梁的剪力和弯矩

合集下载

梁的剪力和弯矩剪力图和弯矩图课件

梁的剪力和弯矩剪力图和弯矩图课件
静力平衡条件的意义
静力平衡条件是物体受力分析的基本依据,通过它我们可以 分析物体在受到外力作用时的运动状态,并计算出物体所受 到的合力。
梁的剪力和弯矩的静力平衡条件的推导和应用
梁的剪力和弯矩的静力平衡条件的推导
在梁的受力分析中,我们可以通过对梁进行截面切开、移除切块并代之以作用相 反的力等步骤,得到梁的内力——剪力和弯矩。当梁处于静力平衡状态时,其剪 力和弯矩也必须满足一定的平衡条件。
梁的剪力和弯矩剪力图和弯矩 图课件

CONTENCT

• 引言 • 梁的剪力分析 • 梁的弯矩分析 • 梁的剪力和弯矩组合分析 • 梁的剪力和弯矩的静力平衡条件 • 梁的剪力和弯矩的相互作用和影响
01
引言
课程背景
建筑力学是建筑设计和施工的重要基础,而梁的剪力和弯矩是建 筑力学中的重要概念。
通过学习梁的剪力和弯矩,可以更好地理解建筑结构的设计和施 工方法。
梁的剪力和弯矩的静力平衡条件的应用
通过应用静力平衡条件,我们可以分析梁在受到外力作用时的剪力和弯矩,进而 计算出梁的应力、应变等物理量,为结构设计提供依据。
梁的剪力和弯矩的静力平衡条件的应用实例
简支梁受垂直均布荷载作用
对于简支梁受垂直均布荷载作用的情况,通过应用静力平衡条件,我们可以得到梁的剪力图和弯矩图,并计算出 梁的最大剪力和最大弯矩。
简单梁分析
以简单梁为例,说明如何进行剪力和弯矩的组合分析。
复杂梁分析
通过有限元模型,对复杂梁进行剪力和弯矩的组合分析,讨论各种因素对梁内 力的影响。
05
梁的剪力和弯矩的静力平衡条件
静力平衡条件的概念和意义
静力平衡条件的概念
静力平衡条件是指物体在受到外力作用时,如果处于静止状 态,则物体内部的力也处于平衡状态,即所有作用在物体上 的外力矢量和为零。

梁的剪力和弯矩剪力图和弯矩图

梁的剪力和弯矩剪力图和弯矩图

2、计算1-1 截面旳内力 FA
3、计算2-2 截面旳内力
M2
F=8kN
FS1
M1 FS1 FA F 7kN M1 FA 2 F (2 1.5) 26kN m
q=12kN/m
FS2
FB
FS2 q 1.5 FB 11kN
M2
FB
1.5 q 1.5 1.5 2
30kN m
2
1
例题
求下图所示简支梁1-1与2-2截面旳剪力和弯矩。
F=8kN
q=12kN/m
A 2m
FA 1.5m
1 1 1.5m
2
B
2
1.5m
3m
FB
解: 1、求支反力
3 M B 0 FA 6 F 4.5 q 3 2 0 FA 15kN
Fy 0 FA FB F q 3 0 FB 29kN
梁任意横截面上旳剪力,等于作用在该截面左边 (或右边)梁上全部横向外力旳代数和。截面左 边向上旳外力(右边向下旳外力)使截面产生正旳 剪力,反之相反。【左上右下为正,反之为负】 梁任意横截面上旳弯矩,等于作用在该截面左 边(或右边)全部外力(涉及外力偶)对该截面 形心之矩旳代数和。截面左边(或右边)向上旳 外力使截面产生正弯矩,反之相反。【左顺右逆 为正,反之为负】
一、梁平面弯曲旳概念
1、平面弯曲旳概念
弯曲变形:作用于杆件上旳外力垂直于杆件旳轴线,使 杆旳轴线由直线变为曲线。
平面弯曲:梁旳外载荷都作用在纵向对称面内时,则梁旳轴 线在纵向对称面内弯曲成一条平面曲线。
q F
Me 纵 向
对称面
B
A
x
y FAy
FBy
以弯曲变形为主旳直杆称为直梁,简称梁。 平面弯曲是弯曲变形旳一种特殊形式。

