大体积混凝土常见裂缝的分析

合集下载

大体积混凝土裂缝的检测与处理

大体积混凝土裂缝的检测与处理

大体积混凝土裂缝的检测与处理在现代建筑工程中,大体积混凝土的应用越来越广泛,例如大型基础、桥梁墩台、大坝等。

然而,由于大体积混凝土的体积较大,水泥水化热释放集中,内部温升快,以及混凝土内外温差大等原因,容易导致裂缝的产生。

这些裂缝不仅会影响混凝土结构的外观,还可能降低其承载能力、耐久性和防水性能,从而危及建筑物的安全和正常使用。

因此,对大体积混凝土裂缝的检测与处理至关重要。

一、大体积混凝土裂缝的类型及成因(一)收缩裂缝收缩裂缝是大体积混凝土中最常见的裂缝类型之一。

混凝土在硬化过程中,由于水分的蒸发和水泥的水化反应,体积会逐渐缩小。

如果收缩受到约束,就会产生拉应力,当拉应力超过混凝土的抗拉强度时,就会出现收缩裂缝。

收缩裂缝通常表现为表面性的、较细的裂缝,且分布较为均匀。

(二)温度裂缝大体积混凝土在浇筑后的硬化过程中,水泥水化会释放出大量的热量,导致混凝土内部温度迅速升高。

而混凝土表面散热较快,形成较大的内外温差。

这种温差会使混凝土内部产生压应力,表面产生拉应力。

当拉应力超过混凝土的抗拉强度时,就会产生温度裂缝。

温度裂缝通常较宽,深度也较大,往往贯穿整个混凝土结构。

(三)荷载裂缝在大体积混凝土结构承受外部荷载时,如果荷载超过了混凝土的承载能力,就会产生裂缝。

荷载裂缝的形状和分布与荷载的类型、大小和作用方式有关。

(四)施工裂缝施工过程中的不当操作也可能导致大体积混凝土裂缝的产生。

例如,混凝土浇筑不连续、振捣不均匀、拆模过早、养护不当等。

二、大体积混凝土裂缝的检测方法(一)外观检查外观检查是最直观、最简单的检测方法。

通过肉眼观察混凝土表面是否有裂缝,以及裂缝的形态、宽度、长度和分布情况等。

对于较宽的裂缝,可以使用塞尺或裂缝宽度测量仪进行测量。

(二)超声波检测超声波检测是一种无损检测方法,通过发射和接收超声波在混凝土中的传播,来判断混凝土内部是否存在裂缝以及裂缝的位置、深度和走向等。

超声波检测具有检测精度高、操作方便等优点,但对于细小的裂缝检测效果可能不太理想。

大体积混凝土质量通病及防治措施

大体积混凝土质量通病及防治措施

大体积混凝土质量通病及防治措施在建筑工程中,大体积混凝土的应用越来越广泛。

然而,由于其体积大、结构厚实、施工技术要求高,在施工过程中容易出现一些质量通病,如裂缝、蜂窝麻面、孔洞等,这些问题不仅影响混凝土的外观质量,还可能降低其结构性能和耐久性。

因此,了解大体积混凝土质量通病的产生原因,并采取有效的防治措施,对于保证工程质量具有重要意义。

一、大体积混凝土质量通病(一)裂缝裂缝是大体积混凝土最常见的质量通病之一。

裂缝按深度不同可分为表面裂缝、深层裂缝和贯穿裂缝。

表面裂缝一般危害性较小,但在外界因素的影响下,可能会发展成为深层裂缝或贯穿裂缝。

深层裂缝和贯穿裂缝会严重影响混凝土的结构性能和耐久性。

裂缝产生的原因主要有以下几个方面:1、水泥水化热大体积混凝土中水泥用量较大,水泥在水化过程中会释放出大量的热量,导致混凝土内部温度升高。

由于混凝土的导热性能较差,内部热量不易散发,从而形成较大的内外温差。

当温差超过一定限度时,混凝土表面就会产生拉应力,当拉应力超过混凝土的抗拉强度时,就会产生裂缝。

2、外界气温变化在混凝土施工过程中,如果外界气温突然下降,会导致混凝土表面温度急剧下降,而内部温度下降较慢,从而形成较大的内外温差,产生裂缝。

3、混凝土收缩混凝土在硬化过程中会发生收缩,包括塑性收缩、干燥收缩和自收缩等。

如果收缩受到约束,就会产生拉应力,导致裂缝的产生。

4、约束条件大体积混凝土在浇筑过程中,如果受到地基、模板等的约束,不能自由变形,就会在混凝土内部产生拉应力,当拉应力超过混凝土的抗拉强度时,就会产生裂缝。

(二)蜂窝麻面蜂窝麻面是指混凝土表面局部出现酥松、砂浆少、石子多,石子之间形成空隙类似蜂窝状的窟窿,以及混凝土表面局部缺浆、粗糙,或有许多小凹坑的现象。

蜂窝麻面产生的原因主要有以下几个方面:1、混凝土配合比不当混凝土中水泥、砂、石的比例不合适,或者砂率过小、石子粒径过大,都会导致混凝土和易性差,容易产生蜂窝麻面。

