不同坐标系之间的变换

合集下载

常用坐标系及其间的转换

常用坐标系及其间的转换
9
将式(1.4)中之φ0、 α0 分别用 B0、 A0 代替。即可得到。
3. 发射坐标系与箭体坐标系间的欧拉角及方向余弦阵 这两个坐标系的关系用以反映箭体相对于发射坐标系的姿态角。为使一般一状态下
这两坐标系转至相应轴平行,现采用下列转动顺序:先绕 oz 轴正向转动ϕ 角,然后绕
新的 y′ 轴正向转动ψ 角,最后绕新的 x1 轴正向转γ 角。两坐标系的欧拉角关系如图 1.4
用该坐标系与其它坐标系的关系反映出火箭的飞行速度矢量状态。
1.1.2 坐标系间转换
1. 地心惯性坐标系与地心坐标之间的方向余弦阵
由定义可知这两坐标系的 oE ZI , oE ZE 是重合的,而 oE X I 指向平春分点 oE X E 指
向所讨论的时刻格林威治天文台所在子午线一赤道的交点, oE X I 与 oE X E 的夹角要通
cosα0 cosλ0 + sinα0 sinφ0 sin λ0
cosα0 cosφ0 ⎤
sinφ0
⎥ ⎥
−sinα0 cosφ0 ⎦⎥
(1.4)
若将地球考虑为总地球椭球体,则发射点在椭球体上的位置可用经度 λ0 ,地理纬
度 B0 确定, ox 轴的方向则以射击方位角 A0 表示。这样两坐标系间的方向余弦阵只需
过天文年历年表查算得到,记该角为 ΩG ,显然,这两个坐标系之间仅存在一个欧拉角
ΩG ,因此不难写出两个坐标系的转换矩阵关系。
⎡XE⎤
⎡XI ⎤
⎢ ⎢
YE
⎥ ⎥
= EI
⎢ ⎢
YI
⎥ ⎥
(1.1)
⎢⎣ ZE ⎥⎦
⎢⎣ ZI ⎥⎦
其中
பைடு நூலகம்
⎡ cos ΩG sin ΩG 0⎤

直角坐标和极坐标的变换关系是什么

直角坐标和极坐标的变换关系是什么

直角坐标和极坐标的变换关系是什么直角坐标系和极坐标系是数学中常见的两种坐标系表示方法,它们之间存在一种特殊的变换关系。

这个关系可以让我们在两种不同的坐标系下进行坐标的转换和计算,从而方便地描述平面上的点位置和运动。

直角坐标系直角坐标系,也称为笛卡尔坐标系,是由两条互相垂直的轴构成的平面坐标系统。

一般来说,我们将水平轴表示为X轴,垂直轴表示为Y轴。

直角坐标系中的点,用一个有序数对 (x, y) 来表示,其中 x 表示点在X轴上的水平位置,y 表示点在Y轴上的垂直位置。

在直角坐标系中,我们可以通过直线的斜率来描述线的特性,以及用向量来表示位移、速度和加速度等概念。

此外,直角坐标系还适用于描述几何图形的方程,如线段、圆、椭圆等。

极坐标系极坐标系是另一种常见的坐标系,它将点的位置表示为极径和极角。

极径表示点到原点的距离,而极角表示该点与极径所在直线的夹角。

在极坐标系中,我们用一个有序数对(r, θ) 来表示点的位置。

其中 r 表示点到原点的距离,θ 表示点与极径所在直线的夹角。

极径通常是非负数,而极角一般采用弧度制表示。

极坐标系的优势在于它对于描述旋转对称的问题特别有用。

例如,绘制圆形、螺旋线等图形时,使用极坐标系比直角坐标系更为方便。

直角坐标系到极坐标系的变换直角坐标系与极坐标系之间存在一种特殊的变换关系。

这个关系允许我们在两种坐标系之间进行转换,从而方便地进行问题的求解。

将直角坐标系中的点(x, y)转换为极坐标系中的点(r, θ)的过程如下:1.计算点(x, y)到原点的距离 r,可以使用勾股定理,即r = √(x^2 +y^2)。

