 存在量词与存在性命题短语“有一个”“有些”“存在一个”等表示部分的量词在逻辑中称为存在量词,并用符号“∃”表示.含有存在量词的命题,叫做存在性命题.存在性命题“存在M中的一个x,使p(x)成立”可用符号简记为∃x∈M,p(x),读作“存在一个x属于M,使p(x)成立”.4. 含有一个量词的命题的否定 "x ∈M ,p (x )典例剖析题型一 含有一个量词的命题的否定例1 命题“存在一个无理数,它的平方是有理数”的否定是( )A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数变式训练 设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :任意x ∈A,2x ∈B ,则( )A .Øp :任意x ∈A,2x ∉B B .Øp :任意x ∉A,2x ∉BC .Øp :存在x ∉A,2x ∈BD .Øp :存在x ∈A,2x ∉B题型二 复合命题真假判断例2 下列命题中的假命题是( )A .存在x ∈R ,sin x =52B .存在x ∈R ,log 2x =1C .任意x ∈R ,(12)x >0 D .任意x ∈R ,x 2≥0 变式训练 已知命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是( )A .p ∧qB .Øp ∧ØqC .Øp ∧qD .p ∧Øq题型三 由命题真假求参数范围例3 命题“存在x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值范围为________. 变式训练 已知命题p :“任意x ∈[1,2],x 2-a ≥0”,命题q :“存在x ∈R ,使x 2+2ax +2-a =0”,若命题“p 且q ”是真命题,则实数a 的取值范围是________.当堂练习1. 命题“对任意x ∈R ,都有20x ≥”的否定为( )A .对任意x ∈R ,使得20x <B .不存在x ∈R ,使得20x <C .存在0x ∈R ,都有200x ≥D .存在0x ∈R ,都有200x <2.若p,q是两个简单命题,且“p或q”是假命题,则必有()A.p真q真B.p真q假C.p假q假D.p假q真3.已知命题p:所有有理数都是实数;命题q:正数的对数都是负数,则下列命题中为真命题的是()A.¬p或q B.p且q C.¬p且¬q D.¬p或¬q4.已知p:2+2=5,q:3>2,则下列判断正确的是()A.“p或q”为假,“¬q”为假B.“p或q”为真,“¬q”为假C.“p且q”为假,“¬p”为假D.“p且q”为真,“p或q”为假5.已知命题p:若x>y,则-x<-y,命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是.课后作业一、选择题1.命题“对任意的x∈R,x3-x2+1≤0”的否定是()A.不存在x∈R,x3-x2+1≤0 B.存在x∈R,x3-x2+1≤0C.存在x∈R,x3-x2+1>0 D.对任意的x∈R,x3-x2+1>02.下列命题中正确的是()A.若p∨q为真命题,则p∧q为真命题B.“x=5”是“x2-4x-5=0”的充分不必要条件C.命题“若x<-1,则x2-2x-3>0”的否定为:“若x≥-1,则x2-2x-3≤0”D.已知命题p:∃x∈R,x2+x-1<0,则¬p:∃x∈R,x2+x-1≥03.已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是()A.p∧q B.¬p∧¬q C.¬p∧q D.p∧¬q4.已知命题p:∃x0∈R,x20+2x0+2≤0,则¬p为()A.∃x0∈R,x20+2x0+2>0 B.∃x0∈R,x20+2x0+2<0C.∀x∈R,x2+2x+2≤0 D.∀x∈R,x2+2x+2>05.对于下述两个命题p:对角线互相垂直的四边形是菱形;q:对角线互相平分的四边形是菱形.则命题“p∨q”、“p∧q”、“¬p”中真命题的个数为()A.0 B.1 C.2 D.36.下列命题中的假命题是()A. ∀x∈R,2x-1>0B. ∀x∈N*,(x-1)2>0C. ∃x∈R,lg x<1D. ∃x∈R,tan x=2 7.若命题“∃x0∈R,使得x20+mx0+2m-3<0”为假命题,则实数m的取值范围是()A.[2,6] B.[-6,-2] C.(2,6) D.(-6,-2)8.已知命题p:∀x∈R,2x2-2x+1≤0,命题q:∃x∈R,使sin x+cos x=2,则下列判断:①p且q是真命题;②p或q是真命题;③q是假命题;④非p是真命题其中正确的是()A.①④B.②③C.③④D.②④二、填空题9.命题“$x∈R,|x|≤0”的否定是“________________”.10.若命题“∃x∈R使x2+2x+m≤0”是假命题,则m的取值范围是_____________.11.命题:“对任意k>0,方程x2+x-k=0有实根”的否定是________.12.命题“任意两个等边三角形都相似”的否定为___________________.13.若命题“∀x∈R,ax2-ax-2≤0”是真命题,则实数a的取值范围是________.。
逻辑联结词、全称特称量词
通常叫做全称量词.用符号“ ”表示。
含有全称量词的命题,叫做全称命题。
短语“存在一个”“至少有一个” 在逻辑中通常叫
做存在量词.用符号 “ ”表示。
含有存在量词的命题,叫做特称命题。
3.含有一个量词的命题的否定
全称命题 p : x M,p(x) 它的否定 p :x0 M,p(x0 )
63
周期为 则命题 " p q"" p q""p"为真命 题的个数是( B )
A.1 B.2
C.3
D.0
全(特)称命题的否定 例2 写出下列命题的否定,并判断真假
(1) p : x R, x2 x 1 0; 4
(2)q :所有的正方形都是矩形;
(3)r : x0 R, x02 2x0 2 0;
B.m 2
D 2 .m 2
例3 (2)已知命题 p : "x [0,1], a ex "
命题 q :"x R,使得x2 4x a 0"
若命题" p q"是真命题,则实数a的取值
范围是 [e, 4] .
例4 已知 c 0且c 1, 设p:函数 y cx
特称命题 p : x0 M含有逻辑联结词命题的
真假判断
例1
命题p:将函数 y sin 2x 的图象向右平移 3
个单位得到函数 y sin(2x ) 的图象;命
3
题q:函数 y sin(x ) cos( x) 的最小正
一轮复习
逻辑联结词、全 称特称量词
绍兴市稽山中学
集合与常用逻辑用语
一.集合的概念及其运算:1元素与集合(1)集合中元素的三个特征:确定性,互异性,无序性。
(2)元素与集合的关系:属于和不属于。
(3)集合的表示法:列举法,描述法,韦恩图法。
2. 集合间的基本关系:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,就说集合B 包含集合A ,记作A ⊆B (读作A 包含于B ),这时也说集合A 是集合B 的子集.也可以记作B ⊇A (读作B 包含A )①子集有传递性,若A ⊆B ,B ⊆C ,则有A ⊆C .②空集是任何集合的子集,即⊆A③真子集:若A ⊆B ,且至少有一个元素b ∈B ,而b ∉A ,称A 是B 的真子集.记作A B (或B ∉A ).④若A ⊆B 且B ⊆A ,那么A =B⑤含n (n ∈N*)个元素的集合A 的所有子集的个数是:n n n n n n C C C C 2210=++++ 个.3. 集合的基本运算:(1)补集:如果A ⊆S ,那么A 在S 中的补集s A ={x |x ∈S ,且x ≠A }.①x ∈A ,且x ∈B ;②x ∈A ,但x ∉B ;③x ∈B ,但x ∉A ;这三部分元素构成了A ∪B(4)交、并、补有如下运算法则全集通常用U 表示.U (A ∩B )=(U A )∪(U B );A ∩(B ∪C )=(A ∩B )∪(A ∩C )U (A ∪B )=(U A )∩(U B );A ∪(B ∩C )=(A ∪B )∩(A ∪C )(5)集合间元素的个数:card (A ∪B )=card (A )+card (B )-card (A ∩B )经典例题:1.若M ={1,2,3,4,5},N ={2,3,6}则N -M 等于( )(A)M (B)N (C){1,4,5 } (D){6}2.已知集合 ( )A.{1,3}B.{1,2}C.{2,3}D.{1,2,3}3.已知集合 ( )A.A BB.B AC.A=BD.A ∩B=4.已知集合 ,则集合A ∩B 中元素的个数( )A.5B.4C.3D.25.设集合A={1,3,5,7},,则A ∩B=( ) A.{1,3} B.{3,5} C{5,7} D{1,7}6.设集合A={0,2,4,6,8,10},B={4,8}, AB=( )A.{4,8}B.{0.2.6}C.{0.2.6.10}D.{0,2,4,6,8,10}7.已知集合A={x|2<x<4},B={x|x<3,或x>5},则A ∩B=( )A.{x|2<x<5}B.{x|x<4或x>5}C.{x|2<x<3}D.{x|x<2或x>5}8.已知集合A={x|-1<x<2},B={x|0<x<3},则A ∪B=( ) A.(-1,3) B.(-1,0) C.(0,2) D.(2,3)=⋂∈-===B A A x x y y B A 则},,12|{},3,2,1{则1},x -1|x {},02|{2<<=<--=B x x x A }14,12,10,8,6{},,23|{=∈+=B x n n x x A }52|{≤≤=x x B 则9.已知集合 ( ) A.[3,4) B.(2,3] C.(-1,2) D.(-1,3]10.设集合 ( ) A.[0,1] B.(0,1] C.(0,1). D.[0,1)简单的逻辑联结词:1.四种命题及其关系:(1)四种命题:原命题:若p,则q;逆命题:若q,则p;否命题:若¬p,则¬q;逆否命题:若¬q,则¬p;(2)四种命题的真假关系:①两个命题互为逆否命题,它们有相同的真假性。
一轮复习简单逻辑连接词全称命题特称命题
第3讲简单的逻辑联结词、全称量词与存在量词最新考纲 1.了解逻辑联结词“或”“且”“非”的含义;2.理解全称量词与存在量词的意义;3.能正确地对含有一个量词的命题进行否定.知识梳理1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p且q、p或q、非p的真假判断2.(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,用“?”表示;含有全称量词的命题叫做全称命题.(2)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,用“?”表示;含有存在量词的命题叫做特称命题.3.含有一个量词的命题的否定1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)命题p∧q为假命题,则命题p,q都是假命题.(×)(2)若命题p,q至少有一个是真命题,则p∨q是真命题.(√)(3)已知命题p:?n0∈N,2n0>1 000,则?p:?n0∈N,2n0≤1 000.(×)(4)命题“?x∈R,x2≥0”的否定是“?x∈R,x2<0”.(×)2.(2014·重庆卷)已知命题p :对任意x ∈R ,总有|x |≥0;q :x =1是方程x +2=0的根.则下列命题为真命题的是( ) A .p ∧?q B .?p ∧q C .?p ∧?qD .p ∧q解析 由题意知,命题p 为真命题,命题q 为假命题,故?q 为真命题,所以p ∧?q 为真命题.答案 A3.(2014·湖南卷)设命题p :?x ∈R ,x 2+1>0,则?p 为( ) A .?x 0∈R ,x 20+1>0 B .?x 0∈R ,x 20+1≤0C .?x 0∈R ,x 20+1<0D .?x ∈R ,x 2+1≤0解析 “?x ∈R ,x 2+1>0”的否定为“?x 0∈ R ,x 20+1≤0”,故选B. 答案 B4.若命题“?x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.解析 当a =0时,不等式显然成立;当a ≠0时,由题意知⎩⎨⎧a <0,Δ=a 2+8a ≤0,得-8≤a <0.综上,-8≤a ≤0.答案 [-8,0]5.(人教A 选修1-1P26A3改编)给出下列命题: ①?x ∈N ,x 3>x 2;②所有可以被5整除的整数,末位数字都是0; ③?x 0∈R ,x 20-x 0+1≤0;④存在一个四边形,它的对角线互相垂直. 则以上命题的否定中,真命题的序号为________. 答案 ①②③考点一 含有逻辑联结词的命题及其真假判断【例1】 (1)(2014·辽宁卷)设a ,b ,c 是非零向量.已知命题p :若a ·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是( )A.p∨q B.p∧qC.(?p)∧(?q) D.p∨(?q)(2)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(?p)∨(?q) B.p∨(?q)C.(?p)∧(?q) D.p∨q解析(1)由于a,b,c都是非零向量,∵a·b=0,∴a⊥b.∵b·c=0,∴b⊥c.如图,则可能a∥c,∴a·c≠0,∴命题p是假命题,∴?p是真命题.命题q中,a∥b,则a与b方向相同或相反;b∥c,则b与c方向相同或相反.故a与c方向相同或相反,∴a∥c,即q 是真命题,则?q是假命题,故p∨q是真命题,p∧q,(?p)∧(?q),p∨(?q)都是假命题.(2)命题“至少有一位学员没有降落在指定范围”包含以下三种情况:“甲、乙均没有降落在指定范围”“甲降落在指定范围,乙没有降落在指定范围”“乙降落在指定范围,甲没有降落在指定范围”.选A.或者,命题“至少有一位学员没有降落在指定范围”等价于命题“甲、乙均降落在指定范围”的否命题,即“p∧q”的否定.选A.答案(1)A (2)A规律方法若要判断一个含有逻辑联结词的命题的真假,需先判断构成这个命题的每个简单命题的真假,再依据“或”——一真即真,“且”——一假即假,“非”——真假相反,做出判断即可.【训练1】 (1)若命题p:函数y=x2-2x的单调递增区间是[1,+∞),命题q:函数y=x-1x的单调递增区间是[1,+∞),则( )A.p∧q是真命题B.p∨q是假命题C.?p是真命题D.?q是真命题(2)“p ∨q ”为真命题是“p ∧q ”为真命题的________条件. 解析 (1)因为函数y =x 2-2x 的单调递增区间是[1,+∞),所以p 是真命题;因为函数y =x -1x的单调递增区间(-∞,0)和(0,+∞),所以q 是假命题.所以p ∧q 为假命题,p ∨q 为真命题,?p 为假命题,?q 为真命题,故选D. (2)若命题“p ∨q ”为真命题,则p ,q 中至少有一个为真命题.若命题“p ∧q ”为真命题,则p ,q 都为真命题,因此“p ∨q ”为真命题是“p ∧q ”为真命题的必要不充分条件.答案 (1)D (2)必要不充分考点二 全(特)称命题的否定及其真假判定【例2】 (1)(2014·安徽卷)命题“?x ∈R ,|x |+x 2≥0”的否定是( ) A .?x ∈R ,|x |+x 2<0B .?x ∈R ,|x |+x 2≤0C .?x 0∈R ,|x 0|+x 20<0D .?x 0∈R ,|x 0|+x 20≥0(2)(2014·沈阳质量监测)下列命题中,真命题的是( ) A .?x ∈R ,x 2>0 B .?x ∈R ,-1<sin x <1C .?x 0∈R,2x 0<0D .?x 0∈R ,tan x 0=2解析 (1)全称命题的否定是特称命题,即命题“?x ∈R ,|x |+x 2≥0”的否定为“?x 0∈R ,|x 0|+x 20<0”.故选C.(2)?x ∈R ,x 2≥0,故A 错;?x ∈R ,-1≤sin x ≤1,故B 错;?x ∈R,2x >0,故C 错,故选D.答案 (1)C (2)D规律方法 (1)对全(特)称命题进行否定的方法有:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“?x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内至少能找到一个x=x 0,使p (x 0)成立.【训练2】 命题“存在实数x ,使x >1”的否定是( ) A .对任意实数x ,都有x >1 B .不存在实数x ,使x ≤1 C .对任意实数x ,都有x ≤1 D .存在实数x ,使x ≤1解析 “存在实数x ,使x >1”的否定是“对任意实数x ,都有x ≤1”.故选C.答案 C考点三 与逻辑联结词、全(特)称命题有关的参数问题【例3】 已知p :?x ∈R ,mx 2+1≤0,q :?x ∈R ,x 2+mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是( )A .[2,+∞)B .(-∞,-2]C .(-∞,-2]∪[2,+∞)D .[-2,2]解析 依题意知,p ,q 均为假命题.当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此由p ,q 均为假命题得⎩⎨⎧m ≥0,m ≤-2或m ≥2,即m ≥2.答案 A规律方法 以命题真假为依据求参数的取值范围时,首先要对两个简单命题进行化简,然后依据“p ∨q ”“p ∧q ”“?p ”形式命题的真假,列出含有参数的不等式(组)求解即可.【训练3】 已知命题p :“?x ∈[0,1],a ≥e x ”;命题q :“?x ∈R ,使得x 2+4x +a =0”.若命题“p ∧q ”是真命题,则实数a 的取值范围是________.解析 若命题“p ∧q ”是真命题,那么命题p ,q 都是真命题.由?x ∈[0,1],a ≥e x ,得a ≥e;由?x ∈R ,使x 2+4x +a =0,知Δ=16-4a ≥0,a ≤4,因此e≤a ≤4.答案 [e,4] 微型专题利用逻辑关系判断命题真假2014年高考试题新课标全国Ⅰ卷中考查了一道实际问题的逻辑推理题,这也是今后高考命题的新趋向,大家应加以重视,解决问题的关键是弄清实际问题的含义,结合数学的逻辑关系进行转化.【例4 (1)(2014·新课标全国Ⅰ卷)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为________.(2)对于中国足球参与的某次大型赛事,有三名观众对结果作如下猜测:甲:中国非第一名,也非第二名;乙:中国非第一名,而是第三名;丙:中国非第三名,而是第一名.竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,则中国足球队得了第________名.点拨找出符合命题的形式,根据逻辑分析去判断真假.解析(1)由题意可推断:甲没去过B城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A,C城市,而乙“没去过C城市”,说明乙去过城市A,由此可知,乙去过的城市为A.