简单剪力和弯矩的计算公式

简单剪力和弯矩的计算公式

简单剪力和弯矩的计算公式在工程力学中,剪力和弯矩是两个非常重要的概念,它们在结构设计和分析中起着至关重要的作用。

剪力是指作用在梁或构件上的横向力,而弯矩则是指作用在梁或构件上的扭转力。

在工程实践中,我们经常需要计算剪力和弯矩的数值,以便确定结构的受力情况和设计合适的结构尺寸。

在本文中,我们将介绍简单剪力和弯矩的计算公式,帮助读者更好地理解这两个概念。

1. 剪力的计算公式。

剪力是指作用在梁或构件上的横向力,它可以通过以下公式进行计算:V = dM/dx。

其中,V表示剪力的大小,M表示弯矩,x表示距离。

这个公式表明,剪力的大小与弯矩的变化率成正比,当弯矩发生变化时,剪力也会随之发生变化。

这个公式可以帮助我们在实际工程中计算剪力的大小,从而确定结构的受力情况。

2. 弯矩的计算公式。

弯矩是指作用在梁或构件上的扭转力,它可以通过以下公式进行计算:M = F d。

其中,M表示弯矩的大小,F表示作用在梁或构件上的力,d表示力的作用距离。

这个公式表明,弯矩的大小与作用力的大小和作用距离成正比,当作用力或作用距离发生变化时,弯矩也会随之发生变化。

这个公式可以帮助我们在实际工程中计算弯矩的大小,从而确定结构的受力情况。

3. 剪力和弯矩的关系。

剪力和弯矩是结构受力分析中的两个重要概念,它们之间存在着密切的关系。

在梁或构件上受到外力作用时,会产生剪力和弯矩。

剪力是作用在梁或构件上的横向力,而弯矩则是作用在梁或构件上的扭转力。

在实际工程中,我们需要通过计算剪力和弯矩的大小,来确定结构的受力情况和设计合适的结构尺寸。

4. 计算实例。

为了更好地理解剪力和弯矩的计算公式,我们可以通过一个简单的实例来进行说明。

假设有一根长度为2m的梁,受到作用力为10N的力,作用点距离梁的左端点1m处。

我们可以通过以下步骤来计算剪力和弯矩的大小:首先,根据弯矩的计算公式,可以得到弯矩的大小为:M = F d = 10N 1m = 10Nm。

然后,根据剪力的计算公式,可以得到剪力的大小为:V = dM/dx = d(10N)/dx = 10N。

梁的剪力图与弯矩

梁的剪力图与弯矩
梁的剪力图与弯矩
目录 CONTENT
• 梁的剪力与弯矩的基本概念 • 梁的剪力图 • 梁的弯矩图 • 剪力与弯矩的关系 • 梁的剪力与弯矩的实例分析
01
梁的剪力与弯矩的基本概 念
剪力与弯矩的定义
剪力
剪力是作用在梁上的垂直力,它 使梁产生剪切变形。剪力通常用 Q表示,单位为牛顿或千牛顿。
弯矩
弯矩是作用在梁上的力矩,它使 梁产生弯曲变形。弯矩通常用M 表示,单位为牛顿米或千牛顿米 。
在梁的跨中位置,剪力图的峰值最大,而在梁的 支座位置,剪力图的谷值最小。
随着梁上载荷的增加,剪力图的峰值逐渐增大, 谷值逐渐减小。
03
梁的弯矩图
弯矩图的绘制方法
1 2
截面法
通过分析梁在不同截面上的弯矩值,绘制出弯矩 图。
叠加法
将多个弯矩值叠加起来,绘制出弯矩图。
3
微分法
利用弯矩函数的微分性质,绘制出弯矩图。
剪力与弯矩的符号规定
剪力的正负号规定
在截面左侧上作用的剪力为正,反之 为负。
弯矩的正负号规定
在截面左侧上作用的弯矩为正,反之 为负。
剪力与弯矩的计算公式
剪力计算公式
Q = F * sinθ(F为作用在梁上的外力,θ为外力与梁轴线的夹角)。
弯矩计算公式
M = F * d / 2(F为作用在梁上的外力,d为梁的跨度)。
考察,从而为实际工程设计提供依据。
梁的剪力与弯矩的模拟计算
01
模拟计算是利用计算机软件对梁的剪力和弯矩进行数值模拟分 析的方法。通过模拟计算,可以快速得到梁在不同载荷条件下
的剪力和弯矩分布情况。
02
模拟计算可以采用不同的计算方法,如有限元法、有限差分法 和边界元法等。其中,有限元法是最常用的一种方法,能够考

