三极管放大电路课程设计

合集下载

实验一 三极管放大电路

实验一 三极管放大电路

西安邮电大学开放式电子电路实验实验报告实验一三极管放大电路一、实验目的1.掌握多级放大器静态工作点的调整与测试方法。

2.学会放大器频率特性测量方法。

3.了解放大器的失真及消除方法。

4.掌握两级放大电路放大倍数的测量方法和计算方法。

5.进一步掌握两级放大电路的工作原理。

二、实验仪器示波器万用表信号发生器直流电源三、实验设计要求1.信号源内阻:Rs=51K2.输入信号频率 20Hz-20Khz3.Av=34.R L=200Ω/75Ω5.Vo=3Vpp6.P电源=30mW7.增加平坦度<0.1dB四、设计思路求各部分的直流电位:如图所示,基级的直流电位V B是用R1和R2对电源电压V CC进行分压后的电位,所以,流进晶体管的基级电路的直流成分I B是很小的,可以忽略,则:V B=R2/(R1+R2)*V CC (V)发射机的直流电位V E,仅比V B低于基级—发射机间的电压VBE,如设VBE=0.6V,则V E为:V E=V B-0.6 (V)发射级上流动的直流电流I E为I E=V E/R E=(VB-0.6)/R E集电极的电流电压V C为电源电压减去R C的压降而算得的值,所以V C为:V C=V CC-I C*R C 在式中,基级电流为最少的值,所以可忽略,则I C=I E。

求交流电压放大倍数:、接着求上图电路的交流放大倍数由于晶体管的基级-发射极间存在的二极管是在导通情况下使用的(交流电阻为0),所以基级端子的交流电位直接出现在发射极,因此,由交流输入电压vi引起的ie的交流变化部分△ie为:△ie=vi/R E另外,令集电极电流的交流变化部分为△ic,则vc交流变化部分△vc为:△vc=△ic*R C 进而认为,集电极电流=发射极电流,则△ic=△ie,所以△vc=△ie*Rc=vi/R E*R C另一方面,因为C2将vc的直流成分截去,故交流输出信号V0即为△vc的本身:v0=△vc=vi/R E*R C因此,该电路的交流电压放大倍数A V:A V=v0/vi=R C/R E采用共射极分压式偏置电路以及射极跟随器: 共射极分压式偏置电路完成基本电压放大;射极跟随器提高输入阻抗,使输出达到三倍放大。

三极管及放大电路基础教案

三极管及放大电路基础教案

三极管及放大电路基础教案章节一:三极管概述教学目标:1. 了解三极管的定义、结构和工作原理。

2. 掌握三极管的类型和符号。

教学内容:1. 三极管的定义:三极管是一种半导体器件,具有放大电信号的功能。

2. 三极管的结构:三极管由发射极、基极和集电极组成。

3. 三极管的工作原理:通过基极控制发射极和集电极之间的电流。

4. 三极管的类型:NPN型和PNP型。

5. 三极管的符号:NPN型三极管符号为“N”,PNP型三极管符号为“P”。

教学活动:1. 讲解三极管的定义、结构和工作原理。

2. 展示三极管的实物图和符号图。

3. 引导学生通过实验观察三极管的工作状态。

章节二:放大电路基础教学目标:1. 了解放大电路的定义和作用。

2. 掌握放大电路的基本组成和原理。

教学内容:1. 放大电路的定义:放大电路是一种通过反馈作用放大电信号的电路。

2. 放大电路的作用:放大微弱的信号,使其具有足够的功率驱动负载。

3. 放大电路的基本组成:电源、三极管、输入电阻、输出电阻和反馈电阻。

4. 放大电路的原理:通过三极管的放大作用,实现电信号的放大。

教学活动:1. 讲解放大电路的定义、作用和基本组成。

2. 展示放大电路的原理图和实际电路图。

3. 引导学生通过实验观察放大电路的工作状态。

章节三:三极管的放大特性教学目标:1. 了解三极管的放大特性。

2. 掌握三极管的放大原理。

教学内容:1. 三极管的放大特性:三极管的放大能力与基极电流、集电极电流和发射极电流之间的关系。

2. 三极管的放大原理:通过基极电流的控制,实现发射极和集电极之间电流的放大。

教学活动:1. 讲解三极管的放大特性和放大原理。

2. 分析三极管放大电路的输入和输出特性曲线。

3. 引导学生通过实验观察三极管的放大特性。

章节四:三极管放大电路的设计与应用教学目标:1. 了解三极管放大电路的设计方法。

2. 掌握三极管放大电路的应用。

教学内容:1. 三极管放大电路的设计方法:根据输入和输出信号的要求,选择合适的三极管、电阻等元件,设计合适的电路。

实验三三极管放大电路设计

实验三三极管放大电路设计

实验三三极管放大电路设计一、实验目的1.了解三极管的基本工作原理和放大特性。

2.掌握三极管放大电路的设计和调整方法。

二、实验原理三极管放大电路是以三极管为核心元件的放大电路,通过适当的偏置和负反馈,可以实现对输入信号的放大。

三极管放大电路通常由输入端、输出端和三极管组成。

1.BJT三极管BJT三极管的主要结构有NPN型和PNP型两种。

在NPN型三极管中,由两个不掺杂的P型半导体夹着一个高掺杂的N型半导体构成,形成了PN结。

三极管的三个引脚分别为发射极(Emitter),基极(Base)和集电极(Collector)。

在基极与发射极之间加正向偏置电压Ube,使得PN结处于正向偏置状态。

当基极处于正向电压Ube时,使得发射极与集电极间形成一个电流通道。

此时,如果在集电极与发射极间设置一个负电压Uce,集电极的载流子会被集电区的电场吸引,形成集电电流Ic,从而实现了三极管放大器的放大作用。

三极管放大电路分为共发射、共基和共集三种基本结构。

常用的放大电路有共发射放大电路、共射放大电路和共源放大电路。

以下以共发射放大电路为例进行设计。

共发射放大电路的输入端是基极,输出端是集电极。

设计时需要注意以下几个方面:(1)确定输入和输出电阻:输入电阻是指输入端的电压变化引起的输入电流变化的比值,输出电阻是指输出端的电压变化引起的输出电流变化的比值。