(2)由上可知:甲、乙、丙均为“p且q”形式,所以猜对一半者也说了错误“命题”,即只有一个为真,所以可知丙是真命题,因此中国足球队得了第一名.答案(1)A(2)一点评在一些逻辑问题中,当字面上并未出现“或”“且”“非”字样时,应从语句的陈述中搞清含义,并根据题目进行逻辑分析,找出各个命题之间的内在联系,从而解决问题.[思想方法]1.把握含逻辑联结词的命题的形式,特别是字面上未出现“或”、“且”、“非”字眼,要结合语句的含义理解.2.含有逻辑联结词的命题真假判断口诀:p∨q→见真即真,p∧q→见假即假,p与?p→真假相反.3.要写一个命题的否定,需先分清其是全称命题还是特称命题,对照否定结构去写,否定的规律是“改量词,否结论”.[易错防范]1.命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.2.命题的否定包括:(1)对“若p,则q”形式命题的否定;(2)对含有逻辑联结词命题的否定;(3)对全称命题和特称命题的否定,要特别注意下表中常见词语的否定.基础巩固题组(建议用时:30分钟)一、选择题1.(2014·湖北卷)命题“?x∈R,x2≠x”的否定是( )A.?x?R,x2≠x B.?x∈R,x2=x C.?x?R,x2≠x D.?x∈R,x2=x解析 原命题的否定为“?x ∈R ,x 2=x ”. 答案 D2.(2014·天津卷)已知命题p :?x >0,总有(x +1)e x >1,则?p 为( ) A .?x 0 ≤0,使得(x 0+1)e x 0≤1 B .?x 0 >0,使得(x 0+1)e x 0≤1 C .?x >0,总有(x +1)e x ≤1 D .?x ≤0,总有(x +1)e x ≤1解析 命题p 为全称命题,所以?p :?x 0 >0,使得(x 0+1)e x 0≤1. 答案 B3.(2015·海淀区模拟)已知命题p :?x ∈R ,x 2+x -1<0,则?p 为( ) A .?x ∈R ,x 2+x -1>0 B .?x ∈R ,x 2+x-1≥0C .?x ?R ,x 2+x -1≥0D .?x ?R ,x 2+x -1>0解析 含有存在量词的命题的否定,需将存在量词改为全称量词,并将结论否定,即?p :?x ∈R ,x 2+x -1≥0.答案 B4.已知命题p :所有有理数都是实数;命题q :正数的对数都是负数,则下列命题中为真命题的是( )A .?p ∨qB .p ∧qC .?p ∧?qD .?p ∨?q 解析 不难判断命题p 为真命题,命题q 为假命题,从而上面叙述中只有?p ∨?q 为真命题.答案 D5.(2014·湖北七市(州)联考)已知命题p :?x ∈R ,cos x =54;命题q :?x∈R ,x 2-x +1>0,则下列结论正确的是( )A .命题p ∨q 是假命题B .命题p ∧q 是真命题C .命题(?p )∧(?q )是真命题D.命题(?p)∨(?q)是真命题解析易判断p为假命题,q为真命题,从而只有选项D正确.答案D6.下列命题中的假命题是( )A.?x0∈R,lg x0=0 B.?x0∈R,tan x0=3C.?x∈R,x3>0 D.?x∈R,2x>0解析当x=1时,lg x=0,故命题“?x0∈R,lg x0=0”是真命题;当x=π3时,tan x=3,故命题“?x0∈R,tan x0=3”是真命题;由于x=-1时,x3<0,故命题“?x∈R,x3>0”是假命题;根据指数函数的性质,对?x∈R,2x >0,故命题“?x∈R,2x>0”是真命题.答案C7.设命题p:函数y=sin 2x的最小正周期为π2;命题q:函数y=cos x的图象关于直线x=π2对称.则下列判断正确的是( )A.p为真B.?q为假C.p∧q为假D.p∨q为真解析p是假命题,q是假命题,因此只有C正确.答案C8.(2015·武汉调研测试)已知命题p:?φ∈R,使f(x)=sin(x+φ)为偶函数;命题q:?x∈R,cos 2x+4sin x-3<0,则下列命题中为真命题的是( ) A.p∧q B.(?p)∨qC.p∨(?q) D.(?p)∧(?q)解析利用排除法求解.?φ=π2,使f(x)=sin(x+φ)=sin⎝⎛⎭⎪⎫x+π2=cosx是偶函数,所以p是真命题,?p是假命题;?x=π2,使cos 2x+4sin x-3=-1+4-3=0,所以q是假命题,?q是真命题.所以p∧q,(?p)∨q,(?p)∧(?q)都是假命题,排除A,B,D,p∨(?q)是真命题,故选C.答案 C 二、填空题9.(2014·合肥质量检测)命题p :?x ≥0,都有x 3-1≥0,则?p 是________. 答案 ?x 0≥0,有x 30-1<0.10.命题“?x 0∈⎝ ⎛⎭⎪⎫0,π2,tan x 0>sin x 0”的否定是________.答案 ?x ∈⎝⎛⎭⎪⎫0,π2,tan x ≤sin x11.若命题p :关于x 的不等式ax +b >0的解集是{x |x >-ba},命题q :关于x 的不等式(x -a )(x -b )<0的解集是{x |a <x <b },则在命题“p ∧q ”、“p ∨q ”、“?p ”、“?q ”中,是真命题的有________.解析 依题意可知命题p 和q 都是假命题,所以“p ∧q ”为假、“p ∨q ”为假、“?p ”为真、“?q ”为真.答案 ?p 、?q 12.下列结论:①若命题p :?x ∈R ,tan x =1;命题q :?x ∈R ,x 2-x +1>0.则命题“p ∧?q ”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a b=-3;③命题“若x 2-3x +2=0,则x =1”的逆否命题:若“x ≠1,则x 2-3x +2≠0”.其中正确结论的序号为________.解析 ①中命题p 为真命题,命题q 为真命题, 所以p ∧?q 为假命题,故①正确; ②当b =a =0时,有l 1⊥l 2,故②不正确; ③正确.所以正确结论的序号为①③. 答案 ①③能力提升题组(建议用时:15分钟)13.(2014·衡水中学调研)给定命题p :函数y =ln[(1-x )(1+x )]为偶函数;命题q:函数y=e x-1e x+1为偶函数.下列说法正确的是( )A.p∨q是假命题B.(?p)∧q是假命题C.p∧q是真命题D.(?p)∨q是真命题解析对于命题p:令y=f(x)=ln[(1-x)(1+x)],由(1-x)(1+x)>0,得-1<x<1,∴函数f(x)的定义域为(-1,1),关于原点对称,又∵f(-x)=ln[(1+x)(1-x)]=f(x),∴函数f(x)为偶函数,∴命题p为真命题;对于命题q:令y=f(x)=e x-1e x+1,函数f(x)的定义域为R,关于原点对称,f(-x)=e-x-1e-x+1=1e x-11 e x +1=1-e x1+e x=-f(x),∴函数f(x)为奇函数,∴命题q为假命题,∴(?p)∧q是假命题,故选B.答案B14.(2014·湖南五市十校联考)下列命题中是假命题的是( )A.?α,β∈R,使sin(α+β)=sin α+sin βB.?φ∈R,函数f(x)=sin(2x+φ)都不是偶函数C.?m∈R,使f(x)=(m-1)·xm2-4m+3是幂函数,且在(0,+∞)上单调递减D.?a>0,函数f(x)=ln2x+ln x-a有零点解析对于A,当α=0时,sin(α+β)=sin α+sin β成立;对于B,当φ=π2时,f(x)=sin(2x+φ)=cos 2x为偶函数;对于C,当m=2时,f(x)=(m-1)·xm2-4m+3=x-1=1x,满足条件;对于D,令ln x=t,?a>0,对于方程t2+t-a=0,Δ=1-4(-a)>0,方程恒有解,故满足条件.综上可知,选B.答案B15.(2014·北京海淀区测试)若命题“?x0∈R,使得x20+mx0+2m-3<0”为假命题,则实数m 的取值范围是________.解析 由已知得“?x ∈R ,x 2+mx +2m -3≥0”为真命题,则Δ=m 2-4×1×(2m -3)=m 2-8m +12≤0,解得2≤m ≤6,即实数m 的取值范围是2≤m ≤6.答案 [2,6]16.已知命题p :“?x ∈R ,?m ∈R,4x -2x +1+m =0”,若命题?p 是假命题,则实数m 的取值范围是__________.解析 若?p 是假命题,则p 是真命题,即关于x 的方程4x -2·2x +m =0有实数解,由于m =-(4x -2·2x )=-(2x -1)2+1≤1,∴m ≤1.答案 (-∞,1]17.已知c >0,设命题p :函数y =c x 为减函数.命题q :当x ∈⎣⎢⎡⎦⎥⎤12,2时,函数f (x )=x +1x >1c恒成立.如果“p ∨q ”为真命题,“p ∧q ”为假命题,则c 的取值范围是________.解析 由命题p 为真知,0<c <1,由命题q 为真知,2≤x +1x ≤52, 要使此式恒成立,需1c <2,即c >12, 若“p 或q ”为真命题,“p 且q ”为假命题,则p ,q 中必有一真一假,当p 真q 假时,c 的取值范围是0<c ≤12; 当p 假q 真时,c 的取值范围是c ≥1.综上可知,c 的取值范围是⎝⎛⎦⎥⎤0,12∪[1,+∞). 答案 ⎝⎛⎦⎥⎤0,12∪[1,+∞)。
人教版选修2-1第一章第二节简单的逻辑连接词、全称量词与存在量词
解析:由 C 选项,若 p∨q 为真命题,则 p ,q 中至少有一 个是真命题,所以 C 选项命题是假命题,故选 C.
1.要写一个命题的否定,需先分清其是全称命题还是特 称命题,对照否定结构去写,并注意与否命题区别;对于命题 否定的真假,可以直接判定,也可以先判定原命题,再判定其 否定.判断命题的真假要注意:全称命题为真需证明,为假举 反例即可;特称命题为真需举一个例子,为假则要证明全称命 题为真.
p
真 真 假 假
q
真 假 真 假
p∨q
p∧q
非p
3. 全 称 量 词 (universal quantifier) 与 存 在 量 词 (existential quantifier) (1)常见的全称量词有:“任意一个”、“一切”、“每一 个”、“任给”、“所有的”等. (2)常见的存在量词有: “存在一个”、 “ “有些”、“有一个”、“某个”、“有的”等. (3)全称量词用符号“ 表示. ”表示; 存在量词用符号“∃” 有一个”、
【解析】 (1)∵方程 x2+x+1=0 的判别式 Δ=12-4=- 3<0, ∴x2+x+1<0 无解, 故命题 p1 为假命题, 綈 p1 为真命题; 由 x2-1≥0,得 x≥1 或 x≤-1,∴∀x∈[1,2],x2-1≥0,故 命题 p2 为真命题,綈 p2 为假命题.∵綈 p1 为真命题,p2 为真 命题,∴綈 p1∧p2 为真命题,选 C.
(2)∵y=2 在 R 上为增函数,y=2 数,∴y=-2
-x
x
-x
1 = x 在 2
R 上为,
∴y=2x-2-x 在 R 上为增函数,故 p1 是真命题. y=2x+2-x 在 R 上为减函数是错误的,故 p2 是假命题. ∴q1:p1∨p2 是真命题,因此排除 B 和 D,
简单的逻辑用语
简单的逻辑用语知识回顾全称量词与全称命题(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫作全称量词.(2)全称命题:含有全称量词的命题.(3)全称命题的符号表示:形如“对M中的任意一个x,有p(x)成立”的命题,用符号简记为∀x∈M,p(x).存在量词与特称命题(1)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫作存在量词.(2)特称命题:含有存在量词的命题.(3)特称命题的符号表示:形如“存在M中的元素x0,使p(x0)成立”的命题,用符号简记为∃x0∈M,p(x0).充分条件与必要条件(1若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇏pp是q的必要不充分条件p⇏q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇏q且q⇏p(2)从集合的角度:若条件p,q以集合的形式出现,即A={x|p(x)},B={x|q(x)},则由A⊆B可得,p是q的充分条件,请写出集合A,B的其他关系对应的条件p,q的关系.提示若A B,则p是q的充分不必要条件;若A⊇B,则p是q的必要条件;若A B,则p是q的必要不充分条件;若A=B,则p是q的充要条件;若A⊈B且A⊉B,则p是q的既不充分也不必要条件.(3)充要条件.高考对命题及其关系和充分条件、必要条件的考查,主要命题形式是选择题.由于知识载体丰富,因此题目有一定综合性,属于中、低档题.命题重点主要集中在以函数、方程、不等式、立体几何线面关系、数列等为背景的充分条件和必要条件的判定课前检测1.设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件2.(多选)设x∈R,则x>2的一个必要不充分条件是()A .x <1B .x >1C .x >-1D .x >33.“x (x -1)=0”是“x =1”的________条件(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”). 4.(多选)(2020·儋州市八一中学高一期中)已知下列命题其中正确的有( )A .“实数都大于0”的否定是“实数都小于或等于0”B .“三角形外角和为360度”是含有全称量词的真命题C .“至少存在一个实数x ,使得||0x ”是含有存在量词的真命题D .“能被3整除的整数,其各位数字之和也能被3整除”是全称量词命题5.“x -3=0”是“(x -3)(x -4)=0”的____________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)6.“sin α=sin β”是“α=β”的__________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)7.函数f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是________.课中讲解考点一. 全称量词及存在性量词例1 (1)以下四个命题既是存在性命题又是真命题的是( )A .锐角三角形有一个内角是钝角B .至少有一个实数x ,使x 2≤0C .两个无理数的和必是无理数D .存在一个负数x ,使1x>2 (2)下列四个命题:①∃x ∈(0,+∞),11<23x x⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; ②∃x ∈(0,1),1123log >log x x ;③∀x ∈(0,+∞),⎝⎛⎭⎫12x >12log x ;④∀x ∈⎝⎛⎭⎫0,13,⎝⎛⎭⎫12x <13log x . 其中真命题的序号为________.变式1. (1)下列命题中的假命题是( )A .∀x ∈R,2x -1>0B .∀x ∈N *,(x -1)2>0C .∃x ∈R ,lg x <1D .∃x ∈R ,tan x =2例2.(2020届山东省烟台市高三上期末)命题“2x ,10R x x ∀∈-+>”的否定是( )A .2x ,10R x x ∀∈-+≤B .2x ,10R x x ∀∈-+<C .2000x ,10R x x ∃∈-+≤D .2000x ,10R x x ∃∈-+<变式2.(2020届山东实验中学高三上期中)命题:“(),0,34x x x ∀∈-∞≥”的否定为( )A .[)0000,,34x x x ∃∈+∞<B .[)0000,,34x x x ∃∈+∞≤ C .()000,0,34x x x ∃∈-∞< D .()000,0,34x xx ∃∈-∞≤ 例3 (1)已知命题p :∀x ∈R ,x 2-a ≥0;命题q :∃x ∈R ,x 2+2ax +2-a =0.若命题p ,q 都是真命题,则实数a 的取值范围为__________.变式3.已知f (x )=ln(x 2+1),g (x )=⎝⎛⎭⎫12x -m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________________.考点二 充分、必要条件的判断例1.(2020·济南市历城第二中学高一月考)下面命题正确的是( )A .“1a >”是“11a<”的充分不必要条件 B .命题“若1x <,则21x <”的否定是“ 存在1x <,则21x ≥”. C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要而不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件变式1.(2020·山东省济南外国语学校高一期中)对任意实数a ,b ,c ,给出下列命题,其中真命题是( ) A .“a b =”是“ac bc =”的充要条件B .“a b >”是“22a b >”的充分条件C .“5a <”是“3a <”的必要条件D .“5a +是无理数”是“a 是无理数”的充要条件例2.(2020·云南省玉溪第一中学高二期末(理))“1x =”是“2210x x -+=”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 变式2.(2020届山东省枣庄、滕州市高二上期末)已知a R ∈,则“01a <<”是“,x R ∀∈2210ax ax ++>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件变式3. (2020·沭阳县修远中学月考)设U 是全集,A ,B 均是非空集合,则“存在非空集合C ,使得C ⊆A ,B U ⊆C ”是“A B =∅”成立的( )A .充要条件B .充分条件C .必要条件D .既不充分也不必要条件考点三 含参问题的讨论例1.(2020·上海格致中学高一期末)若“3x >”是“x a >“的充分不必要条件,则实数a 的取值范围是_____.变式1(2020·山东省青岛二中高一期末)已知{}22|320,0A x x ax a a =-+>>, {}2|60B x x x =--≥,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围.变式2.(2020届山东师范大学附中高三月考)函数()log (0,1)af x x a a =>≠是增函数的一个充分不必要条件是( )A .102a <<B .01a <<C .1a >D .24a <<变式2.(2020届山东省潍坊市高三上期中)“x R ∃∈,220x x a --<” 为假命题,则实数a 的最大值为__________.变式3.(2020届山东实验中学高三上期中)设命题21:01x p x -<-,命题()()2:2110q x a x a a -+++≤,若p 是q 的充分不必要条件,则实数a 的取值范围是_____________.课后练习一.单选1.下列命题中全称量词命题的个数为( )①平行四边形的对角线互相平分;②梯形有两边平行;③存在一个菱形,它的四条边不相等.A .0B .1C .2D .32.