剪力图和弯矩图

剪力图和弯矩图
FS(x)qx (0xl) M(x)1qx2 (0xl)
2 括号里的不等式说明对应的内力方程所使用的区段。
FS(x)qx (0xl) M(x)1qx2 (0xl)
2 剪力图为一斜直线
FS(0) 0 FS(l) ql
弯矩图为二次抛物线
M (0) 0 M ( l 2 ) 1 ql 2
8 M ( l ) 1 ql 2
绘剪力图和弯矩图的基本方法:首先分别写出梁 的剪力方程和弯矩方程,然后根据它们作图。
Fs(x)
o
x
o
x
Fs 图的坐标系
M(x) M 图的坐标系
不论在截面的 左侧 或 右侧 向上的外力均将引起 正值 的弯矩,而向下 的外力则引起 负值 的弯矩。
例题:图示简支梁 ,在全梁上受集度为 q 的均布荷载作用。 试作此梁的剪力图和弯矩图。
FS 称为 剪力
y
FA
m
C
A
xm
FS x
由平衡方程
a
P
m
m C0
MFAx0
A
B
m
可得 M = FAx
x
内力偶 M 称为 弯矩
y
FA
m FS
C
x
A
xm
M
结论
a
P
m
梁在弯曲变形时,
横截面上的内力有
A
B
两个,即,
m x
剪力 FS 弯矩 M
y
FA
m FS
C
x
A
xm
M
取右段梁为研究对象。
y
FA
m FS
-
FS FS
dx
(2)弯矩符号 横截面上的弯矩使考虑的脱离体下边受拉,上边受压时为 正 。

梁的内力——剪力和弯矩

梁的内力——剪力和弯矩

上的内力来代替,如图4-7(b)所示。根据静力平衡条件,在
截面m-m上必然存在着一个沿截面方向的内力FS。由平衡方程
∑Y=0
FA-FS=0
得 FS=FA
FS称为剪力,它是横截面上分布内力系在截面方向的合力。
由图4-7(b)中可以看出,剪力FS和支座反力 FA组成了一个力偶,因而,在横截面m-m上还 必然存在着一个内力偶M与之平衡,由平衡方
∑Y=0 FB-FS3=0
∑MO=0 FB×1m-M3=0
FS3=-FB=-10kN
M3=FB×1m=10kN·m
计算结果明,FS3的实际方向与假设的相反,为 负剪力;M3为正弯矩。 从上述例题中可以总结出如下规律:
1) 梁的任一横截面上的剪力,在数值上等于 该截面左边(或右边)梁上所有外力在截面方 向投影的代数和。截面左边梁上向上的外力或 右边梁上向下的外力在该截面方向上的投影为 正,反之为负。
图4-7
为了使无论取左段梁还是右段梁得到的同一截面上的FS和M不仅 大小相等,而且正负号一致,需要根据梁的变形来规定FS和M的 符号。
1 剪力的符号规定
梁截面上的剪力对所取梁段内任一点的矩为顺时针方向转动时为 正,反之为负,如图4-8(a)所示。
2 弯矩的符号规定 梁截面上的弯矩使所取梁段上部受压、下部受拉时为正,反之为 负,如图4-8(b)所示。 根据上述正负号的规定,在图4-7(b)、(c)两种情况中,横 截面m-m上的剪力FS和弯矩M均为正。

∑MO=0
M-FAx=0
得 M=FAx
M称为弯矩,它是横截面上分布内力系的合力
偶矩。
1.2剪力和弯矩的符号规定
在上面的讨论中,如果取右段梁为研究对象,同样也可求得横截 面m-m上的剪力FS和弯矩M,如图4-7(c)所示。但是,根据 力的作用与反作用定律,取左段梁与右段梁作为研究对象求得的 剪力FS和弯矩M虽然大小相等,但方向相反。

第四章梁的内力——剪力和弯矩

第四章梁的内力——剪力和弯矩

图4-4 梁的类型
这三种梁的共同特点是支座反力仅有三个,可由静力平衡 条件全部求得,故也称为静定梁。
§4.2 梁的内力——剪力和弯矩
2.1 截面法求梁的内力
求梁任一截面内力采用截面法 。
P m
A n
YA ()
QM
c
P
YA
M
c
() Q
()
在切开的截面m-n上必
B
然存在两个内力分量: YB 内力Q和内力偶矩M。
P
A
(a)
B C
YA
YA
解 (1)求支座反力
pb
l
(b)

