平行线的性质和判定培优讲义汇编

合集下载

平行线的性质ppt课件

平行线的性质ppt课件
(3) 移: 以关键点为起点作与移动方向平行且与移动距离相
等的线段,得到关键点的对应点;
(4) 连: 按原图顺次连结对应点 .
知4-讲
特别警示
确定一个图形平行移动后的位置需要三个条件:
(1)图形原来的位置;
(2)平行移动的方向;
(3)平行移动的距离.
这三个条件缺一不可.
知4-练
例4 如图 4.2-33,现要把方格纸(每个小正方形的边长均为
知1-讲
特别警示
1. 两条直线平行是前提,只有在这个前提下才
有同位角相等.
2. 按格式进行书写时,顺序不能颠倒,与判定
不能混淆.
知1-讲
3. 平行线的性质与平行线的判定的区别
(1) 平行线的判定是根据两角的数量关系得到两条直线的位
置关系,而平行线的性质是根据两条直线的位置关系得
到两角的数量关系;
又∵ EG 平分∠ BEF,∴∠ BEG=



BEF=70° .
∵ AB ∥ CD, ∴∠ 2= ∠ BEG=70° .
答案:A
知2-练
2-1. [中 考·烟 台]一杆 古 秤 在 称 物 时 的状 态 如 图
所 示,已 知∠ 1=102°,则 ∠ 2 的度数为
78°
______.
感悟新知
知识点 3 平行线的性质3
若是,可直接求出;若不是,还需要
通过中间角进行转化 .
知1-练
1-1. [中考·台州]用一张等宽的纸条折成如图所示的图
140° .
案,若∠ 1=20 ° ,则 ∠ 2的度数为_______
感悟新知
知识点 2 平行线的性质2
知2-讲
1. 性质 2 两条平行直线被第三条直线所截,内错角相等 .

第1讲 平行线的性质与判定

第1讲 平行线的性质与判定
C于D,EF⊥AC于F,DM∥BC,∠1=∠2,求证:
∠AMD=∠AGF. 证明:∵BD⊥AC,EF⊥AC(已知), ∴∠BDF=∠EFC=90°(垂直的性质)
∴BD∥EF(同位角相等,两直线平行),
∴∠2=∠CBD(两直线平行,同位角相等), ∵∠2=∠1(已知), ∴∠1=∠CBD(等量代换),
∴∠D=∠AHC(_两___直__线__平__行___,__同__位__角__相___等____) ∵∠A=∠D(已知) ∴∠AHC=∠A(__等__量__代__换____________________)
∴___A__B_∥__C__D___(__内__错__角__相__等___,__两__直__线___平__行_____).
★ 例题精讲
例题5 如图,已知∠ABC+∠BCD+∠CDE=360°,求证:AB∥ED.
解:连接BD, ∴∠DBC+∠BCD+∠CDB=180°, ∵∠ABC+∠BCD+∠EDC=360° ∴∠ABD+∠EDB=180°, ∴AB∥DE.
★ 例题精讲
练习5 如图,EF∥AD,∠1=∠2,∠BAC=75°。 (1)求证:AB∥DG;(2)求∠AGD.
4. 把下列命题写成“如果……那么……”的形式,并判断其真假: (1)等角的补角相等; (2)两个锐角的和是锐角; (3)负数之和仍为负数.
(1)如果两个角相等,那么这两个角的补角相等; 真命题 (2)如果两个角是锐角,那么这两个角的和也是锐角;假命题 (3)如果几个数是负数,那么它们的和也是负数. 真命题
∴ CE∥DF(同位角相等,两直线平行)
∴ ∠BCE=∠BDF(两直线平行,同位角相等) ∠EDF=∠CED(两直线平行,内错角相等)

培优平行线的判定与性质

培优平行线的判定与性质

课题:相交线、垂线、三线八角一、邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。

⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

二、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

符号语言记作: 如图所示:AB ⊥CD ,垂足为O ⑵垂线性质1:过一点有且只有一条直线与已知直线垂直。

⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

简称:垂线段最短。

三、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。

注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。

四、点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

如图,PO ⊥AB ,同P 到直线AB 的距离是PO 的长。

PO 是垂线段。

PO 是点P 到直线AB 所有线段中最短的一条。

现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。

五、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念 ⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。

联系:具有垂直于已知直线的共同特征。

(垂直的性质) ⑵两点间距离与点到直线的距离区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。

联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离。

平行线的性质和判定讲解与判定

平行线的性质和判定讲解与判定

平行线的性质和判定精品资料教学过程:一、基础知识点:性质1:两条直线被第三条直线所截,如果两条直线平行,那么同位角相等。

简单说成:两直线平行,同位角相等。

几何语言:∵ AB//CD ∴ ∠PMA=∠MNC性质2:两条直线被第三条直线所截,如果两条直线平行,那么内错角相等。

简单说成:两直线平行,内错角相等。

几何语言:∵ AB//CD ∴ ∠BMN=∠CNM性质3:两条直线被第三条直线所截,如果两条直线平行,那么同旁内角互补。

简单说成:两直线平行,同旁内角互补。

几何语言:∵ AB//CD∴ ∠AMN+∠CNM=180°几何符号语言: (1)∵∠3=∠2∴AB ∥CD (同位角相等,两直线平行)(2)∵∠1=∠2∴AB ∥CD (内错角相等,两直线平行) (3)∵∠4+∠2=180°∴AB ∥CD (同旁内角互补,两直线平行)如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,则称线段EF 的长度为两平行线AB 与CD 间的距离。