命题“x ∀∈R ,0ax b +≥”的否定是( )A .x ∃∈R ,0ax b +≥B .x ∃∈R ,0ax b +<C .x ∀∈R ,0a b +≤D .x ∀∈R ,0ax b +>3.关于命题,下列判断正确的是( )A .命题“每个正方形都是矩形”是存在量词命题B .命题“有一个素数不是奇数”是全称量词命题C .命题“x ∀∈R ,4x ∈R ”的否定为“0x ∃∈R ,40x ∉R ”D .命题“每个整数都是有理数”的否定为“每个整数都不是有理数”4.已知集合{}13A x x =∈-<<R ,{}1B x x m =∈<+R ,若x B ∈成立的一个充分不必要条件是x A ∈,则实数m 的取值范围是( )A .{}2m m ≥B .{}2m m ≤C .{}2m m >D .{}22m m -<< 5.设a ∈R ,则“2a =-”是“关于x 的方程20x x a ++=有实数根”的( )A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件6.设命题甲为:15x -<<,命题乙为:|2|4x -<,那么甲是乙的A .充要条件B .必要条件C .充分条件D .既不充分也不必要条件7.命题:2p x y +=,命题1:3x q y =-⎧⎨=⎩;则p 是q 的( ) A .充要条件 B .必要条件 C .充分条件 D .既不充分也不必要条件8. 设U 是全集,A ,B 均是非空集合,则“存在非空集合C ,使得C ⊆A ,B U ⊆C ”是“A B =∅”成立的( ) A .充要条件 B .充分条件 C .必要条件 D .既不充分也不必要条件二.多选.9.下列说法中正确的个数是( )A.命题“所有的四边形都是矩形”是存在量词命题;B.命题“x ∀∈R ,220x +<”是全称量词命题;C.命题“x ∃∈R ,2440x x ++≤”是存在量词命题.D.命题“不论m 取何实数,方程20x x m +-=必有实数根”是真命题;10.下列“若p ,则q ”形式的命题中,p 是q 的必要条件的是( )A .若22x y >,则x y >B .若5x >,则10x >C .若ac bc =,则a b =D .若2121x y +=+,则x y = 11.下列说法正确的是( )A .命题“x ∀∈R ,21x >-”的否定是“x ∃∈R ,21x <-”.B .命题“(3,)x ∃∈-+∞,29x ≤”的否定是“(3,)x ∀∈-+∞,29x >”C .“x y >”是“x y >”的必要条件.D .“0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件12.给出下列四个条件:①22xt yt >;②xt yt >;③22x y >;④110x y <<.其中能成为x y >的充分条件的是( )A .①B .②C .③D .④三.填空题:13.已知:2p x >,:1q x >,则p 是q 的 (充分条件”、“必要条件”、“充要条件”、“既不充分也不必要条件”中选择一个填空).14.已知真命题“a b c d ⇒>≥”和“a b e f <⇒≤”,则“c d ≤”是“e f ≤”的_________条件.15.若“3x >”是“x m >”的必要条件,但“3x >”不是“x m >”的充分条件,则m 的取值范围是________. 16. 若“2x a >+”是“3x >”的充分条件,则实数a 的取值范围为_________;若“2x a >+”是“3x >”的充分条件但“2x a >+”不是“3x >”的必要条件, 则实数a 的取值范围为_________.四.解答题:17.(本小题满分10分))写出下列命题的否定:(1):p x ∃∈R ,210x +≥;(2)p :所有自然数的平方都是正数;(3)p :任何实数x 都是方程5120x -=的根;(4)p :有些分数不是有理数.18.(本小题满分12分)判断下列命题是全称量词命题还是存在量词命题,然后写出命题的否定,并判断其真假.(1)不论m 取何实数,关于x 的方程220x x m +-=必有实数根;(2)某些梯形的对角线互相平分;(3)函数y kx =图象恒过原点.20.(本小题满分12分) 已知1:123x p --≤,()0:1q m x m ->≤,且p 是q 的充分不必要条件,求实数m 的取值范围.21.(本小题满分12分)已知下列三个方程:24430x ax a +-+=,()2210x a x a +-+=,2220x ax a +-=至少有一个方程有实根,求实数a 的取值范围.22.(本小题满分12分)已知集合{}22|Z A x x m n m n ==-∈,、(1)判断8,9,10是否属于集合A ;(2)已知集合{}|21Z B x x k k ==+∈,,证明:“x A ∈”的充分条件是“x B ∈”;但“x B ∈”不是“x A ∈”的必要条件;(3)写出所有满足集合A 的偶数.参考答案1.设x >0,y ∈R ,则“x >y ”是“x >|y |”的() A .充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件答案 C解析由x>y推不出x>|y|,由x>|y|能推出x>y,所以“x>y”是“x>|y|”的必要不充分条件.2.(多选)设x∈R,则x>2的一个必要不充分条件是()A.x<1 B.x>1 C.x>-1 D.x>3答案BC3.“x(x-1)=0”是“x=1”的________条件(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”).解析:x(x-1)=0⇒x=0或x=1,即x(x-1)=0不一定有x=1成立;但x=1能推出x(x-1)=0成立.故“x(x-1)=0”是“x=1”的必要不充分条件.答案:必要不充分4.(多选)(2020·儋州市八一中学高一期中)已知下列命题其中正确的有()A.“实数都大于0”的否定是“实数都小于或等于0”B.“三角形外角和为360度”是含有全称量词的真命题x”是含有存在量词的真命题C.“至少存在一个实数x,使得||0D.“能被3整除的整数,其各位数字之和也能被3整除”是全称量词命题【答案】BCD【解析】对于A, “实数都大于0”的否定是“实数不都大于0”,故A错误.对于B, “三角形外角和为360度”含有全称量词,且为真命题,所以B正确;x”含有存在量词,且为真命题,所以C正确;对于C, “至少存在一个实数x,使得||0对于D, “能被3整除的整数,其各位数字之和也能被3整除”是全称量词命题,所以D正确.综上可知,正确命题为BCD,故答案为: BCD5.“x-3=0”是“(x-3)(x-4)=0”的____________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)答案充分不必要6.“sin α=sin β”是“α=β”的__________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)答案必要不充分7.函数f (x)=x2+mx+1的图象关于直线x=1对称的充要条件是________.答案m=-2课中讲解考点一. 全称量词及存在性量词例1(1)以下四个命题既是存在性命题又是真命题的是()A.锐角三角形有一个内角是钝角B .至少有一个实数x ,使x 2≤0C .两个无理数的和必是无理数D .存在一个负数x ,使1x>2 答案 B解析 A 中锐角三角形的内角都是锐角,所以A 是假命题;B 中当x =0时,x 2=0,满足x 2≤0,所以B 既是存在性命题又是真命题;C 中因为2+(-2)=0不是无理数,所以C 是假命题;D 中对于任意一个负数x ,都有1x <0,不满足1x >2,所以D 是假命题.(2)下列四个命题:①∃x ∈(0,+∞),11<23x x⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; ②∃x ∈(0,1),1123log >log x x ;③∀x ∈(0,+∞),⎝⎛⎭⎫12x >12log x ;④∀x ∈⎝⎛⎭⎫0,13,⎝⎛⎭⎫12x <13log x . 其中真命题的序号为________.答案 ②④解析 对于①,当x ∈(0,+∞)时,总有⎝⎛⎭⎫12x >⎝⎛⎭⎫13x 成立,故①是假命题;对于②,当x =12时,有1112331111=log =log >log 232成立,故②是真命题; 对于③,当0<x <12时,12log x >1>⎝⎛⎭⎫12x ,故③是假命题; 对于④,∀x ∈⎝⎛⎭⎫0,13,⎝⎛⎭⎫12x <1<13log x ,故④是真命题. 思维升华 判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判定存在性命题是真命题,只要在限定集合内找到一个x ,使p (x )成立.变式1. (1)下列命题中的假命题是( )A .∀x ∈R,2x -1>0B .∀x ∈N *,(x -1)2>0C .∃x ∈R ,lg x <1D .∃x ∈R ,tan x =2答案 B解析 当x ∈N *时,x -1∈N ,可得(x -1)2≥0,当且仅当x =1时取等号,故B 不正确;易知A ,C ,D 正确,故选B.例2.(2020届山东省烟台市高三上期末)命题“2x ,10R x x ∀∈-+>”的否定是( )A .2x ,10R x x ∀∈-+≤B .2x ,10R x x ∀∈-+<C .2000x ,10R x x ∃∈-+≤D .2000x ,10R x x ∃∈-+<【答案】C【解析】全称命题的否定“20,10x R x x ∃∈-+≤”,故选C. 变式2.(2020届山东实验中学高三上期中)命题:“(),0,34x x x ∀∈-∞≥”的否定为( )A .[)0000,,34x x x ∃∈+∞<B .[)0000,,34x x x ∃∈+∞≤ C .()000,0,34x x x ∃∈-∞< D .()000,0,34x xx ∃∈-∞≤ 【答案】C【解析】命题“(),0,34x xx ∀∈-∞≥”是全称命题,则命题的否定是特称命题 即()000,0,34x xx ∃∈-∞<, 故选:C .例3 (1)已知命题p :∀x ∈R ,x 2-a ≥0;命题q :∃x ∈R ,x 2+2ax +2-a =0.若命题p ,q 都是真命题,则实数a 的取值范围为__________.答案 (-∞,-2]解析 由命题p 为真,得a ≤0,由命题q 为真,得Δ=4a 2-4(2-a )≥0,即a ≤-2或a ≥1,所以a ≤-2.变式3.已知f (x )=ln(x 2+1),g (x )=⎝⎛⎭⎫12x -m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________________.答案 ⎣⎡⎭⎫14,+∞ 解析 当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m ,由题意得f (x )min ≥g (x )min , 即0≥14-m ,所以m ≥14. 考点二 充分、必要条件的判断例1.(2020·济南市历城第二中学高一月考)下面命题正确的是( )A .“1a >”是“11a<”的充分不必要条件B .命题“若1x <,则21x <”的否定是“ 存在1x <,则21x ≥”.C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要而不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件 【答案】ABD【解析】选项A:根据反比例函数的性质可知:由1a >,能推出11a <,但是由11a<,不能推出1a >,例如当0a <时,符合11a<,但是不符合1a >,所以本选项是正确的; 选项B: 根据命题的否定的定义可知:命题“若1x <,则21x <”的 否 定 是“ 存 在1x <,则21x ≥”.所以本选项是正确的;选项C:根据不等式的性质可知:由2x ≥且2y ≥能推出224x y +≥,本选项是不正确的;选项D: 因为b 可以等于零,所以由0a ≠不能推出0ab ≠,再判断由0ab ≠能不能推出0a ≠,最后判断本选项是否正确.故选:ABD变式1.(2020·山东省济南外国语学校高一期中)对任意实数a ,b ,c ,给出下列命题,其中真命题是( ) A .“a b =”是“ac bc =”的充要条件 B .“a b >”是“22a b >”的充分条件C .“5a <”是“3a <”的必要条件D .“5a +是无理数”是“a 是无理数”的充要条件【答案】CD【解析】对于A ,因为“a b =”时ac bc =成立,ac bc =,0c 时,a b =不一定成立,所以“a b =”是“ac bc =”的充分不必要条件,故A 错,对于B ,1a =-,2b =-,a b >时,22a b <;2a =-,1b =,22a b >时,a b <,所以“a b >”是“22a b >”的既不充分也不必要条件,故B 错,对于C ,因为“3a <”时一定有“5a <”成立,所以“5a <”是“3a <”的必要条件,C 正确;对于D“5a +是无理数”是“a 是无理数”的充要条件,D 正确.故选:CD例2.(2020·云南省玉溪第一中学高二期末(理))“1x =”是“2210x x -+=”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】A【解析】1x =时,2210x x -+=成立,故是充分的,又当2210x x -+=时,即2(1)0x -=,1x =,故是必要的的,因此是充要条件.故选A .变式2.(2020届山东省枣庄、滕州市高二上期末)已知a R ∈,则“01a <<”是“,x R ∀∈2210ax ax ++>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】∵,x R ∀∈2210ax ax ++>,∴0a =或2440a a a >⎧⎨∆=-<⎩,即0a =或01a <<,∴01a ≤<.∴“01a <<”是“,x R ∀∈2210ax ax ++>”的充分不必要条件.故选:A.变式3. (2020·沭阳县修远中学月考)设U 是全集,A ,B 均是非空集合,则“存在非空集合C ,使得C ⊆A ,B U⊆C ”是“A B =∅”成立的( )A .充要条件B .充分条件C .必要条件D .既不充分也不必要条件 【答案】C【解析】当“存在非空集合C ,使得C A ⊆,UB C ⊆”时,如{}{}{}1,2,3,1,2,1U A C ===,{}{}2,2,3,U U B C B C==⊆但{}2AB =,所以不能推出“A B =∅”.当“A B =∅”时,则A 的非空子集C 的补集U C ,必包含B ,也即“存在非空集合C ,使得C A ⊆,UB C ⊆”.故“存在非空集合C ,使得C A ⊆,UB C ⊆”是“A B =∅”成立的必要条件.考点三 含参问题的讨论例1.(2020·上海格致中学高一期末)若“3x >”是“x a >“的充分不必要条件,则实数a 的取值范围是_____. 【答案】3a <【解析】因为“3x >”是“x a >”的充分不必要条件,∴3a <.故答案为:3a <.变式1(2020·山东省青岛二中高一期末)已知{}22|320,0A x x ax a a =-+>>,{}2|60B x x x =--≥,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围.【答案】302a <<【解析】解出{}|23B x x x =≤-≥或,{}|20A x x a x a a =<>>或, 因为x A ∈是x B ∈的必要不充分条件,所以B 是A 的真子集.所以2323020a a a a >-⎧⎪<⇒<<⎨⎪>⎩故答案为:302a <<变式2.(2020届山东师范大学附中高三月考)函数()log (0,1)a f x x a a =>≠是增函数的一个充分不必要条件是( ) A .102a <<B .01a <<C .1a >D .24a <<【答案】D 【解析】∵1a >时,()log (0,1)a f x x a a =>≠是增函数,∴函数()log (0,1)a f x x a a =>≠是增函数的一个充分不必要条件是(1,)∈+∞a 的一个子集,又(2,4)(1,)⊂+∞,故选:D.变式2.(2020届山东省潍坊市高三上期中)“x R ∃∈,220x x a --<” 为假命题,则实数a 的最大值为__________. 【答案】1-【解析】由“x R ∃∈,220x x a --<”为假命题,可知,“x R ∀∈,220x x a --≥”为真命题,22a x x ∴≤-恒成立,由二次函数的性质可知,221x x -≥-, 则实数1a ≤-,即a 的最大值为1-. 故答案为:1-.变式3.(2020届山东实验中学高三上期中)设命题21:01x p x -<-,命题()()2:2110q x a x a a -+++≤,若p 是q 的充分不必要条件,则实数a 的取值范围是_____________. 【答案】10,2⎡⎤⎢⎥⎣⎦【解析】由题意得,21:01x p x -<-,解得112x <<,所以1:12p x <<,由2:2110q x a x a a ,解得1a x a ≤≤+,即:1q a x a ≤≤+,要使得p 是q 的充分不必要条件,则11{12a a +≥≤,解得102a ≤≤,所以实数a 的取值范围是10,2⎡⎤⎢⎥⎣⎦.课后练习 一.单选1.下列命题中全称量词命题的个数为( )①平行四边形的对角线互相平分;②梯形有两边平行;③存在一个菱形,它的四条边不相等. A .0 B .1 C .2 D .3 【答案】C【解析】①②满足“对所有的…都成立”的特点,是全称量词命题,③含有“存在”,是存在量词命题. 2.命题“x ∀∈R ,0ax b +≥”的否定是( )A .x ∃∈R ,0ax b +≥B .x ∃∈R ,0ax b +<C .x ∀∈R ,0a b +≤D .x ∀∈R ,0ax b +> 【答案】B【解析】命题“x ∀∈R ,0ax b +≥”的否定是:x ∃∈R ,0ax b +<. 3.关于命题,下列判断正确的是( )A .命题“每个正方形都是矩形”是存在量词命题B .命题“有一个素数不是奇数”是全称量词命题C .命题“x ∀∈R ,4x ∈R ”的否定为“0x ∃∈R ,40x ∉R ”D .命题“每个整数都是有理数”的否定为“每个整数都不是有理数”【答案】C【解析】A 选项,命题“每个正方形都是矩形”含有全称量词“每个”,是全称量词命题,故A 错; B 选项,命题“有一个素数不是奇数”含有存在量词“有一个”,是存在量词命题,故B 错;C 选项,命题“x ∀∈R ,4x ∈R ”的否定为“0x ∃∈R ,40x ∉R ”,故C 正确;D 选项,命题“每个整数都是有理数”的否定为“存在一个整数不是有理数”,故D 错;4.已知集合{}13A x x =∈-<<R ,{}1B x x m =∈<+R ,若x B ∈成立的一个充分不必要条件是x A ∈,则实数m 的取值范围是( )A .{}2m m ≥ B .{}2m m ≤C .{}2m m >D .