单差、双差、三差 2分解
GPS原理与应用 复习资料 考试重点
1.GPS定位系统有哪几部分组成的?各部分的作用是什么?(1)GPS卫星星座1.接受地面站发来的导航电文和其他信号2.接受地面站的指令,修正轨道偏差并启动备用设备3.连续不断地向地面发送GPS导航和定位信号(2)地面监控系统: 一个主控站:收集数据;处理数据;监测协调;控制卫星三个注入站:将主控站发来的导航电文注入到相应卫星的存储器五个监测站:接收卫星信号,为主控站提供卫星的观测数据(3)GPS信号接收机:捕获卫星信号,计算出测站的三维位置或三维速度和时间,达到导航和定位的目的2.GPS信号接收机的任务是:能够捕获到按一定卫星高度截止角所选择的待测卫星的信号,并跟踪这些卫星的运行,对所接收到的GPS信号进行变换、放大和处理,以便测量出GPS 信号从卫星到接收机天线的传播时间,解译出GPS卫星所发送的导航电文,实时地计算出测站的三维位置,甚至三维速度和时间。
3.GPS接收机主要由接收机天线单元、GPS接收机主机单元和电源三部分组成。
完全定义一个空间直角坐标系必须明确:①坐标原点位置②三个坐标轴的指向③长度单位2.参心坐标系和质心坐标系的定义:参心是椭球的几何中心,质心是椭球的质量中心4.WGS—84坐标系的定义原点位于地球质心,Z轴指向BIH1984.0定义的协议地球极(CIP)方向,X轴指向BIH1984.0的零子午面和CIP赤道的交点,Y轴与Z,X轴构成右手坐标系。
5.导航电文(卫星电文、数据码/D码):GPS卫星的导航电文是用户用来定位和导航的数据基础。
主要包括:卫星星历,时钟改正,电离层时延延正,工作状态信息以及C/A码转换到捕获P码的信息。
6.GPS使用L1,L2两种载波的目的:目的在于测量出或消除掉由于电离层效应而引起的延迟误差。
7.C/A码和P码的含义C/A码是用于粗测距和捕获GPS卫星信号的伪随机码。
P码是卫星的精测码。
8. 二体问题:忽略所有的摄动力,仅考虑地球质心引力研究卫星相对于地球的运动,在天体力学中,称之为二体问题。
第7章 基线向量解算
主要内容
7.1
周跳
7.2
差分观测值
7.3
基线解算双差数学模型
7.4
整周模糊度固定
第7章 基线向量解算
相对定位
相对定位是采用多台GPS接收机,定位结果是各同步观 测站之间的基线向量(坐标差)。 因此,在相对定位中需要给出多个观测站中至少一个观测 站的坐标值作为基准,来推求其他各站点的坐标值。 优点: 定位精度高:两个或多个观测站,同步观测同一组卫星, 可构成差分观测值,从而大大地削弱有关误差的影响。因 此,GPS相对定位是目前GPS定位中精度最好的一种方法。 缺点:设备投入大,数据处理复杂。
一、整周跳变
如果由于某种原因使得计数器无法进行连续计数,当卫 星被重新跟踪后,整周计数由于丢失了在失锁期间载波相
位变化的整周数,致使Int(n )变得不正确,不足一整周的
部分是一个瞬时量测值,因而仍是正确的。这种现象叫做 整周跳变(简称周跳)。
计数器中止累积
计数丢失n周
10
ti-1
Int(φ )正确 Fr(φ)正确
Bj
j A
(
f c
j B
f c
j A
)
(
f
VtB
f
Vt
A
)
(
N
j B
N
j A
)
7.2 差分观测值
令 , , ,则, f c
j B
f c
j A
=
f( c
j B
Aj)=
f c
j AB
f VtB f VtA =fVtAB
N
j B
N
j A
=N
j AB
单差观测方程可以表达为:
第三章-GPS定位的基本原理
设
代入测码伪距方程
可得
在测站T历元同步观测4颗以上卫星,可得
静态测量时,可以观测多颗卫星不同历元的观测值,故
钟差表示为多项式的形式或将不同的历元设立独立的参数参与平差,则未
知数的个数为3+ 或3 + , 为钟差模型系数, 为观测历元数。
2、测相伪距静态绝对定位
动态相对定位:将其中一台接收机固定在测站上,另一台接收机安置在运动
的载体上,在运动中与固定观测站的接收机进行同步观测,确定运动载体相