一般来说,输入电阻越大越好,输出电阻越小越好。

(2)确定直流工作点:直流工作点是指三极管在放大器工作状态下的工作点。

选择合适的直流工作点,可以使输出信号对输入信号变化进行放大,同时尽量避免饱和和截至现象。

(3)选取合适的偏置电路:偏置电路用于确保三极管正常工作,在选择时需要保证偏置点稳定、温度稳定和电源稳压等。

三、实验步骤1.搭建共发射放大电路,具体电路如下图所示。

其中,三极管型号为2N39042.调节R1、R2和Re使得三极管的基极电压为0.6V左右,可以通过电压表测量。

三极管放大电路教案

三极管放大电路教案

三极管放大电路教案三极管放大电路是一种常见的电子电路,用于放大电信号的幅度。

这种电路由三极管和一些其他元件组成,其中三极管是核心元件。

在教授三极管放大电路时,需要先介绍三极管的基本工作原理,然后再详细讲解三极管放大电路的组成和工作原理。

一、三极管的基本工作原理三极管是一种半导体器件,由三个PN结组成。

根据PN结的极性,可将三极管分为PNP型和NPN型。

在三极管中,基区是控制区,发射区和集电区是受控区。

当三极管的基极电流为正时,就会导通基发结,使得发射区和集电区之间形成一个导通通道。

根据整个电路的工作状态,这个导通通道的导通程度可以调整,从而控制三极管放大电路的放大倍数。

二、三极管放大电路的组成三极管放大电路通常包含一个输入电路和一个输出电路。

输入电路接收输入信号,输出电路输出放大后的信号。

其中,输入电路通常由电阻和电容组成,用于匹配输入信号和三极管的输入电阻。

输出电路通常由负载电阻和输出电容组成,用于收集和输出放大后的信号。

三、三极管放大电路的工作原理1.共射极放大电路共射极放大电路是最常见的一种三极管放大电路,其输入信号与输出信号是反相的。

在这种模式下,输入信号加在基极上,通过输入电容进入基极电路。

当输入信号为正半周期时,三极管导通,形成一个导通通道,电流从集电极进入负载电阻,形成输出信号。

当输入信号为负半周期时,三极管截止,导通通道断开,无输出信号。

由于导通通道的导通程度可以调整,因此可以控制输出信号的幅度。

2.共集极放大电路共集极放大电路是一种非常适合驱动负载的电路,其输入信号与输出信号同相。

在这种模式下,输入信号加在基极上,通过输入电容进入基极电路。

当输入信号为正半周期时,三极管导通,形成一个导通通道,电流从发射极进入地。

由于三极管输出电流的放大作用,输出端的电压上升,形成输出信号。

当输入信号为负半周期时,三极管截止,导通通道断开,输出电压为零。

共集极放大电路的放大倍数小于1,通常用于驱动负载。

三极管基本放大电路教学设计

三极管基本放大电路教学设计

三极管基本放大电路实验课黑龙江省五常市职教中心刘济强一、教材分析本节课选的是中等职业教育国家规划教材高等教育出版社张龙兴主编《电子技术基础》第三章第二节“三极管基本放大电路”,本节课是三极管放大电路的基础电路,为后续其他放大电路的学习奠定基础。