大体积混凝土施工质量通病防治对策措施

大体积混凝土施工质量通病防治对策措施

大体积混凝土施工质量通病防治对策措施在建筑工程中,大体积混凝土的施工是一项具有挑战性的任务。

由于其体积大、结构厚、施工技术要求高,容易出现一系列质量通病,如裂缝、温差过大、泌水等问题。

这些问题不仅会影响混凝土的外观和耐久性,还可能危及结构的安全性和稳定性。

因此,采取有效的防治对策措施至关重要。

一、大体积混凝土施工质量通病(一)裂缝问题裂缝是大体积混凝土施工中最常见的质量问题之一。

裂缝的产生主要有以下几种原因:1、温度裂缝:由于混凝土在浇筑后,水化热释放集中,内部温度升高,而表面散热较快,形成内外温差。

当温差超过一定限度时,就会产生温度裂缝。

2、收缩裂缝:混凝土在硬化过程中,会发生体积收缩。

如果收缩受到约束,就会产生收缩裂缝。

3、荷载裂缝:在混凝土尚未达到足够强度时,过早承受荷载,可能导致裂缝的产生。

(二)温差过大大体积混凝土内部与表面的温差过大,会引起混凝土的不均匀变形,从而产生温度应力。

当温度应力超过混凝土的抗拉强度时,就会出现裂缝。

(三)泌水现象混凝土在浇筑过程中,由于水灰比过大、外加剂使用不当等原因,可能会出现泌水现象。

泌水会导致混凝土表面形成浮浆层,影响混凝土的质量。

二、大体积混凝土施工质量通病的防治对策措施(一)优化混凝土配合比1、选用低水化热的水泥,如矿渣水泥、粉煤灰水泥等。

2、减少水泥用量,可通过掺入适量的粉煤灰、矿渣粉等掺和料来替代部分水泥。

3、控制骨料的级配和含泥量,选用粒径较大、级配良好的骨料,降低混凝土的收缩。

4、合理控制水灰比,在保证混凝土和易性的前提下,尽量减少用水量。

(二)控制混凝土浇筑温度1、对原材料进行降温处理,如对骨料进行遮阳、洒水降温,对水泥进行储存降温等。

2、在搅拌过程中加入冰水,降低混凝土的出机温度。

3、选择适宜的浇筑时间,尽量避开高温时段进行浇筑。

(三)加强施工中的温度控制1、预埋冷却水管,通过循环水来降低混凝土内部温度。

2、采取保温保湿养护措施,如覆盖塑料薄膜、草帘等,减少混凝土表面的热量散失,控制混凝土内外温差。

大体积混凝土裂缝成因及控制

大体积混凝土裂缝成因及控制

大体积混凝土裂缝成因及控制概述:大体积混凝土开裂的问题是建筑施工中一个普遍性的技术问题。

裂缝一旦形成,特别是基础贯穿裂缝出现在重要的结构部位,危害极大,它会降低结构的耐久性,削弱构件的承载力,同时可能会危害到建筑物的安全使用。

本文从分析大体积混凝土裂缝成因开始,然后提出相应控制措施。

1.大体积混凝定义混凝土结构物实体最小尺寸不小于1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土。

1.大体积混凝土的裂缝及种类按深度的不同,分为贯穿裂缝、深层裂缝及表面裂缝三种。

贯穿裂缝是由混凝土表面裂缝发展为深层裂缝,最终形成贯穿裂缝。

它切断了结构的断面,可能破坏结构的整体性和稳定性,危害性严重;而深层裂缝部分也切断了结构断面,也有一定危害性;表面裂缝危害性较小;按结构表面形状分为网状裂缝、爆裂状裂缝、不规则短裂缝、纵向裂缝、横向裂缝、斜裂缝等;按其发展情况分为稳定裂缝和不稳定裂缝、能闭合裂缝和不能闭合的裂缝;按其尺寸大小分为微观裂缝和宏观裂缝两类,微观裂缝是混凝土内部固有的一种裂缝,它是不连贯的,一般存在于混凝土结构内部,尺寸较小裂缝宽度通常情况下不超过0.5mm;宏观裂缝是指尺寸较大的裂缝,裂缝宽度通常情况下大于0.5mm,可存在于混凝土内部,也可存在于混凝土表面。

按时间可分为施工期间形成的裂缝和使用期间产生的裂缝。

3.大体积混凝土裂缝成因3.1塑性收缩裂缝塑性收缩是混凝土在浇筑结束后尚在塑性状态发生的收缩,大多出现在混凝土浇筑初期,收缩裂缝形成过程与混凝土的表面泌水有关。

混凝土在凝结过程中水分向外蒸发时会引起局部应力,因此当蒸发速率大于泌水速率时会发生局部塑性收缩开裂。

塑性收缩裂缝多呈中间宽、两端细,且长短不一,互不连贯状态。

常发生在混凝土表面积较大的面上。

从外观分为无规则网络状和稍有规则的斜纹状或反映出混凝土布筋情况和混凝土构件截面变化等规则的形状,深度通常不会太深。

大体积混凝土结构裂缝成因及预防措施

大体积混凝土结构裂缝成因及预防措施
9. 加强技术管理
加强原材料的检验、试验工作。施工中严格按照方案及交底的要求指导施工,明确分工,责任到人。加强计量监测工作,定时检查并做好详细记录,认真对待浇筑过程中可能出现的冷缝,并采取措施加以杜绝。在变截面施工前,一定要加强预测,并保证预测的科学性。同时在实施过程中,要切实落实施工方案。
台设计时,在承台中间设置了垫20@2肋水平抗缩钢筋网片。采用“水平分层间隙”施工方法,分两层进行浇筑,间隙时间7d以上,分层厚度各1.5m,抗缩钢筋网设置在下层1.5m的上表面。在工期允许的情况下,这种施工方法可降低内部最高温升、减少人力、材料及机械设备的投入。
2. 选择适当外加剂
可根据设计要求,混凝土中掺加一定用量外加剂,如防水剂、膨胀剂、减水剂、缓凝剂等外加剂。外加剂中糖钙能提高混凝土的和易性,使用水量减少20%左右,水灰比可控制在0.55以下,初凝延长到5h左右。
3. 选择优化配合比
选用良好级配的骨料,严格控制砂石质量,降低水灰比,并在混凝土中掺加粉煤灰和外加剂等,以降低水泥用量,减少水化热,以降低混凝土温升,从而可以降低混凝土所受的拉应力。
温度裂缝的走向通常无一定规律。大面积结构裂缝常纵横交错;梁板类长度尺寸较大的结构,裂缝多平行于短边;深入和贯穿性的温度裂缝一般与短边方向平行或接近平行,裂缝沿着长边分段出现,中间较密。裂缝宽度大小不一,受温度变化影响较为明显:冬季较宽,夏季较窄。高温膨胀引起的混凝土温度裂缝是通常中间粗两端细,而冷缩裂缝的粗细变化不太明显。此种裂缝的出现会引起钢筋的锈蚀,混凝土的碳化,降低混凝土的抗冻融、抗疲劳及抗渗能力等。
5. 裂缝的防治措施
5.1 设计措施
1. 精心设计混凝土配合比。在保证混凝土具有良好工作性的情况下,应尽可能地降低混凝土的单位用水量,采用“三低(低砂率、低坍落度、低水胶比)二掺(掺高效减水剂和高性能引气剂)一高(高粉煤灰掺量)”的设计准则,生产出高强、高韧性、中弹、低热和高极拉值的抗裂混凝土。

大体积混凝土温度裂缝防治措施

大体积混凝土温度裂缝防治措施

大体积混凝土温度裂缝防治措施一、背景介绍在混凝土的浇筑过程中,由于温度的变化,往往会出现温度裂缝。

对于大体积混凝土结构来说,这种情况更加常见。

温度裂缝不仅影响美观,还会降低混凝土的强度和耐久性。

因此,在大体积混凝土结构中,必须采取有效的措施来防止温度裂缝的发生。

二、原因分析1. 混凝土浇筑时内部水分蒸发导致收缩;2. 大体积混凝土结构自身重量压力;3. 气温变化引起的热胀冷缩。

三、预防措施1. 控制水分含量:在混凝土浇筑前应进行充分的调配和搅拌,确保混合物均匀。

同时,应控制好水灰比和砂率等参数,以避免过多的水分蒸发导致收缩。

2. 合理设置伸缩缝:在大体积混凝土结构中设置伸缩缝是必要的措施之一。

通过设置伸缩缝,可以使混凝土结构在温度变化时有一定的伸缩空间,从而避免温度裂缝的发生。

3. 控制浇筑温度:在大体积混凝土结构的浇筑过程中,应控制好混凝土的温度。

一般来说,混凝土的浇筑温度应控制在20℃~30℃之间。

如果温度过高,则会导致混凝土内部产生较大的热胀冷缩变形,从而引起温度裂缝。

4. 采用降温剂:在大体积混凝土结构中,可以采用降温剂来控制混凝土的温度。

降温剂可以有效地降低混凝土内部的温度,从而避免因热胀冷缩引起的裂缝。

5. 加强养护:在大体积混凝土结构浇筑完成后,必须进行充分的养护。

养护时间应不少于28天,并且要保持适宜的湿润环境,以确保混凝土内部完全干燥和固化。

四、治理措施1. 填补温度裂缝:如果出现了温度裂缝,必须及时进行治理。

一般来说,可以采用填补的方式来修复温度裂缝。

填补材料应选择与原混凝土相同的材料,并且要充分保证填补材料与原混凝土的粘结性。

2. 加固结构:在大体积混凝土结构中,如果出现了较大的温度裂缝,可能会影响结构的安全性。

这时,可以采用加固措施来增强结构的承载能力。

加固方法可以根据具体情况选择,比如设置加筋板、加固梁柱等。

五、总结针对大体积混凝土结构中出现的温度裂缝问题,必须从预防和治理两个方面来进行措施。

简述大体积混凝土结构产生裂缝的主要原因及浇筑方案

简述大体积混凝土结构产生裂缝的主要原因及浇筑方案

简述大体积混凝土结构产生裂缝的主要原因及浇筑方案摘要:一、大体积混凝土结构裂缝产生的主要原因1.温度变化2.收缩变形3.应力集中4.施工不当二、浇筑方案1.选择合适的浇筑时间2.合理设计混凝土配合比3.浇筑过程中的温度控制4.施工后的养护措施正文:在大体积混凝土结构的建设过程中,裂缝问题是工程师们最为关注的问题之一。