对于固定观测站的瞬时位置。
相对定位的特点:测量的是接收机天线间的相对位置。
1、静态相对定位
一般采用测相伪距观测量作为基本观测量,是当前GPS定位精度最高的一种方法。
经典快速定位:一般需要45分钟以上
区域(初始坐标或整周模糊度解的三倍标准差内),在区域内遍历每个可能的
值,依据一定的条件(如模糊函数值最大或方差最小)确定估值。
3.2.4 周跳的探测分析与修复
周跳:由于各种原因接收机计数器发生中断,无法准确记录整周计数,导致记
录的整周计数和正确的整周计数存在偏差,称为周跳。
周跳有两种类型:
(1)中断数分钟以上,在数个历元中没有载波相位观测值;
分量、一个接收机钟差、 个整周模糊度,即3+1+
方程的个数少于未知数的个数,因此在进行测相伪距动态绝对定位之前应在静止
状态下求出整周模糊度。
3.3.2 绝对定位精度评价
地面点一定的情况下,影响单点定位精度的因素:
观测量的精度;
观测卫星的空间几何分布。
一般采用精度衰减因子DOP评价定位的精度, = 0 ∙ (0 为伪距测量中误差)
GPS原理-第五章-GPS卫星定位基本原理
5.5 相对定位
31
概述①
• 定义
– 确定进行同步观测的接收机之间相对位 置的定位方法,称为相对定位。
• 定位结果
– 与所用星历同属一坐标系的基线向量 (坐标差)及其精度信息 • 采用广播星历时属WGS-84 • 采用IGS – International GPS Service精密星历时为ITRF – International Terrestrial Reference Frame
– 双频改正
• 对流层延迟
– 模型改正
24
精密单点定位
• 精密单点定位
– PPP – Precise Point Positioning
– 特点
• 主要观测值为载波相位
• 采用精密的卫星轨道和钟数据
• 采用复杂的模型
– 定位精度
• 亚分米级
– 用途
• 全球高精度测量
• 卫星定轨
25
观测卫星的几何分布及其对绝对定位精
• 缺点:在接收机移动的过程中,必须保持对观测 卫星的连续跟踪。一旦失锁,重新初始化工作。
40
快速静态相对定位
• 可以快速地确定载波相位的整周未知数, 所以当接收机在观测站之间移动时,无 需保持对卫星的连续跟踪。
• 在每一个流动观测站上,与基线站的同 步观测时间只需数分钟,定位精度与经 典静态相对定位相当
• ε技术:降低星历精度(加入随机变化) • δ技术:卫星钟加高频抖动
(短周期,快变化)
• AS技术(1994.1.31~至今)
– Anti-Spoofing –反电子欺骗 – P码加密,P+WY
29
用户措施
•建立独立的GPS卫星测轨系统 •建立独立的卫星定位系统 •开发GPS与GLONASS兼容接收机 •研究与开发差分GPS定位技术
GPS考试复习资料-CUIT
GPS考试复习资料-CUITGPS 课程考试复习资料说明:此复习文档仅供参考,知识点的不全或错误均有可能存在,请慎重!简答题1. 除了美国的GPS 以外,还有哪些卫星导航系统?(课本P8~P9)答:GLONASS - Global Navigation Satellite System (全球导航卫星系统)开发者:俄罗斯(前苏联)伽俐略(Galileo )卫星导航定位系统开发者:欧盟北斗卫星导航定位系统开发者:中国2. 载波相位差分GPS 定位原理是什么?有哪两种方法?(课本P128~P131)答:载波相位差分GPS 定位与伪距差分GPS 原理相类似,其基本思想是:在基准站上安置一台GPS 接收机,对卫星进行连续观测,并通过无线电传输设备实时的将观测数据及站坐标信息传送给用户站;用户站一方面通过接收机接收GPS 卫星信号,同时还通过无线电接收设备接收基准站传送的观测数据,然后根据相对定位原理,实时的处理数据,并实时的以厘米级的精度给出用户站的三维坐标。
两种定位方法,一种与伪距差分相同,基准站将载波相位的修正量发送给用户站,以对用户站的载波相位进行改正实现定位,该方法称为修正法;另一种是将基准站的载波相位发送给用户站,并由用户站将观测值求差进行坐标解算,这种方法称为求差法。