2.计算点(x, y)的极角θ,可以使用反三角函数,即θ = arctan(y / x)。

需要注意的是,当 x 小于0时,需要加上π或180°来调整极角的范围。

将极坐标系中的点(r, θ)转换为直角坐标系中的点(x, y)的过程如下:1.计算点(r, θ)在X轴上的水平位置 x,通过x = r * cos(θ) 得到。

工程测量中不同坐标系变换与精度

工程测量中不同坐标系变换与精度

工程测量中不同坐标系变换与精度
工程测量中,不同坐标系之间的变换和精度非常重要。

其中,常用的坐标系包括平面
直角坐标系、大地坐标系、投影坐标系等,不同坐标系之间的变换需要考虑到坐标系的基
准面、坐标轴方向、单位等因素。

一、坐标系的基准面
1. 平面直角坐标系的基准面为水平面,通常采用大地水准面作为参考面。

3. 投影坐标系的基准面通常为椭球面或平面,不同的投影方式会导致不同的基准面。

二、坐标轴方向的变换
不同坐标系的坐标轴方向也可能不同,因此需要进行某些坐标轴的转换。

1. 平面直角坐标系通常采用右手坐标系,其中x轴与东向、y轴与北向成正交关系。

2. 大地坐标系中,通常采用地心坐标系或以某个恒星为基准的坐标系,其中z轴与
地轴或某个恒星的指向相同。

3. 投影坐标系的坐标轴方向也有所不同,例如通常采用高斯投影系统的平面坐标系中,x轴指向中央经线的正方向,y轴指向赤道正方向。

三、单位的变换
2. 大地坐标系中,通常采用度或弧度作为单位。

四、变换精度的影响
不同坐标系之间的变换会影响精度,因此需要进行适当的考虑和处理。

1. 坐标系的变换会引入误差,误差的大小与变换参数的精度有关。

2. 不同坐标系之间的误差也有所不同,例如平面直角坐标系与大地坐标系之间的误
差通常比两个大地坐标系之间的误差更小。

综上所述,工程测量中的不同坐标系之间的变换和精度是非常重要的,需要进行适当
的考虑和处理。

为了保证测量的精度和稳定性,应选择合适的坐标系和变换方法,并进行
精确的计算和校正。

不同空间直角坐标系的转换

不同空间直角坐标系的转换

不同空间直角坐标系的转换
欧勒角
不同空间直角坐标系的转换,包括三个坐标轴的平移和坐标轴的旋转,以及两个坐标系的尺度比参数,坐标轴之间的三个旋转角叫欧勒角。

三参数法
三参数坐标转换公式是在假设两坐标系间各坐标轴相互平行,轴系间不存在欧勒角的条件下得出的。

实际应用中,因为欧勒角不大,可以用三参数公式近似地进行空间直角坐标系统的转换。

公共点只有一个时,采用三参数公式进行转换。

七参数法
用七参数进行空间直角坐标转换有布尔莎公式,莫洛琴斯基公式和范氏公式等。

下面给出布尔莎七参数公式:
坐标转换多项式回归模型
坐标转换七参数公式属于相似变换模型。

大地控制网中的系统误差一般呈区域性,当区域较小时,区域性的系统误差被相似变换参数拟合,故局部区域的坐标转换采用七参数公式模型是比较适宜的。

但对全国或一个省区范围内的坐标转换,可以采用多项式回归模型,将各区域的系统偏差拟合到回归参数中,从而提高坐标转换精度。

两种不同空间直角坐标系转换时,坐标转换的精度取决于坐标转换的数学模型和求解转换系数的公共点坐标精度,此外,还与公共点的分布有关。

鉴于地面控制网系统误差在⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000111222Z Y X Z Y X Z Y X ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000111111222000)1(Z Y X Z Y X Z Y X m Z Y X X Y X Z Y Z εεεεεε
不同区域并非是一个常数,所以采用分区进行坐标转换能更好地反映实际情况,提高坐标转换的精度。

坐标系的转换

坐标系的转换

对于坐标系之间的转换,目前我们国家有以下几种:1、大地坐标(BLH)对平面直角坐标(XYZ);2、北京54全国80及WGS84坐标系的相互转换;3、任意两空间坐标系的转换。

坐标转换就是转换参数。

常用的方法有三参数法、四参数法和七参数法。

以下对上述三种情况作转换基本原理描述如下:1、大地坐标(BLH)对平面直角坐标(XYZ)常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。

椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。

一般的工程中3度带应用较为广泛。

对于中央子午线的确定的一般方法是:平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。

如x=3888888m,y=388888666m,则中央子午线的经度=38*3=114度。

另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。

确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。

2、北京54全国80及WGS84坐标系的相互转换这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。

其中北京54坐标系,属三心坐标系,大地原点在苏联的普而科沃,长轴6378245m,短轴6356863,扁率1/298.3;西安80坐标系,属三心坐标系,大地原点在陕西省径阳县永乐镇,长轴6378140m,短轴6356755,扁率1/298.25722101;WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。

由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。

对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。

当然若条件不许可,且有足够的重合点,也可以进行人工解算。

详细方法见第三类。

3、任意两空间坐标系的转换由于测量坐标系和施工坐标系采用不同的标准,要进行精确转换,必须知道至少3个重合点(即为在两坐标系中坐标均为已知的点。

坐标系微分变换

坐标系微分变换

坐标系微分变换微分变换是数学中的一种重要工具,广泛应用于物理学、工程学、经济学等领域。

其中,坐标系微分变换是一种常用的方法,用于描述和分析坐标系的变换规律。

本文将对坐标系微分变换进行详细的介绍和讨论,包括定义、常见的坐标系变换、坐标系变换的微分表示以及应用举例等。

1. 定义坐标系微分变换是指通过一个映射将不同坐标系之间的点进行相互转换的过程。

在二维平面内,我们通常采用笛卡尔坐标系(直角坐标系)表示点的位置,其中点的坐标由横纵坐标表示。

但在实际问题中,常常需要使用其他坐标系,如极坐标系、柱坐标系等,此时就需要进行坐标系的变换。

2. 常见的坐标系变换(1)笛卡尔坐标系与极坐标系的变换:在二维平面内,笛卡尔坐标系(x,y)与极坐标系(r,θ)之间的变换关系可以表示为:x = r*cosθy = r*sinθ(2)笛卡尔坐标系与柱坐标系的变换:在三维空间内,笛卡尔坐标系(x,y,z)与柱坐标系(ρ,θ,z)之间的变换关系可以表示为:x = ρ*cosθy = ρ*sinθz = z(3)笛卡尔坐标系与球坐标系的变换:在三维空间内,笛卡尔坐标系(x,y,z)与球坐标系(r,θ,φ)之间的变换关系可以表示为:x = r*sinφ*cosθy = r*sinφ*sinθz = r*cosφ3. 坐标系变换的微分表示在进行坐标系变换时,我们需要考虑坐标系之间的微小变化。