裂缝的出现不仅影响结构的美观,更重要的是可能导致结构性能的下降,甚至引发安全隐患。

本文将对大体积混凝土结构裂缝产生的主要原因进行分析,并提出相应的浇筑方案,以期为混凝土结构施工提供参考。

一、大体积混凝土结构裂缝产生的主要原因1.温度变化:混凝土在浇筑、硬化、养护过程中,由于温度变化引起的膨胀和收缩,可能导致结构内部产生应力集中,从而引发裂缝。

2.收缩变形:混凝土在硬化过程中,水分蒸发导致体积收缩,若收缩变形受到约束,将产生裂缝。

3.应力集中:混凝土结构在承受荷载过程中,可能由于局部构造原因,如钢筋配置不均、转角处过度圆滑等,导致应力集中,从而引发裂缝。

4.施工不当:混凝土浇筑、养护过程中,施工措施不当也可能导致裂缝产生,如浇筑速度过快、养护不到位等。

二、浇筑方案1.选择合适的浇筑时间:避免在高温、干燥、大风等恶劣天气条件下进行混凝土浇筑,以减小温度变化和收缩变形对结构的影响。

2.合理设计混凝土配合比:根据工程特点和环境条件,优化混凝土配合比,确保混凝土的抗裂性能。

3.浇筑过程中的温度控制:采用预冷措施,如降低混凝土入模温度、使用冷却水等,以降低混凝土温度应力。

4.施工后的养护措施:及时对混凝土结构进行养护,确保混凝土充分湿润,以减小收缩裂缝的产生。

综上所述,要预防大体积混凝土结构的裂缝问题,需从多方面入手。

通过合理选择浇筑时间、设计混凝土配合比、控制浇筑过程中的温度以及加强施工后的养护措施,可以降低裂缝产生的风险。

大体积混凝土裂缝产生原因及其预防控制措施

大体积混凝土裂缝产生原因及其预防控制措施

大体积混凝土裂缝产生原因及其预防控制措施一、大体积混凝土裂缝类型及裂缝产生原因分析大体积混凝土结构裂缝主要包括干燥收缩裂缝、塑性收缩裂缝、自身收缩裂缝、安定性裂缝、温差裂缝、碳化收缩裂缝等。

1.收缩裂缝。

影响混凝土收缩的主要因素主要是混凝土中的用水量、水泥用量及水泥品种。

混凝土中的用水量和水泥用量越高,混凝土收缩就越大。

水泥品种对干缩量及收缩量也有很大的影响,一般中低热水泥和粉煤灰水泥的收缩量较小。

自身收缩是混凝土收缩的一个主要来源。

自身收缩主要发生在混凝土拌合后的初期。

塑性收缩也是大体积混凝土收缩一个主要来源。

出现裂缝以后,混凝土体内的水分蒸发进一步加快,于是裂缝迅速扩展。

所以在这种情况下混凝土浇筑后需要及早覆盖养生。

2.温差裂缝。

混凝土内部和外部的温差过大会产生裂缝。

温差裂缝产生的主要原因是水泥水化热引起的混凝土内部和混凝土表面的温差过大。

特别是大体积混凝土更易发生此类裂缝。

温差的产生主要有三种情况:第一种是在混凝土浇筑初期,这一阶段产生大量的水化热,形成内外温差并导致混凝土开裂,这种裂缝一般产生在混凝土浇筑后的第3天(升温阶段)。

另一种是在拆模前后,这时混凝土表面温度下降很快,从而导致裂缝产生。

第三种情况是当混凝土内部温度高达峰值后,热量逐渐散发而达到使用温度或最低温度,它们与最高温度的差值即内部温差。

这三种温差都会产生裂缝,但最严重的是水化热引起的内外温差。

3.安定性裂缝。

安定性裂缝表现为龟裂,主要是由于水泥安定性不合格而引起。

二、裂缝的防治措施1.设计措施。

(1)精心设计混凝土配合比。

在保证混凝土具有良好工作性的情况下,应尽可能降低混凝土的单位用水量,采用“三低(低砂率、低坍落度、低水胶比)二掺(掺高效减水剂和高性能引气剂)一高(高粉煤灰掺量)”的设计准则,生产出“高强、高韧性、中弹、低热和高抗拉值”的抗裂混凝土。

(2)增配构造筋,提高抗裂性能。

应采用小直径、小间距的配筋方式,全截面的配筋率应在0.3%~0.5%。

大体积混凝土裂缝的类型

大体积混凝土裂缝的类型

大体积混凝土裂缝的类型在建筑工程中,大体积混凝土的应用越来越广泛,然而其裂缝问题却一直是困扰工程界的难题之一。

大体积混凝土裂缝的出现不仅会影响结构的外观,还可能降低结构的承载能力和耐久性,给工程带来安全隐患。

要有效地预防和控制大体积混凝土裂缝,首先需要了解其裂缝的类型。

一、表面裂缝表面裂缝是大体积混凝土中较为常见的一种裂缝类型。

这种裂缝通常出现在混凝土的表面,深度较浅,一般不会延伸到混凝土内部深处。

表面裂缝的形成原因主要有以下几点。

首先,混凝土在浇筑后,由于表面水分蒸发较快,而内部水分散失相对较慢,导致表面收缩较大,内部收缩较小,从而产生表面拉应力。

当这种拉应力超过混凝土的抗拉强度时,就会出现表面裂缝。

其次,在混凝土浇筑后的初期养护不当,未能及时覆盖保湿,也容易导致表面裂缝的产生。

此外,外界环境温度的变化,特别是在高温或大风天气条件下,混凝土表面温度骤降,也可能引发表面裂缝。

表面裂缝虽然相对较浅,但如果不加以处理,裂缝可能会进一步扩展,影响混凝土的耐久性和外观质量。

二、深层裂缝深层裂缝是指裂缝深度较大,已经深入到混凝土内部一定深度的裂缝。

深层裂缝的产生通常与混凝土内部的温度变化和约束条件有关。

大体积混凝土在浇筑过程中,由于水泥水化反应会释放出大量的热量,导致混凝土内部温度升高。

当混凝土内部温度达到峰值后,又会随着时间逐渐下降。

在这个温度变化过程中,混凝土内部会产生温度应力。

如果混凝土受到外部或内部的约束,无法自由变形,温度应力就会不断累积。

当温度应力超过混凝土的抗拉强度时,就会产生深层裂缝。

深层裂缝对混凝土结构的整体性和承载能力有较大影响,可能会削弱结构的刚度和强度,需要引起足够的重视。

三、贯穿裂缝贯穿裂缝是大体积混凝土裂缝中最为严重的一种类型,它贯穿了整个混凝土结构的横截面。

贯穿裂缝的形成往往是多种因素共同作用的结果。

一方面,混凝土内部的温度应力和收缩应力过大,超过了混凝土的极限抗拉强度;另一方面,混凝土结构可能存在设计不合理、施工质量差等问题,导致结构的整体性和抗裂能力不足。