3. 静态相对定位单差、双差和三差模型怎么推导?(课本P95~P102) 答:1、单差观测模型及解算:指在不同观测站,同步观测相同卫星所得观测量之差;包含:卫星间求差(同时同站)、测站间求差(同时同星)、观测历元间(同星同站)测站间求单差的优点:消除了卫星钟差的影响、大大消弱了卫星星历误差的影响、大大消弱了对流层和电离层折射的影响,在短距离内几乎可以完全消除其影响;2、双差模型及其解算指不同观测站,同步观测同一组卫星,所得单差观测量之差;双差模型消除了接收机钟差的影响;3、三差模型指不同历元,同步观测同一组卫星所得双差观测量之差;三差模型消除了整周位置数;(推导:无)4. 如何用测距码信号建立伪距参数方程?伪距参数方程会写知道什么意思。
因式分解最全方法归纳
式分解最全方法归纳水散人整理于 2015.09、因式分解的概念与原则一1、定义:把个多项式化为几个最简整式的乘积的形式,这种恒等变换叫做因式分解,叫作分解因式。
2、原则:(1)分解必须要彻底(即分解之后的因式均不能再做分解);(2)结果最后只留下小括号;(3)结果的多项式是首项为正,为负时提出负号;( )结果个因式的多项式为最简整式,可以化简的要化简;( 还) 有单项式和多项式相乘,应把单项式提到多项式前;( 如)相因式的乘积写成幂的形式;( 同) 特殊要求,般在有理数范围内分解。
另有要求,在要求的范围内分解。
如一如3、因式解的般步骤一(1) 果多项式的各项有公因式,那么先提公因式;如(2) 果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;如(3) 果用上述方法不能分解,那么可以尝试用分组、拆项法来分解;如(4)检查各因式是否进行到每个因式的多项式都不能再分解。
一也可以用句话来概括:“ 看有无公式,再看能否套公式。
十字相乘试一试,分组分解相对合适。
因二、因式分解的方1、提取公因式公因式:个多项式的多项都含有的相的因式叫做这个多项式的公因式。
公因式可以是单式,也可是多项式。
确定公因式的方法:公因数的常数应取各项系数的最大公约数,多项式第项为负的,要提负号;字母取各项的相字母,而且各字母的指数取次数最低的。
同提取公因式:公因式作为个因式,原式除以公因式的商作为另个因式。
一意事项:一(1)先确定公因式,次把公因式部提净;( 一)提公因式后,商项数与原式相,与公因式相的项,其商为 1 不可掉;( 完)提取公因式负号时,多项式的各要变号。
丢带1、分解因式:–9 c+例 a 3解:原式 - c+1 )=2、分解因式:3– 1 +2 4解:原式–– )= 4 y结(口诀):找准公式,一次要提净;全家都搬走,留 1 把家守;提负要变号,变形看奇。
12、公式法分解因式与整式乘法是 些多 式分解成因式。
平 方 2 b 2平方 b ) 2逆的恒等变换,如 b ) b2b 2 2 b方方 项 立 和 方和方次方和 次方 差 部分公式的 推 + a b b -b )3b 33b 33b 3 3 b ) –b +b 导: b b +b ab ) 2 b 2 b b ) 2 b2b ) 3 b b )a c + 3b ²+3 ²b a a – ) [ –1 )+ 2– ) b a + ) [ b a + ) + ) a b b ) b b b ) b )2b ³ + ) …+…) b +b b b b b ) b b ) b ) b+ -b ) b b ) b ) b b )+、分解因式: - ) 6 ) + ) )8+ ) + ) ) + + 2 ) – 4 2 +146) ) +4 + ) – + 意:分解时既用2平方差 式又用2立方4差公式, 2一般4 先、分组分解法b )) ) 4 )用平方差公式,可简化步骤。
GPS测量原理及应用复习名词解释与论述