MB 0
求图 得YA

Pbpla l

M A (c)0
求图 得YB

Pa l
pab
l
图4-10 例题4-3图
(2)分段列剪力方程和弯矩方程
由于C处作用有集中力P,AC和CB两段梁的剪力方程和弯 矩方程并不相同。因此,必须分别列出各段的剪力方程和 弯矩方程:
二阶导数的几何意义是图形斜率的变化率即图形的凸凹 向。弯矩图上一点处的凸凹方向可由梁上该点处荷载集
度q(x)符号来决定。
表4-1 梁的荷载,剪力图,弯矩图相互关系

q=0
载 (无分布荷载梁段)
q>0 q<0
(均布荷载梁段)
集中力 作用处( 点)
P C
集中力偶 作用处( 点)
m C
Q图
水平线
M图
(3)支座简化——主要简化为以下三种典型支座:
(a)活动铰支座(或辊轴支座),这种支座只限制梁在 沿垂直于支承平面方向的位移,其支座反力过铰心且垂直 于支承面,用YA表示。

材料力学第五章梁的剪力图与弯矩图

材料力学第五章梁的剪力图与弯矩图

29

§5-3
剪力和弯矩及其方程
为了建立剪力方程和弯矩方程,必须首先 建立Oxy坐标系。其中O为坐标原点,x坐 标轴与梁的轴线一致,坐标原点O一般取 在梁的左端,x坐标轴的正方向自左向右, y坐标轴铅垂向上。
30

§5-3
剪力和弯矩及其方程
建立剪力方程和弯矩方程,需要根据梁上的外 力(包括载荷和约束力)作用状况,确定控制 面,从而确定要不要分段,以及分几段建立剪 力方程和弯矩方程。
FBy
F 0 M 0
y A
FAy FBy 2F
FSE O FAy ME
FBy
F 5F FAy 3 3
分析右段得到:
FBy
O
ME FSE
F
FBy
y
0
FSE FBy 0
M
o
0
3a M E FBy Fa 2
27

§5-3 剪力和弯矩及其方程
F FBy 3
3、平面弯曲(对称弯曲):若梁上所有外力都作用在纵向对称面内,
梁变形后轴线形成的曲线也在该平面内的弯曲。
4、非对称弯曲:若梁不具有纵向对称面,或梁有纵向对称面上但外力
并不作用在纵向对称面内的弯曲。
13
工程实际中的弯曲问题简图
P
P P P
P P P
P
14
平面弯曲
•具有纵向对称面 •外力都作用在此面内 •弯曲变形后轴线变成对称面内的平面曲线
M M M
M
弯矩为正
弯矩为负
22
梁的控制面
集中力作用点两侧的截面
集中力偶作用点两侧的截面 集度相同的均布载荷起点和终点截面处
23

梁的剪力和弯矩

梁的剪力和弯矩
在集中荷载作用处的左,右 两侧截面上剪力值(图)有突变, 突变值等于集中荷载F. 弯矩图 形成尖角, 该处弯矩值最大. FRA
(Internal forces in beams)
FRA
A E c a
F1
C
F2
D F d
FSF
B MF F d
FRB
B
b
l
计算F 横截面处的剪力FSF 和弯矩 MF .
F 0, M 0,
y F
FSF FRB 0 M F FRB d 0
解得:
FSF FRB
FRA = 4kN FRB = - 4kN (2)求1-1截面的内力
A 1 1m C
FRB
B
FS 1 FSC左 FRA 4kN
2.5m
M 1 M C左 FRA 1 4kN m
(3)求 2-2 截面的内力
M
1 C
13
FS 2 FSC右 FRB ( 4) x) x ( 0 x a ) ( 2) l Fa M ( x) ( l x ) ( a x l ) ( 4) l
由(2),(4)式可知,AC、 CB 两段梁的弯矩图各是一条斜直线.
Fb l
+
Fa l
+
Fba l 23
(Internal forces in beams)
一、剪力方程和弯矩方程 (Shear- force & bendingmoment equations)
用函数关系表示沿梁轴线各横截面上剪力和弯矩的变化规律, 分别称作剪力方程和弯矩方程. 1.剪力方程(Shear- force equation) FS= FS(x) M= M(x)