地下室施工中裂缝的预防及处(三篇)

地下室施工中裂缝的预防及处(三篇)

地下室施工中裂缝的预防及处地下室施工中,混凝土裂缝是普遍存在的问题,本文对地下室混凝土施工中常见的一些裂缝问题进行分析,并提出预防处理措施。

一、地下室常见施工裂缝1、地下室底板裂缝高层建筑地下室的底板一般较厚,属属大体积混凝土施工。

发生裂缝的主要原因是水化热高,与环境气温温差大,或养护不当,裂缝严重的可导致底板渗漏。

若混凝土温度较高时,突然浇冷水养护,也会产生无规则的多条微裂缝。

2、地下室外挡土墙裂缝由于墙体混凝土强度等级普遍较高,采用C40、C45,甚至C50、C60,这样水泥用量多达500~550公斤/立方米,势必造成混凝土收缩量大,不易养护,地下室外挡土墙又很长,因此往往形成多条较有规律的竖向裂缝,肉眼可明显地看到收缩裂缝形状。

3、地下室阴角裂缝在地下室施工完后,通常在外墙截面刚度变化处,平面形状转折处的阴角存在结构竖向裂缝,由顶部向下开裂,上宽下窄,这是由于收缩应力和沉降、温度应力等共同作用,在角部形成集中应力超过混凝土抗拉强度所造成的。

二、施工裂缝的预防1、对于大体积混凝土底板施工,可采取下列措施:选用低水化热的矿渣水泥掺加高效减水剂,以减少用水量;掺加粉煤灰,以减少水泥用量;掺加UEA微膨胀剂,以补偿收缩;分层分段浇筑混凝土,并加强养护,严格控制混凝土内外温差(中心与表面、表面与外界),使温差25℃。

采取这些相应的措施后,完全可以控制裂缝的发生。

2、对地下室外挡土墙裂缝的预防,可采取的措施主要是调整混凝土配合比,通过加外加剂(减水剂、高效泵送剂、UEA微膨胀剂、粉煤灰等),力求减水、减少水泥用量来防止裂缝,注意加强养护,及时覆盖、淋水,或喷洒养护剂,墙体模板尽可能晚拆一些。

3、为了防止阴角部位混凝土产生裂缝,除从设计方面尽量少用凹凸的平面形式,并且在阴角处采用附加钢筋等构造措施外,在施工方面还必须保证阴角部位的混凝土施工质量,及时覆盖、淋水,或喷洒养护剂进行养护,控制拆模时间,不宜过早。

分析大体积混凝土裂缝原因及温控措施

分析大体积混凝土裂缝原因及温控措施

分析大体积混凝土裂缝原因及温控措施1 沉缩裂缝混凝土沉缩裂缝在体积混凝土施工中也是非常多的。

主要原因是振捣不密实, 沉实不足, 或者骨料下沉, 表层浮浆过多, 且表面覆盖不及时, 受风吹日晒, 表面水份散失快, 产生干缩, 混凝土早期强度又低, 不能抵抗这种变形而导致开裂。

在施工中采用缓凝型泵送剂, 延缓混凝土的凝结硬化速度, 充分利用外加剂( 特别是缓凝剂) 的特性, 适时增加抹加次数, 消除表面裂缝( 特别是沉缩裂缝和初期温度裂缝) , 特别是初凝前的抹压。

2 温度裂缝(1) 原因: 一是由于温差较引起的, 混凝土结构在硬化期间水泥放出量水化热, 内部温度不断上升, 使混凝土表面和内部温差较, 混凝土内部膨胀高于外部, 此时混凝土表面将受到很的拉应力, 而混凝土的早期抗拉强度很低, 因而出现裂缝。

这种温差一般仅在表面处较, 离开表面就很快减弱, 因此裂缝只在接近表面的范围内发生, 表面层以下结构仍保持完整。

二是由结构温差较, 受到外界的约束引起的, 当体积混凝土浇筑在约束地基上时, 又没有采取特殊措施降低, 放松或取消约束, 或根本无法消除约束, 易发生深进, 直至贯穿的温度裂缝。

(2) 过程: 一般( 人为) 分为三个时期: 一是初期裂缝———就是在混凝土浇筑的升温期, 由于水化热使混凝土浇筑后2- 3 天温度急剧上升, 内热外冷引起“ 约束力”, 超过混凝土抗拉强度引起裂缝。

二是中期裂缝———就是水化热降温期, 当水化热温升到达峰值后逐渐下降, 水化热散尽时结构物的温度接近环境温度, 此间结构物温度引起“ 外约束力”, 超过混凝土抗拉强度引起裂缝。

三是后期裂缝, 当混凝土接近周围环境条件之后保持相对稳定, 而当环境条件下剧变时, 由于混凝土为不良导体,形成温度梯度, 当温度梯度较时, 混凝土产生裂缝。

3 控温措施和改善约束3.1 温控措施(1) 降低混凝土内部的水化热, 采用中低热的矿渣水泥, 控制水泥的使用温度, 添加一定量的优质粉煤灰, 以降低混凝土的水化热, 同时选用高效外加剂。

超长大体积混凝土施工中的裂缝控制措施

超长大体积混凝土施工中的裂缝控制措施

引言超长大体积混凝土在建筑工程中较为常见,但此类材料的抗拉水平较差,一旦材料受力不匀称,就会导致建筑出现不规则裂缝,降低整体构件的承载力及稳定性。

为了降低混凝土裂缝对材料、建筑本身性能的不利影响,施工人员需要结合已有的经验和资料进行总结,通过消除混凝土裂缝对整体工程的不利影响,尤其是要总结诱发裂缝的原因,并给予加强、预防控制,再根据现有的案例确定预防性管理体系,规避裂缝带来的安全隐患问题,这也能提高整体工程的经济效益。

1超长大体积混凝土开裂机理超长大体积混凝土开裂问题的主要诱发因素是混凝土自身性能及其他因素两方面。

具体来讲,超长大体积混凝土开裂机理如下。

(1)混凝土成型过程中受到外界温度的影响,致使材料的体出现一定变化。

未添加抗渗材料混凝土的抗渗水平相对较差,非常容易受到高渗透性、侵蚀性溶液的影响,降低混凝土的功能性。

(2)当混凝土内部的温度出现剧烈变化时,混凝土的体积势会发生一定变化。

例如,水泥搅拌过程中会出现水热反应,大量的水化热会导致混凝土内外温差过大,影响材料的影响。

温度变化幅度会随着混凝土浇筑作业开展出现一定变化,故需要施工人员加强对材料的养护作业。

(3)材料收缩问题会影响大体积混凝土的功能性,尤其是材料的收缩性能(干燥、自收缩、塑性、化学、温度、沉降)会直接影响混凝土的收缩成型。

因此,施工人员需要结合当地的生态环境及降水因素、温湿度等条件,在细致的观察实践中确定混凝土收缩、开裂问题的影响因素。

(4)混凝土徐变现象也是工程中比较容易出现的,特别是徐变过程具有两面性特点,其一是可以控制水化热产生的温度应力,其二是可以增加混凝土形变的幅度。

(5)实际工程中所使用的其他物料也会影响混凝土的功能性,如水泥的细化水平会影响材料的收缩水平,并且混凝土裂缝大小会随着水泥使用量的增加而不断增加。

另外,骨料(粗骨料、细骨料)的含砂量也与混凝土裂缝的出现有直接的关系。

相关研究显示,在实际工程中添加适当减水剂,可以促使混凝土水胶比增加,该过程可以避免混凝土的化学收缩问题,这也说明加入适量外加剂也可以全面提高混凝土的质量,但工程中也要注意结合施工现场环境进行针对性管理。