注意:直线AB ∥CD ,在直线AB 上任取一点G ,过点G 作CD 的垂线段GH ,则垂线段GH 的长度也就是直线AB 与CD 间的距离。

⑴命题的概念:判断一件事情的语句,叫做命题。

A BC DEF 1 2 3 4 A EG BC FH D⑵命题的组成每个命题都是题设、结论两部分组成。

题设是已知事项;结论是由已知事项推出的事项。

命题常写成“如果……,那么……”的形式。

具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。

有些命题,没有写成“如果……,那么……”的形式,题设和结论不明显。

对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式。

注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述。

平行线的判定和性质讲义

平行线的判定和性质讲义

在同一平面内,不相交的两条直线叫做平行线.角是平面几何图形中最活跃的元素,前面我们已学习过特殊角、数量关系角等角的知识.当两条直线相交或分别与第三条直线相交,就产生对顶角、同位角、内错角、同旁内角等位置关系角,进一步丰富了角的知识,它们在角的计算与证明中有广泛的应用.与平行线相关的问题一般都是平行线的判定与性质的综合运用,主要体现在如下两个方面:1. 由角定角已知角的关系→(判定)两直线平行→(性质)确定其他角的关系.2.由线定线已知两直线平行→(性质)角的关系行→(判定)确定其他两直线平行..平行线判定方法:(1) 同位角 相等,两直线平行。