这种微小变化可以通过微分来描述。

以二维平面为例,设(x,y)为笛卡尔坐标系下的点,(r,θ)为极坐标系下的点,则在微小的变换过程中,两者的微分关系可以表示为:dx = dr*cosθ-r*sinθ*dθdy = dr*sinθ+r*cosθ*dθ类似地,对于三维空间内的其他坐标系变换,也可以得到相应的微分关系表达式。

4. 应用举例坐标系微分变换在物理学、工程学等领域有着广泛的应用。

下面以工程学中的机器人运动学为例,展示坐标系微分变换在实际问题中的应用。

直角坐标系到极坐标系的变换

直角坐标系到极坐标系的变换

直角坐标系到极坐标系的变换随着科学技术的发展,我们在研究和描述物理现象时,常常需要使用不同的坐标系来表示空间中的点。

直角坐标系和极坐标系是其中两种常用的坐标系。

它们之间的转换是我们在解决问题时常常需要考虑的一个重要环节。

直角坐标系直角坐标系是我们最为熟悉的坐标系之一。

在直角坐标系中,我们使用坐标轴来描述一个点在空间中的位置。

通常,我们使用 x 轴和 y 轴来确定点的位置。

对于平面直角坐标系,我们还可以引入 z 轴作为垂直于 xy 平面的轴来描述点的位置。

在直角坐标系中,一个点的位置可以用一个有序数对 (x, y) 或有序数齐 (x, y, z) 来表示。

x 坐标代表点在 x 轴上的投影位置,y 坐标代表点在 y 轴上的投影位置,z 坐标代表点在 z 轴上的投影位置。

极坐标系与直角坐标系不同,极坐标系使用距离和角度来描述一个点在空间中的位置。

在极坐标系中,我们使用极径和极角来确定点的位置。

极径(r)代表点到原点的距离,极角(θ)代表点到正 x 轴的角度。

通过给定的极径和极角,我们可以准确地确定点的位置。

直角坐标系到极坐标系的转换公式我们可以通过一些简单的公式将直角坐标系的坐标转换为极坐标系的坐标。

对于二维空间中的点 (x, y),其对应的极坐标为(r, θ):r = sqrt(x^2 + y^2)θ = arctan(y / x)其中,sqrt()表示平方根函数,arctan()表示反正切函数。

值得注意的是,由于反正切函数的定义域为 [-π/2, π/2],所以上述公式只在点(x, y) 不在 x 轴上时成立。

如果点在 x 轴上,可以通过下列方式给出极角的取值范围:•当y ≥ 0 时,θ = 0•当 y < 0 时,θ = π极坐标系到直角坐标系的转换公式同样地,我们也可以通过公式将极坐标系的坐标转换为直角坐标系的坐标。

对于二维空间中的点(r, θ),其对应的直角坐标为 (x, y):x = r * cos(θ)y = r * sin(θ)其中,cos()表示余弦函数,sin()表示正弦函数。

测量中常见的坐标转换方法和注意事项

测量中常见的坐标转换方法和注意事项

测量中常见的坐标转换方法和注意事项在测量工作中,坐标转换是一个非常关键的步骤。

它可以将不同坐标系下的测量数据进行转换,以便更好地进行分析和比较。

本文将讨论测量中常见的坐标转换方法和注意事项,以帮助读者更好地理解和应用这些知识。

一、常见的坐标转换方法1. 直角坐标系与极坐标系的转换直角坐标系和极坐标系是我们常见的两种坐标系,它们在不同的情况下都有各自的优势。

当我们在进行测量时,有时需要将直角坐标系转换为极坐标系,或者反过来。

这时我们可以使用以下公式进行转换:直角坐标系 (x, y) 转换为极坐标系(r, θ):r = √(x^2 + y^2)θ = arctan(y/x)极坐标系(r, θ) 转换为直角坐标系 (x, y):x = r * cosθy = r * sinθ2. 地理坐标系与平面坐标系的转换在地理测量中,我们常常需要将地理坐标系与平面坐标系进行转换。