大体积混凝土裂缝原因及控制措施

大体积混凝土裂缝原因及控制措施

大体积混凝土裂缝原因及控制措施大体积砼产生裂缝的原因是由于砼内部水化热作用产生的温度与砼表面温度存在着温差,势必产生温度应力,而温度应力与温差成正比,当这种温度应力超过砼抗拉强度时就会产生裂缝。

因此,防止砼出现裂缝的关键就是控制砼内部与表面的温差。

砼因温度应力而产生的裂缝分为两个阶段:第一阶段是因水泥水化热使砼内部温度升高,而在升温阶段砼内外温差过大,造成裂缝;第二阶段是砼内部温度达到最高后,砼因表面散热(或缩水)过快而产生较大的温降差,造成裂缝。

砼内部因水化热而温度增大达到最大值的时间为砼浇筑后第三天。

这些裂缝大致可分为两种:1、表面裂缝:大体积混凝土浇筑后,水泥产生大量水化热,使混凝土的温度上升,但由于混凝土内部和表面的散热条件不同,因而中心温度高表面温度低,形成温度梯度,使混凝土内部产生压应力,表面产生拉应力,当这个拉应力超过混凝土的抗拉强度时,混凝土表面就会产生裂缝。

2、贯穿裂缝:大体积混凝土浇筑初期,混凝土处于升温阶段,弹性模量很小,由变形所引起的应力很小,故温度应力一般可忽略不计,但是过了数日,混凝土逐渐降温,这时温差引起的变形加上混凝土多余水分蒸发时引起的体积收缩变形引起拉应力,当该拉应力超过;混凝土抗拉强度时,混凝土整个截面应会产生贯穿裂缝。

从影响结构安全的角度讲表面裂缝的危害性较小,而贯穿裂缝则会影响结构的正常使用,所以应采取措施避免表面裂缝,并坚决控制贯穿裂缝的开展。

裂缝给工程带来不同程度的危害,因此如何进一步控制温度变形裂缝的开展,是该工程大体积混凝土构件施工中的一个重要课题。

由于大体积混凝土施工的条件比较复杂,施工情况各异,再加上混凝土原材料的材质各向异性较大,且混凝土由各种非均质材料组成,它的破坏很复杂,在施工过程中控制温度变形裂缝,是涉及材料组成和物理力学性能及施工工艺等学科的综合性问题。

要采取相应的技术措施妥善处理温度差值,合理解决温度应力并控制裂缝的展开。

3、大体积混凝土裂缝产生的规律根据大体积砼因水化热升温和降温阶段砼内部的应力变化,表面裂缝和收缩裂缝的内在联系及产生的原因,大体积混凝土裂缝产生的规律有以下几点:(1)温差和收缩越大,越容易开裂,裂缝越宽、越密。

大体积混凝土裂缝产生原因及措施分析

大体积混凝土裂缝产生原因及措施分析

大体积混凝土裂缝产生原因及措施分析大体积混凝土裂缝是指在混凝土结构中出现的较宽较长的裂缝。

这些裂缝不仅影响美观,还可能降低结构的承载能力和耐久性,因此必须及时采取措施进行修复。

大体积混凝土裂缝产生的原因很多,主要可以归结为以下几个方面:1. 强度问题:如果混凝土配比设计不合理,材料的强度不足以承受荷载,就会导致混凝土出现裂缝。

2. 温度变化:混凝土在硬化过程中会发生体积变化,当温度变化较大时,会引起热应力或冷却收缩应力,导致混凝土裂缝的产生。

3. 施工质量问题:施工过程中,如果混凝土浇筑不均匀、养护不当或者震捣不充分,就会导致混凝土中存在缺陷,进一步引发裂缝。

4. 荷载变化:当混凝土结构承受荷载时,如果荷载过大或者荷载作用频繁,就会导致混凝土出现裂缝。

针对大体积混凝土裂缝问题,可以采取以下措施:1. 在混凝土配比设计时,应根据工程要求确定合适的配方,并确保混凝土的强度、流动性等性能满足要求。

2. 进行合理的温度控制,可以通过采用防护措施,如使用遮阳网、覆盖保温材料等防止混凝土过早脱水和快速冷却,从而减少温度应力的产生。

3. 在施工过程中,要加强对混凝土的养护,保持适当的湿度和温度,防止混凝土过早脱水和干缩,同时还要确保混凝土的均匀浇注和有效震捣。

4. 如果施工中出现了不可避免的荷载变化,可以通过在混凝土中添加合适的密封、抗裂剂等措施来提高混凝土的抗裂性能。

针对大体积混凝土裂缝产生的原因,可以通过优化混凝土配比、合理控制温度、加强施工质量管理以及选择合适的措施进行修复等方式来减少或避免裂缝的产生。

在混凝土结构设计和施工过程中,还应加强监测和检验,及时发现和处理裂缝问题,确保结构的安全和持久性。

大体积混凝土的裂缝控制(三篇)

大体积混凝土的裂缝控制(三篇)

大体积混凝土的裂缝控制大体积混凝土结构是指在施工过程中需要使用大量混凝土,如桥梁、大型建筑、水电站等。

由于大体积混凝土结构体积大、自重大,材料特性和环境条件的影响也更加复杂,在施工和使用过程中容易出现裂缝问题。

因此,正确的裂缝控制对于确保大体积混凝土结构的安全和可靠性非常重要。

一、裂缝形成的原因1. 温度变形温度变形是大体积混凝土结构产生裂缝的主要原因。

在凝固过程中,混凝土发生体积收缩,当收缩约束受阻时,就会出现温度变形。

此外,温度变化引起的混凝土体积伸缩也可能导致裂缝的产生。

2. 负荷变形负荷变形是指混凝土结构在受到外部荷载作用时发生变形,如弯曲、扭转、剪切等。

当负荷超过混凝土的承载能力时,就会产生裂缝。

3. 混凝土收缩混凝土收缩是指混凝土在水化反应过程中,水分蒸发使混凝土发生体积收缩。

这种收缩变形会导致混凝土内部产生应力,进而引起裂缝的形成。

4. 不均匀收缩不均匀收缩是指混凝土不同部位发生收缩的程度不一致,从而产生内部应力,进而引起裂缝。

5. 震动和震动变形大体积混凝土结构在振动或地震作用下,会产生动态变形,引起内部应力增大,从而产生裂缝。

二、裂缝控制方法1. 设计和施工合理的结构设计和施工方法是控制裂缝产生的首要措施。

在结构设计过程中,应通过合理的受力分析和结构布置,减少混凝土体积变形和应力集中,从而减少裂缝的产生。

在施工过程中,应严格按照设计要求和施工规范进行操作,如控制混凝土浇筑温度、采取适当的养护措施等。

2. 增加混凝土延性延性是指材料在受力后能够发生可逆变形的能力。

增加混凝土的延性可以通过增加掺合料、添加增塑剂等方式来实现。

延性的提高可以减少混凝土内部应力和应力集中,从而减少裂缝的产生。

3. 加强混凝土的抗温度变形能力可以通过选用低热水泥、混凝土铺装还未减少温度变形。

同时,在混凝土铺装过程中,辅以合理的浇筑和养护措施,减少温度梯度,提高混凝土的抗温度变形能力。

4. 增加混凝土的抗裂性能可以通过控制混凝土的水胶比、使用适量的细骨料和粗骨料、使用聚丙烯纤维增加混凝土的抗裂性能。

大体积混凝土施工中的常见问题及处理措施!