.(2) 内错角相等,两直线平行。

(3) 同旁内角互补,两直线平行。

(4) 垂直于同一直线的两直线平行(5) 如果两条直线都与第三条直线平行,那么这两条直线平行。

平行线的性质:(1)两直线平行,同位角相等。

(2) 两直线平行,内错角相等。

(3) 两直线平行, 同旁内角互补。

【基础训练】1.下列命题正确的有 (填序号 )(1)两条直线被第三条直线所截,一定有同位角,所以这两条直线一定平行.(2)两直线不平行,同旁内角不互补.(3)如图,若1l ∥2l ,则∠1+∠2=180°.(4)如图,AD ∥BC ,则∠B +∠C =180°.(5)平行线的同位角的平分线互相平行.2.下列说法正确的是( )A .经过一点有一条直线与已知直线平行B .经过一点有无数条直线与已知直线平行C .经过一点有且只有一条直线与已知直线平行D .经过直线外一点有且只有一条直线与已知直线平行3.下列说法正确的有( )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种; ③若线段AB 与CD 没有交点,则AB ∥CD ;④若a ∥b ,b ∥c ,则a 与c 不相交.⑤两条射线或线段互相垂直是指它们所在的直线互相垂直.A .1个B .2个C .3个D .4个N FE D C B A N M A CD B EB DC A 4.已知:如图,∠BAE +∠AED =180°,∠1=∠2.求证:∠M =∠N .证明:∵∠BAE +∠AED =180°( ),∴ ∥ ( ).∴∠BAE = .又∵∠1=∠2(已知 ),∴∠BAE -∠1= - ( ).即∠MAE = .∴ ∥ ( ).∴∠M =∠N ( ).5如图,一张长方形纸条ABCD 沿MN 折叠后形成的图形,∠DMN =80°,求∠BNC 的度数.6.已知:如图AB //CD ,BCD DAB ∠=∠,AE 、BE 分别平分DAB ∠、ABC ∠.请求出E ∠的度数.7.如下图,已知AD ⊥BC ,NE ⊥BC ,∠E =∠EFA ,求证:AD 平分∠BAC .8.如图,已知︒=∠+∠18021, B ∠=∠3.试判断AED ∠与C ∠的关系,并予以说明.G EB D 321FCA9.如图,︒=∠25B ,︒=∠45BCD ,︒=∠30CDE ,︒=∠10E .求证: AB ∥EF .【例1】如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB互余的角有个. (安徽省中考题)思路点拨 充分运用对顶角、平行线性质等与角相关的知识,借助互余的概念判断. 注:平面几何的研究除了运用计算方法外,更多的要依靠时图形的观察(直觉能力),运用演绎推理的方法去完成,往往需要通过观察、实验操作进而猜想蛄论(性质),或由预设结论去猜想条件,再运用演绎推理方法加以证明.在学习完相交线、平行线内容后,平面几何的学习就由实验几何阶段进入论证几何阶段,顺利跨越推理论证阶段,需注意以下几点:(1)过好语言关;(2)学会识图;(3)善于分析.【例2】 如图,平行直线AB 、CD 与相交直线EF 、GH 相交,图中的同旁内角共有( ) .A .4对B .8对C .12对D .16对( “希望杯”邀请赛试题)思路点拨 每一个“三线八角”基本图形都有两对同旁内角,从对原图形进行分解人手.【例3】如图,已知∠B =25°,∠BCD =45°,∠CDE=30°,∠E =10°求征:AB ∥EF .思路点拨 解本例的困难在于图形中没有“三线八角”,考虑创造条件,在图中添置“三线八角”或作出与AB 或CD 平行的直线.【例4】 如图,在ΔABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线.求证:∠EDF =∠BDF .(天津市竞赛题)EC DF A MN思路点拨综合运用角平分线、垂直的定义、平行线的判定与性质等知识,因图形复杂,故需恰当分解图形.【例5】探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?思路点拨已知AB∥CD,连结AB、CD的折线内折或外折,或改变E点位置、或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间,解题的关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.注:分析主要从以下两个方面进行:(1)由因导果(综合法),即从已知条件出发推出相应结论.(2)执果溯因(分析法),即要得到结论需具备什么条件.解题时,我们既要抓住条件,又要盯住目标,努力促使已知与来知的转化与沟通.探索性问题一般具有以下特点:(1)给出了条件,但没有明确的结论;(2)给出了结论,但没有给出或没有全部给出应具备的条件,(3)先提出特殊情况进行研究,再要求归纳、猜测和确定一般结论;(4)先对某一给定条件和结论的问题进行研究,再探讨改变条件时其结论相应发生的变化,或改变结论时其条件相应发生的变化;(5)解题方法需要独立创新.“解题千万道,解后抛九霄”是难以达到提高解题能力,发展思维的目的的.善于作解题后小结,回顾解题过程,总结解题经验和体会,再进而作一题多解,一题多问,一题多变的思考,挖掘题目的深度和广度,扩大题目的辐射面,这对解题能力的提高是十分有益的.学力训练1.如图,已知AE∥CD,EF交AB于M,MN⊥EF于M,NN交CD于N,若∠BME=110°,则∠MND= .(湖北成宁市中者题)2.如图,若直线a,b分别与直线c,d相交,且∠1+∠3=90°,∠2一∠3=90°,∠4=115°,那么∠3= .3.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α= .(内蒙古中考题)4.已知两个角的两边分别平行,其中一个角为40°,那么另一角是度.5.如图,下列条件中,不能判断直线l1∥l2的是( ).A.∠l=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°(南通市中考题)6..已知线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,符合条件l 的条数为( ).A.1 B.2 C.3 D.4(安徽省中考题)7.如图,直线a、b都与直线c相交,给出下列条件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断a∥b的是( ).A.(1)、(3) B.(2)、(4) C.(1)、(3)、(4) D.(1)、(2)、(3)、(4)(江苏盐城市中考题)8.如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有( ).A.6个D.5个C.4个D.3个(湖北省荆门市中考题)9.如图,已知∠l+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并对结论进行证明.10.如图,已知∠1十∠2=180°,∠A=∠C,AD平分∠BDF.求证:BC平分∠DBE.15.如图,D、G是ΔABC中AB边上的任意两点,DE∥BC,GH∥DC,则图中相等的角共有( ).A,4对B.5对 C .6对D.7对16.如图,若AB∥CD,则( ).A.∠1=∠2+∠3 B.∠1=∠3一∠2C.∠1+∠2+∠3=180°∠l一∠2十∠3=180°17.如图,AB∥CD∥EF,EH⊥CD于H,则∠BAC+∠ACE+∠CEH等于( ).A.180°B.270°C.360°D.450°18.如图,AB∥EF,∠C=90°,则α、β和γ的关系是( ).A.β=α+γB.α+β+γ=180°C.α+β-γ=180°D.β+γ-α=180°19.如图,已知AB∥CD,P为HD上任意一点,过P点的直线交HF于O点,试问:∠HOP、∠AGF、∠HPO有怎样的关系?用式子表示并证明.20.如图,已知AB∥CD,α=∠A+∠E,β=∠B+∠C+∠D,证明:β=2α.22.如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数.(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.。

5.26 平行线的判定与性质 讲解

5.26 平行线的判定与性质 讲解

平行线的判定与性质要点一、平行线1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b。

要点诠释:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行。

(3)在同一平面内,两条直线的位置关系只有相交和平行两种。

特别地,重合的直线视为一条直线,不属于上述任何一种位置关系。

2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质。

(2)公理中“有”说明存在;“只有”说明唯一。

(3)“平行公理的推论”也叫平行线的传递性。

要点二、直线平行的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形。

要点三、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”。

(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质。

要点四、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点五、命题、定理、证明1.命题:判断一件事情的语句,叫做命题。