梁弯曲时横截面上的内力剪力和弯矩

梁弯曲时横截面上的内力剪力和弯矩
梁各指定截面的剪力和弯矩。
解 (1)求梁支座的约束力
取整个梁为研究对象,画受力图列平衡方程求解得
1 23 45
M
D
1
A
C
FAM 5 C
B
a △ △ C△ △
FB
2a
2a 2a
图7-5
∑MB( F )=0
-FA×4a-MC+q×2a×5a=0
7qa

FA= 4
∑Fy=0 FB+FA-q×2a=0
qa

FB= 4
(2)求各指定截面上的剪力和弯矩
1-1截面:由1-1截面左段梁上外力的代数和求得该截面的
剪力为
FQ1= -qa
由1-1截面左段梁上外力对截面形心力矩的代数和求得该
截面的弯矩为
M
1
qa
a 2
qa2 2
2-2截面: 取2-2截面左段梁计算,得
FQ2 q 2a 2qa
M 2 q 2a a 2qa2
M
5
F B
2a
qa2 2
由以上计算结果可以看出:
1) 集中力作用处的两侧临近截面上的弯矩相同,但剪力
不同,说明剪力在集中力作用下,产生了突变,突变的幅值
等于集中力的大小。 2)集中力偶作用处的两侧临近截面上的剪力相同,说明
弯矩在集中力偶作用下的作用截面上和集中力偶的作用截面上剪
左侧面
梁段
右侧面 左侧面
FQ
FQ
FQ
dx a)
左侧面
右侧面 左侧面
M
M
M
dx b)
图7-4
取负号。取右段梁
右侧面
FQ
为研究对象时,向
dx

梁的剪力、弯矩方程和剪力、弯矩图

梁的剪力、弯矩方程和剪力、弯矩图

5.4.1 梁的剪力、弯矩方程和剪力、弯矩图梁在外力作用下,各个截面上的剪力和弯矩一般是不相等的。

若以横坐标表示横截面沿梁轴线的位置,则剪力Q 和弯矩M 可以表示为坐标的函数,即它们分别称为梁的剪力方程和弯矩方程。

与绘制轴力图或扭矩图一样,可用图线表明梁的各截面上剪力和弯矩沿梁轴线的变化情况。

作图时,取平行于梁轴线的直线为横坐标轴,值表示各截面的位置;以纵坐标表示相应截面上的剪力、弯矩的大小及其正负,这种表示梁在各截面上剪力和弯矩的图形,称为剪力图和弯矩图。

例5-1 简支梁AB 承受承受均布荷载作用,如图 5 - 10a 所示。

试列出剪力方程和弯矩方程,并绘制剪力图和弯矩图。

图5-10解:(1) 计算支反力以整梁为研究对象,利用平衡条件计算支反力。

由于简支梁上的载荷对于跨度中央截面是对称的,所以 A 、 B 两端的支反力应相等,即(1)方向如图。

(2) 建立剪力、弯矩方程以梁左端A 为的坐标原点,取坐标为的任意横截面的左侧梁段为研究对象。

设截面上的剪力Q () 、弯矩M () 皆为正,如图5-10b 所示。

由平衡方程将(1) 式代入上面两式,解得( 2 )( 3 )(2) 、(3) 两式分别为剪力方程和弯矩方程。

(3) 绘制剪力图、弯矩图由式(2) 可知,剪力图为一直线。

只需算出任意两个截面的剪力值,如A 、B 两截面的剪力,即可作出剪力图,如图5 - 10c 所示。

由式(3) 可知,弯矩图为一抛物线,需要算出多个截面的弯矩值,才能作出曲线。

例如计算下列五个截面的弯矩值:当时, M =0 ;当时,;当时,。

由此作出的弯矩图,如图5-10d 所示。

由剪力图和弯矩图可知,在靠近A 、B 支座的横截面上剪力的绝对值最大,其值为在梁的中央截面上,剪力Q =0 ,弯矩为最大,其值为例5-2 简支梁AB 承受集中力偶M0作用,如图 5 - 11a 所示。