大体积混凝土施工中的常见问题及处理措施!

⼤体积混凝⼟施⼯中的常见问题及处理措施!⼤体积混凝⼟结构是现代建筑⼯程中的主要施⼯材料,其浇注质量的⾼低直接关系到⼟⽊⼯程技术性能的⾼低。

所以在施⼯过程中,施⼯⼈员要对⼤体积混凝⼟材料的性能检测予以重视,严格控制混凝⼟⼯程的质量,并采取相应的措施保证施⼯质量,保证安全。

根据严密计算可知: ⼤体积混凝⼟容易发产⽣裂缝,⽽在施⼯期间出现的裂缝数量和危害远远超过其使⽤期间,因此,要控制和防⽌混凝⼟产⽣裂缝,尤其需要注重其施⼯期间的各个环节。

施⼯过程中遇到的问题1. 裂缝问题混凝⼟是⼀种由不同材料组成的⾮均质体,外部载荷和环境的影响会引起内部产⽣的初始应⼒,内部转移,扩散等复杂的现象,因此,混凝⼟在施⼯时会出现裂缝问题。

⼤体积混凝⼟的特点是混凝⼟浇筑⾯和浇筑量很⼤,混凝⼟浇筑完毕时由于⽔泥⽔化热的影响会使混凝⼟内部的最⾼温度在很短时间内达到最⼤,这时,如果混凝⼟内外温差超过25℃,那么在升温和降温阶段就容易发⽣表⾯裂缝和收缩裂缝。

裂纹按照深度不同可分为表⾯裂纹和深度裂纹。

表⾯裂纹⼀般危害较⼩,深度裂纹的危害相对来说危害就⽐较⼤,有时可能会破坏混凝⼟结构的完整性和稳定性。

根据其他⽅⾯,裂缝的原因可分为温度变化引起的裂缝、地基变化引起的裂缝、设计原因引起的裂缝、钢筋锈蚀引起的裂缝、施⼯⼯艺的优劣引起的裂缝等。

⼤体积混凝⼟产⽣的裂缝⼀般为温度原因产⽣的裂缝,⼀⽅⾯是由于混凝⼟内部的原因: ⼤体积混凝⼟由于⽔泥⽔化热导致混凝⼟内部温度很⾼,当混凝⼟表⾯的温度和⽓温相差较⼤时就会产⽣温度收缩裂缝。

混凝⼟的膨胀系数为每摄⽒度0. 00001,温度每变化10℃,混凝⼟会产⽣0. 01% 的先膨胀或收缩。

另外如果混凝⼟被约束变形,在结构中会产⽣应⼒,混凝⼟具有抗拉强度即温度裂缝性能,当应⼒超过混凝⼟的这种性能时,地基就会变形产⽣裂缝。

由于地基不均匀的沉降的垂直或⽔平⽅向的位移产⽣了额外的应⼒结构,除了混凝⼟结构的抗张强度,从⽽导致结构开裂。

大体积混凝土产生裂缝的原因及预防措施

大体积混凝土产生裂缝的原因及预防措施

大体积混凝土产生裂缝的原因及预防措施混凝土结构物实体最小尺寸不小于1米的混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土称为大体积混凝土。

类似这种混凝土结构在现代建筑中时常涉及到,如高层楼房基础、大型设备基础、水利大坝等。

这种混凝土内外温差较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用。

所以必须从根本上分析它,来保证施工质量。

标签:大体积混凝土裂缝;原因;预防措施1、大体积混凝土产生裂缝的原因1.1水泥水化热水泥在水化过程中要产生大量的热量,是大体积砼内部热量的主要来源。

由于大体积砼截面厚度大,水化热聚集在结构内部不易散失,使砼内部的温度升高。

当砼的内部与表面温差过大时,就会产生温度应力和温度变形。

温度应力与温差成正比,温差越大,温度应力也越大。

当砼的抗拉强度不足以抵抗该温度应力时,便开始产生温度裂缝。

这是大体积砼容易产生温度裂缝的主要原因。

1.2约束条件大体积钢筋砼与地基浇筑在一起,当早期温度上升时产生的膨胀变形受到下部地基的约束而形成压应力。

由于砼的弹性模量小,徐变和应力松弛度大,使砼与地基连接不牢固,因而压应力较小。

但当温度下降时,产生较大的拉应力,若超过砼的抗拉强度,砼就会出现垂直裂缝。

1.3外界气温变化大体积砼在施工期间,外界气温的变化对大体积砼的开裂有重大影响。

砼内部温度是由浇筑温度、水泥水化热的绝热温度和砼的散热温度三者的叠加。

外界温度越高,砼的浇筑温度也越高。

外界温度下降,尤其是骤降,大大增加外层砼与砼内部的温度梯度,产生温差应力,造成大体积砼出现裂缝。

因此控制砼表面温度与外界气温温差,也是防止裂缝的重要一环。

1.4砼的收缩变形混凝土的拌合水中,只有约20%的水分是水泥水化所必需的,其余80%要被蒸发。

砼中多余水分的蒸发是引起砼体积收缩的主要原因之一。

这种收缩变形不受约束条件的影响,若存在约束,就会产生收缩应力而出现裂缝。

2、控制大体积混凝土裂缝的预防措施2.1技术措施大体积混凝土施工阶段所产生的温度裂缝,一方面是混凝土内部因素:由于内外温差而产生的;另一方面是混凝土的外部因素,为了有效地控制有害裂缝的出现和发展,必须从控制混凝土的水化升温、延缓降温速率、减小混凝土收缩、提高混凝土的极限拉伸强度、改善约束条件和设计构造等方面全面考虑。

关于混凝土裂缝原因分析与处理论文(精选6篇)

关于混凝土裂缝原因分析与处理论文(精选6篇)

关于混凝土裂缝原因分析与处理论文(精选6篇)混凝土裂缝原因分析与处理论文篇1摘要:目前混凝土结构物裂缝问题,是混凝土工程建设中带有一定普遍性的技术问题。

而混凝土结构的破坏和建筑物的倒塌,也都是从结构裂缝的扩展开始而引起的,一是影响美观,二是影响使用寿命,有严重裂缝的建筑物将会威胁到人们的生命和财产的安全。

故在某些施工验收规范和工程都是不允许混凝土结构出现有明显的裂缝。

关键词:裂缝;原因;处理1、混凝土裂缝的种类及渗、漏原因混凝土渗、漏的主要原因是在其拌合物在浇灌振捣过程中漏振和振捣不密实而产生的毛细孔隙或蜂窝状,在外部水压力的作用下,导致渗、漏现象。

同时,由于设计的原因,如结构的造型尺寸、受力情况、构造等因素考虑不周,也会造成混凝土结构的渗、漏现象。

从以往的实际情况看,混凝土的裂缝大致可分为以下几种:①混凝土拌合物凝结前的沉降裂缝及干缩裂缝;②混凝土温度应力裂缝;③混凝土自应力裂缝;④混凝土受外力及荷重影响裂缝。