为了提高学生的学习兴趣和提高教学的直观性,我采用实验课教学方式进行。

二、教学设计思路设计内容:1、三极管放大的基本原理;2、使用面包板插接简单放大电路,并通过观察、记录和分析,深入认识三极管的放大作用。

基本思路:通过演示、操作展示使用面包板插接放大电路,引导学生探究学习,提高学生的技术思维能力,学会使用于面包板插接技术进行三极管放大电路实验操作与分析。

得出科学的探究知识的方法,进而得出结论。

重点:正确组成简单放大电路,完成规定的简单放大电路的认识、连接与分析,掌握三极管放大的基本原理。

难点:通过专项实验和学生间的合作交流,逐步理解。

课时:1课时。

三、教学目标1、知识与技能(1)通过实验理解三极管放大的基本原理(2)掌握实验分析,排除电路实验中的问题(3)能进行插接图的简单设计。

2、过程与方法(1) 通过插接放大电路,尝试元器件的排布设计。

(2) 通过放大电路的分析实验,进行电路分析的方法。

3、情感与价值观(1)通过尝试学习和探究学习,培养探究意识,提高学习电子技术的兴趣。

(2)培养学生科学严谨的学习态度。

四、教学重点与难点重点:三极管放大的基本原理难点:分步实验,对实验现象进行观察,记录,分析最终掌握、理解三极管放大的基本原理。

五、教学器材面包板,电池盒,电位器,电阻,发光二极管,三极管等。

面包板插接电子电路的演示作品、多媒体设备和实物投影仪等。

六、教学过程复习展示三极管提问:(1)这是哪一种型号的三极管?如何区分它的三个引脚?(2)三极管有什么作用?回答:NPN型,中间的是B;上面的是C;下面的是E。

三极管具有电流放大作用。

观察思考由浅入深,通过实物展示和讲解,引起兴趣引入设问:三极管是怎样起放大作用的呢?演示基本放大电路电子作品深入讲解三极管放大原理观察思考理解通过实物展示和讲解,引起思考使用面包板插接简单放大电路实验新课:学生动手连接电路(1)简单放大电路图插接a,此电路由那些电子元件组成?b,各电子元件间有几个连接点?c,展示面包板并提问:面包板的连接规则是什么?d, 将面包板的横坐标对应电路中的各电路节点(各节点都独占一列),试画出此电路的面包板插接设计图讲评,修改:e,按照画好的设计图,将各电子元件插接在面包板上检查,讲评(2)基本放大电路实验研究1、展示实验研究设计表格,引导学生实验操作并记录实验现象和结果分析2、组织自评、互评和点评,观察,思考,回答观察,思考,回答初步探究并画出插接设计图上台绘制进行动手插接实验、记录、交流,评价分析、讨论由浅入深,理清知识的内在联系性;先尝试实验进行研究性学习提高学生主动性,能动性;填写实验数据表格,进行评价讨论,学习科学技术的研究方法。

三极管工作在放大区的电路设计

三极管工作在放大区的电路设计

三极管工作在放大区的电路设计说到三极管工作在放大区的电路设计,大家可能都想问:“这是啥意思呀?咋那么复杂?”其实呢,这个问题就像你吃了一块巧克力,刚开始觉得挺甜,吃着吃着就发现它的味道有点深了。

放大区,就是三极管发挥“超级英雄”功能的地方。

这个区域,三极管像一个不知疲倦的演员,在舞台上拼命放大输入信号。

它可是个好帮手,电流一点点小变化,三极管就能把它放大成一个庞然大物,传输给后面的电路。

好啦,说得直白一点,放大区就是三极管工作的黄金时刻。

我们知道,三极管有三只脚,分别是基极、集电极和发射极。

想象一下,这三只脚就像你身上的手、脚和头。

基极是控制开关,集电极是“输出端”,发射极是信号源。

在放大区的时候,基极电流就像是掌控全局的导演,发射极是信号发源地,集电极嘛,它负责输出强大信号,好比是你的表演,已经从小荧幕放大成大银幕,气场全开!你可能会问,三极管到底怎么才能在放大区工作呢?哈哈,这就得靠电源和电阻的默契配合。

电流不是直接进三极管,它们要经过电阻调节,让信号在基极上形成合适的电流输入。

这一过程中,电压电流的调配就像给三极管穿上一件合身的衣服,三极管才能发挥最好的作用。

要是电流过大,三极管就可能被“烧坏”;电流过小,那放大效果就不显著,简直是打水漂。

电阻的选用可是门大学问,随便选一个,可能电路就成了“死结”,让人头大。

一旦电流合适,三极管开始工作,它就像一个勤奋的工人,源源不断地输出放大的信号。

放大后的信号可能变得强大到,后面的电路能够处理的信号就更清晰,甚至可以用来推动扬声器、显示屏,或者传输给其他电路。

这些电流变化的微小波动通过三极管的“魔力”成了大家所需要的稳定信号。

真是技术与巧妙配合的结晶呀!不过,别以为三极管一放大就好,它也有自己的脾气,特别是要放大什么样的信号。

对于某些信号,三极管就像是个脾气暴躁的小孩子,做不到精准放大。

比如如果输入信号的频率不适应三极管的工作特性,信号就可能被失真,或者丢失部分信息,这时候放大的信号就跟玩游戏掉线一样,变得不靠谱。

1000倍增益三极管2N3904放大电路设计报告

1000倍增益三极管2N3904放大电路设计报告

=
1000倍增益三极管放大电路设计报告
一、实验目的
初步了解设计三极管放大电路。

二、实验内容
实现使用2N3904与2N3906三极管对输入模拟信号放大1000倍。

三、实验原理
2N3904为小功率管。

根据经验,取静态工作点IB = 5uA,IC = 2mA,VCE = 15V。

本实验使用两级阻容耦合射极偏置电路。

图1 .1三极管2N3904射极偏置电路
图1 .2三极管2N3906射极偏置电路
四、实验步骤
4.1使用multisim14进行仿真如图
图4.1 2N3904静态工作点
图4.2 2N3904放大电路波形仿真无误
图4.3 2N3904放大电路实物图
图4.4 2N3906静态工作点
图4.5 2N3964放大电路波形仿真无误
图4.6 2N3906放大电路实物图
五、实验器材:2N3904、2N3906、万用板、电烙铁、信号发生器、直流电源、示波器等。

六、实验结果及分析
本次实验使用4-15mV进行测试,误差均小于3%。

图4.7 放大电路工作图4mV-4V
图4.8 放大电路工作图6mV-6V
图4.9 放大电路工作图8mV-8V
图4.10 放大电路工作图10mV-10V
图4.10 放大电路工作图12mV-12V
图4.10 放大电路工作图15mV-15V
六、心得体会
在网络的协助下,成功搭建了这个三极管放大电路,明白了学好理论知识的必要性和独立学习、付诸实践的重要性。