{}22m m -<<【答案】A【解析】由于x B ∈成立的一个充分不必要条件是x A ∈,则A B ,13m ∴+≥,解得2m ≥,因此,实数m 的取值范围是{}2m m ≥.5.设a ∈R ,则“2a =-”是“关于x 的方程20x x a ++=有实数根”的( )A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】“关于x 的方程20x x a ++=有实数根”即140a ∆=-≥∴14a ≤. 6.设命题甲为:15x -<<,命题乙为:|2|4x -<,那么甲是乙的 A .充要条件 B .必要条件 C .充分条件D .既不充分也不必要条件【答案】C【解析】由24x -<可得424x -<-<,解得26x -<<,所以由15x -<<能推出26x -<<;由26x -<<不能推出15x -<<,所以甲是乙的充分条件,故选C.7.命题:2p x y +=,命题1:3x q y =-⎧⎨=⎩;则p 是q 的( )A .充要条件B .必要条件C .充分条件D .既不充分也不必要条件 【答案】B【解析】因为当2x y +=时,x 可能为1,y 也可能为1,不一定有13x y =-⎧⎨=⎩,所以p 不是是q 的充分条件;因为13x y =-⎧⎨=⎩,所以2x y +=, 所以p 是q 的必要条件.8. 设U 是全集,A ,B 均是非空集合,则“存在非空集合C ,使得C ⊆A ,B U⊆C ”是“A B =∅”成立的( )A .充要条件B .充分条件C .必要条件D .既不充分也不必要条件 【答案】C【解析】当“存在非空集合C ,使得C A ⊆,UB C ⊆”时,如{}{}{}1,2,3,1,2,1U A C ===,{}{}2,2,3,U U B C B C==⊆但{}2AB =,所以不能推出“A B =∅”.当“A B =∅”时,则A 的非空子集C 的补集U C ,必包含B ,也即“存在非空集合C ,使得C A ⊆,UB C ⊆”.故“存在非空集合C ,使得C A ⊆,UB C ⊆”是“A B =∅”成立的必要条件.二.多选.9.下列说法中正确的个数是( )A.命题“所有的四边形都是矩形”是存在量词命题;B.命题“x ∀∈R ,220x +<”是全称量词命题;C.命题“x ∃∈R ,2440x x ++≤”是存在量词命题.D.命题“不论m 取何实数,方程20x x m +-=必有实数根”是真命题; 【答案】BC【解析】A 中命题“所有的四边形都是矩形”是全称量词命题,故A 错误; B 中命题“x ∀∈R ,220x +<”是全称量词命题,故B 正确; C 命题“x ∃∈R ,2440x x ++≤”是存在量词命题,故C 正确;D 选项中当140m ∆=+<时,即当14m <-时,方程20x x m +-=没有实数根,因此,此命题为假命题. 10.下列“若p ,则q ”形式的命题中,p 是q 的必要条件的是( )A .若22x y >,则x y >B .若5x >,则10x >C .若ac bc =,则a b =D .若2121x y +=+,则x y =【答案】BCD【解析】∵p 是q 的必要条件,∴q p ⇒,当0,1x y ==-时,满足x y >,但是220,1x y ==不满足22x y >,∴A 选项中p 不是q 的必要条件.B,C,D 选项中p 是q 的必要条件. 11.下列说法正确的是( )A .命题“x ∀∈R ,21x >-”的否定是“x ∃∈R ,21x <-”.B .命题“(3,)x ∃∈-+∞,29x ≤”的否定是“(3,)x ∀∈-+∞,29x >”C .“x y >”是“x y >”的必要条件.D .“0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件 【答案】BD【解析】A.命题“x ∀∈R ,21x >-”的否定是“x ∃∈R ,21x -≤”,故错误; B.命题“(3,)x ∃∈-+∞,29x ≤”的否定是“(3,)x ∀∈-+∞,29x >”,正确;C.x y >不能推出x y >,x y >也不能推出x y >,所以“x y >”是“x y >”的既不充分也不必要条件,故错误;D.关于x 的方程220x x m -+=有一正一负根44000m m m ->⎧⇔⇔<⎨<⎩,所以“0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件,正确.12.给出下列四个条件:①22xt yt >;②xt yt >;③22x y >;④110x y<<.其中能成为x y >的充分条件的是( )A .①B .②C .③D .④【答案】AD【解析】①由22xt yt >可知20t >,所以x y >,故22xt yt x y >⇒>;② 当0t >时,x y >;当0t <时,x y <,故xt yt x y >⇒>;③ 由22x y >,得x y x y >⇒>,故22x y x y >⇒>;④110x y x y<<⇒>. 三.填空题:13.已知:2p x >,:1q x >,则p 是q 的 (充分条件”、“必要条件”、“充要条件”、“既不充分也不必要条件”中选择一个填空). 【答案】充分条件【解析】设命题p :2x >对应的集合为{|2}A x x =>,命题q :1x >对应的集合为{|1}B x x =>,因为AB ,所以命题p 是命题q 的充分条件.14.已知真命题“a b c d ⇒>≥”和“a b e f <⇒≤”,则“c d ≤”是“e f ≤”的_________条件.【答案】充分【解析】因为a b c d ⇒>≥为真命题,所以c d a b ⇒<≤也为真命题;又a b e f <⇒≤为真命题,所以c d e f ⇒≤≤为真命题;即“c d ≤”是“e f ≤”的充分条件.15.若“3x >”是“x m >”的必要条件,但“3x >”不是“x m >”的充分条件,则m 的取值范围是________. 【答案】3m >【解析】若“3x >”是“x m >”的必要条件,但“3x >”不是“x m >”的充分条件,所以(),m +∞是()3,+∞的真子集,所以3m >,故答案为3m >.16. 若“2x a >+”是“3x >”的充分条件,则实数a 的取值范围为_________;若“2x a >+”是“3x >”的充分条件但“2x a >+”不是“3x >”的必要条件, 则实数a 的取值范围为_________. 【答案】a ≥1 1a >【解析】∵若“2x a >+”是“3x >”的充分条件,∴{}2x x a >+{}3x x ⊆>∴a ≥1 ∵若“2x a >+”是“3x >”的充分条件但“2x a >+”不是“3x >”的必要条件, ∴{}2x x a >+{}3x x > ∴1a >五.解答题:17.(本小题满分10分))写出下列命题的否定:(1):p x ∃∈R ,210x +≥;(2)p :所有自然数的平方都是正数;(3)p :任何实数x 都是方程5120x -=的根;(4)p :有些分数不是有理数. 【答案】(1):p x ⌝∀∈R ,210x +<;(2):p ⌝有些自然数的平方不是正数;(3):p ⌝存在实数x 不是方程5120x -=的根;(4):p ⌝一切分数都是有理数. 18.(本小题满分12分)判断下列命题是全称量词命题还是存在量词命题,然后写出命题的否定,并判断其真假. (1)不论m 取何实数,关于x 的方程220x x m +-=必有实数根;(2)某些梯形的对角线互相平分; (3)函数y kx =图象恒过原点.【解析】 (1)即“所有m ∈R ,关于x 的方程220x x m +-=都有实数根”,是全称量词命题,其否定为“存在实数m ,使得关于x 的方程220x x m +-=没有实数解”,真命题;(2)是存在量词命题,其否定为“所有梯形的对角线不互相平分”,真命题;(3)即“所有k ∈R ,函数y kx =图象都过原点”,是全称量词命题,其否定为“存在实数k ,使函数y kx =图象不过原点”,是假命题. 19.(本小题满分12分) 设,x y R ∈,求证||||||x y x y +=+成立的充要条件是0xy ≥.【解析】①充分性:若0xy ≥,则有0xy =和0xy >两种情况,当0xy =时,不妨设0x =,则||||x y y +=,||||||x y y +=,∴等式成立.当0xy >时,0x >,0y >或0x <,0y <,当0x >,0y >时,||x y x y +=+,||||x y x y +=+,∴等式成立,当0x <,0y <时,||()x y x y +=-+,||||x y x y x y +=--=+,∴等式成立. 综上,当0xy ≥时,||||||x y x y +=+成立.②必要性:若||||||x y x y +=+且,x y R ∈,则22||(||||)x y x y +=+, 即222222||||x xy y x y x y ++=++⋅,∴||xy xy =,∴0xy ≥.综上可知,0xy ≥是等式||||||x y x y +=+成立的充要条件. 20.(本小题满分12分) 已知1:123x p --≤,()0:1q m x m ->≤,且p 是q 的充分不必要条件,求实数m 的取值范围.【解析】由题意知111:1221213210333x x x p x ----≤⇔-≤-≤⇔-≤≤⇔-≤≤, ():10111q x m m m x m m x m -≤>⇔-≤-≤⇔-≤≤+.p 是q 的充分不必要条件,[][]2,101,1m m ∴--+,所以,121100m m m -≤-⎧⎪+≥⎨⎪>⎩,解得9m ≥.当9m =时,[][]2,101,1m m --+,合乎题意.因此,实数m 的取值范围是{}9m m ≥. 21.(本小题满分12分)已知下列三个方程:24430x ax a +-+=,()2210x a x a +-+=,2220x ax a +-=至少有一个方程有实根,求实数a 的取值范围.【解析】先求使三个方程都没有实根的实数a 的取值范围:由()()()()()21222234443014024120a a a a a a ⎧∆=--+<⎪⎪∆=--<⎨⎪∆=-⨯⨯-<⎪⎩得2224430321020a a a a a a ⎧+-<⎪+->⎨⎪+<⎩解得:312a -<<- ∴至少有一个方程有实根,则实数a 的取值范围为32a -≤或1a -≥. 22.(本小题满分12分)已知集合{}22|Z A x x m n m n ==-∈,、(1)判断8,9,10是否属于集合A ;(2)已知集合{}|21Z B x x k k ==+∈,,证明:“x A ∈”的充分条件是“x B ∈”;但“x B ∈”不是“x A ∈”的必要条件;(3)写出所有满足集合A 的偶数. 【解析】(1)2831=-,22954=-,∴8A ∈,9A ∈,假设2210m n =-,,m n ∈Z ,则()()10m n m n +-=,且0m n m n +>->,1011025=⨯=⨯,∴101m n m n ⎧+=⎪⎨-=⎪⎩,或52m n m n ⎧+=⎪⎨-=⎪⎩,显然均无整数解,∴10A ∉,∴8A ∈,9A ∈,10A ∉;(2)集合{}|21Z B x x k k ==+∈,,则恒有()22211k k k +=+-,∴21k A +∈,∴即一切奇数都属于A ,又8A ∈,而8B ∉∴“x A ∈”的充分条件是“x B ∈”;但“x B ∈”不是“x A ∈”的必要条件;(3)集合{}22|Z A x x m n m n ==-∈,、,22()()m n m n m n -=+-成立,①当m ,n 同奇或同偶时,m n +,m n -均为偶数,()()m n m n +-为4的倍数; ②当m ,n 一奇,一偶时,m n +,m n -均为奇数,()()m n m n +-为奇数, 综上所有满足集合A 的偶数为4k ,k Z ∈.。
全称量词与特称量词课件
解析:(1)若¬p∨q 为假命题,则¬p,q 都是假命题,所以 p 为 真命题,q 为假命题,所以 p∧q 是假命题,故选 A.
(2)¬p:存在一个 x0∈R,使 x20+x0+1≠0 成立.
例题考分点一析 含有逻辑联结词命题的真假判定
已知命题 p:∃x0∈R,使 tan x0=1,命题 q:x2-3x +2<0 的解集是{x|1<x<2},给出下列结论: ①命题“p∧q”是真命题;②命题“p∧¬q”是假命题;③命 题“¬p∨q”是真命题;④命题“¬p∨¬q”是假命题.其中正 确的是( D ) A.②③ B.①②④ C.①③④ D.①②③④
解:(1)p 或 q:平行四边形的对角线相等或互相垂直.假命题. p 且 q:平行四边形的对角线相等且互相垂直.假命题. ¬p:有些平行四边形的对角线不相等.真命题. (2)p 或 q:方程 x2+x-1=0 的两实根的符号相同或绝对值相 等.假命题. p 且 q:方程 x2+x-1=0 的两实根的符号相同且绝对值相等.假 命题. ¬p:方程 x2+x-1=0 的两实根的符号不相同.真命题.
确定命题的 构成形式
⇒
判断其中简单 命题的真假
⇒
根据真值表判断 命题的真假
1.写出由下列各组命题构成的“p 或 q”、“p 且 q”、“¬p”形式的复合命题,并判断真假. (1)p:平行四边形的对角线相等;q:平行四边形的对角线互相 垂直; (2)p:方程 x2+x-1=0 的两实根的符号相同;q:方程 x2+x -1=0 的两实根的绝对值相等.
当堂检测 4.(1)(2015·东北师大附中三校联考)已知命题 p:
∃x0∈(0,π2),sin x0=12,则¬p 为(
)
A.∀x∈(0,π2),sin x=12
简单逻辑联结词
简单的逻辑联结词、全称量词与存在量词一、基础梳理1.简单的逻辑联结词(1)命题中的“且”“或”“非”叫做逻辑联结词.(2)简单复合命题的真值表:p q p∧q p∨q ¬p真真假真真假假假2.全称量词与存在量词(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.(3)全称量词用符号“∀”表示;存在量词用符号“∃”表示.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题.(2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p或q的否定为:¬p且¬q;p且q的否定为:¬p或¬q.一个关系逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.两类否定1.含有一个量词的命题的否定(1)全称命题的否定是特称命题全称命题p:∀x∈M,p(x),它的否定¬p:∃x0∈M,¬p(x0).(2)特称命题的否定是全称命题特称命题p:∃x0∈M,p(x0),它的否定¬p:∀x∈M,¬p(x).2.复合命题的否定(1) ¬ (p∧q)⇔(¬p)∨(¬q);(2) ¬ (p∨q)⇔(¬p)∧(¬q).三条规律(1)对于“p∧q”命题:一假则假;(2)对“p∨q”命题:一真则真;(3)对“¬p”命题:与“p”命题真假相反.二、双基自测一、选择题1.(2011·北京)若p是真命题,q是假命题,则( ).A.p∧q是真命题B.p∨q是假命题C.¬p是真命题D.¬q是真命题2.(2011·山东日照调研)“p或q”为真命题是“p且q”为真命题的() A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件3.设p、q是两个命题,则复合命题“p∨q为真,p∧q为假”的充要条件是 ( ).A.p、q中至少有一个为真B.p、q中至少有一个为假C.p、q中有且只有一个为真D.p为真、q为假4.(2011·潍坊模拟)下列说法错误的是() A.命题“若x2-4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2-4x+3≠0”B .“x >1”是“|x |>0”的充分不必要条件C .若p 且q 为假命题,则p 、q 均为假命题D .命题p :“存在x 0∈R 使得x 02+x 0+1<0”,则¬p :“任意x ∈R ,均有x 2+x +1≥0”5.由命题p :“函数y =1x是减函数”与q :“数列a ,a 2,a 3,…是等比数列”构成的复合命题,下列判断正确的是 ( ) A .p 或q 为真,p 且q 为假,非p 为真 B .p 或q 为假,p 且q 为假,非p 为真 C .p 或q 为真,p 且q 为假,非p 为假D .p 或q 为假,p 且q 为真,非p 为真6.若函数f (x )=x 2+ax (a ∈R ),则下列结论正确的是 ( )A .任意a ∈R ,f (x )在(0,+∞)上是增函数B .任意a ∈R ,f (x )在(0,+∞)上是减函数C .存在a ∈R ,f (x )是偶函数D .存在a ∈R ,f (x )是奇函数7.已知命题“任意a ,b ∈R ,如果ab >0,则a >0”则它的否命题是 ( ) A .任意a ,b ∈R ,如果ab <0,则a <0 B .任意a ,b ∈R ,如果ab ≤0,则a ≤0 C .存在a ,b ∈R ,如果ab <0,则a <0 D .存在a ,b ∈R ,如果ab ≤0,则a ≤08.(人教A 版教材习题改编)已知命题p :∀x ∈R ,sin x ≤1,则( ). A .¬p:∃x 0∈R ,sin x 0≥1 B .¬p:∀x ∈R ,sin x ≥1 C .¬p:∃x 0∈R ,sin x 0>1 D .¬p:∀x ∈R ,sin x >1二、填空题9.(2010·安徽)命题“对任何x ∈R ,|x -2|+|x -4|>3”的否定是___ ________________. 10.(2011·山东淄博调研)已知命题“存在x 0∈R ,使2 x 02+(a -1) x 0+12≤0”是假命题,则实数a 的取值范围是________.11.已知命题p :函数f (x )=log 0.5(3-x )的定义域为(-∞,3);命题q :若k <0,则函数h (x )=kx在(0,+∞)上是减函数.则下列结论中错误的是________.①命题“p 且q ”为真;②命题“p 或¬q ”为假;③命题“p 或q ”为假;④命题“¬p 且¬q ”为假.12.命题p :函数f (x )=sin ⎝⎛⎭⎫2x -π6+1满足f ⎝⎛⎭⎫π3+x =f ⎝⎛⎭⎫π3-x , 命题q :函数g (x )=sin(2x +φ)+1可能为奇函数(φ为常数),则复合命题①“p 或q ”,②“p 且q ”,③“ ¬p ”中,真命题是________. 三、解答题13.写出下列命题的否定,并判断真假.(1)q :任意x ∈R ,x 不是5x -12=0的根; (2)r :有些质数是奇数;(3)s:存在x0∈R,|x0|>0. (4)p:∀x∈R,x不是3x-5=0的根;(5)q:有些合数是偶数; (6)r:∃x0∈R,|x0-1|>0. 14.(2010·江苏盐城调研)命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立,q:函数f(x)=(3-2a)x是增函数,若p或q为真,p且q为假,求实数a的取值范围.。
1.3简单的逻辑联结词、全称量词和存在量词
【解析】选A.“非p或非q”是假命题,可得“非p”与“非q” 均为假命题,即p,q均为真命题,故结论①③正确.