试作梁的剪力图、弯矩图。

图5-11解:(1) 计算支反力由平衡方程分别算得支反力为反力R A的方向如图,R B为负值,表示其方向与图 5 - 11a 中假设的方向相反。

弯矩和剪力的关系

弯矩和剪力的关系

弯矩和剪力的关系弯矩和剪力是结构力学中两个重要的概念,它们在工程设计和结构分析中起着至关重要的作用。

本文将从理论和实践两个方面,详细介绍弯矩和剪力之间的关系。

我们先来了解一下什么是弯矩和剪力。

弯矩是指在杆件或梁上,由于外力或载荷的作用,使得截面上的材料产生弯曲变形所产生的力矩。

而剪力是指作用在截面上的垂直于该截面的力,用来抵抗杆件或梁在垂直于截面方向上的剪切应力。

弯矩和剪力之间的关系可以通过结构力学的基本原理来推导。

在理论上,可以通过对杆件或梁进行受力分析和弹性力学的基本公式,得出弯矩和剪力之间的关系。

具体来说,对于一根梁,可以通过受力平衡和几何关系,得到弯矩和剪力的关系方程。

在实际工程中,为了计算和分析结构的强度和稳定性,常常需要求解弯矩和剪力的数值。

这可以通过使用结构分析软件、数值计算方法或者进行实验测试来实现。

在设计和施工过程中,准确计算和控制弯矩和剪力的大小,对保证结构的安全和可靠性至关重要。

弯矩和剪力之间的关系在结构设计和分析中有着重要的应用。

首先,它们可以用来确定结构的截面尺寸和材料强度。

在设计阶段,根据结构的受力情况和要求,可以通过计算弯矩和剪力的大小,来选择合适的截面形状和材料。

其次,弯矩和剪力还可以用来评估结构的安全性和可靠性。

通过对弯矩和剪力进行分析和比较,可以判断结构是否满足设计要求,是否需要进行加固或调整。

此外,弯矩和剪力还可以用来确定结构的变形和挠度。

在结构分析中,通过计算弯矩和剪力的分布,可以得到结构的变形和挠度情况,从而进行结构的优化和调整。

需要注意的是,弯矩和剪力在结构中的分布是不均匀的。

在梁上,通常会出现最大弯矩和最大剪力的情况。

这是由于外力或载荷的作用位置和大小不同,导致截面上的应力分布不均匀。

因此,在结构设计和分析中,需要合理考虑和控制最大弯矩和最大剪力的位置和数值。

弯矩和剪力是结构力学中重要的概念,它们之间存在着密切的关系。

通过理论分析和实践应用,可以计算和控制弯矩和剪力的大小,用来评估结构的安全性和可靠性,确定结构的截面和材料,以及分析结构的变形和挠度。

梁的内力——剪力与弯矩

梁的内力——剪力与弯矩

(b)
(a)
(c)
图5-6
由 MO 0 ,得
M F1(x a) FAx 0
M FAx F1(x a) M 称为横截面 m m 上的弯矩,它有使梁的横截面 m m 产生转动而使梁弯 曲的趋势,是与横截面垂直的分布内力系的合力偶矩。剪力 FS 与弯矩 M 是 平面弯曲时梁横截面上的两种内力。
材料力学
由平衡方程 Fy 0 ,得
FA F1 FS 0 FS FA F1
FS 称为横截面 m m 上的剪力。剪力 FS 有使 梁沿横截面 m m 被剪断的趋势,是与横截面 相切的分布内力系的合力。若把左部分上的所
有外力和内力对截面 m m 的形心 O 取矩,其 力矩总和应等于零。
当保留右部分时,如图 5-6(c)所示,同样可以求得剪力 FS 与弯矩 M 。 剪力 FS 与弯矩 M 是截面左、右两部分间的相互作用力。因此,作用于左、 右两部分上的剪力 FS 与弯矩 M 大小相等、方向相反。
计算剪力 FS 和弯矩 M 时应注意其正负号规定。
(a)
(b) 图5-7
(c)
(d)
剪力的正、负号规定为:凡使一微段梁发生左侧截面向上、右侧截面向 下相对错动的剪力为正,亦可规定为:凡作用在截面左侧向上的外力或作用 在截面右侧向下的外力,将使该截面产生正的剪力。简单概括为“左上或右 下,剪力为正,反之为负”。
(3)求 2 2 截面上的剪力 FS2 、弯矩 M2 。根据 2 2 截面右侧的外力来 计算,可得
FS2 (q 1.5 m) FB (121.5 29) kN 11 kN
M2
(q
1.5
m)
1.5 2
m
FB
1.5
m
30
kN

工程力学梁的剪力和弯矩 剪力图和弯矩图

工程力学梁的剪力和弯矩 剪力图和弯矩图

梁的剪力和弯矩 剪力图和弯矩图1、 剪力和弯矩剪力:沿截面切线方向的内力F S 称为剪力,剪力符号规定为:截面上的剪力如果有使考虑的脱离体有顺时针转动的趋势则为正,反之为负(图9-2)。