从实际情况来看,地下混凝土工程结构的裂缝情况可分为以下几个方面:1.1混凝土拌合物沉降裂缝这种裂缝的发生,往往是采用大流动性混凝土拌合物时而发生的裂缝,大流动性混凝土拌合物在混凝土初凝前,混凝土拌合物中的粗骨料始终处于一种自由体,虽然经过振动器械进行了振动,内部的孔隙也基本排除,但在混凝土内部的粗骨料本身在自身质量的作用下缓慢下沉,若是素混凝土,内部的下沉是均匀的,在混凝土硬化过程中,表面的裂缝一般均为施工人员在操作过程中所留下的脚窝因用素浆找平后而形成的,因为这些裂缝是素浆在硬化时产生的收缩(干裂)裂缝;但是只要在混凝土初凝时予以压光即可解决。

另外一方面是钢筋混凝土,在混凝土没有达到初凝前,其内部的粗骨料继续处于下沉状态,而混凝土沿着钢筋的下方继续下沉,由于在钢筋的作用下,钢筋上面的混凝土被钢筋的支护,在钢筋上表面沿着钢筋的走向产生裂缝,这种裂缝的深度一般只达到钢筋表面为止。

1.2早期混凝土干缩裂缝这种裂缝一般出现在混凝土较薄的结构;如现浇楼板混凝土、道路混凝土、地坪等混凝土,在结构断面≤300mm、混凝土坍落度>100mm时,最容易发生此种裂缝。

大体积混凝土裂缝分析及控制技术研究

大体积混凝土裂缝分析及控制技术研究

大体积混凝土裂缝分析及控制技术研究在现代建筑工程中,大体积混凝土的应用越来越广泛。

然而,大体积混凝土在施工和使用过程中,裂缝问题常常困扰着工程人员。

裂缝的出现不仅影响结构的外观,还可能降低结构的承载能力和耐久性,严重时甚至会威胁到建筑物的安全使用。

因此,对大体积混凝土裂缝进行深入分析,并研究有效的控制技术具有重要的现实意义。

一、大体积混凝土裂缝的类型及成因(一)温度裂缝大体积混凝土在浇筑后,由于水泥水化反应会释放出大量的热量,导致混凝土内部温度迅速升高。

而混凝土表面散热较快,形成较大的内外温差。

当温差产生的温度应力超过混凝土的抗拉强度时,就会产生温度裂缝。

这种裂缝通常出现在混凝土浇筑后的早期,裂缝宽度和深度随温差的增大而增加。

(二)收缩裂缝混凝土在硬化过程中,会发生体积收缩,包括自收缩、干燥收缩和碳化收缩等。

如果收缩受到约束,就会产生收缩裂缝。

自收缩是由于水泥水化过程中消耗水分导致的体积减小;干燥收缩是由于混凝土表面水分蒸发过快,内部水分向表面迁移不足引起的;碳化收缩则是由于空气中的二氧化碳与混凝土中的氢氧化钙反应,导致体积缩小。

(三)荷载裂缝在大体积混凝土结构承受外部荷载时,如果荷载超过混凝土的承载能力,或者由于不均匀荷载导致结构内部应力分布不均,就会产生荷载裂缝。

这种裂缝通常与受力方向垂直,并且随着荷载的增加而不断扩展。

(四)基础不均匀沉降裂缝如果建筑物基础不均匀沉降,会使大体积混凝土结构受到附加应力的作用,当附加应力超过混凝土的抗拉强度时,就会产生裂缝。

这种裂缝通常出现在结构的薄弱部位,如跨中、支座等处。

二、大体积混凝土裂缝的危害(一)影响结构的外观质量裂缝的存在会使混凝土表面出现不平整、粗糙的现象,影响建筑物的美观。

(二)降低结构的承载能力裂缝的出现会削弱混凝土的整体性,降低结构的承载能力,尤其是在承受动荷载的情况下,更容易导致结构的破坏。

(三)影响结构的耐久性裂缝为外界侵蚀性介质(如水分、氧气、二氧化碳等)提供了通道,加速了混凝土的劣化和钢筋的锈蚀,从而降低结构的耐久性,缩短建筑物的使用寿命。

混凝土裂缝的原因分析及控制措施

混凝土裂缝的原因分析及控制措施

混凝土裂缝的原因分析及控制措施一、混凝土裂缝的原因分析1. 施工工艺不当施工过程中由于混凝土的浇筑、养护等环节出现了问题,比如过早脱模、养护不足等,会导致混凝土内部产生收缩裂缝。