地理坐标系是以地球表面为基准的坐标系,而平面坐标系则是在局部范围内采用平面近似地球的坐标系。

转换的目的是为了将地球上的经纬度转换为平面上的坐标点,或者反过来。

这时我们可以使用专门的地图投影算法进行转换,例如常见的墨卡托投影、UTM投影等。

3. 坐标系之间的线性转换有时,我们需要将一个坐标系中的点的坐标转换到另一个坐标系中。

这时我们可以通过线性变换来实现。

线性变换定义了一个坐标系之间的转换矩阵,通过乘以这个转换矩阵,我们可以将一个坐标系中的点的坐标转换到另一个坐标系中。

常见的线性变换包括平移、旋转、缩放等操作,它们可以通过矩阵运算进行描述。

二、坐标转换的注意事项1. 坐标系统选择的准确性在进行坐标转换时,必须保证所选择的坐标系统是准确可靠的。

不同的坐标系统有不同的基准面和基准点,选择错误可能导致转换结果出现较大误差。

因此,在进行测量时,我们应该仔细选择坐标系统,了解其基本原理和适用范围。

2. 数据质量的控制坐标转换所依赖的输入数据必须具有一定的质量保证。

坐标变换原理

坐标变换原理

坐标变换原理
坐标变换是一种数学操作,用来在不同的坐标系间进行转换。

它是将一个点或对象的位置从一个坐标系转换到另一个坐标系的方法。

在二维平面坐标系中,通常使用笛卡尔坐标系和极坐标系。

笛卡尔坐标系使用x和y轴来表示一个点的位置,而极坐标系使用半径和角度来表示。

坐标变换可以通过简单的公式来实现:
1. 笛卡尔坐标系转换为极坐标系:给定一个点的笛卡尔坐标(x, y),可以通过以下公式计算其极坐标(r, θ):
r = √(x² + y²)
θ = arctan(y/x)
2. 极坐标系转换为笛卡尔坐标系:给定一个点的极坐标(r, θ),可以通过以下公式计算其笛卡尔坐标(x, y):
x = r * cos(θ)
y = r * sin(θ)
这些公式将一个点在不同坐标系中的位置进行相互转换。

通过这些转换,可以在不同坐标系之间准确地描述和定位对象的位置。

除了坐标系之间的转换,还可以进行其他类型的坐标变换,如平移、缩放和旋转。

在平移中,点的位置通过添加一个固定的偏移量来改变。

在缩放中,点的位置通过乘以一个缩放因子来改变。

在旋转中,点的位置通过应用旋转矩阵来改变。

通过这些坐标变换,可以单独或组合地对对象进行不同类型的变换,使其在平面内按照所需的方式移动、缩放和旋转。

这在计算机图形学和计算机视觉中经常使用,用于实现图像转换、模型变换等应用。

坐标变换为我们提供了一种非常有用的工具,可以方便地在不同坐标系中进行准确的位置描述与处理。

不同坐标系之间的变换

不同坐标系之间的变换

§10.6不同坐标系之间的变换10.6.1欧勒角与旋转矩阵对于二维直角坐标,如图所示,有:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡1122cos sin sin cos y x y x θθθθ(10-8)在三维空间直角坐标系中,具有相同原点的两坐标系间的变换一般需要在三个坐标平面上,通过三次旋转才能完成。

如图所示,设旋转次序为: ①绕1OZ 旋转Z ε角,11,OY OX 旋转至00,OY OX;②绕0OY 旋转Y ε角10,OZ OX 旋转至02,OZ OX ; ③绕2OX 旋转X ε角,00,OZ OY 旋转至22,OZ OY 。

Z Y X εεε,,为三维空间直角坐标变换的三个旋转角,也称欧勒角,与它相对应的旋转矩阵分别为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=X XX X X R εεεεεcos sin 0sin cos 0001)(1 (10-10)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=Y YY YY R εεεεεcos 0sin 010sin 0cos )(2(10-11)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100cos sin 0sin cos )(3ZZ Z ZZ R εεεεε (10-12)令 )()()(3210Z Y X R R R R εεε= (10-13)则有:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1110111321222)()()(Z Y X R Z Y X R R R Z Y X Z Y X εεε (10-14) 代入:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+++--=Y X Z Y X Z X Z Y X Z X Y X Z Y X Z X Z Y X Z X Y Z Y Z Y R εεεεεεεεεεεεεεεεεεεεεεεεεεεεεcos cos sin sin cos cos sin cos sin cos sin sin cos sin sin sin sin cos cos cos sin sin sin cos sin sin cos cos cos 0一般Z Y X εεε,,为微小转角,可取:sin sin sin sin sin sin sin ,sin ,sin 1cos cos cos =========Z Y Z X Y X ZZ Y Y X X Z Y X εεεεεεεεεεεεεεε于是可化简⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=1110XYX Z Y ZR εεεεεε (10-16) 上式称微分旋转矩阵。

向量在不同坐标系的转换

向量在不同坐标系的转换

向量在不同坐标系的转换
向量在不同坐标系之间的转换可以通过坐标变换公式实现。

假设
有一个向量v,在坐标系A下的坐标为(x1,y1),在坐标系B下的坐标
为(x2,y2),则向量v在坐标系A下的坐标(x1,y1)可以通过以下公式
转换为在坐标系B下的坐标(x2,y2):
[x2; y2] = [a11 a12; a21 a22][x1; y1]
其中,矩阵[a11 a12; a21 a22]为从坐标系A到坐标系B的坐标
变换矩阵,该矩阵表示了坐标系A中的基向量在坐标系B中的表示,
可以通过基向量的旋转、缩放、翻转等变换得到。

具体来说,如果坐
标系B是通过坐标系A逆时针旋转θ度得到的,则
a11 = cosθ, a12 = -sinθ
a21 = sinθ, a22 = cosθ
如果坐标系B是坐标系A沿x轴和y轴分别放大k1和k2倍得到的,则
a11 = k1, a12 = 0
a21 = 0, a22 = k2
如果坐标系B是坐标系A关于x轴、y轴或者原点对称得到的,
则对应的元素为±1,具体的取值可以根据具体的情况确定。