弯矩:作用面垂直于横截面的内力偶矩M 称为弯矩,弯矩符号规定为截面上的弯矩如果使考虑的脱离体向下凸(或者说使梁下边受拉,上边受压)为正,反之为负(图9-3)。

2、 列方程作梁的剪力图和弯矩图。

剪力方程和弯矩方程可以表示剪力和弯矩随横截面位置变化的规律。

)(S S x F F =和 )(x M M = (9-1)剪力图和弯矩图是将剪力和弯矩随横截面位置变化情况用图形表示出来。

在载荷无突变的一段杆的各截面上内力按相同的规律变化,各段的分界点为各段梁的控制截面,必须分段列出梁的剪力方程和弯矩方程。

列方程作梁的剪力图和弯矩图的步骤为:(1)、求支座反力; (2)、确定坐标原点,分段列剪力方程和弯矩方程; (3)、计算控制点处的剪力值和弯矩值,标注在图上; (4)、根据各段的剪力方程和弯矩方程作剪力图和弯矩图,并说明剪力和弯矩的最大值。

3、利用弯矩、剪力、荷载集度之间的关系作梁的剪力图和弯矩图。

弯矩、剪力、荷载集度之间的微分关系为)(d )(d S x q x x F =, )(d )(d S x F x x M =,)(d )(d 22x q x x M = (9−2) 剪力图和弯矩图的规律为表9−1梁上的外力情况 剪力图上的特征弯矩图上的特征弯矩极值所在截面的可能位置水平线段直线段FF FF(a)(b)图9−2MMMM(a)(b)图9−3无外力段 ()()0d d S ==x q xx F ()()常数d d S ==x F xx M q (x )=常数向下的均布荷载 向下方倾斜的直线段()()0d d S <=x q xx F 下凸的二次抛物线()()0d d 22<=x q xx M 在F S =0的截面上q (x )=常数向上的均布荷载 向上方倾斜的直线段()()0d d S >=x q xx F 上凸的二次抛物线()()0d d 22>=x q x x M 在F S =0的截面上F 作用处发生突变,突变值等于FF 作用处发生转折在左右剪力具有不同正负号的截面上集中力偶在M e 作用处无变化M e 作用处发生突变,突变值等于M e在紧靠集中力偶作用处的某一侧截面上利用弯矩、剪力、荷载集度之间的关系作梁的剪力图和弯矩图的步骤为: (1)、求支座反力; (2)、计算控制点处的剪力值和弯矩值,标注在图上; (3)、根据弯矩、剪力、荷载集度之间的关系作剪力图和弯矩图,并标出剪力和弯矩的最大值。

梁的剪力和弯矩概念讲解(剪力图弯矩图,含例题)

梁的剪力和弯矩概念讲解(剪力图弯矩图,含例题)
10kN m
X2
40 kN m
A
35kN
B
FS x1 20kN
M x1 20 x1
0 x1 1 0 x1 1
1m
15
4m
2.5
25kN
FS x2 25 10 x2
25
2 x2 M x2 25 x2 10 2
20
20
kN
0 x2 4
F=8kN
2、计算1-1
截面的内力 F A
3、计算2-2
FS1
q=12kN/m
M 1 F F F 7kN S1 A M1 FA 2 F (2 1.5) 26kN m
FS2 q 1.5 FB 11kN
FB
截面的内力
M2
FS2
M 2 FB 1.5 q 1.5
M >0
M<0
剪力:使脱离体有顺时针转动趋势的剪力为正,反之为负; 弯矩:使脱离体产生向下凸变形的弯矩为正,反之为负。
6.2
例 题
试确定截面C及截面D上的剪力和弯矩
2 Fl
F
A
l
FCs
C
l
D
B
截面法求解
2 Fl
D
FCs F
C截面
F
B
M C Fl
FDs F
MC C
FDs
MD
D

l
F
B
D截面
2q1 x FA 2 x
x
l 2m a 0 .6 m
2 l a M C FA l a q
2
0
2q1 x 1.4 2 1.4 q 0 2 x 2