4.已知命题p: x∈R,sin x≤1,则(
(A) p: x∈R,sin x≥1 (C) p: x∈R,sin x>1
)
(B) p: x∈R,sin x≥1 (D) p: x∈R,sin x>1
b 2
项C中的命题为假;根据不等式的性质,a>1,b>1⇒ab>1,但 反之不成立,故选项D中的命题为真.
(2)选D.由于x2+x+1= (x 1 ) 2 3 0 对任意实数x恒成立,故选
2 4
项A中的命题为真命题;令y=ex,y=-x+1,结合两个函数的图象 可知这两个函数的图象存在公共点,故“ x∈R,ex+x=1”为 真命题;f′(x)=3x2+a,只要a≥0,f′(x)≥0即在(-≦,+≦) 上恒成立,函数f(x)=x3+ax即在(-≦,+≦)上单调递增,故选 项C中的命题为真命题;由于Δ=a2-4a,当Δ<0,即0<a<4时, 函数f(x)=x2+ax+a不存在零点,故“ a∈R,f(x)=x2+ax+a存 在零点”是假命题.
x 2 (2)“ a∈R,函数 f x a 是R上的奇函数”的否定是 2x a
_________. 【思路点拨】(1)已知命题是一个含全称量词的命题,其否定 是一个含存在量词的命题. (2)已知命题是一个含存在量词的命题,其否定是含全称量词 的命题,注意“奇函数”的否定为“不是奇函数”.
p是对p的否定,故有 p: x∈R,sin x>1. 【解析】选C.
(完整版)简单的逻辑联结词、全称量词与存在量词
03 简单的逻辑联结词、全称量词与存在量词知识梳理1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p ∧q 、p ∨q 、非p 的真假判断2.(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,用“∀”表示;含有全称量词的命题叫做全称命题.(2)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,用“∃”表示;含有存在量词的命题叫做特称命题.(3)含有一个量词的命题的否定要点整合1.若p ∧q 为真,则p ,q 同为真;若p ∧q 为假,则p ,q 至少有一个为假;若p ∨q 为假,则p ,q 同为假;若p ∨q 为真,则p ,q 至少有一个为真.2.“p ∧q ”的否定是“(非p )∨(非q )”;“p ∨q ”的否定是“(非p )∧(非q )”.题型一. 含有一个逻辑联结词命题的真假性例1. 已知命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是( )A .p ∧qB .(非p )∧(非q )C .(非p )∧qD .p ∧(非q )解析: 根据指数函数的图象可知p 为真命题.由于“x >1”是“x >2”的必要不充分条件,所以q 为假命题,所以非q 为真命题.逐项检验可知只有p ∧(非q )为真命题.故选D.[答案] D判断含有一个逻辑联结词命题的真假性的步骤第一步:先判断命题p 与q 的真假性,从而得出非p 与非q 的真假性.第二步:根据“p ∧q ”与“p ∨q ”的真值表进行真假性的判断.变式1.设命题p :3≥2,q :函数f (x )=x +1x (x ∈R )的最小值为2,则下列命题为假命题的是( )A .p ∨qB .p ∨(非q )C .(非p )∨qD .p ∧(非q )解析:选C.命题p :3≥2是真命题,命题q 是假命题,∴(非p )∨q 为假命题,故选C.变式2.已知命题p :∀x ∈R ,2x <3x ,命题q :∃x ∈R ,x 2=2-x ,若命题(非p )∧q 为真命题,则x 的值为( )A .1B .-1C .2D .-2解析:选D.∵非p :∃x ∈R ,2x ≥3x ,要使(非p )∧q 为真,∴非p 与q 同时为真.由2x ≥3x 得⎝⎛⎭⎫23x ≥1, ∴x ≤0,由x 2=2-x 得x 2+x -2=0,∴x =1或x =-2,又x ≤0,∴x =-2.变式3.设p :y =log a x (a >0,且a ≠1)在(0,+∞)上是减函数;q :曲线y =x 2+(2a -3)x +1与x 轴有两个不同的交点,若p ∨(非q )为假,则a 的范围为__________.解析:∵p ∨(非q )为假,∴p 假q 真.p 为假时,a >1,q 为真时,(2a -3)2-4>0,即a <12或a >52,∴a 的范围为(1,+∞)∩⎣⎡⎦⎤⎝⎛⎭⎫-∞,12∪⎝⎛⎭⎫52,+∞ =⎝⎛⎭⎫52,+∞. 答案:⎝⎛⎭⎫52,+∞题型二. 含有一个量词的命题的否定例2. 命题“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是( )A .∀x ∈(0,+∞),ln x ≠x -1B .∀x ∉(0,+∞),ln x =x -1C .∃x 0∈(0,+∞),ln x 0≠x 0-1D .∃x 0∉(0,+∞),ln x 0=x 0-1解析: 由特称命题的否定为全称命题可知,所求命题的否定为全称命题,则所求命题的否定为∀x ∈(0,+∞),ln x ≠x -1,故选A.[答案] A(1)特称命题与全称命题否定的判断方法:“∃”“∀”相调换,否定结论得命题.对没有量词的要结合命题的含义加上量词,再进行否定;(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可.变式1.命题p :∃x 0∈R ,x 20+2x 0+2≤0的否定为( )A .非p :∃x 0∈R ,x 20+2x 0+2>0B .非p :∀x ∈R ,x 2+2x +2≤0C .非p :∀x ∈R ,x 2+2x +2>0D .非p :∃x 0∈R ,x 20+2x 0+2<0解析:选C.根据特称命题的否定形式知非p :∀x ∈R ,x 2+2x +2>0,故选C.变式2.设命题p :任意两个等腰三角形都相似,q :∃x 0∈R ,x 0+|x 0|+2=0,则下列结论正确的是 ( )A .p ∨q 为真命题B .(非p )∧q 为真命题C .p ∨(非q )为真命题D .(非p )∧(非q )为假命题解析:选C.∵p 假,非p 真;q 假,非q 真,∴p ∨q 为假,(非p )∧q 为假,p ∨(非q )为真,(非p )∧(非q )为真,故选C.题型三. 全称命题与特称命题真假性的应用例3. 已知p :∃x 0∈R ,mx 20+1≤0,q :∀x ∈R ,x 2+mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是( )A .[2,+∞)B .(-∞,-2]C .(-∞,-2]∪[2,+∞)D .[-2,2]解析: 依题意知,p ,q 均为假命题.当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此由p ,q 均为假命题得⎩⎨⎧m ≥0,m ≤-2或m ≥2,即m ≥2. [答案] A根据全称与特称命题的真假性求参数范围的步骤第一步:对两个简单命题进行真假性判断.第二步:根据p ∧q 为真,则p 真q 真,p ∧q 为假,则p与q 至少有一个为假,p ∨q 为真,则p 与q 至少有一个为真,p ∨q 为假,则p 假q 假.第三步:根据p 、q 的真假性列出关于参数的关系式,从而求出参数的范围.变式1.若命题“存在实数x 0,使x 20+ax 0+1<0”的否定是真命题,则实数a 的取值范围为( ) A .(-∞,-2] B .[-2,2]C .(-2,2)D .[2,+∞)解析:选B.因为该命题的否定为:“∀x ∈R ,x 2+ax +1≥0”是真命题,则Δ=a 2-4×1×1≤0, 解得-2≤a ≤2.故实数a 的取值范围是[-2,2].变式2.(名师原创)若“∀x ∈⎣⎢⎡⎦⎥⎤π6,2π3,sin x ≤m ”是真命题,则实数m 的范围为( ) A .[1,+∞) B .(-∞,1]C.⎝⎛⎦⎤-∞,12 D .⎣⎢⎡⎭⎪⎫32,+∞ 解析:选A.∵∀x ∈⎣⎢⎡⎦⎥⎤π6,2π3,12≤sin x ≤1. ∴“∀x ∈⎣⎢⎡⎦⎥⎤π6,2π3,sin x ≤m ”为真命题时,m ≥1,故选A.【真题演练】1.【浙江理数】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( )A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x <【答案】D【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D .2.【高考新课标1,理3】设命题p :2,2n n N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤(C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈【答案】C【解析】p ⌝:2,2nn N n ∀∈≤,故选C.3.【高考浙江,理4】命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( ) A. **,()n N f n N ∀∈∈且()f n n > B. **,()n N f n N ∀∈∈或()f n n >C. **00,()n N f n N ∃∈∈且00()f n n >D. **00,()n N f n N ∃∈∈或00()f n n >【答案】D.【解析】根据全称命题的否定是特称命题,可知选D.4.【陕西卷】原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假【答案】B5.【重庆卷】已知命题p :对任意x ∈R ,总有2x >0,q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .非p ∧非qC .非p ∧qD .p ∧非q【答案】D【解析】根据指数函数的图像可知p 为真命题.由于“x >1”是“x >2”的必要不充分条件,所以q 为假命题,所以非q 为真命题,所以p ∧非q 为真命题.6.【湖北卷】在一次跳伞中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(⌝p)∨(⌝q)B .p ∨(⌝q)C .(⌝p)∧(⌝q)D .p ∨q【答案】A“至少一位学员没降落在指定区域”即“甲没降落在指定区域或乙没降落在指定区域”,可知选A.。
简单的逻辑联结词、全称量词与存在量词(3)
1.3简单的逻辑联结词、全称量词与存在量词[知识梳理]1.简单的逻辑联结词(1)命题中的或、且、非叫做逻辑联结词.(2)概念用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;对命题p的结论进行否定,得到复合命题“非p”,记作綈p.(3)命题p∧q,p∨q,綈p的真假判断(4)命题的否定与否命题的区别①定义:命题的否定是直接对命题的结论进行否定,而否命题则是对原命题的条件和结论分别否定,即命题“若p,则q”的否定为“若p,则綈q”,而否命题为“若綈p,则綈q”.②与原命题的真假关系:命题的否定的真假与原命题的真假总是相对的,即一真一假,而否命题的真假与原命题的真假无必然的联系.2.全称量词和存在量词3.全称命题和特称命题4.复合命题的否定(1)“綈p”的否定是“p”;(2)“p∨q”的否定是“(綈p)∧(綈q)”;(3)“p∧q”的否定是“(綈p)∨(綈q)”.[诊断自测]1.概念思辨(1)若p∧q为真,则p∨q必为真;反之,若p∨q为真,则p∧q必为真.()(2)全称命题一定含有全称量词,特称命题一定含有存在量词.()(3)写特称命题的否定时,存在量词变为全称量词.()(4)∃x0∈M,p(x0)与∀x∈M,綈p(x)的真假性相反.()答案(1)×(2)×(3)√(4)√2.教材衍化(1)(选修A2-1P27T3)命题“∀x>0,都有x2-x+3≤0”的否定是()A.∃x>0,使得x2-x+3≤0B.∃x>0,使得x2-x+3>0C.∀x>0,都有x2-x+3>0D.∀x≤0,都有x2-x+3>0答案 B解析命题“∀x>0,都有x2-x+3≤0”的否定是:∃x>0,使得x2-x+3>0.故选B.(2)(选修A2-1P18T1)已知命题p:∃x∈R,x-2>lg x,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(綈q)是真命题D.命题p∨(綈q)是假命题答案 C解析由于x=10时,x-2=8,lg x=lg 10=1,故命题p为真命题,令x=0,则x2=0,故命题q为假命题,依据复合命题真假性的判断法则,得到命题p∨q是真命题,命题p∧q是假命题,綈q是真命题,进而得到命题p∧(綈q)是真命题,命题p∨(綈q)是真命题.故选C.3.小题热身(1)(2015·浙江高考)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0 答案 D解析 “f (n )∈N *且f (n )≤n ”的否定为“f (n )∉N *或f (n )>n ”,全称命题的否定为特称命题.故选D.(2)(2015·山东高考)若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.答案 1解析 若0≤x ≤π4,则0≤tan x ≤1,∵“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,∴m ≥1.∴实数m 的最小值为1.题型1 含有逻辑联结词的命题的真假典例1 (2018·江西七校联考)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x <0,m -x 2,x ≥0,给出下列两个命题:命题p :∃m ∈(-∞,0),方程f (x )=0有解;命题q :若m =19,则f [f (-1)]=0,那么,下列命题为真命题的是( )A .p ∧qB .(綈p )∧qC .p ∧(綈q )D .(綈p )∧(綈q )利用复合命题的真假判断方法,逐项验证法.答案 B解析 因为3x >0,当m <0时,m -x 2<0, 所以命题p 为假命题;当m =19时,因为f (-1)=3-1=13,所以f [f (-1)]=f ⎝ ⎛⎭⎪⎫13=19-⎝ ⎛⎭⎪⎫132=0,所以命题q 为真命题,逐项检验可知,只有(綈p )∧q 为真命题.故选B.典例2(2017·武汉模拟)若存在正常数a ,b ,使得∀x ∈R 有f (x +a )≤f (x )+b 恒成立,则称f (x )为“限增函数”.给出下列三个函数:①f (x )=x 2+x +1;②f (x )=|x |;③f (x )=sin x 2,其中是“限增函数”的是( )A .①②③B .②③C .①③D .③注意放缩法的应用.答案 B解析 对于①,f (x +a )≤f (x )+b 可化为 (x +a )2+(x +a )+1≤x 2+x +1+b ,即2ax ≤-a 2-a +b ,即x ≤-a 2-a +b 2a对一切x ∈R 均成立,因函数的定义域为R ,故不存在满足条件的正常数a ,b ,故f (x )=x 2+x +1不是“限增函数”;对于②,若f (x )=|x |是“限增函数”,则 f (x +a )≤f (x )+b 可化为:|x +a |≤|x |+b , ∴|x +a |≤|x |+b 2+2b |x |恒成立,又 |x +a |≤|x |+a ,∴|x |+a ≤|x |+b 2+2b |x |, ∴|x |≥a -b 22b ,显然当a <b 2时式子恒成立, ∴f (x )=|x |是“限增函数”; 对于③,∵-1≤f (x )=sin x 2≤1, ∴f (x +a )-f (x )≤2,∴当b ≥2时,a 为任意正数,使f (x +a )≤f (x )+b 恒成立,故f (x )=sin x 2是“限增函数”.故选B.方法技巧1.判断含逻辑联结词命题真假的方法与步骤(1)判断含有逻辑联结词的命题的真假的关键是对逻辑联结词“或”“且”“非”的含义的理解,应根据组成各个命题的语句中所出现的逻辑联结词进行命题结构与真假的判断.见冲关针对训练1.(2)判断命题真假的步骤确定含有逻辑联结词的命题的构成形式⇒判断其中简单命题的真假⇒根据真值表判断含有逻辑联结词的命题的真假2.含逻辑联结词命题真假的等价关系(1)p∨q真⇔p,q至少一个真⇔(綈p)∧(綈q)假.(2)p∨q假⇔p,q均假⇔(綈p)∧(綈q)真.(3)p∧q真⇔p,q均真⇔(綈p)∨(綈q)假.(4)p∧q假⇔p,q至少一个假⇔(綈p)∨(綈q)真.(5)綈p真⇔p假;綈p假⇔p真.见典例1.冲关针对训练1.(2018·天星二联)已知命题p:若a=0.30.3,b=1.20.3,c=log1.20.3,则a<c<b;命题q:“x2-x-6>0”是“x>4”的必要不充分条件,则下列命题正确的是() A.p∧q B.p∧(綈q)C.(綈p)∧q D.(綈p)∧(綈q)答案 C解析因为0<a=0.30.3<0.30=1,b=1.20.3>1.20=1,c=log1.20.3<log1.21=0,所以c<a<b,故命题p为假命题,綈p为真命题;由x2-x-6>0可得x<-2或x>3,故“x2-x-6>0”是“x>4”的必要不充分条件,q为真命题,故(綈p)∧q为真命题.