平行线的性质与判定_讲义

平行线的性质与判定_讲义

一、授课目的与分析:一、授课目的与分析:教学目标:1. 了解平行线的概念和两条直线的位置关系了解平行线的概念和两条直线的位置关系2. 掌握平行公理及其推论,掌握两直线平行的判定方法和平行线的性质掌握平行公理及其推论,掌握两直线平行的判定方法和平行线的性质重 点:平行公理及其推论、两直线平行的判定方法和平行线的性质的应用平行公理及其推论、两直线平行的判定方法和平行线的性质的应用 难 点:平行的性质和判定的综合应用二、授课内容:二、授课内容: 平行线的性质与判定教学过程:【知识点】【知识点】1、平行线的概念:、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a ∥b 2、两条直线的位置关系、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。

在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。

3、平行公理――平行线的存在性与惟一性、平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行经过直线外一点,有且只有一条直线与这条直线平行4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行5、 平行线的判定与性质平行线的判定与性质 平行线的判定平行线的判定 平行线的性质平行线的性质 1、 同位角相等,两直线平行同位角相等,两直线平行 2、 内错角相等,两直线平行内错角相等,两直线平行 3、 同旁内角互补,两直线平行同旁内角互补,两直线平行 4、 平行于同一条直线的两直线平行平行于同一条直线的两直线平行 5、 垂直于同一条直线的两直线平行垂直于同一条直线的两直线平行 1、两直线平行,同位角相等、两直线平行,同位角相等 2、两直线平行,内错角相等、两直线平行,内错角相等 3、两直线平行,同旁内角互补、两直线平行,同旁内角互补 4、经过直线外一点,有且只有一条直线与已知直线平行知直线平行 6两条平行线的距离两条平行线的距离如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,则称线段EF 的长度为两平行线AB 与CD 间的距离。

平行线及其判定和性质课件

平行线及其判定和性质课件
回忆知识
平行线的判定:
文字叙述 同位角相等,两直线平行 内错角相等,两直线平行 同旁内角互补,两直线平行
数学符号表示
∵ ∠1=∠2 ∴ a∥b ∵ ∠2=∠3 ∴ a∥b ∵ ∠3+∠4=180° ∴ a∥b
c
1 a
3
4
2
b
在同一平面内,判断两条直线平行还可以用平行线的传递性 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
∴∠DAB=∠B= 44°(两直线平行,内错角相等)
(2)∠EAC= 57°理由:∵DE∥BC ∴∠EAC=∠C= 57°(两直线平行,内错角相等)
(3)∠BAC =180°-∠EAC-∠DAB=79 °
(4)答:能说明三角形的内角和是180° 理由:∵DE∥BC
∴∠DAB=∠B, ∠EAC=∠C ∵∠DAB+∠EAC+∠BAC=180° ∴∠B+∠C+∠BAC= 180°
∵∠1=60° ∠2=120° (已知) ∴∠1+∠2 =180°
∵ ∠2=∠5 (对顶角相等) ∴∠1+∠5= 180°(等量代换)
∴AB∥CD (同旁内角互补、两直线平行)
运用知识
例一:如图,直线AB、CD被直线EF所截,量得∠1=60°, ∠2=120°就可以判定AB∥CD。它的根据是什么?
∴ ∠4+∠3 =180° (两直线平行,同旁内角互补)
又∠3=60°(已知)
∴ ∠4=180°-∠3 =180°-60°=120°
运用知识
4
6
变式:将原题改为已知∠1=72°,∠2=72°,证 5 3 明∠5=∠6
证:∵∠1=72°∠2=72°(已知) ∴a∥b(内错角相等,两直线平行) ∴∠4=∠5(两直线平行,同位角相等)

(完整版)《平行线的判定与性质的综合运用》教学课件

(完整版)《平行线的判定与性质的综合运用》教学课件

6.如图,AB,CD,EF,MN均为直线,∠2=∠3=70°, ∠GPC=80°,GH平分∠MGB,求∠1的度数.
解:∵∠2=∠3=70°(已知), ∴AB∥CD(内错角相等,两直线平行), ∴∠BGP=∠GPC(两直线平行,内错角相等), ∵∠GPC=80°(已知), ∴∠BGP=80°(等量代换), ∴∠BGM=180°-∠BGP=100°(平角的定 义),
(完整版)《平行线的判定与性质的综合运用》教学课件
平行线的性质
第2课时 平行线的判定与性质的综合运用
导入新课
讲授新课
当堂练习
课堂小结
三、平行线的基本性质3
思考:类似地,已知两直线平行,能否得到同旁内角
之间的数量关系? 如图,已知a//b,那么2与4有什么关系呢?为什么?
解: ∵a//b (已知),
A.80° B.65° C.60°
D.55°
3.如图,BD⊥AB,BD⊥CD,则∠a的度 数是( A ) A.50° B.40° C.60° D.45°
4.已知AB∥DE,试问∠B,∠E,∠BCE有什么关系.请
完成填空:
A 解:过点C作CF∥AB, 则_∠__B__=_∠__1__ ( 两直线平行,内错角相等 ). C
B
1
F
2
又∵AB∥DE,AB∥CF,
D
E
∴__C_F__∥__D_E____(平行于同一直线的两条直线平行 ).
∴∠E=∠__2__(两直线平行,内错角相等).
∴∠B+∠E=∠1+∠2(等式的性质),
即∠B+∠E=∠BCE.
5.已知:如图,AD⊥BC于D,EG⊥BC与G, ∠E=∠3,试问:AD是∠BAC的平分线吗?若是, 请说明理由.