三极管放大电路教案

三极管放大电路教案
C1、C2:C1为输入信号耦合电容,为输入信号提供交流通路;C2为输出信号耦合电容,为输出信号提供交流通路。它们同时起隔断直流作用,避免影响三极管的静态工作点。
2、静态工作点
静态——放大器无信号输入时的直流工作状态。
当输入端Ui=0时,由于电源的存在,IB≠0;
由VCC提供的直流电流IBQ≠0,所以ICQ≠0(T放大)
教学策略选择与设计
本节课根据教学法的真实性原则,以图例为主,设计学习活动,引导学生主动进行思考,发挥想象力,调动学生的学习积极性。
教学
资源
多媒体课件
教学过程
教学
环节
(时间)
教师活动
学生
活动
复习
旧课
5’
1、放大器
2、放大器电流电压符号使用规定
直流信号——用大写字母和大写下标表示,如IB、UB
交流信号——用小写字母和小写下标表示,如ib、ub
1、分析相关元器件符号的作用
VCC:集电极直流电源,为电路提供能量并保证集电极反偏。同时通过Rb为基极提供分压,保证发射结正偏。
T:是放大管,起电流放大作用,是放大器的核心元件。工作在放大区。
Rc:集电极供电电阻,它起两个作用,其一是将放大的电流信号转为电压信号,其二是限制集电极电流。其阻值一般为几欧姆~几千欧姆。
三放大条件
1、晶体管必须偏置在放大区(电流放大),发射结正偏,集电结反偏。
2、正确设置静态工作点,使整个波形处于放大区,防失真。
3、输入回路将变化的电压转化成变化的基极电流。
4、输出回路将放大的集电极电流转化成变化的集电极电压,经电容滤波只输出交流信号。
认真
听讲
教师
提问
学生思考回答
(此处教师手画输入特性曲线和输出特性曲线并引导学生分析输入信号变化引起的输出变化)

三极管课程设计

三极管课程设计

三极管课程设计一、课程目标知识目标:1. 学生能理解三极管的基本结构、工作原理及其在电子电路中的应用。

2. 学生能掌握三极管的类型、符号、主要参数及其影响。

3. 学生能掌握三极管放大电路的基本原理和设计方法。

技能目标:1. 学生能够正确使用仪器和工具进行三极管的检测和测量。

2. 学生能够运用所学知识,分析和设计简单的三极管放大电路。

3. 学生能够通过实验操作,观察并解释三极管放大电路的工作现象。

情感态度价值观目标:1. 培养学生对电子技术学科的兴趣,激发学习热情。

2. 培养学生具备良好的团队合作精神,学会在实验过程中相互交流、协作。

3. 培养学生严谨的科学态度,对待实验数据和现象能够客观、理性分析。

课程性质:本课程属于电子技术基础课程,通过理论讲解和实验操作,使学生掌握三极管的基础知识。

学生特点:学生处于初中年级,对电子技术有一定的基础认识,好奇心强,喜欢动手实践。

教学要求:结合学生特点,注重理论与实践相结合,以学生动手实践为主,教师引导为辅,培养学生的实际操作能力和创新思维。

在教学过程中,关注学生的个体差异,因材施教,确保每个学生都能达到课程目标。

通过分解课程目标为具体的学习成果,为教学设计和评估提供依据。

二、教学内容1. 三极管基本概念:介绍三极管的结构、类型、符号,使学生了解三极管的外观和基本特性。

- 教材章节:第二章第二节《三极管的结构与类型》- 内容列举:三极管的结构、NPN型和PNP型三极管、三极管的符号。

2. 三极管工作原理:讲解三极管的工作区域、载流子运动规律,使学生理解三极管放大作用的基本原理。

- 教材章节:第二章第三节《三极管的工作原理》- 内容列举:三极管的工作区域、放大原理、载流子运动规律。

3. 三极管主要参数:阐述三极管的静态特性参数和动态特性参数,使学生掌握三极管性能的衡量标准。

- 教材章节:第二章第四节《三极管的主要参数》- 内容列举:静态特性参数(如UBE、UBE)、动态特性参数(如β、fT)。

三极管的电流放大作用教案

三极管的电流放大作用教案

三极管的电流放大作用教案一、教学目标:1. 让学生了解三极管的结构和基本工作原理。

2. 使学生掌握三极管的电流放大作用及其在电子电路中的应用。

3. 培养学生动手实验和分析问题的能力。

二、教学内容:1. 三极管的结构和基本工作原理2. 三极管的电流放大作用3. 三极管在电子电路中的应用4. 实验操作:测量三极管的电流放大系数β5. 分析实验结果,探讨三极管电流放大作用的影响因素三、教学重点与难点:1. 教学重点:三极管的结构和基本工作原理,三极管的电流放大作用及其在电子电路中的应用。