需要注意的是,在坐标系转换过程中,向量的长度和方向是不变的,只是表示向量的坐标发生了变化。

因此,为了保证转换的正确性,应该保证坐标变换矩阵的行列式不为0,以确保该矩阵是可逆的。

同时,在实际的计算中,也需要注意精度问题,避免由于舍入误差导致的计
算错误。

施工坐标系转换步骤

施工坐标系转换步骤

施工坐标系转换步骤引言在工程施工中,常常需要进行坐标系转换。

坐标系转换是将不同的坐标系之间的坐标互相转换的过程。

坐标系转换可以用于不同坐标系之间的数据对接,以及坐标系的转换与调整。

本文将介绍施工坐标系转换的基本步骤。

步骤一:坐标系的认识在进行施工坐标系转换之前,首先需要了解不同坐标系的概念和特点。

常见的坐标系包括地球坐标系(经纬度坐标系)、平面直角坐标系(笛卡尔坐标系)等。

不同坐标系的数学模型和坐标表示方法也不同,因此在进行坐标系转换时需要了解目标坐标系和源坐标系的基本特点和转换规则。

步骤二:数据采集进行坐标系转换的前提是要获得源坐标系和目标坐标系的原始数据。

在施工现场,可以使用GPS定位仪、全站仪等测量仪器采集现场的坐标数据。

采集到的数据需要准确、完整,并遵循一定的采样规则。

同时,还需要采集基准点和控制点的坐标数据,以保证坐标系转换的精度和可靠性。

步骤三:质量检查在进行坐标系转换之前,需要对采集到的原始数据进行质量检查。

质量检查包括数据的准确性、一致性、完整性等方面。

可以通过重复测量、交叉比对等方式来验证数据的准确性。

如果发现数据有误,需要进行数据修正或重新采集。

步骤四:坐标系转换坐标系转换是将源坐标系的坐标转换到目标坐标系的过程。

坐标系转换需要根据源坐标系和目标坐标系的特点和转换规则进行计算。

常见的坐标系转换方法包括平移、旋转、缩放等。

根据具体的坐标系转换需求,可以选择合适的转换方法进行计算。

步骤五:数据处理在完成坐标系转换之后,需要对转换后的数据进行处理和分析。

可以通过计算坐标差、坐标变换等方式对数据进行分析和统计。

此外,还可以进行图形显示和可视化分析,以便更直观地了解转换结果和变化趋势。

步骤六:结果验证完成数据处理后,需要对转换结果进行验证。

可以选择一些控制点或参考点,采用不同的坐标系转换方法进行计算,比较计算结果与实际测量值的差异。

如果结果符合预期并满足工程要求,即可认为坐标系转换是成功的。

坐标系之间的换算

坐标系之间的换算
sin X cosY
sin X sin Z cos X sinY cos Z
sin X cos Z cos X sinY sin Z
cos X cosY

当已知转换参数⊿X0、dK、R( )时,可按上式将Pi点的X坐标系坐标换算为XT坐 标系的坐标。

A1
X Y Z


A1
X Y Z


A1C
da d



A1

X 0 Y0 Z0


A1dKB

A1QB

A1C

da d

上式中
X ( N H )cos B cos L B Y ( N H )cos B sin L
Z B Y L Z H
0
(M H )cos B
sin B
sin B cos L (M H ) A1 secB sin L (N H )

cos B cos L
sinB sin L (M H ) secB cos L (N H )
X,Y,Z是B,L,H,a, 的函数,全微分有
顾及到
dX dY dZ