2. 温度变化温度的变化会导致混凝土的体积产生变化,进而引起混凝土的收缩和膨胀。

在高温季节,混凝土会因为温度升高而膨胀,而在低温季节,混凝土可能因为温度下降而收缩,进而产生裂缝。

3. 湿度变化在混凝土固化过程中,由于养护不当或者环境湿度变化等原因,混凝土内部水分的变化也会引起混凝土的收缩和膨胀,从而产生裂缝。

4. 荷载作用建筑结构的荷载会对混凝土构件产生影响,比如弯曲、剪切等荷载作用会导致混凝土构件内部发生裂缝。

5. 质量问题混凝土材料本身的质量问题也会导致裂缝的产生,比如混凝土中含砂量、石子的分布不均匀等。

二、混凝土裂缝的控制措施1. 施工工艺的控制在混凝土的浇筑、养护等施工环节,要严格按照相关技术标准和规范进行操作,确保浇筑质量和养护的及时性。

尤其是对于大体积混凝土的浇筑,更要注意施工的工艺控制。

2. 材料质量的保障选择优质的混凝土原材料,并严格按照配合比进行搅拌,保证混凝土的质量。

同时要加大对原材料的检测力度,确保材料的质量符合要求。

3. 加入裂缝控制剂在混凝土浇筑中可以适当加入一些裂缝控制剂,这些控制剂可以减缓混凝土收缩的速度,并减少裂缝的产生。

4. 选用合适的混凝土结构和构件在设计混凝土结构和构件时要根据实际情况和使用要求选择适宜的结构形式和构件,避免因为荷载过大、结构不合理等原因引起的裂缝。

5. 合理的养护混凝土浇筑后的养护是非常关键的,要根据混凝土的标号和气候条件来确定养护期限和方式,严格执行养护规程。

6. 加强材料研发在混凝土的混合材料研发过程中应该选择一些具有良好性能的掺合料和添加剂,使混凝土具有更好的耐磨性和耐久性,进而减少裂缝的产生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大体积混凝土的破坏机理,现在国内外学者 该温度应力超过大体积混凝土抗拉强度时,则从 一次浇筑施工方法、浇筑混凝土后的收头处理措
普遍认为是混凝土在浇筑、形成过程中不可避免 约束面开始向上开裂形成温度裂缝。如果该温度 施、混凝土表面贮水蓄热保温保湿养护等措施以
存在着毛细孔、空隙及材料的裂隙缺陷,在外界因 应力足够大,严重时可能产生贯穿裂缝。
3.3.1 筏基结构计算温差
水泥石裂缝,混凝土的裂缝肉眼是看不见的,肉眼 当该拉应力超过大体积混凝土的抗拉强度时,大
水化热最高温度只发生在筏基截面的中下
可见裂缝范围一般以 0.05mm 为界。大于等于 体积混凝土表面就产生裂缝。
部,全截面的平均温度略低于水化热最高温度,控
0.05mm 的裂缝称为宏观裂缝,它是裂缝扩展的结
及测温控制,施工实践表明:选择大体积混凝土表
素作用下,这些缺陷部位将产生高度的应力集中,
2.1 水泥水化热
面贮水热保温保湿养护方式、同时采用综合的施
并逐渐扩展发展,形成大体积混凝土体中的微裂
水泥在水化过程中要产生一定的热量,是大 工技术措施,非常成功。
纹。另一方面,大体积混凝土体中各相的结合界面 体积混凝土内部热量的主要来源。
土结构中也存在着肉眼不可见的裂缝。
加而发展,因此形成界面裂纹,当继续增加的温差 利。
常见裂缝主要有以下三种类型:
达到某一数值后,界面裂纹便向水泥砂浆中延伸。
3 工程实例
1.1 粘着裂缝:指钢筋与水泥石粘接面上的裂 在以后的降温过程中界面裂纹与水泥砂浆中的微
1 工程概况
缝,主要沿钢筋周围出现;
裂纹继续发展,以致发展成宏观裂缝,并可能导致
如果引起的效应是拉,则微裂纹或微裂缝将沿与
2.3 外界气温变化
-326-
b.大体积混凝土浇筑后数日,水泥水化热基 制贯穿性裂缝的温差应该是平均最高温度与稳定
果。观测证实,结构物的裂缝是时刻不停的运动 本上已释放,大体积混凝土从最高温逐渐降温,降 温度之差。
着,这种运动包含两种意思:一是裂缝宽度的扩展 温的结果引起大体积混凝土收缩,再加上由于大
按浇筑混凝土 30d 的总降温差,结构计算温
2 大体积混凝土裂缝产生的主要影响因素 土浇筑量超过 3000m3。
裂缝。
大体积混凝土由于截面大,水泥用量大,水
3.2 混凝土温度计算及表面裂缝控制
大体积混凝土裂缝产生的原因可按其构造 泥水化释放的水化热会产生较大的温度变化,由
3.2.1 混凝土内部与表面最大温差
理论加以解释,即把混凝土看做是由钢筋、水泥 此形成的温度应力是导致产生裂缝的主要原因。
宏观裂纹出现、损伤继续积累、宏观裂缝扩展交织 高,从而使大体积混凝土内最高温升降低。同时也 设信息,2007,12.
发生的过程。
减小了大体积混凝土的内外温差。当大体积混凝
不论外界因素作用引起的效应是拉、压、剪 土的抗拉强度不足以抵抗该温度应力时,便开始
或扭,大体积混凝土体破坏的过程都是相类似的。 产生温度裂缝。
中远大厦 28 层主体塔楼采用筏形基础。筏
1.2 水泥石裂缝:指水泥浆中的裂缝,主要出 混凝土结构发生断裂破坏,由于损伤是不可恢复 基面积为 2060m2,板厚 2.2m。混凝土为泵送商品
现在钢筋与钢筋之间;
的。
混凝土,强度等级为 C35,抗渗等级 S8,筏板混凝
1.3 钢筋骨料裂缝:指钢筋或者骨料等本身的
别是有关大体积混凝土的现代实验设备的出现(如 降温两个过程。由于水泥砂浆与钢筋热膨胀系数 构散热降温等各种温度的叠加之和。在外界气温
各种实验显微镜、X 光照相设备、超声仪器、渗透 的不同,在升温过程中温度荷载作用下水泥砂浆 骤降时,会增加外层大体积混凝土与内部大体积
观测仪等),已经证实了大体积混凝土和钢筋混凝 与钢筋所形成的界面首先产生损伤,并随温度增 混凝土的温度梯度,这对大体积混凝土极为不
参考文献
是最薄弱的环节,在外界因素作用下,将脱开而形
由于大体积混凝土截面厚度大,水化热聚集 [1]杨少谋.混凝土的自身收缩及其控制措施[J].西北
成截面裂隙,并发展成微裂纹。若外界因素继续作 在结构内部不易散失,所以会引起急骤升温。水泥 水力发电,2007,3.
用,混凝土体中的微裂纹经过汇集、贯通的过程而 水化热引起的绝热温升由于结构自然散热,实际 [2]许文震.大体积混凝土裂缝的实践与控制[J].引进
建筑工程
大体积混凝土常见裂缝的分析
童彤 (江西省上饶市房地产管理局,江西 上饶 334000)
摘 要:以大体积混凝土施工中经常出现的裂缝为研究对象,探讨大体积混凝土裂缝出现的机理以及主要的影响因素,为工程施工提供切实可 行的实践经验。
关 键 词 :大体积混凝土;裂缝;因素
1 大体积混凝土裂缝产生的机理
混凝土内表最大温差超过规定要求值,若不
石、气体、水份等组成的非均质材料,在温度、湿度 这种裂缝分为两种:
采取有效措施,将必然产生表面裂缝。
和其他条件变化下,混凝土逐步硬化,同时产生体
a.大体积混凝土浇筑初期,水泥水化产生大
3.2.2 保温养护措施分析
积变形,这种变形是不均匀的,水泥石收缩较大, 量水化热,使大体积混凝土的温度很快上升。但由
之正交的方向扩展;如为压,则沿与之平行的方向
大体积混凝土结构施工期间,外界气温的变
大体积混凝土裂缝在建筑中经常可以见到, 扩展;如为剪或扭,则将沿剪应力的方向滑动扩展。 化对大体积混凝土开裂有重大影响。大体积混凝
而且随着科学技术的发展和实验技术的完善,特
大体积混凝土结构在施工期经历了升温和 土的内部温度是浇筑温度水化热的绝热温升和结
与缩小; 二是裂缝长度的延伸及裂缝数量的增加。 体积混凝土中多余水份蒸发、碳化等引起的体积 差 T=Tm+TY
裂缝稳定的运动是正常的,工程中要防止的是不 收缩变形,受到地基和结构边界条件的约束(外约
3.4 施工技术综合措施
稳定的裂缝运动。
束),不能自由变形,导致产生温度应力(拉应力),当
通过采取合理研配混凝土配合比、斜面分层
一种简单的计算模型,即假定圆形钢筋不变形且 内部由于散热条件较差,热量散发少,因而温度上 产生裂缝,保温措施的方案可行。
均匀分布于均质弹性水泥石中,当水泥石产生收 升较多,内外形成温度梯度,形成内外约束。结果
3.3 筏基整浇长度计算
缩时引起内应力,这种应力可引起粘着微裂缝和 大体积混凝土内部产生压应力,面层产生拉应力,
分别求取在养护措施下大体积混凝土的表
钢筋收缩很小,水泥石热膨胀系数较大,他们之间 于大体积混凝土表面散热条件较好,热量可以向 面温度和混凝土内表最大温差,计算结果表明,大
的相互变形引起约束应力。在构造理论中提出了 大气中散发,因而温度上升较少;而大体积混凝土 体积混凝土内表温差控制在规定值范围内,不会
形成宏观裂缝。同时,宏观裂纹的端部又因应力集 上混凝土内部的最高温度,大多发生在混凝土浇 与咨询,2006,6.
中而出现新的微裂纹,甚至出现微裂纹区,这又将 筑后的 3~5d。
[3]赵如,张文学,赵曼.控制大体积被覆混凝土裂缝
发展成新的宏观裂缝或体现为原有宏观裂纹的延
2.2 大体积混凝土的导热性能
的措施[J].铁道建筑技术,2008,1.
伸。宏观裂缝必将沿着一条最薄弱的路径逐渐扩
热量在大体积混凝土内传递的能力反映在 [4]杨红霞,郑光明.混凝土温度收缩裂缝的产生机
展,最后使混凝土完全断开而破坏。因此,大体积 其导热性能上。大体积混凝土的导热系数越大,热 理及对策[J].有色冶金设计与研究,2007.
混凝土材料的破坏过程实际上是损伤、损伤积累、 量传递率就越大,则其与外界热交换的效率也越 [5]许尔新.浅谈混凝土施工中的温度裂缝[J].中国建
相关文档
最新文档