2. 教学难点:三极管的电流放大作用原理,实验数据分析。

四、教学方法:1. 采用讲授法,讲解三极管的结构、工作原理和电流放大作用。

2. 采用实验法,让学生动手测量三极管的电流放大系数β。

3. 采用讨论法,分析实验结果,探讨三极管电流放大作用的影响因素。

五、教学过程:1. 导入新课:介绍三极管在电子电路中的重要作用,激发学生学习兴趣。

2. 讲解三极管的结构和基本工作原理,引导学生理解三极管的电流放大作用。

3. 学生动手实验:测量三极管的电流放大系数β,注意操作规范和安全。

4. 分析实验结果,探讨三极管电流放大作用的影响因素,如温度、工作点等。

六、课后作业:1. 绘制三极管的伏安特性曲线。

2. 分析三极管的电流放大作用在实际电路中的应用。

3. 查阅资料,了解三极管的温度特性。

七、教学评价:1. 学生对三极管的结构和基本工作原理的理解程度。

2. 学生动手实验的能力,如操作规范、数据分析等。

3. 学生对本节课知识的掌握情况,如课后作业的完成质量。

八、教学资源:1. 教材、课件等教学资料。

2. 三极管实验仪器的准备,如晶体管测试仪、示波器等。

3. 网络资源,用于学生课后查阅相关资料。

九、教学进度安排:1. 第一课时:讲解三极管的结构和基本工作原理。

2. 第二课时:讲解三极管的电流放大作用及其在电子电路中的应用。

3. 第三课时:学生动手实验,测量三极管的电流放大系数β。

三极管及放大电路基础教案

三极管及放大电路基础教案

一、教学目标:1. 让学生了解三极管的结构、种类和功能。

2. 让学生掌握三极管的导通和截止条件。

3. 让学生了解放大电路的原理和应用。

4. 让学生能够分析判断放大电路的工作状态。

二、教学内容:1. 三极管的结构和种类教学要点:三极管由发射极、基极和集电极组成,分为NPN型和PNP型。

2. 三极管的导通和截止条件教学要点:三极管导通需要基极-发射极电压大于一定值,集电极-发射极电压小于一定值;截止则相反。

3. 放大电路的原理教学要点:放大电路利用三极管的放大作用,将输入信号放大后输出。

4. 放大电路的应用教学要点:放大电路广泛应用于电子设备中,如音频放大、信号放大等。

5. 放大电路的工作状态分析教学要点:分析判断放大电路的工作状态,包括静态工作点和动态工作状态。

三、教学方法:1. 采用讲授法,讲解三极管及放大电路的基本概念、原理和应用。

2. 利用多媒体课件,展示三极管及放大电路的实物图片和电路图,增强学生的直观认识。

3. 进行实验演示,让学生亲自动手操作,观察放大电路的工作状态。

4. 案例分析,分析实际应用中的放大电路,提高学生的应用能力。

四、教学准备:1. 教学课件和教案。

2. 三极管实物和放大电路演示电路。

3. 实验器材和工具。

五、教学评价:1. 课堂问答:检查学生对三极管及放大电路的基本概念、原理和应用的理解。

2. 实验报告:评估学生在实验中的操作技能和分析判断能力。

3. 课后作业:巩固学生对三极管及放大电路的知识点掌握。

4. 期末考试:全面考核学生对三极管及放大电路的学习效果。

六、教学内容:6. 放大电路的类型教学要点:放大电路分为三种类型:共发射极放大电路、共基极放大电路、共集电极放大电路;其中共发射极放大电路应用最广泛。

7. 放大电路的静态工作点教学要点:静态工作点是指放大电路中的三极管在直流工作状态下,各极的电位处于一种稳定的状态,对于放大电路的性能有很大影响。

8. 放大电路的动态分析教学要点:动态分析是指在输入信号的作用下,放大电路中三极管的工作状态和工作参数的变化。

三极管放大电路设计与分析

三极管放大电路设计与分析

三极管放大电路设计分析实验名称三极管放大电路设计日期专业一、 实验目的1、 设计一个三极管放大电路,采用单电源供电;2、 使输出信号增益≥20dB ,输出幅值≥10Vpp ;3、使3dB 带宽10Hz~1MHz ;二、 实验原理2.1根据实验要求构建出基本电路图如图为共射级放大电路共射极放大电路既有电流放大作用,又有电压放大作用,故常用于小信号的放大。

改变电路的静态工作点,可调节电路的电压放大倍数。

而电路工作点的调整,主要是通过改变电路参数来实现。

(负载电阻R L 的变化不影响电路的静态工作点,只改变电路的电压放大倍数。

)该电路信号从基极输入,从集电极输出。

输入电阻与相同材料的二极管正向偏置电阻相当,输出电阻较高,适用于多级放大电路的中间级。

故选择此种电路设计方案。

2.2根据电路图进行基本计算2.2.1求各部分直流电位基极直流电位: B V =)/(212R R R V CC + 发射极直流电位: BE B E V V V -= 又BE V =0.6v ,故6.0-=B E V V V发射极上的直流电流:E I =E V /E R =(6.0-B V V)/E R 集电极的直流电压C V =CC V -C I C R 2.2.2求交流电压放大倍数由交流输入电压i v 引起的e i 的交流变化e i ∆为:e i ∆=i v /E R用示波器仿真如以下图,此时频率为10kHZ波特图示仪仿真结果如下中频区半功率点,10HZ满足实验要求高频特性不符合实验要求,过高R上并联一个小电容,使其在高频时放大倍数下降,仿于是修改电路图,并仿真,在C真结果如下波特图示仪仿真结果如下大致符合实验要求,故采用此电路图进行焊接 3.3焊接电路并进行实际测试测试结果显示,放大电路无失真现象,在10HZ 时频率特性较好,但在1MHZ 时放大倍数急剧下降,实际半功率点在150KHZ 左右,将C R 旁并联的小电容拆除后高频特性仍旧只在200KHZ 左右,严重不符标准,故此电路作废,重新设计电路。

2024年度三极管基本放大电路教学设计教案

2024年度三极管基本放大电路教学设计教案
多级放大电路的应用领域
广泛应用于音频放大器、功率放大器、运算放大 器等领域,是实现电子设备高性能化的重要手段 之一。202 Nhomakorabea/3/23
26
THANKS
2024/3/23
27
12
共射极放大电路组成与工作原理
组成
共射极放大电路由三极管、输入电阻、输出电阻、电 源和负载等组成。
工作原理
在共射极放大电路中,输入信号加在三极管的基极与 发射极之间,输出信号从三极管的集电极与发射极之 间取出。当输入信号为正弦波时,三极管基极电流随 之变化,集电极电流也随之变化,且集电极电流的变 化量是基极电流变化量的β倍(β为三极管的电流放大 系数)。由于集电极电流的变化,使得集电极电阻上 的电压降也发生变化,从而实现了电压放大。
由多个单级放大电路串联而成,每级放大电路都 对信号进行一定的放大,从而实现更高的放大倍 数。
多级放大电路的性能特点
具有较高的放大倍数、较低的失真度、较宽的频 带宽度和良好的稳定性等。
多级放大电路的组成
包括输入级、中间级和输出级三部分,其中输入 级用于接收输入信号并进行初步放大,中间级用 于进一步提高放大倍数,输出级用于驱动负载并 提供足够的输出功率。
包括静态工作点分析、动态性能分析和频 率响应分析等,通过这些分析方法可以全 面了解放大电路的性能。
2024/3/23
24
学生自我评价报告
学生对三极管基本放大电路 的原理和组成有了深入理解 ,能够独立完成基本放大电
路的设计和搭建。
学生掌握了三极管基本放大 电路的性能指标和分析方法 ,能够准确评估放大电路的
静态工作点的设置方法
通过调整偏置电阻或电源电压来改变静态工作点。偏置电阻的大小决定了基极电流的大小 ,从而影响静态工作点的位置。