第一部分:名词解释春分点:当太阳在黄道上从天球南半球向北半球运行时,黄道与天球赤道的交点真近点角:在轨道平面上卫星与近地点之间的地心角距.升交点赤经:在地球平面上,升交点与春分点之间的地心夹角. 近地点角距:在轨道平面上近地点与升交点之间的地心角距.天球:指以地球质心为中心,半径r为任意长度的一个假想球体。
为建立球面坐标系统,必须确定球面上的一些参考点、线、面和圈。
岁差:指由于日月行星引力共同作用的结果,使地球自转轴在空间的方向发生周期性变化。
章动:北天极除了均匀地每年西行以外,还要绕着平北天极做周期性的运动。
轨迹为一椭圆。
极移:地球自转轴相对于地球体的位置不是固定的,地极点在地球表面上的位置随时间而变化的现象称为极移历元:在天文学和卫星定位中,与所获取数据对应的时刻也称历元。
轨道:卫星在空间运行的轨迹轨道参数:描述卫星轨道位置和状态的参数卫星星历:描述卫星运动轨道的信息,是一组对应某一时刻的轨道根数及其变率预报星历:是通过卫星发射的含有轨道信息的导航电文传递给用户,经解码获得所需的卫星星历,也称广播星历后处理星历:是一些国家的某些部门根据各自建立的跟踪站所获得的精密观测资料,应用与确定预报星历相似的方法,计算的卫星星历。
GPS卫星所发射的信号包括载波信号、P码(或丫码)、C/A码和数据码(或D 码)等多种信号分量,其中P码和C/A码统称为测距码。
(1)码的概念:表达不同信息的二进制数及其组合,称为码(2)随机噪声码:对某一时刻来说,码元是0或1完全是随机的,这种码元幅度的取值完全无规律的码序列。
导航电文:导航电文是包含有关卫星的星历、卫星工作状态、时间系统、卫星钟运行状态、轨道摄动改正、大气折射改正和由C/A码捕获P码等导航信息的数据码(或D码)。
绝对定位:也称单点定位,是指在协议地球坐标系中,直接确定观测站相对于坐标原点(地球质心)绝对坐标的一种方法。
相对定位:用至少两台GPS接收机,同步观测相同的GPS卫星,确定两台接收机天线之间的相对位置。
GPS考试重点题目 (9)
公式: ρ~ij = ∆tijc = c∆τ ij + cδtij = ρij + cδtij
∆τ ij
δ tij
其中:tj = tj (GPS) + δtj, ti = ti (GPS) + δti
∆tij = ti – tj = (ti (GPS) – tj (GPS))+ (δti - δtj)
(1)总基线数:J 总= C· N·(N 一 1)/2 (2)必要基线数:J 必=n-1
(3)独立基线数:J 独=C·(N-1)
(4)多余基线数:J 多= C·(N-1)-(n-1) 其中 C 为观测时段数;n 为网点数;m 为每点平均设站次数;N 为接收机数。 17.试写出卫星钟差改正模型并说明模型中各符号含义?
(1)可消除或减弱一些系统性误差影响,如卫星轨道误差、钟差和大气折射误差等;
(2)可减少平差计算中未知数的数量;
(3)原始的独立观测量,通过求差将引起差分量之间的相关性,平差中不可忽视;
(4)差分后将使观测方程的数据明显减少;
(5)在差分时,如果于某一历元,对参考站或参考卫星的观测量无法采用,则使观测量的差分产生困难,参加观测的接收
(其2)中二,次(多j=项0式,曲1,面2拟,…合5为)为ζ拟=合面f (的x,系y数) =。a0 + a1x + a2 y + a3x2 + a4xy + a5y2
a (3)根据至少 6 个已知点(已知大地高与相应的正常高)解出 j
aj
(j=0,1,…5)
(4)再根据二次多项式解算未知点的高程异常差值,最后求出任一点的正常高。
tj(GPS)为卫星 sj 发射信号时的理想 GPS 时刻
功放电路的分解和组合
功放电路的分解与组合绝大多数功率放大器没有图纸资料,无形中增加r维修难度。
笔者根据自己维修实践,总结出功放电路的分解图和拼图方法。
用此方法可根据几个相邻元器件的关系判断足哪一部分的局部电路,将几个局部电路按原理组合起来,就可得到其整机电路图。
目前流行的功率放大器,除采用集成电路功放外,大都采用分立元件构成的OCT.电路,其基本电路由差动输入级、电压放大级、电流放大级(推动级)、功率输出级和保护电路组成。