故选C.2.(2018·山西八校联考)已知命题p:存在n∈R,使得f(x)=nxn2+2n是幂函数,且在(0,+∞)上单调递增;命题q:“∃x∈R,x2+2>3x”的否定是“∀x∈R,x2+2<3x”.则下列命题为真命题的是()A .p ∧qB .(綈p )∧qC .p ∧(綈q )D .(綈p )∧(綈q )答案 C解析 当n =1时,f (x )=x 3为幂函数,且在(0,+∞)上单调递增,故p 是真命题,则綈p 是假命题;“∃x ∈R ,x 2+2>3x ”的否定是“∀x ∈R ,x 2+2≤3x ”,故q 是假命题,綈q 是真命题.所以p ∧q ,(綈p )∧q ,(綈p )∧(綈q )均为假命题,p ∧(綈q )为真命题.故选C.题型2 全称命题与特称命题角度1 全称命题、特称命题的真假判断典例(2017·贵阳模拟)下列命题是假命题的是( ) A .∃α,β∈R ,使sin(α+β)=sin α+sin β B .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数C .∃x 0∈R ,使x 30+ax 20+bx 0+c =0(a ,b ,c ∈R 且为常数)D .∀a >0,函数f (x )=ln 2x +ln x -a 有零点本题用赋值法、分离常数法.答案 B解析 取α=0时,sin(α+β)=sin α+sin β,A 正确;取φ=π2时,函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π2=cos2x 是偶函数,B 错误;对于三次函数f (x )=x 3+ax 2+bx +c ,当x →-∞时,y →-∞,当x →+∞时,y →+∞,又f (x )在R 上为连续函数,故∃x 0∈R ,使x 30+ax 20+bx 0+c =0,C 正确;当f (x )=0时,ln 2x +ln x -a =0,则有a =ln 2x +lnx =⎝⎛⎭⎪⎫ln x +122-14≥-14,所以∀a >0,函数f (x )=ln 2x +ln x -a 有零点,D 正确.故选B.角度2 全称命题、特称命题的否定典例 (2018·厦门模拟)已知命题p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,sin x <x ,则( ) A .p 是真命题,綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,sin x ≥xB .p 是真命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,sin x 0≥x 0C .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,sin x ≥xD .p 是假命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,sin x 0≥x 0 用构造函数法,求导法.答案 B解析 令f (x )=sin x -x ,则f ′(x )=cos x -1<0, 函数f (x )在⎝⎛⎭⎪⎫0,π2递减,f (x )max <f (0)=0,故sin x <x ,命题p 是真命题,由命题的否定的定义,要否定命题的结论,同时改写量词知綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,sin x 0≥x 0.故选B.方法技巧全(特)称命题的常见题型及解题策略1.全(特)称命题的真假判断.①要判断一个全称命题是真命题,必须对限定的集合M 中的每个元素x 验证p (x )成立,但要判断一个全称命题为假命题,只要能举出集合M 中的一个x =x 0,使得p (x 0)不成立即可.②要判断一个特称命题为真命题,只要在限定的集合M 中,找到一个x =x 0,使p (x 0)成立即可,否则这一特称命题就是假命题.见角度1典例.2.全(特)称命题的否定.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.见角度2典例.冲关针对训练1.(2018·晋中模拟)已知f (x )=e x -x ,g (x )=ln x +x +1,命题p :∀x ∈R ,f (x )>0,命题q :∃x 0∈(0,+∞),使得g (x 0)=0,则下列说法正确的是( )A .p 是真命题,綈p :∃x 0∈R ,f (x 0)<0B .p 是假命题,綈p :∃x 0∈R ,f (x 0)≤0C .q 是真命题,綈q :∀x ∈(0,+∞),g (x )≠0D .q 是假命题,綈q :∀x ∈(0,+∞),g (x )≠0 答案 C解析 f ′(x )=e x -1,由f ′(x )>0得x >0,由f ′(x )<0得x <0,即当x =0时,函数f (x )取得极小值,同时也是最小值f (0)=e 0-0=1-0=1>0,所以∀x ∈R ,f (x )>0成立,即p 是真命题.g (x )=ln x +x +1在(0,+∞)上为增函数,当x →0时,g (x )<0,g (1)=0+1+1=2>0,则∃x 0∈(0,+∞),使得g (x 0)=0成立,即命题q 是真命题.则綈p :∃x 0∈R ,f (x 0)≤0,綈q :∀x ∈(0,+∞),g (x )≠0, 综上只有C 成立.故选C.2.(2017·安徽皖江名校联考)命题p :存在x ∈⎣⎢⎡⎦⎥⎤0,π2,使sin x +cos x >2;命题q :“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是“∀x ∈(0,+∞),ln x ≠x -1”,则四个命题:(綈p )∨(綈q ),p ∧q ,(綈p )∧q ,p ∨(綈q )中,正确命题的个数为( )A .1B .2C .3D .4 答案 B解析 因为sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4≤2,所以命题p 是假命题;又特称命题的否定是全称命题,因此命题q 为真命题.则(綈p )∨(綈q )为真命题,p ∧q 为假命题,(綈p )∧q 为真命题,p ∨(綈q )为假命题.∴四个命题中正确的有2个命题.故选B.题型3 由命题的真假求参数的取值范围典例1已知命题P :函数y =log a (1-2x )在定义域上单调递增;命题Q :不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 恒成立.若P ∨Q 是假命题,则实数a的取值范围是________.注意分情况讨论.答案 a ≤-2或a >2解析 命题P :函数y =log a (1-2x )在定义域上单调递增,∴0<a <1. 又∵命题Q :不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 恒成立,∴a =2或⎩⎪⎨⎪⎧a -2<0,Δ=4(a -2)2+16(a -2)<0, 即-2<a ≤2.若P ∨Q 为假命题,则P 假Q 假,命题P 为假时,有a ≤0或a ≥1;命题Q 为假时,有a ≤-2或a >2,所以P ∨Q 为假时a ≤-2或a >2.[结论探究] 在本例条件下,若P ∨Q 为真命题,P ∧Q 为假命题,则实数a 的取值范围为________.答案 -2<a ≤0或1≤a ≤2解析 若P ∨Q 为真,P ∧Q 为假,命题P 和Q 一真一假,若P 真Q 假,无解;若P 假Q 真,有-2<a ≤0或1≤a ≤2.典例2 (2018·河北调研)对任意的x >0,总有f (x )=a -x -|lg x |≤0,则a 的取值范围是( )A .(-∞,lg e -lg (lg e)]B .(-∞,1]C .[1,lg e -lg (lg e)]D .[lg e -lg (lg e),+∞)用数形结合法.答案 A解析 对任意的x >0,总有f (x )=a -x -|lg x |≤0,即a -x ≤|lg x |恒成立,设y =-x +a ,g (x )=|lg x |,如图,当直线y =-x +a 与g (x )相切时,a 取得最大值,设切点为A (x ,y ),则-1=(-lg x )′,得到x =lg e ,所以y =-lg (lg e),所以切线方程为:y +lg (lg e)=-(x -lg e),令x =0得到y =lg e -lg (lg e), 所以a 的取值范围为(-∞,lg e -lg (lg e)].故选A.方法技巧利用命题真假求参数取值范围的求解策略1.根据含逻辑联结词的命题真假求参数的方法步骤:(1)根据题目条件,推出每一个命题的真假(有时不一定只有一种情况);(2)求出每个命题是真命题时参数的取值范围;(3)根据每个命题的真假情况,求出参数的取值范围.见典例1.2.全称命题可转化为恒成立问题.同时注意数形结合思想的应用.见典例2.冲关针对训练(2018·寿县月考)已知命题P :∀x ∈(2,3),x 2+5>ax 是假命题,则实数a 的取值范围是( )A .[25,+∞)B.⎣⎢⎡⎭⎪⎫92,+∞C.⎣⎢⎡⎭⎪⎫143,+∞ D .(-∞,25]答案 A解析 若∀x ∈(2,3),x 2+5>ax 恒成立,则a <⎝ ⎛⎭⎪⎫x +5x min ,x ∈(2,3). ∵f (x )=x +5x 在(2,5)上是减函数,在(5,3)上为增函数,∴函数f (x )的最小值是f (5)=25,则a <2 5.∵命题P :∀x ∈(2,3),x 2+5>ax 是假命题,∴a ≥25,实数a 的取值范围是[25,+∞).故选A.1.(2017·山东高考)已知命题p :∀x >0,ln (x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( )A .p ∧qB .p ∧(綈q )C.(綈p)∧q D.(綈p)∧(綈q)答案 B解析∵x>0,∴x+1>1,∴ln (x+1)>ln 1=0,∴命题p为真命题,∴綈p为假命题.∵a>b,取a=1,b=-2,而12=1,(-2)2=4,此时a2<b2,∴命题q为假命题,∴綈q为真命题.∴p∧q为假命题,p∧(綈q)为真命题,(綈p)∧q为假命题,(綈p)∧(綈q)为假命题.故选B.2.(2018·郑州质检)设命题p:∀x>0,log2x<2x+3,则綈p为()A.∀x>0,log2x≥2x+3 B.∃x>0,log2x≥2x+3C.∃x>0,log2x<2x+3 D.∀x<0,log2x≥2x+3答案 B解析由全称命题的否定为特称命题,知綈p为∃x>0,log2x≥2x+3.故选B.3.(2017·石家庄质检)下列选项中,说法正确的是()A.若a>b>0,则ln a<ln bB.向量a=(1,m),b=(m,2m-1)(m∈R)垂直的充要条件是m=1C.命题“∀n∈N*,3n>(n+2)·2n-1”的否定是“∀n∈N*,3n≥(n+2)·2n-1”D.已知函数f(x)在区间[a,b]上的图象是连续不断的,则命题“若f(a)·f(b)<0,则f(x)在区间(a,b)内至少有一个零点”的逆命题为假命题答案 D解析A中,因为函数y=ln x(x>0)是增函数,所以若a>b>0,则ln a>ln b,错误;B中,若a⊥b,则m+m(2m-1)=0,解得m=0,错误;C中,命题“∀n∈N*,3n>(n+2)·2n-1”的否定是“∃n∈N*,3n≤(n+2)·2n-1”,错误;D中,原命题的逆命题是“若f(x)在区间(a,b)内至少有一个零点,则f(a)·f(b)<0”,该逆命题是假命题,如函数f(x)=x2-2x-3在区间[-2,4]上的图象是连续不断的,且在区间(-2,4)内有两个零点,但f(-2)·f(4)>0,正确.故选D.4.(2017·皖南名校联考)设命题p:函数f(x)=x3-ax-1在区间[-1,1]上单调递减;命题q:函数y=ln (x2+ax+1)的值域是R,如果命题p或q是真命题,p 且q为假命题,则实数a的取值范围是()A.(-∞,3] B.(-∞,-2]∪[2,3)C .(2,3]D .[3,+∞)答案 B 解析 若p 为真命题,则f ′(x )=3x 2-a ≤0在区间[-1,1]上恒成立,即a ≥3x 2在区间[-1,1]上恒成立,所以a ≥3;若q 为真命题,则方程x 2+ax +1=0的判别式Δ=a 2-4≥0,即a ≥2或a ≤-2.由题意知,p 与q 一真一假.当p 真q 假时,⎩⎪⎨⎪⎧ a ≥3,-2<a <2,则a ∈∅;当p 假q 真时,⎩⎪⎨⎪⎧a <3,a ≥2或a ≤-2,则a ≤-2或2≤a <3. 综上所述,a ∈(-∞,-2]∪[2,3).故选B.[基础送分提速狂刷练]一、选择题1.(2018·武邑模拟)已知命题p:∀x>0,总有(x+1)e x>1,则綈p为() A.∃x0≤0,使得(x0+1)e x0≤1 B.∃x0>0,使得(x0+1)e x0≤1C.∀x>0,总有(x+1)e x≤1 D.∀x≤0,总有(x+1)e x≤1答案 B解析“∀x>0,总有(x+1)e x>1”的否定是“∃x0>0,使得(x0+1)e x0≤1”.故选B.2.下列四个命题:其中的真命题是()A.p1,p3B.p1,p4C.p2,p3D.p2,p4答案 D解析3.已知a >0,函数f (x )=ax 2+bx +c .若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是( )A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0)答案 C解析 由题知:x 0=-b 2a 为函数f (x )图象的对称轴方程,所以f (x 0)为函数的最小值,即对所有的实数x ,都有f (x )≥f (x 0),因此∀x ∈R ,f (x )≤f (x 0)是错误的.故选C.4.(2018·广东五校一诊)下列命题错误的是( )A .若p ∨q 为假命题,则p ∧q 为假命题B .若a ,b ∈[0,1],则不等式a 2+b 2<14成立的概率是π16C .命题“∃x ∈R ,使得x 2+x +1<0”的否定是“∀x ∈R ,x 2+x +1≥0”D .已知函数f (x )可导,则“f ′(x 0)=0”是“x 0是函数f (x )的极值点”的充要条件答案 D解析 选项A ,若p ∨q 为假命题,则p 为假命题,q 为假命题,故p ∧q 为假命题,正确;选项B ,使不等式a 2+b 2<14成立的a ,b ∈⎝ ⎛⎭⎪⎫0,12,故不等式a 2+b 2<14成立的概率是14×π×⎝ ⎛⎭⎪⎫1221×1=π16,正确;选项C ,特称命题的否定是全称命题,正确;选项D ,令f (x )=x 3,则f ′(0)=0,但0不是函数f (x )=x 3的极值点,错误.故选D.5.(2017·河西区三模)已知命题p :∀x ∈[1,2],使得e x -a ≥0.若綈p 是假命题,则实数a 的取值范围为( )A .(-∞,e 2]B .(-∞,e]C .[e ,+∞)D .[e 2,+∞)答案 B解析 命题p :∀x ∈[1,2],使得e x -a ≥0.∴a ≤(e x )min =e ,若綈p 是假命题,∴p 是真命题,∴a ≤e.则实数a 的取值范围为(-∞,e].故选B.6.已知命题p :∃x ∈R ,mx 2+1≤0,命题q :∀x ∈R ,x 2+mx +1>0,若p ∧q 为真命题,则实数m 的取值范围是( )A .(-∞,-2)B .[-2,0)C .(-2,0)D .(0,2)答案 C解析 由题可知若p ∧q 为真命题,则命题p 和命题q 均为真命题,对于命题p 为真,则m <0,对于命题q 为真,则m 2-4<0,即-2<m <2,所以命题p 和命题q 均为真命题时,实数m 的取值范围是(-2,0).故选C.7.(2018·黄冈模拟)下列四个结论:①若x >0,则x >sin x 恒成立;②命题“若x -sin x =0,则x =0”的逆否命题为“若x ≠0,则x -sin x ≠0”; ③“命题p ∧q 为真”是“命题p ∨q 为真”的充分不必要条件;④命题“∀x ∈R ,x -ln x >0”的否定是“∃x 0∈R ,x 0-ln x 0<0”.其中正确结论的个数是( )A .1B .2C .3D .4答案 C解析 对于①,令y =x -sin x ,则y ′=1-cos x ≥0,则函数y =x -sin x 在R 上递增,则当x >0时,x -sin x >0-0=0,即当x >0时,x >sin x 恒成立,故①正确;对于②,命题“若x -sin x =0,则x =0”的逆否命题为“若x ≠0,则x -sin x ≠0”,故②正确;对于③,命题p ∨q 为真即p ,q 中至少有一个为真,p ∧q 为真即p ,q 都为真,可知“p ∧q 为真”是“p ∨q 为真”的充分不必要条件,故③正确;对于④,命题“∀x ∈R ,x -ln x >0”的否定是“∃x 0∈R ,x 0-ln x 0≤0”,故④错误.综上,正确结论的个数为3.故选C.8.(2017·广东七校联考)已知命题p :∃a ∈⎝ ⎛⎭⎪⎫-∞,-14,函数f (x )=⎪⎪⎪⎪⎪⎪x +a x +1在⎣⎢⎡⎦⎥⎤12,3上单调递增;命题q :函数g (x )=x +log 2x 在区间⎝ ⎛⎭⎪⎫12,+∞上无零点.则下列命题中是真命题的是( )A .綈pB .p ∧qC .