最新三极管放大电路教案

最新三极管放大电路教案

最新三极管放大电路教案教学目标:1.了解三极管放大电路的基本原理和特性;2.掌握三极管放大电路的工作原理和设计方法;3.能够分析和计算三极管放大电路的放大倍数和频率响应。

教学内容:第一节:三极管放大电路的基本原理和特性1.三极管放大电路的作用和应用;2.三极管的基本结构和工作原理;3.三极管的特性参数和参数代号的意义。

第二节:三极管放大电路的分类1.按输入信号和输出信号的关系分类;2.按输入信号的形式分类;3.按工作状态和工作模式分类。

第三节:共射放大电路的工作原理和设计方法1.共射放大电路的特点和应用;2.共射放大电路的工作原理和电流流动规律;3.共射放大电路的工作点设计方法。

第四节:共射放大电路的频率响应和放大倍数计算1.频率响应的概念和计算方法;2.放大倍数的定义和计算方法;3.放大倍数和频率响应之间的关系。

教学方法:1.以理论讲解结合实例分析的方式进行教学,引导学生理解三极管放大电路的基本原理和特性;2.通过示意图和电路图的展示,帮助学生理解三极管放大电路的工作原理;3.结合案例分析,引导学生进行三极管放大电路的设计和计算。

教学过程:第一节:三极管放大电路的基本原理和特性1.通过讲解和讨论,介绍三极管放大电路的作用和应用。

2.通过示意图和实际电路图的展示,介绍三极管的基本结构和工作原理。

3.讲解三极管的特性参数和参数代号的意义。

第二节:三极管放大电路的分类1.通过示意图和电路图的展示,讲解三极管放大电路的分类方式,并分别解释每种分类方式的特点和应用。

第三节:共射放大电路的工作原理和设计方法1.讲解共射放大电路的特点和应用,并通过示意图和电路图的展示,讲解共射放大电路的工作原理和电流流动规律。

2.引导学生进行共射放大电路的工作点设计方法的学习和讨论。

第四节:共射放大电路的频率响应和放大倍数计算1.介绍频率响应的概念和计算方法,引导学生进行频率响应的计算练习。

2.介绍放大倍数的定义和计算方法,引导学生进行放大倍数的计算练习。

《三极管基本放大电路》教学设计教案

《三极管基本放大电路》教学设计教案

¤¤¤¤《三极管基本放大电路》教学设计¤¤¤¤浙江省泰顺县职业技术学校蔡志刚1、【设计背景】多年来,主导和控制我国学校课堂教学的是一种被人们概括为“以教师为中心、以课堂为中心、以教材为中心”的教学模式,几乎成为大多数教学管理者和教师们的思维定势,极大地束缚了学校教育对学生创新精神和实践能力的培养,给全面推进素质教育带来巨大的惯性阻力。

因此,CAI探究式教学就应运而生了,并肩负着重大历史使命。

多媒体由于能提供界面友好、形象直观的交互式学习环境(这有利于激发学生的学习兴趣和进行协商会话、协作学习),能提供图文声像并茂的多种感官综合刺激(这有利于情境创设和大量知识的获取与保持),还能按超文本、超链接方式组织管理学科知识和各种教学信息。

因而对学生认知结构的形成与发展,即促进学生关于当前所学知识的意义建构是非常有利的,也是其他的教学媒体或其他学习环境无法比拟的。

而“情境创设”、“协商会话”和“信息资源提供”正是建构主义学习理论所要求的学习环境必须具备的基本属性或基本要素。

因此,本人在组织《三极管基本放大电路》一节教学时,设计利用多媒体技术组织教学,获得较好的教学效益。

本案例具体内容见光盘说明。

2、【教学分析】内容分析本节课安排在放大器的概述之后和其它复杂的放大电路的前面,本节在复习半导体三极管的基本知识的基础上,首先介绍基本放大电路的组成和工作原理;然后讲解静态工作点的必要性及放大电路的基本分析方法估算法。

对象分析高二的学生已经具备一定的电工技术基础知识、分析电路能力、实验设计能力及仿真软件应用的技能。

已经具备进行自主探究的能力。

3、【教学目标】知识技能:了解基本放大电路的组成;理解放大的原理,静态工作点的必要性;交流、直流通路的画法;用估算法求静态工作点、及输入、输出电阻和放大倍数能力培养:增强学生的分析能力、培养学生的实验探究和设计能力,进步对仿真软件理解和应用、掌握现代信息技术。

半导体三极管及基本放大电路教案

半导体三极管及基本放大电路教案

半导体三极管及基本放大电路教案一、课程目标:1.了解半导体三极管的结构和工作原理;2.掌握基本放大电路的设计和分析方法;3.培养学生动手实验和分析实验结果的能力。