平行线的性质和判定培优讲义

平行线的性质和判定培优讲义

平行线的性质与判定培优讲义【知识精要】:1.平面上两条不重合的直线,位置关系只有两种:相交和平行。

2.两条不同的直线,若它们只有一个公共点,就说它们相交。

即,两条直线相交有且只有一个交点。

3.垂直是相交的特殊情况。

有关两直线垂直,有两个重要的结论:(1)过一点有且只有一条直线与已知直线垂直;(2)直线外一点与直线上所有点的连线中,垂线段最短。

4.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.5.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_______________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 简单说成:_______________________.6.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ . 7.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成: __________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________ ⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:__________________。

.【例题精析】:例1.如图(1),直线a 与b 平行,∠1=(3x+70)°,∠2=(5x+22)°,求∠3的度数。

教师寄语:例2.已知:如图(2), AB ∥EF ∥CD ,EG 平分∠BEF ,∠B+∠BED+∠D =192°,∠B -∠D=24°,求∠GEF 的度数。

例3.如图,平行直线AB 、CD 与相交直线EF 、GH 相交,图中的同旁内角共有( ) .( “希望杯”邀请赛试题)A .4对B .8对C .12对D .16对例4.如图,在ΔABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线.求证:∠EDF =∠BDF .(天津市竞赛题)例5. 、(1) 如图,AB ∥DE ∥ CF ,你能找到∠BCE.∠B 和 ∠E 之间的关系吗?(2)如图,AB ∥DE ,你能找到∠BCE.∠B 和 ∠E 之间的关系吗? (3)如图,AB ∥DE ,你能找到∠1.∠2和 ∠3 ∠4之间的关系吗?(4)如图,AB ∥DE , 你能找到∠1.∠2. ∠3 ∠4. ∠5.∠6 ∠7之间的关系吗?G A B DEA B DEFA B D231 4FC3 14 6 2 57ABDE【巩固提高】:1.平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线( )条A .6B . 7C .8D .92.平面上三条直线相互间的交点个数是 ( )A .3B .1或3C .1或2或3D .不一定是1,2,33.平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有( ) A .36条 B .33条 C .24条 D .21条4.已知平面中有n 个点C B A ,,三个点在一条直线上,E F D A ,,,四个点也在一条直线上,除些之外,再没有三点共线或四点共线,以这n 个点作一条直线,那么一共可以画出38条不同的直线,这时n 等于( )(A )9 (B )10 (C )11 (D )125.若平行直线AB 、CD 与相交直线EF 、GH 相交成如图示的图形,则共得同旁内角( ) A .4对 B .8对 C .12对 D .16对6.如图,已知FD ∥BE ,则∠1+∠2-∠3=( ) A .90° B .135° C .150° D .180°第 5 题第 6 题第7题7.如图,已知AB ∥CD ,∠1=∠2,则∠E 与∠F 的大小关系 ;8.平面内有4条直线,无论其关系如何,它们的交点个数不会超过 个。