(綈p )∨qD .p ∧(綈q )答案 D解析 设h (x )=x +a x +1.易知当a =-12时,函数h (x )为增函数,且h ⎝ ⎛⎭⎪⎫12=16>0,则此时函数f (x )在⎣⎢⎡⎦⎥⎤12,3上必单调递增,即p 是真命题;∵g ⎝ ⎛⎭⎪⎫12=-12<0,g (1)=1>0,∴g (x )在⎝ ⎛⎭⎪⎫12,+∞上有零点,即q 是假命题,根据真值表可知p ∧(綈q )是真命题.故选D.9.(2018·广州测试)已知命题p :∃x >0,e x -ax <1成立,q :函数f (x )=-(a -1)x 在R 上是减函数,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 作出y =e x 与y =ax +1的图象,如图.当a =1时,e x ≥x +1恒成立,故当a ≤1时,e x -ax <1不恒成立;当a >1时,可知存在x ∈(0,x 0),使得e x -ax <1成立,故p 成立,即p :a >1,由函数f (x )=-(a -1)x 是减函数,可得a -1>1,得a >2,即q :a >2,故p 推不出q ,q 可以推出p ,p 是q 的必要不充分条件.故选B.10.(2017·泰安模拟)已知命题p :存在x 0∈R ,mx 20+1<1,q :对任意x ∈R ,x 2+mx +1≥0,若p ∨(綈q )为假命题,则实数m 的取值范围是( )A .(-∞,0)∪(2,+∞)B .(0,2]C .[0,2]D .R答案 C解析 对于命题p ,mx 2+1<1,得mx 2<0,若p 为真命题,则m <0,若p 为假命题,则m ≥0;对于命题q ,对任意x ∈R ,x 2+mx +1≥0,若命题q 为真命题,则m 2-4≤0,即-2≤m ≤2,若命题q 为假命题,则m <-2或m >2.因为p ∨(綈q )为假命题,则需要满足命题p 为假命题且命题q 为真命题,即⎩⎪⎨⎪⎧m ≥0,-2≤m ≤2,解得0≤m ≤2,故选C.二、填空题11.若∀a ∈(0,+∞),∃θ∈R ,使a sin θ≥a 成立,则cos ⎝ ⎛⎭⎪⎫θ-π6的值为________. 答案 12解析 因为∀a ∈(0,+∞),∃θ∈R ,使a sin θ≥a 成立,所以sin θ≥1.又sin θ∈[-1,1],所以sin θ=1,故θ=π2+2k π(k ∈Z ).所以cos ⎝ ⎛⎭⎪⎫θ-π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π2+2k π-π6=cos ⎝ ⎛⎭⎪⎫π3+2k π=cos π3=12. 12.已知命题p :方程x 2-mx +1=0有实数解,命题q :x 2-2x +m >0对任意x 恒成立.若命题q ∨(p ∧q )真、綈p 真,则实数m 的取值范围是________.答案 (1,2)解析 由于綈p 真,所以p 假,则p ∧q 假,又q ∨(p ∧q )真,故q 真,即命题p 假、q 真.当命题p 假时,即方程x 2-mx +1=0无实数解,此时m 2-4<0,解得-2<m <2;当命题q 真时,4-4m <0,解得m >1.所以所求的m 的取值范围是1<m <2.13.若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使g (x 1)=f (x 0),则实数a 的取值范围是________.答案 ⎝ ⎛⎦⎥⎤0,12 解析 由于函数g (x )在定义域[-1,2]内是任意取值的,且必存在x 0∈[-1,2],使得g (x 1)=f (x 0),因此问题等价于函数g (x )的值域是函数f (x )值域的子集.函数f (x )的值域是[-1,3],函数g (x )的值域是[2-a,2+2a ],则有2-a ≥-1且2+2a ≤3,即a ≤12.又a >0,故a 的取值范围是⎝ ⎛⎦⎥⎤0,12. 14.(2017·衡水调研)直线x =1与抛物线C :y 2=4x 交于M ,N 两点,点P 是抛物线C 准线上的一点,记OP →=aOM →+bON →(a ,b ∈R ),其中O 为抛物线C 的顶点.(1)当OP →与ON →平行时,b =________;(2)给出下列命题:①∀a ,b ∈R ,△PMN 不是等边三角形;②∃a <0且b <0,使得OP →与ON →垂直;③无论点P 在准线上如何运动,a +b =-1恒成立.其中,所有正确命题的序号是________.答案 (1)-1 (2)①②③解析 (1)∵OM →=(1,2),ON →=(1,-2),∴OP →=aOM →+bON →=(a +b,2a -2b ).∵OP →∥ON →,∴2a -2b +2(a +b )=0,∴a =0.∵抛物线的准线为x =-1,点P 在准线上,∴P 点的横坐标为-1,∴a +b =-1,∴b =-1.(2)对于①,假设是等边三角形,则P (-1,0),|PM |=22,|MN |=4,|MN |≠|PM |,这与假设矛盾,∴假设不成立,原结论正确;对于②,OP →与ON →垂直,OP →·ON →=0,得到a =53b ,∴②正确;③显然成立.三、解答题15.(2018·吉林大学附中模拟)设a 为实常数,y =f (x )是定义在R 上的奇函数,当x <0时,f (x )=9x +a 2x +7.若“∃x ∈[0,+∞),f (x )<a +1”是假命题,求实数a 的取值范围.解 y =f (x )是定义在R 上的奇函数,故可求解析式为f (x )=⎩⎪⎨⎪⎧ 9x +a 2x -7,x >0,0,x =0,9x +a 2x +7,x <0.又“∃x ≥0,f (x )<a +1”是假命题,则∀x ≥0,f (x )≥a +1是真命题,①当x=0时,0≥a +1,解得a ≤-1;②当x >0时,9x +a 2x -7≥a +1,结合基本不等式有6|a |-7≥a +1,得a ≥85或a ≤-87,①②取交集得a 的取值范围是a ≤-87.16.(2018·福建晨曦中学联考)已知命题p :函数y =x 2-2x +a 在区间(1,2)上有1个零点,命题q :函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点.如果p ∧q 是假命题,p ∨q 是真命题,求a 的取值范围.解 若命题p 为真,则函数y =x 2-2x +a 在区间(1,2)上有1个零点,因为二次函数图象开口向上,对称轴为x =1,所以⎩⎪⎨⎪⎧ 12-2×1+a <0,22-2×2+a >0,所以0<a <1.若命题q 为真,则函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点,由Δ=(2a -3)2-4>0,得4a 2-12a +5>0,解得a <12或a >52.因为p ∧q 是假命题,p ∨q 是真命题,所以p ,q 一真一假.①若p 真q 假,则⎩⎨⎧ 0<a <1,12≤a ≤52,所以12≤a <1;②若p 假q 真,则⎩⎨⎧ a ≤0或a ≥1,a <12或a >52,所以a ≤0或a >52.故实数a 的取值范围是a ≤0或12≤a <1或a >52.。
高考数学一轮总复习第一章集合与常用逻辑用语第3讲简单的逻辑联结词全称量词与存在量词学案文
第3讲简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词(1)常用的简单的逻辑联结词有“或”“且”“非”.(2)命题p∧q、p∨q、﹁p的真假判断p q p∧q p∨q ﹁p真真真真假真假假真假假真假真真假假假假真2.(1)全称量词和存在量词量词名称常见量词符号表示全称量词所有、一切、任意、全部、每一个等∀存在量词存在一个、至少有一个、有些、某些等∃命题名称命题结构命题简记全称命题对M中任意一个x,有p(x)成立∀x∈M,p(x)特称命题存在M中的元素x0,使p(x0)成立∃x0∈M,p(x0)命题命题的否定∀x∈M,p(x)∃x0∈M,﹁p(x0)∃x0∈M,p(x0)∀x∈M,﹁p(x)常用结论(1)含有逻辑联结词的命题真假判断口诀:p∨q→见真即真,p∧q→见假即假,p与﹁p→真假相反.(2)含有一个量词的命题的否定规律是“改量词,否结论”.(3)“p ∨q ”的否定是“(﹁p )∧(﹁q )”,“p ∧q ”的否定是“(﹁p )∨(﹁q )”. (4)逻辑联结词“或”“且”“非”对应集合运算中的“并”“交”“补”,可借助集合运算处理含逻辑联结词的命题.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)命题p ∧q 为假命题,则命题p 、q 都是假命题.( ) (2)命题p 和﹁p 不可能都是真命题.( )(3)若命题p 、q 至少有一个是真命题,则p ∨q 是真命题. ( ) (4)写特称命题的否定时,存在量词变为全称量词.( ) (5)∃x 0∈M ,p (x 0)与∀x ∈M ,﹁p (x )的真假性相反. ( ) 答案:(1)× (2)√ (3)√ (4)√ (5)√ 二、易错纠偏常见误区| (1)全称命题或特称命题的否定出错; (2)不会利用真值表判断命题的真假; (3)判断命题真假时忽视对参数的讨论. 1.命题“正方形都是矩形”的否定是________. 答案:存在一个正方形,这个正方形不是矩形2.已知命题p :若x >y ,则-x <-y ;命题q :若1x >1y,则x <y .在命题①p ∧q ;②p ∨q ;③p ∧(﹁q );④(﹁p )∨q 中,真命题是________.(填序号)解析:由不等式的性质可知,命题p 是真命题,命题q 为假命题,故①p ∧q 为假命题;②p ∨q 为真命题;③﹁q 为真命题,则p ∧(﹁q )为真命题;④﹁p 为假命题,则(﹁p )∨q 为假命题.答案:②③3.若p :∀x ∈R ,ax 2+4x +1>0是假命题,则实数a 的取值范围为________. 答案:(-∞,4]含有逻辑联结词的命题的真假判断(自主练透)1.命题p :若sin x >sin y ,则x >y ;命题q :x 2+y 2≥2xy .下列命题为假命题的是( ) A .p ∨q B .p ∧q C .qD .﹁p解析:选B .取x =π3,y =5π6,可知命题p 是假命题;由(x -y )2≥0恒成立,可知命题q 是真命题,故﹁p 为真命题,p ∨q 是真命题,p ∧q 是假命题.2.(2019·高考全国卷Ⅲ)记不等式组⎩⎪⎨⎪⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D ,2x +y ≥9;命题q :∀(x ,y )∈D ,2x +y ≤12.下面给出了四个命题①p ∨q ②﹁p ∨q ③p ∧﹁q ④﹁p ∧﹁q 这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③D .③④解析:选A .通解:作出不等式组表示的平面区域D 如图中阴影部分所示,直线2x +y =9和直线2x +y =12均穿过了平面区域D ,不等式2x +y ≥9表示的区域为直线2x +y =9及其右上方的区域,所以命题p 正确;不等式2x +y ≤12表示的区域为直线2x +y =12及其左下方的区域,所以命题q 不正确.所以命题p ∨q 和p ∧﹁q 正确.故选A .优解:在不等式组表示的平面区域D 内取点(7,0),点(7,0)满足不等式2x +y ≥9,所以命题p 正确;点(7,0)不满足不等式2x +y ≤12,所以命题q 不正确.所以命题p ∨q 和p ∧﹁q 正确.故选A .3.(2020·高考全国卷Ⅱ)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题是________.(填序号) ①p 1∧p 4 ②p 1∧p 2 ③﹁p 2∨p 3④﹁p 3∨﹁p 4解析:方法一:对于p 1,由题意设直线l 1∩l 2=A ,l 2∩l 3=B ,l 1∩l 3=C ,则由l 1∩l 2=A ,知l 1,l 2共面,设此平面为α,由B ∈l 2,l 2⊂α,知B ∈α,由C ∈l 1,l 1⊂α,知C ∈α,所以l 3⊂α,所以l 1,l 2,l 3共面于α,所以p 1是真命题.对于p 2,当A ,B ,C 三点不共线时,过A ,B ,C 三点有且仅有一个平面;当A ,B ,C 三点共线时,过A ,B ,C 的平面有无数个,所以p 2是假命题,﹁p 2是真命题.对于p 3,若空间两条直线不相交,则这两条直线可能平行,也可能异面,所以p 3是假命题,﹁p 3是真命题.对于p 4,若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l ,所以p 4是真命题,﹁p 4是假命题.故p 1∧p 4为真命题,p 1∧p 2为假命题,﹁p 2∨p 3为真命题,﹁p 3∨﹁p 4为真命题.综上可知,真命题的序号是①③④.方法二:对于p 1,由题意设直线l 1∩l 2=A ,l 2∩l 3=B ,l 1∩l 3=C ,则A ,B ,C 三点不共线,所以此三点确定一个平面α,则A ∈α,B ∈α,C ∈α,所以AB ⊂α,BC ⊂α,CA ⊂α,即l 1⊂α,l 2⊂α,l 3⊂α,所以p 1是真命题.以下同方法一.答案:①③④判断含有逻辑联结词命题真假的步骤全称命题与特称命题(多维探究) 角度一 全称命题、特称命题的否定(1)(2021·成都市诊断性检测)已知命题p :∀x ∈R ,2x -x 2≥1,则﹁p 为( )A .∀x ∉R ,2x -x 2<1 B .∃x 0∉R ,2x 0-x 20<1 C .∀x ∈R ,2x-x 2<1 D .∃x 0∈R ,2x 0-x 20<1(2)(2021·沈阳市教学质量监测(一))命题p :∀x ∈(0,+∞),x 13≠x 15,则﹁p 为( ) A .∃x 0∈(0,+∞),x 130=x 150 B .∀x ∈(0,+∞),x 13=x 15 C .∃x 0∈(-∞,0),x 130=x 150 D .∀x ∈(-∞,0),x 13=x 15【解析】 (1)全称命题的否定是特称命题,所以﹁p :∃x 0∈R ,2x 0-x 20<1. (2)由全称命题的否定为特称命题知,﹁p 为∃x 0∈(0,+∞),x 130=x 150,故选A .【答案】 (1)D (2)A全称命题与特称命题的否定(1)改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写;(2)否定结论:对原命题的结论进行否定. 角度二 全称命题、特称命题的真假判断(1)下列命题中的假命题是( )A .∀x ∈R ,x 2≥0 B .∀x ∈R ,2x -1>0C .∃x 0∈R ,lg x 0<1D .∃x 0∈R ,sin x 0+cos x 0=2 (2)下列命题中的假命题是( ) A .∀x ∈R ,e x>0 B .∀x ∈N ,x 2>0 C .∃x 0∈R ,ln x 0<1D .∃x 0∈N *,sin π2x 0=1【解析】 (1)A 显然正确;由指数函数的性质知2x -1>0恒成立,所以B 正确;当0<x <10时,lg x <1,所以C 正确;因为sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4,所以-2≤sin x+cos x ≤2,所以D 错误.(2)对于B .当x =0时,x 2=0,因此B 中命题是假命题. 【答案】 (1)D (2)B全称命题与特称命题真假的判断方法命题名称 真假 判断方法一 判断方法二 全称命题真 所有对象使命题为真 否定为假 假 存在一个对象使命题为假 否定为真 特称命题真 存在一个对象使命题为真 否定为假 假所有对象使命题为假否定为真[提醒] 因为命题p 与﹁p 的真假性相反,因此不管是全称命题,还是特称命题,若其真假不容易正面判断时,可先判断其否定的真假.1.下列命题正确的是( ) A .∃x 0∈R ,x 20+2x 0+3=0B .x >1是x 2>1的充分不必要条件 C .∀x ∈N ,x 3>x 2D .若a >b ,则a 2>b 2解析:选B .对于x 2+2x +3=0,Δ=-8<0,故方程无实根,即∃x 0∈R ,x 20+2x 0+3=0错误,即A 错误;x 2>1⇔x <-1或x >1,故x >1是x 2>1的充分不必要条件,故B 正确;当x ≤1时,x 3≤x 2,故∀x ∈N ,x 3>x 2错误,即C 错误; 若a =1,b =-1,则a >b ,但a 2=b 2,故D 错误.故选B .2.已知f (x )=sin x -x ,命题p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0,则( )A .p 是假命题,﹁p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0B .p 是假命题,﹁p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0C .p 是真命题,﹁p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0D .p 是真命题,﹁p :∃x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 解析:选C .