4 梁的内力-剪力和弯矩

4  梁的内力-剪力和弯矩

FSA右
YA FSA右 0 qa 2 M A右 0
3 FSA右 YA qa 2 M A右 qa 2
YA
Y 0
FSB左
YA FSB左 0
3 FSB左 YA 2 qa M 1 qa 2 B左 2
M B 0 qa 2 YAa M B左 0
qa 2
(2)计算各截面内力 A
a YA A
qa
2
B
q C a YB
3 Y A qa 2 5 YB qa 2
MB左 B a
MB右 B
q
C
a FSB左 FSB右
Y 0
FSB右 qa 0 2
YA
A
2
A
B
3 Y A 2 qa (负号表明力方向与标注相反) 5 YB qa 2
qa 2
(2)计算各截面内力 A
a A右截面 YA
qa MA右
2
B
q C a YB
3 Y A qa 2 5 YB qa 2
A
qa
2
MB左 B a
A
YA
Y 0 MA 0
剪力:与横截面相切的 内力FS 称为横截面I―I 上的剪力。 弯矩:内力偶矩称为横 截面I―I上的弯矩。
FS
FS
剪力、弯矩的正负号规定:使梁产生顺时针转动的 剪力规定为正,反之为负;使梁的下部产生拉伸而 上部产生压缩的弯矩规定为正,反之为负。
FS
FS
FS
FS
【例题4.1】 外伸梁如图所示, 已知均布荷载q 和集 中 力 偶 M =qa2, 求指定截面1—1、2—2、3—3 的内 力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F=4KN 1 A 1 B C 2 q=2KN/m
2
2m
2m
1m
(1)求支座反力:FAy=_________FNB=_________。 (2)计算 1—1 截面的剪力和弯矩取左段为研究对象,列平衡方程:
由∑Fy=0,________________________,得 FS1=_________; 由∑M1=0,_________________________________,得M1=_________。 (3)计算 2—2 截面的剪力和弯矩 FS2=_________;M2=_________。
A
m
B
x
F
Ay
FNB
y
m
C
FS
x
A
x
m
F
Ay
a
m
P
与横截面相切的内力 FS , 称为 剪力
A
m
B
x
内力偶矩 M 称为 弯矩
F
Ay
FNB
y
m C
FS
x
A
F
Ay
x
m
M
用截面法计算剪力和弯矩
• 用截面法计算内力的步骤:
(1)计算支座反力。 (2)用截面假想地在欲求内力处将梁截成两段,取其中一段为研究对象。
§6-2
用截面法计算指定截面的内力
2017年3月27日
学习重点、难点:
重、难点:用截面法计算指定截面的内力。
§6-2 剪力和弯矩
复习回顾:剪力和弯矩的概念 如图所示,一简支梁,在荷载F及支座反力FAy、FNB的作用下处 于平衡状态。
a
F
A
F
B
Ay
FNB
a
m
F
与横截面相切的内力 FS , 称为 剪力
F
Ay
42 KN
(),
F
NB
24 KN
()
例题6-1:简支梁如图所示,试计算截面1-1上的剪力和弯矩。
F1=40KN F2=26KN
A
1m
1 1
B
FAy A FAy
1m
2m
2m
FNB
F1=40KN
1 1
M1

FS1
(2)计算截面1-1上的内力。取左段为研究对象: 由∑Fy=0,FAy-F1-FS1=0 得 由∑M1=0,-FAy×2m+F1×1m+M1=0 得 M1=FAy×2m -F1×1m =44KN•m FS1=FAy-F1 =2KN
若取右段为研究对象:
F1=40KN F2=26KN
A
1m
1 1
B
FAy
1m
2m
2m
FNB
26KN
1
M1 FS1
1
解:求支座反力,取整体为研究对象
FNB
列平衡方程: 由∑Fy=0,FS1-F2+FNB=0
由∑M1=0,FNB×4m-F2×2m-M1=0
得 FS1=2KN 得M1=44KN•m
课堂练习:试计算图示梁上指定两个截面的剪力FS及弯矩M。
“切开”
(3)画出研究对象的受力图。保留一切外力,用未知内力代替弃去部分对 研究对象的作用,内力的方向先假设为正号。 “代替” (4)建立平衡方程,求解内力。 “平衡”
例题6-1:简支梁如图所示,试计算截面1-1上的剪力和弯矩。
F1=40KN F2=26KN
A
1m
1 1
B

FAy
1m
2m
2m
FNB
解:(1)求支座反力。假设FAy,FNB方向向上,取整体为研 究对象,列平衡方程。
小结
用截面法计算剪力和弯矩。 1. 计算支座反力。 2. “切开”。 3. “代替”。 4. “平衡”。
作业:P140 6-1(a)(b)
相关文档
最新文档