初中数学知识归纳平行线的性质与判定

初中数学知识归纳平行线的性质与判定

初中数学知识归纳平行线的性质与判定平行线是数学中最基础的概念之一,在初中数学中也占据了重要的地位。

平行线的性质和判定方法具有一定的规律性和逻辑性,掌握了这些知识,对于解题和推理都有很大的帮助。

本文将对初中数学中与平行线相关的性质和判定进行归纳和总结。

一、平行线的性质1. 平行线性质一:同位角性质同位角是指两条平行线被一条第三条线(称为横线)所切割所形成的内角和外角。

同位角性质可以概括为:当直线与两条平行线相交时,同位角相等。

例如,图1中的直线l与平行线m、n相交,角A和角B、C都是同位角。

根据同位角性质,可知∠A = ∠B = ∠C。

2. 平行线性质二:内错角性质内错角是指两条平行线被一条第三条线所切割所形成的内角。

内错角性质可以概括为:当直线与两条平行线相交时,内错角相等。

例如,图2中的直线l与平行线m、n相交,角A和角B是内错角。

根据内错角性质,可知∠A = ∠B。

3. 平行线性质三:同旁内角性质同旁内角是指两条直线与两条平行线相交所形成的内角。

同旁内角性质可以概括为:当两条直线与两条平行线相交时,同旁内角互补。

例如,图3中的直线a、b与平行线m、n相交,角A和角B、C是同旁内角。

根据同旁内角性质,可知∠A + ∠B = 180°和∠A + ∠C = 180°。

二、平行线的判定方法1. 直线平行判定法一:同位角相等法如果一条直线与另外两条直线相交时,同位角相等,则这两条直线平行。

例如,图4中的直线l与线段AB、CD相交,∠1 = ∠2,则可判定线段AB与线段CD是平行的。

2. 直线平行判定法二:内错角相等法如果一条直线与两条平行线相交时,内错角相等,则这条直线与这两条平行线平行。

例如,图5中的直线l与平行线m、n相交,∠A = ∠B,则可判定直线l与平行线m、n是平行的。

3. 直线平行判定法三:同旁内角互补法如果一条直线与两条平行线相交时,同旁内角互补,则这条直线与这两条平行线平行。

平行线的判定与性质复习课件

平行线的判定与性质复习课件

∵∠CDE=152°∴∠FED=28°
∴∠BED=∠BEF+∠FED=50°+28°=78°
2.如图∠B=25°,∠BCD=45°,∠CDE=30°, ∠E=10°,试说明AB//EF的理由。
A B N
解:过点C作CM // AB ,过点D作DN //EF
C
D
M
F
∵ AB//CM,EF//DN ∠B=25°,∠E=10°(已知) E ∴ ∠BCM = ∠B, ∠EDN = ∠E (两直线平行,内错角相等) 又∵∠BCD=45°,∠CDE=30°(已知) ∴∠DCM=20°,∠CDN=20°
5
a 6 8 7 2 4 3
c 1
b
A 2.如图 1 2
3
D
4
B C (1)从∠1=∠4,可以推出 AB ∥ , CD 理由是 内错角相等,两直线平行 。 (2)从∠ 2 =∠ 3 ,可以推出AD∥BC,
5
理由是 内错角相等,两直线平行 。 (3)从∠ABC +∠ BCD =180,可以推出AB∥CD 同旁内角互补,两直线平行 。 理由是 (4)从∠5=∠ ABC ,可以推出AB∥CD, 。 理由是 同位角相等,两直线平行
D
B D
A C
B
C
(3)
D
(4)
P
解:
∵∠BHE+ ∠BGF=180°, ∠BHE+ ∠BHA=180°, ∴∠BGF= ∠BHA(同角的补角相等), ∴AE//DF(同位角相等,两直线平行), ∴∠A= ∠BFD(两直线平行,同位角相等). 又∵∠D=∠A,所以∠BFD= ∠D, ∴AB//CD(内错角相等,两直线平行). ∴∠B=∠C(两直线平行,内错角相等).