易知f ′(x )=cos x -1<0,所以f (x )在⎝ ⎛⎭⎪⎫0,π2上是减函数,因为f (0)=0,所以f (x )<0,所以命题p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0是真命题,﹁p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0,故选C .由命题的真假确定参数的取值范围(典例迁移)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,求实数m 的取值范围.【解】 依题意知p ,q 均为假命题,当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是真命题时,则有Δ=m 2-4<0,-2<m <2.因此由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.所以实数m 的取值范围为[2,+∞).【迁移探究1】 (变问法)在本例条件下,若p ∧q 为真,求实数m 的取值范围. 解:依题意知p ,q 均为真命题,当p 是真命题时,有m <0; 当q 是真命题时,有-2<m <2,由⎩⎪⎨⎪⎧m <0,-2<m <2,可得-2<m <0. 【迁移探究2】 (变问法)在本例条件下,若p ∧q 为假,p ∨q 为真,求实数m 的取值范围.解:若p ∧q 为假,p ∨q 为真,则p ,q 一真一假. 当p 真q 假时⎩⎪⎨⎪⎧m <0,m ≥2或m ≤-2,所以m ≤-2;当p 假q 真时⎩⎪⎨⎪⎧m ≥0,-2<m <2,所以0≤m <2.所以m 的取值范围是(-∞,-2]∪[0,2).根据命题的真假求参数取值范围的策略(1)全称命题可转化为恒成立问题,特称命题转化为存在性问题. (2)含逻辑联结词问题:①求出每个命题是真命题时参数的取值范围; ②根据题意确定每个命题的真假;③由各个命题的真假列关于参数的不等式(组)求解.1.若命题“∃t ∈R ,t 2-2t -a <0”是假命题,则实数a 的取值范围是______. 解析:因为命题“∃t ∈R ,t 2-2t -a <0”为假命题,所以命题“∀t ∈R ,t 2-2t -a ≥0”为真命题,所以Δ=(-2)2-4×1×(-a )=4a +4≤0,即a ≤-1.答案:(-∞,-1]2.已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数.若p 或q 是真命题,p 且q 是假命题,则实数a 的取值范围是________.解析:命题p 等价于Δ=a 2-16≥0,即a ≤-4或a ≥4;命题q 等价于-a4≤3,即a ≥-12.由p 或q 是真命题,p 且q 是假命题知,命题p 和q 一真一假.若p 真q 假,则a <-12;若p 假q 真,则-4<a <4.故a 的取值范围是(-∞,-12)∪(-4,4).答案:(-∞,-12)∪(-4,4)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节简单的逻辑联结词、全称量词与存在量词❖基础知识1.简单的逻辑联结词(1)命题中的“且”“或”“非”❶叫做逻辑联结词.①用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;②用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;③对命题p的结论进行否定,得到复合命题“非p”,记作非p.❷❶“且”的数学含义是几个条件同时满足,“且”在集合中的解释为“交集”;“或”的数学含义是至少满足一个条件,“或”在集合中的解释为“并集”;“非”的含义是否定,“非p”只否定p的结论,“非”在集合中的解释为“补集”.❷“命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.(2)命题真值表:命题真假的判断口诀p∨q→见真即真,p∧q→见假即假,p与非p→真假相反.2.全称量词与存在量词3.4.全称命题与特称命题的否定❖常用结论含逻辑联结词命题真假的等价关系(1)p∨q真⇔p,q至少一个真⇔(非p)∧(非q)假.(2)p∨q假⇔p,q均假⇔(非p)∧(非q)真.(3)p∧q真⇔p,q均真⇔(非p)∨(非q)假.(4)p∧q假⇔p,q至少一个假⇔(非p)∨(非q)真.考点一判断含有逻辑联结词命题的真假[典例](1)(2017·山东高考)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是()A.p∧q B.p∧非qC.非p∧q D.非p∧非q(2)(2019·安徽安庆模拟)设命题p:∃x0∈(0,+∞),x0+1x0>3;命题q:∀x∈(2,+∞),x2>2x,则下列命题为真的是()A.p∧(非q) B.(非p)∧qC.p∧q D.(非p)∨q[解析](1)当x>0时,x+1>1,因此ln(x+1)>0,即p为真命题;取a=1,b=-2,这时满足a>b,显然a2>b2不成立,因此q为假命题.由复合命题的真假性,知B为真命题.(2)对于命题p,当x0=4时,x0+1x0=174>3,故命题p为真命题;对于命题q,当x=4时,24=42=16,即∃x0∈(2,+∞),使得2x0=x20成立,故命题q为假命题,所以p∧(非q)为真命题,故选A.[答案](1)B(2)A[题组训练]1.(2019·惠州调研)已知命题p,q,则“非p为假命题”是“p∧q是真命题”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B充分性:若非p为假命题,则p为真命题,由于不知道q的真假性,所以推不出p∧q是真命题.必要性:p∧q是真命题,则p,q均为真命题,则非p为假命题.所以“非p为假命题”是“p ∧q是真命题”的必要不充分条件.2.已知命题p:“若x2-x>0,则x>1”;命题q:“若x,y∈R,x2+y2=0,则xy=0”.下列命题是真命题的是()A.p∨(非q) B.p∨qC.p∧q D.(非p)∧(非q)解析:选B若x2-x>0,则x>1或x<0,故p是假命题;若x,y∈R,x2+y2=0,则x=0,y=0,xy =0,故q是真命题.则p∨q是真命题.考点二全称命题与特称命题[典例](1)命题∀x∈R,e x-x-1≥0的否定是()A.∀x∈R,e x-x-1≤0B.∀x∈R,e x-x-1≥0C.∃x0∈R,e x0-x0-1≤0 D.∃x0∈R,e x0-x0-1<0(2)对命题∃x0>0,x20>2x0,下列说法正确的是()A.真命题,其否定是∃x0≤0,x20≤2x0 B.假命题,其否定是∀x>0,x2≤2xC.真命题,其否定是∀x>0,x2≤2x D.真命题,其否定是∀x≤0,x2≤2x[解析](1)改全称量词为存在量词,把不等式中的大于或等于改为小于.故选D.(2)已知命题是真命题,如32=9>8=23,其否定是∀x>0,x2≤2x.故选C.[答案](1)D(2)C[题组训练]1.命题“∀x∈R,∃n∈N*,使得n≤x2”的否定形式是()A .∀x ∈R ,∃n ∈N *,使得n >x 2B .∀x ∈R ,∀n ∈N *,使得n >x 2C .∃x 0∈R ,∃n ∈N *,使得n >x 20D .∃x 0∈R ,∀n ∈N *,使得n >x 20解析:选D ∀改写为∃,∃改写为∀,n ≤x 2的否定是n >x 2,则该命题的否定形式为“∃x 0∈R ,∀n ∈N *,使得n >x 20”.2.已知命题p :∃n ∈R ,使得f (x )=nxn 2+2n 是幂函数,且在(0,+∞)上单调递增;命题q :“∃x 0∈R ,x 20+2>3x 0”的否定是“∀x ∈R ,x 2+2<3x ”.则下列命题为真命题的是( )A .p ∧qB .(非p )∧qC .p ∧(非q)D .(非p )∧(非q)解析:选C 当n =1时,f (x )=x 3为幂函数,且在(0,+∞)上单调递增,故p 是真命题,则非p 是假命题;“∃x 0∈R ,x 20+2>3x 0”的否定是“∀x ∈R ,x 2+2≤3x ”,故q 是假命题,非q 是真命题.所以p∧q ,(非p )∧q ,(非p )∧(非q)均为假命题,p ∧(非q)为真命题,选C.考点三 根据命题的真假求参数的取值范围[典例] 已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0.若p 或q 为假命题,求实数m的取值范围.[解] 依题意知p ,q 均为假命题,当p 是假命题时,则mx 2+1>0恒成立,则有m ≥0; 当q 是真命题时,则Δ=m 2-4<0,-2<m <2.因此由p ,q 均为假命题得{ m ≥0,m ≤-2或m ≥2,即m ≥2. 所以实数m 的取值范围为[2,+∞). [变透练清]1.(变条件)若本例将条件“p 或q 为假命题”变为“p 且q 为真命题”,其他条件不变,则实数m 的取值范围为________.解析:依题意,当p 是真命题时,有m <0;当q 是真命题时,有-2<m <2,由⎩⎪⎨⎪⎧m <0,-2<m <2,可得-2<m <0. 所以m 的取值范围为(-2,0). 答案:(-2,0)2.(变条件)若本例将条件“p 或q 为假命题”变为“p 且q 为假,p 或q 为真”,其他条件不变,则实数m 的取值范围为________.解析:若p 且q 为假,p 或q 为真,则p ,q 一真一假.当p 真q 假时⎩⎪⎨⎪⎧m <0,m ≥2或m ≤-2,所以m ≤-2;当p 假q 真时⎩⎪⎨⎪⎧m ≥0,-2<m <2,所以0≤m <2.所以m 的取值范围为(-∞,-2]∪[0,2). 答案:(-∞,-2]∪[0,2)3.(变条件)若本例将条件q 变为:存在x 0∈R ,x 20+mx 0+1<0,其他条件不变,则实数m 的取值范围为_______.解析:依题意,当q 是真命题时,Δ=m 2-4>0,所以m >2或m <-2.由⎩⎪⎨⎪⎧m ≥0,-2≤m ≤2,得0≤m ≤2,所以m 的取值范围为[0,2]. 答案:[0,2][课时跟踪检测]1.(2019·西安摸底)命题“∀x >0,xx -1>0”的否定是( )A .∃x 0≥0,x 0x 0-1≤0B .∃x 0>0,0≤x 0≤1C .∀x >0,xx -1≤0D .∀x <0,0≤x ≤1解析:选B ∵x x -1>0,∴x <0或x >1,∴xx -1>0的否定是0≤x ≤1,∴命题的否定是“∃x 0>0,0≤x 0≤1”. 2.下列命题中,假命题的是( )A .∀x ∈R,21-x >0B .∃a 0∈R ,y =xa 0的图象关于y 轴对称C .函数y =x a 的图象经过第四象限D .直线x +y +1=0与圆x 2+y 2=12相切解析:选C 对于A ,由指数函数的性质可知为真命题;对于B ,当a =2时,其图象关于y 轴对称;对于C ,当x >0时,y >0恒成立,从而图象不过第四象限,故为假命题;对于D ,因为圆心(0,0)到直线x +y +1=0的距离等于12,等于圆的半径,命题成立. 3.(2019·陕西质检)已知命题p :对任意的x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .(非p )∧(非q)C .(非p )∧qD .p ∧(非q)解析:选D 由指数函数的性质知命题p 为真命题.易知x >1是x >2的必要不充分条件,所以命题q 为假命题.由复合命题真值表可知p ∧(非q)为真命题. 4.(2018·湘东五校联考)下列说法中正确的是( )A .“a >1,b >1”是“ab >1”成立的充分条件B .命题p :∀x ∈R,2x >0,则非p :∃x 0∈R,2x0<0 C .命题“若a >b >0,则1a <1b ”的逆命题是真命题D .“a >b ”是“a 2>b 2”成立的充分不必要条件解析:选A 对于选项A ,由a >1,b >1,易得ab >1,故A 正确.对于选项B ,全称命题的否定是特称命题,所以命题p :∀x ∈R,2x >0的否定是非p :∃x 0∈R,2x0≤0,故B 错误.对于选项C ,其逆命题:若1a <1b ,则a >b >0,可举反例,如a =-1,b =1,显然是假命题,故C 错误.对于选项D ,由“a >b ”并不能推出“a 2>b 2”,如a =1,b =-1,故D 错误.故选A.5.(2019·唐山五校联考)已知命题p :“a >b ”是“2a >2b ”的充要条件;命题q :∃x 0∈R ,|x 0+1|≤x 0,则( )A .(非p )∨q 为真命题B .p ∧(非q)为假命题C .p ∧q 为真命题D .p ∨q 为真命题解析:选D 由题意可知命题p 为真命题.因为|x +1|≤x 的解集为空集,所以命题q 为假命题,所以p ∨q 为真命题.6.下列说法错误的是( )A .命题“若x 2-5x +6=0,则x =2”的逆否命题是“若x ≠2,则x 2-5x +6≠0”B .若命题p :存在x 0∈R ,x 20+x 0+1<0,则非p :对任意x ∈R ,x 2+x +1≥0C .若x ,y ∈R ,则“x =y ”是“xy ≥⎝⎛⎭⎫x +y 22”的充要条件D .已知命题p 和q ,若“p 或q ”为假命题,则命题p 与q 中必一真一假解析:选D 由原命题与逆否命题的关系,知A 正确;由特称命题的否定知B 正确;由xy ≥⎝⎛⎭⎫x +y 22⇔4xy ≥(x +y )2⇔4xy ≥x 2+y 2+2xy ⇔(x -y )2≤0⇔x =y ,知C 正确;对于D ,命题“p 或q ”为假命题,则命题p 与q 均为假命题,所以D 不正确.7.(2019·长沙模拟)已知命题“∀x ∈R ,ax 2+4x +1>0”是假命题,则实数a 的取值范围是( )A .(4,+∞)B .(0,4]C .(-∞,4]D .[0,4)解析:选C 当原命题为真命题时,a >0且Δ<0,所以a >4,故当原命题为假命题时,a ≤4.8.下列命题为假命题的是( )A .存在x >y >0,使得ln x +ln y <0B .“φ=π2”是“函数y =sin(2x +φ)为偶函数”的充分不必要条件C .∃x 0∈(-∞,0),使3x 0<4x 0成立D .已知两个平面α,β,若两条异面直线m ,n 满足m ⊂α,n ⊂β且m ∥β,n ∥α,则α∥β 解析:选C 对于A 选项,令x =1,y =1e ,则ln x +ln y =-1<0成立,故排除A.对于B 选项,“φ=π2”是“函数y =sin(2x +φ)为偶函数”的充分不必要条件,正确,故排除B.对于C 选项,根据幂函数y =x α,当α<0时,函数单调递减,故不存在x 0∈(-∞,0),使3x 0<4x 0成立,故C 错误.对于D 选项,已知两个平面α,β,若两条异面直线m ,n 满足m ⊂α,n ⊂β且m ∥β,n ∥α,可过n 作一个平面与平面α相交于直线n ′.由线面平行的性质定理可得n ′∥n ,再由线面平行的判定定理可得n ′∥β,接下来由面面平行的判定定理可得α∥β,故排除D ,选C.9.若命题p 的否定是“∀x ∈(0,+∞),x >x +1”,则命题p 可写为________________________. 解析:因为p 是非p 的否定,所以只需将全称量词变为特称量词,再对结论否定即可. 答案:∃x 0∈(0,+∞),x 0≤x 0+110.已知命题p :x 2+4x +3≥0,q :x ∈Z ,且“p ∧q ”与“非q ”同时为假命题,则x =________. 解析:若p 为真,则x ≥-1或x ≤-3,因为“非q ”为假,则q 为真,即x ∈Z ,又因为“p ∧q ”为假,所以p 为假,故-3<x <-1, 由题意,得x =-2. 答案:-211.已知p :a <0,q :a 2>a ,则非p 是非q 的________条件(填:充分不必要、必要不充分、充要、既不充分也不必要).解析:由题意得非p :a ≥0,非q :a 2≤a ,即0≤a ≤1.因为{a |0≤a ≤1}{a |a ≥0},所以非p 是非q 的必要不充分条件. 答案:必要不充分12.已知命题p :a 2≥0(a ∈R),命题q :函数f (x )=x 2-x 在区间[0,+∞)上单调递增,则下列命题:①p ∨q ;②p ∧q ;③(非p )∧(非q);④(非p )∨q. 其中为假命题的序号为________. 解析:显然命题p 为真命题,非p 为假命题.∵f (x )=x 2-x =⎝⎛⎭⎫x -122-14, ∴函数f (x )在区间⎣⎡⎭⎫12,+∞上单调递增.∴命题q 为假命题,非q 为真命题.∴p ∨q 为真命题,p ∧q 为假命题,(非p )∧(非q)为假命题,(非p )∨q 为假命题. 答案:②③④13.设t ∈R ,已知命题p :函数f (x )=x 2-2tx +1有零点;命题q :∀x ∈[1,+∞), 1x-x ≤4t 2-1.(1)当t =1时,判断命题q 的真假; (2)若p ∨q 为假命题,求t 的取值范围.解:(1)当t =1时,⎝⎛⎭⎫1x -x max =0,1x-x ≤3在[1,+∞)上恒成立,故命题q 为真命题. (2)若p ∨q 为假命题,则p ,q 都是假命题. 当p 为假命题时,Δ=(-2t )2-4<0,解得-1<t <1; 当q 为真命题时,⎝⎛⎭⎫1x -x max ≤4t 2-1,即4t 2-1≥0, 解得t ≤-12或t ≥12,∴当q 为假命题时,-12<t <12,∴t 的取值范围是⎝⎛⎭⎫-12,12.。