A

dB dL dH


C

da
d

0 Z Y X i 0 Zi Yi X
QXi Z 0 X Yi Zi 0 X i Y
X 0 Y0 Z0





sin L

测绘技术中的坐标变换方法介绍

测绘技术中的坐标变换方法介绍

测绘技术中的坐标变换方法介绍测绘技术作为一门专业学科,它不单纯是以地理学、地图学为基础知识,还融合了各种测量和数学方法。

其中,坐标变换是测绘技术中的一个重要概念和方法。

在测绘工作中,坐标变换可以帮助我们实现不同坐标系之间的转换,为地理信息系统、地图制图等提供了极大的便利。

本文将介绍测绘技术中的常见坐标变换方法。

一、平面坐标与大地坐标的转换方法在测绘工作中,我们通常会遇到不同坐标系之间的转换。

最常见的就是平面坐标与大地坐标之间的转换。

平面坐标是利用平面坐标系来表示地理位置的坐标值,而大地坐标则是使用经纬度等来表示地理位置的坐标值。

为了实现平面坐标与大地坐标的转换,我们可以利用以下方法:1. 大地坐标系统的参数化转换方法大地坐标系是地球表面上各个点的经纬度坐标表示。

要将大地坐标转换为平面坐标,我们可以采用参数化转换方法。

该方法通过定义一系列参数,以实现大地坐标到平面坐标的转换。

具体的参数化转换方法有著名的高斯投影、横轴墨卡托等。

2. 七参数变换法七参数变换法是常用的坐标变换方法,它适用于平面坐标与大地坐标之间的转换。

它通过七个参数的定义,分别对应平移、旋转和尺度变换等,从而将平面坐标与大地坐标之间进行转化。

二、不同大地坐标系之间的转换方法除了平面坐标与大地坐标之间的转换外,不同大地坐标系之间的转换也是测绘技术中常见的任务之一。

这是因为不同地区采用的大地坐标系可能具有不同的参数,因此需要进行转换以实现一致性。

以下是常见的大地坐标系转换方法:1. 布尔莎参数法布尔莎参数法是一种常用的大地坐标系转换方法。

它通过定义一系列参数,如椭球参数和基准点坐标等,以实现不同大地坐标系之间的转换。

2. 七参数变换法七参数变换法同样适用于不同大地坐标系之间的转换。

通过定义不同的七参数值,我们可以将一个大地坐标系转换为另一个大地坐标系,以满足具体测绘需求。

三、测量数据的坐标变换方法在测绘工作中,我们还需要对测量数据进行坐标变换,以将测量结果与已知的地理坐标体系相匹配。

坐标系转换方法 -回复

坐标系转换方法 -回复

坐标系转换方法-回复如何进行坐标系转换?在地理信息系统(GIS)和数学中,坐标系转换是将一个坐标系中的坐标转换为另一个坐标系的过程。

由于地球是一个三维球体,不同的地理位置使用不同的坐标系统来表示其地理位置信息。

在进行坐标系转换时,我们需要了解待转换的坐标系和目标坐标系,以及所使用的转换方法。

下面将介绍一些常见的坐标系转换方法。

1. 七参数转换法七参数转换法是一种常用的坐标系转换方法,适用于平面坐标系和高程坐标系的转换。

这种方法通过引入七个参数(平移参数、旋转参数和尺度参数)来实现坐标系之间的转换。

通过使用这些参数,可以将一个坐标系的坐标转换为另一个坐标系的坐标。

七参数转换法比较灵活,适用于不同的坐标系之间的转换。

2. 三参数转换法三参数转换法是一种简单的坐标系转换方法,适用于平面坐标系之间的转换。

这种方法通过引入三个参数(平移参数和尺度参数)来实现坐标系之间的转换。

三参数转换法常用于地图投影的转换,例如将高斯-克吕格投影转换为经纬度坐标系。

3. 四参数转换法四参数转换法是一种常用的坐标系转换方法,适用于二维平面坐标系的转换。

这种方法通过引入四个参数(平移参数)来实现坐标系之间的转换。

四参数转换法常用于地图的平移和旋转变换,可以将一个坐标系的坐标转换为另一个坐标系的坐标。

4. 常用坐标系转换软件和工具在进行坐标系转换时,可以使用各种软件和工具来辅助完成转换过程。

一些常用的坐标系转换软件包括ArcGIS、QGIS和MATLAB等。

这些软件提供了丰富的功能和工具,可以进行坐标系定义、转换参数设置和坐标转换等操作。

此外,还有一些在线坐标转换工具可供使用,如国家测绘地理信息局的坐标转换工具等。

5. 坐标系转换的注意事项在进行坐标系转换时,需要注意以下几个问题:- 坐标系的定义:了解待转换的坐标系和目标坐标系的定义,包括坐标原点、坐标单位和坐标轴方向等。

不同的坐标系可能使用不同的定义方式,因此在转换时需要准确理解坐标系的定义。

地理坐标系转换公式

地理坐标系转换公式

地理坐标系转换公式以下是几种常用的地理坐标系转换公式:1.地球椭球体转平面:地球椭球体转平面是将地球椭球体上的点的经纬度坐标转换为平面坐标的过程。

常用的公式有墨卡托投影、高斯-克吕格投影等。

-墨卡托投影:墨卡托投影是一种等角圆柱投影,其转换公式如下:x = R * lony = R * log(tan(π/4 + lat/2))其中,R为地球半径,lon为经度,lat为纬度,x和y为平面坐标。

-高斯-克吕格投影:高斯-克吕格投影是一种正轴等角圆锥投影,其转换公式如下:λs=λ-λ0B = 1 / sqrt(1 - e² * sin²(φ))ρ = a * B * tan(π/4 + φ/2) / (1 / sqrt(e² * cos²(φ0 - B * λs)^2))E = E0 + k0 * ρ * sin(B * λs)N = N0 + k0 * [ρ * cos(B * λs) - a * B]其中,λ为经度,φ为纬度,λ0和φ0为中央经线和纬度原点,a 为长半轴,e为椭球体偏心率,E和N为平面坐标,E0和N0为偏移量,k0为比例因子。

2.平面转地球椭球体:平面转地球椭球体是将平面坐标转换为经纬度坐标的过程。

常用的公式有逆墨卡托投影、逆高斯-克吕格投影等。

-逆墨卡托投影:逆墨卡托投影是墨卡托投影的逆过程,其转换公式如下:lat = 2 * atan(exp(y / R)) - π/2lon = x / R其中,R为地球半径,x和y为平面坐标,lat和lon为经纬度。

-逆高斯-克吕格投影:逆高斯-克吕格投影是高斯-克吕格投影的逆过程,其转换公式如下:φ1 = atan[(Z / √(Z² + (N0 - N)²))]φ0 = φ1 + ((e² + 1)/ (e² - 1)) * [sin(2φ1) + ((e² / 2) * sin(4φ1)) + ((e⁴ / 8) * sin(6φ1)) + ((e⁶ / 16) * sin(8φ1))]B = 1 / sqrt(1 - e² * sin²(φ1))β=N/(a*B)φ = φ1 - (β / 2) * [sin(2φ1) + ((e² / 2) * sin(4φ1)) + ((e⁴ / 8) * sin(6φ1)) + ((e⁶ / 16) * sin(8φ1))]λ = λ0 + (at an[(E - E0) / (N0 - N)]) / B其中,Z=√((E-E0)²+(N0-N)²),φ1为近似纬度,φ0为中央纬度,B为大地纬度变换系数,β为纬度差异因子,φ和λ为经纬度。