平行线的判定和性质知识点详解

平行线的判定和性质知识点详解

平行线的判定和性质知识点详解平行线是在同一个平面上,永不相交的两条直线。

在平行线的判定和性质中,我们会涉及到直线和角的相关概念以及它们之间的关系。

1.同位角平行线判定:如果两条直线与一条横截线相交,且同位角相等,则这两条直线是平行线。

同位角是指两条直线被横截线所形成的内外两对相似角。

2.顶角平行线判定:如果两条直线被一条直线所截断,使得内侧的两个顶角互补,则这两条直线是平行线。

顶角是指两条直线被截断所形成的内外两个相交角。

3.对顶角平行线判定:如果两条直线被一条直线所截断,使得对顶角互补,则这两条直线是平行线。

对顶角是指两条直线被截断所形成的相对两侧的相交角。

平行线的性质如下:1.同位角性质:同位角是两条平行线被横截线所形成的内外两对相似角。

性质有:同位角相等;同位角的对应角相等;同位角的内外两个对顶角互补。

2.内错角性质:内部错位的两个角,分别在两对同位角之间,互为补角。

3.外错角性质:外部错位的两个角,分别在两对同位角之间,互为补角。

4.顶角性质:顶角是两条平行线被一条截断线所形成的内外两个相交角。

性质有:顶角相等;顶角的对应角相等;顶角的内外两个对位角互为补角。

5.对顶角性质:对顶角是两条平行线被一条截断线所形成的相对两侧的相交角。

性质有:对顶角互为补角。

6.互补角性质:互补角是指两个角的和为90度。

在平行线中,同位角和对位角都是互补角。

7.直角性质:如果一条直线垂直于一条平行线,则它与这条平行线的对位角都是直角。

8.平行线之间的距离性质:平行线之间的距离在任意两点之间是相等的。

总结起来,平行线的判定方法包括同位角平行线判定、顶角平行线判定和对顶角平行线判定。

而平行线的性质包括同位角性质、内错角性质、外错角性质、顶角性质、对顶角性质、互补角性质、直角性质以及平行线之间的距离性质等。

这些性质可以帮助我们在解决平行线相关问题时更加便捷地推导和证明结论。

平行线的判定及性质课件

平行线的判定及性质课件

05
总结与展望
总结
01
02
03
04
05

直线平行的定义
直线平行的判定 方法
直线平行的性质
平行线在实际生 活中的应用
平行线在数学中 的地位
在同一平面内,不相交的 两条直线叫做平行线。
同位角相等,两直线平行 ;内错角相等,两直线平 行;同旁内角互补,两直 线平行。
两直线平行,同位角相等 ;两直线平行,内错角相 等;两直线平行,同旁内 角互补。
在几何图形中,平行线具 有非常重要的应用价值, 如矩形、菱形、正方形等 都有平行线的性质。
平行线是数学几何学中的 重要概念之一,是研究平 面图形性质的基础之一。 掌握平行线的判定方法和 性质对于学习数学几何学 非常重要。
展望
进一步探索平行线的性质
加强实际应用
除了已经学习的平行线的基本性质外,还 有许多复杂的性质和定理,值得进一步探 索和学习。
详细描述
在制造业中,机器人使用平行线来定位和移动物体,进行高效和精确的生产操作。例如 ,在汽车制造中,机器人通过使用平行线来定位和抓取车辆部件,以提高生产效率和质 量。在医疗领域,手术机器人使用平行线来精确控制手术器械,提高手术的准确性和安
全性。
04
平行线在数学问题中 的应用
代数中与平行线相关的知识点
在道路交通中,平行线是确保车辆安全行驶的重要标志。它们被用来划分车道、标识道路边缘以及引 导驾驶员在正确的车道上行驶。在高速公路上,平行线被用来表示应急车道和车道分隔线,帮助驾驶 员在紧急情况下做出正确的反应。
机器人在工作中的应用
总结词
机器人广泛应用于生产制造、医疗服务和军事等领域,平行线在机器人的工作中发挥着 重要作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的性质与判定培优讲义. 努力向上吧,星星就躲藏在你的灵魂深处;做一个悠远的梦吧,每个梦想都会超越你的目标。

——佚名【知识精要】:1.平面上两条不重合的直线,位置关系只有两种:相交和平行。

2.两条不同的直线,若它们只有一个公共点,就说它们相交。

即,两条直线相交有且只有一个交点。

3.垂直是相交的特殊情况。

有关两直线垂直,有两个重要的结论:(1)过一点有且只有一条直线与已知直线垂直;(2)直线外一点与直线上所有点的连线中,垂线段最短。

4.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.5.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_______________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:_______________________.6.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .7.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:__________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:__________________。

.【例题精析】:例1.如图(1),直线a与b平行,∠1=(3x+70)°,∠2=(5x+22)°,求∠3的度数。

l3例2.已知:如图(2), AB ∥EF ∥CD ,EG 平分∠BEF ,∠B+∠BED+∠D =192°,∠B -∠D=24°,求∠GEF 的度数。

例3.如图,平行直线AB 、CD 与相交直线EF 、GH 相交,图中的同旁内角共有( ) .( “希望杯”邀请赛试题)A .4对B .8对C .12对D .16对例4.如图,在ΔABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线.求证:∠EDF =∠BDF .(天津市竞赛题)例5. 、(1) 如图,AB ∥DE ∥ CF ,你能找到∠BCE.∠B 和 ∠E 之间的关系吗?(2)如图,AB ∥DE ,你能找到∠BCE.∠B 和 ∠E 之间的关系吗? (3)如图,AB ∥DE ,你能找到∠1.∠2和 ∠3 ∠4之间的关系吗?(4)如图,AB ∥DE , 你能找到∠1.∠2. ∠3 ∠4. ∠5.∠6 ∠7之间的关系吗? A B C D E F G A B A B A B 1F3 14 6 2 57ABDE【巩固提高】:1.平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线( )条A .6B . 7C .8D .92.平面上三条直线相互间的交点个数是 ( )A .3B .1或3C .1或2或3D .不一定是1,2,33.平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有( ) A .36条 B .33条 C .24条 D .21条4.已知平面中有n 个点C B A ,,三个点在一条直线上,E F D A ,,,四个点也在一条直线上,除些之外,再没有三点共线或四点共线,以这n 个点作一条直线,那么一共可以画出38条不同的直线,这时n 等于( )(A )9 (B )10 (C )11 (D )125.若平行直线AB 、CD 与相交直线EF 、GH 相交成如图示的图形,则共得同旁内角( ) A .4对 B .8对 C .12对 D .16对6.如图,已知FD ∥BE ,则∠1+∠2-∠3=( ) A .90° B .135° C .150° D .180°第 5 题第 6 题第7题7.如图,已知AB ∥CD ,∠1=∠2,则∠E 与∠F 的大小关系 ;8.平面内有4条直线,无论其关系如何,它们的交点个数不会超过 个。

9.已知:如图,DE ∥CB ,求证:∠AED=∠A+∠B10.已知:如图,AB ∥CD ,求证:∠B+∠D+∠F=∠E+∠G11.如图,已知CB ⊥AB ,CE 平分∠BCD ,DE 平分∠CDA ,∠EDC+∠ECD =90°,求证:DA ⊥AB【数学故事】:阿基米德11岁那年,离开了父母,来到了古希腊最大的城市之一的亚历山大里亚求学。