二、教学内容:1.半导体三极管的结构和工作原理;2.基本放大电路的设计和分析方法;3.实验:利用半导体三极管构建基本放大电路。

三、教学过程:1.导入(10分钟)引入半导体三极管的概念和作用,和学生一起思考半导体三极管在现代电子设备中的重要性和应用。

2.半导体三极管的结构和工作原理(20分钟)2.1.引入半导体三极管的结构和符号表示,解释其由三个半导体材料构成的特点;2.2.介绍半导体三极管的三个结:发射结、基极结和集电结;2.3.描述半导体三极管的工作原理,包括截止区、饱和区和放大区的区别。

3.基本放大电路的设计和分析方法(40分钟)3.1.介绍基本放大电路的概念和作用;3.2.引入电流放大倍数和电压放大倍数的概念;3.3.讲解共射放大电路和共集放大电路的基本原理和特点;3.4.教授基本放大电路的设计和分析方法,包括选择电阻值和计算放大倍数。

4.实验(30分钟)4.1.实验目的:通过实际操作半导体三极管和元器件,构建基本放大电路并测试其放大性能;4.2.实验步骤:a.准备实验所需材料:半导体三极管、电阻、电源等;b.按照电路图连接元器件;c.接通电源,调整电阻和电压,观察输出信号;d.测量输出信号的放大倍数;e.记录实验结果并分析。

五、小结(10分钟)总结本节课的重点和难点,并对实验结果进行分析和讨论,对半导体三极管及基本放大电路的原理和实际应用进行探讨。

六、作业(10分钟)布置作业:要求学生选择一个电子设备(如手机、电脑等),研究其中一个关键元器件的工作原理和作用,并写一份报告。

七、教学反思通过本节课的教学,学生能够了解半导体三极管的结构和工作原理,掌握基本放大电路的设计和分析方法,并通过实验加深对相关知识的理解。

同时,通过作业的布置,培养了学生自主学习和研究的能力。

三极管及基本放大电路教案说课讲解

三极管及基本放大电路教案说课讲解

三极管及基本放大电路教案精品文档精品文档集电摄2.分类:(1)按内部基本结构不同:NPh型和PNP型。

PNP型和NPN型三极管表示符号的区别是发射极的箭头方向不同,这个箭头方向表示发射结加正向偏置时的电流方向。

(2)按功率分:小功率管、中功率和大功率管。

(3)按工作频率分:低频管和高频管。

(4)按管芯所用半导体材料分:锗管和硅管。

目前国内生产硅管多为NPN®(3D系列);目前国内生产锗管多为PNP®(3A系列)。

(5)按结构工艺分:合金管和平面管。

(6)按用途分:放大管和开关管。

二、三极管的电流放大作用一一发射结正向偏置,集电结反向偏置1.三极管各电极上的电流分配【原理】载流子的特殊运动(NPN):发射区向基区扩散电子;电子在基区的扩散和复合;集电区收集电子【电流放大作用】⑴l c I B且I C I B;(2)I E I C I BP 集电区N 集电区c基討基1kP F发射stB Lx r N 发肘区B O--樂电绪E占发射根、发射酪?C(1)三极管的电流放大作用,实质上是用较小的基极电流信号 控制集电极的大电流信号,是“以小控大”的作用。

(2要使三极管起放大作用,必须保证发射结加正向偏置电 压,集电结加反向偏置电压。

2、三极管的基本连接方式1).共发射极电路(CE :把三极管的发射极作为公共端子<AoBo2).共基极电路(CB :把三极管的基极作为公共端子3).共集电极电路(CC :把三极管的集电极作为公共端子1.输入特性曲线输入特性:在U CE 1V 且为某定值时,加在三极管基极与发射极之间的电压V BE 和它产生的基极电流I B 之间的关系。

与二极管的正向伏 安特性曲线相似。

三、三极管的特性曲线4\ 4V03 VI(L7V -K0.7V-*)00放大饱和【制n测却故丸电塔申犬只品像管的直沆电僅摘上*图所杀.^HQ申厲出萱子* 并牛科現期它门矍睦骨还是當骨.解範步肆;⑴确定三械醫n于放大状花⑵确定三个电极(3)«定三械置为硅曹还是蜡管(4}确定为何种类型PNPJo PNP b!uw NPlScAis本课小结:三极管有硅管和锗管两种,硅管和锗管均有NPN型和PNP型两类。

三极管放大电路设计

三极管放大电路设计

实验名称 三极管放大电路设计日期 姓名专业一、实验目的(详细指明输入输出)1、深入研究三极管单级放大器的工作原理,学会选取相应参数的元件设计并制作电路 。

2、掌握三极管单级放大器的静态工作点的调试方法,探讨三极管单级放大器的输入输出变化后的频率响应 ,学会用示波器等工具测量相关参数。

3、设计出能够实现不失真稳定的放大, 满足3dB 带宽10Hz~1MHz ,增益≥20dB ,输出幅值≥10Vpp ,采用单电源供电的三极管放大电路。

二、实验原理(详细写出理论计算、理论电路分析过程)实验电路如下图所示,三极管s8050的β=252.由于IB 非常小,所以在计算时可认为其近似等于0 基极电压:VBQ = Rb2/(Rb1+Rb2)*VCC射极电压:VEQ = VBQ-VBE ;射极电流:IEQ = VE/Re集电极电流:ICQ ≈ IEQ ;集电极电压:VCQ = VCC-ICQ*Rc 基极电流:IBQ = IE/(1+β) 电路放大倍数:Au = RC/Re因为实验要求:输出幅值≥10Vpp ,3dB 带宽10Hz~1MHz ,所以本实验中假定Vce =8V ,Ie=15mA, 则Rc+Re=466Ω为了满足增益≥20dB ,则取Re=36Ω,Rc=430Ω。