《坐标系转换专题》课件

《坐标系转换专题》课件

矩阵运算:矩阵乘法、矩阵 求逆等
应用:在图形学、机器人学 等领域广泛应用
确定转换矩阵:通过已知点坐标和转换后的坐标,计算转换矩阵 确定转换参数:根据转换矩阵,确定转换参数,如旋转角度、平移向量等 确定转换顺序:根据转换参数,确定转换顺序,如先旋转后平移 确定转换精度:根据转换参数,确定转换精度,如小数位数、误差范围等
坐标系转换:将一种坐标系的数据 转换为另一种坐标系的数据
添加标题
添加标题
添加标题
Байду номын сангаас
添加标题
地图投影:将地球表面的地理数据 投影到平面上
应用场景:地图制作、地图投影、 导航系统、地理信息系统等
智能化:随着人工智能技术的发展, 坐标系转换技术将更加智能化,能 够自动识别和转换各种坐标系。
实时性:随着通信技术的发展,坐 标系转换技术将更加实时,能够实 时进行坐标转换和定位。
优点: a. 自动化程度高,减少人工操作 b. 转换速度快,提高工作效率 c. 转换精度高,保证数据准确 性 d. 可实现多种坐标系之间的转换
● a. 自动化程度高,减少人工操作 ● b. 转换速度快,提高工作效率 ● c. 转换精度高,保证数据准确性 ● d. 可实现多种坐标系之间的转换
缺点: a. 需要一定的编程基础和软件操作技能 b. 软件兼容性问题,可能无法在所有平台上运行 c. 软 件更新和维护需要一定的时间和成本 d. 软件可能存在bug或漏洞,影响数据安全和准确性
直角坐标系到极坐标系的转换:利用三 角函数和反三角函数进行转换
极坐标系到直角坐标系的转换:利用三 角函数和反三角函数进行转换
球坐标系到直角坐标系的转换:利用球 面坐标公式进行转换
直角坐标系到球坐标系的转换:利用球 面坐标公式进行转换

精品毕业论文-浅谈我国几种坐标系的坐标转换

精品毕业论文-浅谈我国几种坐标系的坐标转换

浅谈我国几种坐标系的坐标转换摘要:如今测量当中,我们大部分应用的是GPS测量技术,而GPS测量得到的是WGS-84坐标,所以我们要对其进行坐标转换,转换成我国的平面坐标。

本文详细介绍了几种转换的方法,进而很容易的实现了不同坐标系之间的转换。

关键词:坐标系统;坐标转换;高程拟合中图分类号:{P286+.1} 文献标识码:A 文章编号:1 坐标系统的介绍1.1 WGS—84坐标系统WGS—84坐标系是目前GPS所采用的坐标系统。

坐标原点位于地球的质心,Z 轴指向BIHl984.0定义的协议地球极方向,X轴指向BIHl984.0的起始子午面和赤道的交点,Y轴与X轴和Z轴构成右手系。

WGS—84系所采用椭球参数为:a=6378138m;f=1/298.257223563。

1.2 1954年北京坐标系1954年北京坐标系是我国目前广泛采用的大地测量坐标系。

该坐标系源自于原苏联采用过的1942年普尔科夫坐标系。

该坐标采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:a=6378245m;f=1/298.3。

该椭球并未依据当时我国的天文观测资料进行重新定位。

而是由前苏联西伯利亚地区的一等锁,经我国的东北地区传算过来的,该坐标的高程异常是以前苏联1955年大地水准面重新平差的结果为起算值,按我国天文水准路线推算出来的,而高程又是以1956年青岛验潮站的黄海平均海水面为基准。

1.3 1980年西安坐标系1980年西安坐标系的原点位于我国的中部,陕西西安市的附近。

椭球的短轴平行于由地球质心指向我国地极原点JYD1968。

0的方向,起始大地子午面平行与我国起始天文子午面。

大地点的高程是1956年青岛验潮站的黄海平均海水面为基准。

2.坐标转换既然不同的坐标系,就存在坐标转换的问题。

关于坐标转换,首先要搞清楚转换的严密性问题,即在同一个椭球里的坐标转换都是严密的,而在不同的椭球之间的转换这时不严密的。

例如,由1954北京坐标系的大地坐标转换到1954北京坐标系的高斯平面直角坐标是在同一参考椭球体范畴内的坐标转换,其转换过程是严密的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§10.6不同坐标系之间的变换
10.6.1欧勒角与旋转矩阵
对于二维直角坐标,如图所示,有:
⎥⎦

⎢⎣⎡⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡1122cos sin sin cos y x y x θθθθ(10-8)
在三维空间直角坐标系中,具有相同原点的两坐标系间的变换一般需要在三个坐标平面上,通过三次旋转才能完成。

如图所示,设旋转次序为: ①绕1OZ 旋转Z ε角,11,OY OX 旋
转至0
0,OY OX ;
②绕0
OY 旋转Y ε角
10
,OZ OX 旋转至0
2
,OZ OX ; ③绕2OX 旋转X ε角,
0,OZ OY 旋转至22,OZ OY 。

Z Y X εεε,,为三维空间直角坐标变换的三个旋转角,也称欧勒角,与
它相对应的旋转矩阵分别为:
⎥⎥⎥⎦

⎢⎢⎢⎣⎡-=X X
X X X R εεεεεcos sin 0sin cos 00
01
)(1 (10-10)
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-=Y Y
Y Y
Y R εεεεεcos 0sin 010sin 0cos )(2 (10-11)
⎥⎥⎥⎦

⎢⎢⎢⎣⎡-=10
0cos sin 0sin cos )(3Z
Z Z Z
Z R εεεεε (10-12)
令 )()()(3210Z Y X R R R R εεε= (10-13)
则有:
⎥⎥⎥⎦

⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1110111321222)()()(Z Y X R Z Y X R R R Z Y X Z Y X εεε (10-14) 代入:
⎥⎥⎥⎦
⎤⎢⎢
⎢⎣⎡
+-+++--=Y X Z Y X Z X Z Y X Z X Y X Z Y X Z X Z Y X Z X Y Z Y Z Y R εεεεεεεεεεεεεεεεεεεεεεεεεεεεεcos cos sin sin cos cos sin cos sin cos sin sin cos sin sin sin sin cos cos cos sin sin sin cos sin sin cos cos cos 0一般Z Y X εεε,,为微小转角,可取:
sin sin sin sin sin sin sin ,sin ,sin 1cos cos cos =========Z Y Z X Y X Z
Z Y Y X X Z Y X εεεεεεεεεεεεεεε
于是可化简
⎥⎥⎥⎦

⎢⎢⎢⎣⎡---=111
0X
Y
X Z Y Z
R εεεεεε (10-16) 上式称微分旋转矩阵。

10.6.2不同空间直角坐标之间的变换
当两个空间直角坐标系的坐标换算既有旋转又有平移时,则存在三个平移参数和三个旋转参数,再顾及两个坐标系尺度不尽一致,从而还有一
个尺度变化参数,共计有七个参数。

相应的坐标变换公式为:
⎥⎥⎥⎦

⎢⎢⎢⎣⎡∆∆∆+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000111111222000)1(Z Y X Z Y X Z Y X m Z Y X X
Y
X Z Y Z
εεεεεε(10-17) 上式为两个不同空间直角坐标之间的转换模型,其中含有7个转换参数,为了求得7个转换参数,至少需要3个公共点,当多于3个公共点时,可按最小二乘法求得个参数的最或是值。

10.6.3不同大地坐标系的变换
对于不同大地坐标系的换算,除包含三个平移参数、三个旋转参数和一个尺度变化参数外,还包括两个地球椭球元素变化参数,以下推导不同大地坐标系的换算公式。

由(7-30)式
⎥⎥⎥


⎢⎢⎢⎣⎡+-++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡B H e N L B H N L B H N Z Y X sin ])1([sin cos )(cos cos )(2
取全微分得
⎥⎦⎤
⎢⎣⎡+⎥⎥⎥⎦

⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡αd da A dH dB dL J dZ dY dX (10-19) 式中
⎥⎥⎥

⎤⎢⎢

⎣⎡++-++-+-=⎥⎥⎥⎥⎥⎥⎦

⎢⎢⎢⎢
⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=B B H M L B L B H M L B H N L B L B H M L B H N H Z B
Z L
Z H Y B Y L Y H X B X
L X
J sin cos )(0cos cos sin sin )(cos sin )(cos cos cos sin )(sin cos )((10-20)
⎥⎥⎥⎥⎥⎥⎦

⎢⎢⎢⎢⎢⎢⎣⎡-+-----=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢
⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂=)sin cos 1(sin 1sin )1(sin sin cos 1sin cos sin cos cos 1cos cos 222222
B e B B M B e a
N B
L B M L B a
N B L B M L B a N Z a
Z Y a Y X
a X
A ααα
α
αα (10-21)
上式两端乘以1-J 并加以整理得:
⎥⎦⎤
⎢⎣⎡-⎥⎥⎥⎦

⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--αd da A J dZ dY dX J dH dB dL 11 (10-22)
式中
⎥⎥⎥


⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111222Z Y X Z Y X dZ dY dX
⎥⎥⎥

⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111222H B L H B L dH dB dL 顾及(10-21)式及
⎥⎥
⎥⎥
⎥⎥⎦⎤⎢⎢⎢⎢⎢
⎢⎣

++-
+-++-=-B L
B L B H M B H M L B H M L B B H N L B H N L J sin sin cos cos cos cos sin sin cos sin 0
cos )(cos cos )(sin 1
(10-23) (10-22)式可写为:
=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡dH dB dL ⎥⎥⎥⎦

⎢⎢⎢⎣⎡∆∆∆⎥⎥⎥⎥⎥⎥

⎤⎢⎢
⎢⎢⎢⎢⎣
⎡''+'
'+-''+-'
'+''+-000sin sin cos cos cos cos sin sin cos sin 0
cos )(cos cos )(sin Z Y
X B L
B L B H
M B H M L B H
M L B B H N L
B H N L ρρρρρ ⎥⎥⎥⎦⎤
⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢


'
'''---+Z Y X L
B B Ne L B B Ne L
L
L tgB L tgB εεερρ0cos cos sin sin cos sin 0cos sin 1sin cos 2
2
m
H B e N B B e H M N ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡+-''+-+)sin 1(cos sin 0
2
22ρ

⎦⎤⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦


⎢⎢⎢⎢⎢⎣⎡----''-+-''++ααραρd da B B e M B e a N B B H M B e M B B e a H M N 2
222
2222sin )sin 1(1)sin 1(cos sin )1)(()
sin 2(cos sin )(0
(10-24)
上式通常称为广义大地坐标微分公式或广义变换椭球微分公式。

如略去旋转参数和尺度变化参数的影响,即简化为一般的大地坐标微分公式。

根据3个以上公共点的两套大地坐标值,可列出9个以上(10-24)式的方程,可按最小二乘法求得8个转换参数。

相关文档
最新文档