当时的亚历山大里亚是世界闻名的贸易和文化交流中心,城中图书馆异常丰富的藏书,深深地吸引着如饥似渴的阿基米德。

当时的书是订在一张张的羊皮上的,也有用莎草茎剖成薄片压平后当作纸,订成后粘成一大张再卷在圆木棍上。

那时没有发明印刷术,书是一个字一个字抄成的,十分宝贵。

阿基米德没有纸笔,就把书本上学到的定理和公式,一点一点地牢记在脑子里。

阿基米德攻读的是数学,需要画图形、推导公式、进行演算。

没有纸,就用小树枝当笔,把大地当纸,因为地面太硬,写上去的字迹看不清楚,阿基米德苦想了几天,又发明了一种"纸",他把炉灰扒出来,均匀地铺在地面上,然后在上面演算。

可是有时天公不作美,风一刮,这种"纸"就飞了。

一天,阿基米德来到海滨散步,他一边走一边思考着数学问题。

无边无垠的沙滩,细密而柔软的沙粒平平整整地铺展在脚下,又伸向远方。

他习惯地蹲下来,顺手捡起一个贝壳,便在沙滩上演算起来,又好又便捷。

回到住地,阿基米德十分兴奋地告诉他的朋友们说:"沙滩,我发现沙滩是最好的学习地方,它是那么广阔,又是那么安静,你的思想可以飞翔到很远的地方,就象是飞翔在海面上的海鸥一样。

"神奇的沙滩、博大的海洋,给人智慧,给人力量。

打那以后,阿基米德喜欢在海滩上徜洋徘徊,进行思考和学习。

从求学的少年时代开始一直保持到生命的最后一息。

公元前212年,罗马军队攻占了阿基米德的家乡叙拉古城。

当时,已75岁高龄的阿基米德正在沙滩上聚精会神地演算数学,对于敌军的入侵竟丝毫未觉察。

当罗马士兵拔出剑来要杀他的时候,阿基米德安静地说:"给我留下一些时间,让我把这道还没有解答完的题做完,免得将来给世界留下一道尚未证完的难题。

" 由于阿基米德孜孜不倦、刻苦钻研,终于成为古希腊伟大的数学家、物理学家、天文学家和发明家,后人将他与牛顿、欧拉、高斯并称为"数坛四杰"、"数学之神"。

我国数学泰斗华罗庚说:"天才在于积累。

聪明在于勤奋。

"面对知识的大海,人们应该象阿基米德那样,信念是罗盘,执著和勇毅作双浆,不懈追求,毕生探索。

扬帆远航!A B C D EGA BD 第 15 题【当堂小测验】:一、选择题1.如图,在△ABC 中,∠C =90°.若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是( )A .40°B .60°C .70°D .80°2. 如右下图,l ∥m ,∠1=115º,∠2= 95º,则∠3=( )A .120ºB .130ºC .140ºD .150º3.如左下图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( )(A)30° (B)40° (C )60° (D)70°4.将一副三角板如图放置,使点A 在DE 上,BC ∥DE ,则∠AFC 的度数为A .45°B .50°C .60°D .75°5.如右上图,已知直线AB//CD ,BE 平分∠ABC ,交CD 于D ,∠CDE =150°,则∠C 的度数为( )DAC BD E第3题图AEA .150°B .130°C .120°D .100°6.如右上图,已知∠1 = 70º,如果CD ∥BE ,那么∠B 的度数为( ) A .70º B .100º C .110ºD .120º7.如上中图,BC ⊥AE ,垂足为C ,过C 作CD ∥AB .若∠ECD =48°则∠B = .8.如图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a 、b 上,已知∠1=55°,则∠2的度数为( )A. 45°B. 35°C. 55°D.125°9.如图,AB ∥CD ,∠A =110°∠C =60°那么∠P =______10.如图,已知21//l l ,AB ⊥1l ,∠ABC=130°,则∠α= .11.如图,直线AB ∥CD ,∠EFA=30°,∠FGH=90°,∠HMN =30°,∠CNP= 50°,则∠GHM 的大小是 .(“希望杯”邀请赛试题)AB CD E第6题图B C E D A 1PDCB A12.如图,D、G是ΔABC中AB边上的任意两点,DE∥BC,GH∥DC,则图中相等的角共有( ).A,4对B.5对 C .6对D.7对(“数学新蕾”竞赛题)13.如图,若AB∥CD,则( ).A.∠1=∠2+∠3 B.∠1=∠3一∠2C.∠1+∠2+∠3=180°∠l一∠2十∠3=180°14.如图,AB∥CD∥EF,EH⊥CD于H,则∠BAC+∠ACE+∠CEH等于( ).A.180°B.270°C.360°D.450°15如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数.(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.【快乐作业】:1.如图,已知∠l+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并对结论进行证明.2. 探索10条直线两两相交,最多将平面分成多少块不同的区域?。

相关文档
最新文档