则B 点电位为1.3V ,取RB2=2.4K Ω,RB1=24K Ω。

该电路利用电阻R b1、R b2的分压固定基极电位VBQ 。

如果满足条件I1>>IB ,当温度升高时,ICQ ↑→VEQ ↑→VBE ↓→IBQ ↓→ICQ ↓,结果抑制了ICQ 的变化,从而获得稳定的静态工作点。

由于有电容器的存在,该电路受频率的影响。

电容的容量越大,频率较低时电容的阻抗越小。

22uF 22uF V i R e 36ΩR c 430ΩRb2 2.4k Ω R b1 24k Ω V 0 +18VIN OUT三、实验过程(记录实验流程,提炼关键步骤)a)通过查阅资料,选定s8050三极管进行放大电路设计,利用multisim仿真软件进行仿真设计,并进行参数修改,设计电路图如图所示:b)按照电路原理图焊接电路板。

三极管及放大电路基础教案

三极管及放大电路基础教案

三极管及放大电路基础教案一、教学目标:1.了解三极管的基本概念和结构;2.掌握三极管的工作原理;3.掌握三极管的基本参数和测量方法;4.理解放大电路的基本原理。

二、教学内容:1.三极管的概念和结构;2.三极管的工作原理;3.三极管的基本参数和测量方法;4.放大电路的基本原理;5.放大电路中的三极管应用。

三、教学重点:1.三极管的工作原理;2.三极管的基本参数和测量方法;3.放大电路的基本原理。

四、教学难点:1.三极管的工作原理;2.放大电路的基本原理。

五、教学过程:(一)导入新知识(5分钟)1.引入放大电路的概念;2.提问:你们知道什么是放大电路吗?3.学生回答。

(二)学习三极管的概念和结构(15分钟)1.展示三极管的实物图,并简要介绍其结构;2.学生观察三极管,了解其结构;3.解释三极管的引脚功能。

(三)学习三极管的工作原理(20分钟)1.展示三极管的工作原理原理图;2.以NPN型三极管为例,介绍其工作原理;3.以电流流动的方式讲解三极管的工作过程。

(四)学习三极管的基本参数和测量方法(20分钟)1.介绍三极管的常见参数,如放大倍数、输出电阻等;2.讲解如何测量三极管的放大倍数和输入、输出电阻;3.展示测量三极管参数的仪器,实际操作演示。

(五)学习放大电路的基本原理(15分钟)1.介绍放大电路的基本组成,包括输入端、输出端和放大电路;2.讲解放大电路的基本工作原理;3.展示一种常见的放大电路,如共射放大电路,并通过示意图进行讲解。

(六)了解放大电路中的三极管应用(20分钟)1.介绍三种常见的放大电路:共射放大电路、共基放大电路和共集放大电路;2.分别讲解三种放大电路的特点和应用;3.学生思考并回答:你认为在哪些场合下可以使用这些电路?(七)小结与反思(5分钟)1.小结本节课学习的内容;2.提问:你掌握了这节课的重点吗?3.学生回答。

六、教学资源:1.三极管实物图;2.三极管工作原理原理图;3.测量三极管参数的仪器;4.放大电路示意图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三极管放大电路课程设计
(电子1202班杨云鹏 0121209330224)
参考资料:《晶体管电路设计》【日】铃木雅臣著
《电子设计从零开始》
9013的相关介绍:
9013是一种NPN型硅小功率的三极管它是非常常见的晶体三极管,在收音机以及各种放大电路中经常看到它,应用范围很广,它是NPN型小功率三极管. 主要
用于低频放大与电子开关。

参数:
结构 NPN 材料与极性:SI-NPN 引脚:1 发射极2 基极3 集电
极。

集电极发射极电压25V; 集电极基极电压45V ;发射极基极电压
5V ;集电极电流Ic Max 0.5A; 耗散功率0.625W ;工作温度-55℃
+150℃;特征频率150MHz。

课题要求:设计电压放大倍数为100倍的三极管放大电路;并且能够带动8欧和4千欧的负载。

电路设计:用2个9013三极管和一个8050pnp型三极管,前一个作为共射放大电路,放大倍数为50dB,但空载时输出电阻太大,无法带动负载为8欧的喇叭,所以后面加一个推挽型射极跟随器,不会降低放大倍数,但可使空载时输出电阻变的很小一般为几欧到十几欧,可带动8欧的喇叭。

电路设计图:
电路仿真输入输出波形:
实际测量:
Vce 2.563 0.123 11.6 Vbe 0.462 0.484 0.368
Ic 1.187 1.698 4.5*10-7 状态稳定波形截止失真无增益
出现故障及解决方法
1,在仿真的时候,出现了输出信号饱和失真和截止失真、增益不够、波形变形以及不能带动小负载的现象。

解决方法:通过改变rc与re以及偏执电阻的阻值来不断的计算和调整,并加上了推挽式跟随器。

最终得到了符合的波形
总结
在设计这次的BJT放大电路的过程中,我较熟练地运用了模电中的三极管放大,射极跟随器,推挽型射极跟随器以及差分放大电路和负反馈等知识。

但是设计出的实物与实验要求相比还有比较大的差距。

4千欧负载时三极管放大增益较符合,但是8欧的负载时信号衰减过大,不能符合设计要求。

在不断地探索与试验中更深的理解了三极管放大电路中各电阻阻值变化对增益的影响。

在今后学习中需再接再厉,并吸取这次的经验与教训。

相关文档
最新文档