在具体应用中,有结构简单的基本电路形式,也有增加了辅助电路和补偿电路的复杂电路形式。
下面就各单元电路具体加以介绍。
一、差动输入级图1是最基本的差动(差分)输入级电路,由两个完全对称的单管放大器组合而成,两只三极管的基极分别是正、负信号输入端。
一个输入端作为信号输入用,另一个输入端作为末端反馈用,该电路因能有效地抑制输出端的零点漂移而成为OCL电路的输人门户.其输入级有单差动和双差动之分,草差动电路简洁,双差动对称性好。
从前级送来信号的输入插座找起,通过一个电容和电阻所连接的三极管就是差动输入级,相邻的同型号管子就是差动电路的另一半。
输入端接的是一个管的基极则是单差动,如接着两个管的基极,就是双差动。
为克服电源波动对电路的影响,图2在差动放大器的发射极增加了恒流源。
有的在集电极增加了镜流源;如图3所示.以保证差动两管静态电V 差动输入流的一致性。
图4是既有恒流源又有镜流源的差动输入电路,常用于高档机中。
图5是常见的三种恒流源电路,尤其是图5b 这种利用二极管钳位的方式用得最多,两个二极管将三极管基极稳定在1.4V左右,在电源电压波动时差动级的静态电流保持不变,以提高放大器的稳定性。
图6、7镜流源中两个三极管基极相连,发射极电阻相同,流过两管的电流一样,像照镜子一样确保两只差动管的静态电流一致。
.这两部分电路的识别方法是:差动管两发射极电阻归到一点后所连接的三极管就是恒流源,其明显特点是基极上接有二极管或稳压管;镜流源两管集电极与两个差动管集电极分别相连,它的两个三极管的连接方式较特别,两个基极和一个集电极连在一起。
第三节 GPS相对定位与差分定位
(7-3)
N t 0
三差观测值可以消除与卫星和接收机有关的初始整周模糊度
第三节 GPS相对定位与差分定位
相对定位,是用两台GPS接收机,分别安置在基线的两端,同 步观测相同的GPS卫星,通过两测站同步采集GPS数据,经过数 据处理以确定基线两端点的相对位置或基线向量。故相对定位有 时也称为基线测量。这种方法可以推广到多台GPS接收机安置在 若干条基线的端点,通过同步观测相同的GPS卫星,以确定多条 基线向量。相对定位中,需要在多个测站中至少一个测站的坐标 值作为基准,利用观测出的基线向量,去求解出其它各站点的坐 标值。
第三节 GPS相对定位与差分定位
kj j k t SD12 t SD12 t DD12 k t 1k t 2j t 1j t 2
(7-2)
双差观测值可以消除载波相位的接收机钟差项。 (3)三差(Triple-Difference):对双差观测值继续求差。常 用的三差观测值是对不同观测站单差值求取卫星间双差后,再在 不同历元间求三次差:
j t 2j t 1j t SD12
(7-1)
相对定位中,单差是观测量的最基本线性组合形式。单差观测值 中可以消除载波相位的卫星钟差项。 (2)双差(Double-Difference):对单差观测值继续求差,所 得求差结果仍可当作虚拟观测值。常用双差观测值是不同观测站 间求单差观测值,再在卫星间求二次差:
第三节 PS相对定位与差分定位
一、基本观测量及其线性组合
,
独立的载波相位观测量:
1j t1
1k t1 2j t1
GPS复习资料
绪论GPS:全球定位系统的英文简称,它是美国国防部研制、组建、管理的一种军民两用的新一代卫星导航定位系统。
采用距离交会原理进行工作。
SA政策:考虑到GPS在军事上的巨大应用潜力以及C/A码是公开向全球所有用户开放的这一基本政策,为防止敌对方利用GPS危害美国国家安全,美国国防部从1991年7月1日起在所有的工作卫星上实施SA技术。
其主要的技术手段为:(1)在卫星的广播星历中人为地加入误差,以降低卫星星历的精度,这就是所谓的ε技术。
(2)有意识的使卫星钟频产生一种快速的变化AS政策:是美国国防部为防止敌对方对GPS卫星信号进行电子欺骗和电子干扰而采取的一种措施。
其具体的做法是在P码上加上严格保密的W码,使其模二相加产生完全保密的Y码。
该措施从1994年1月31日起实施。
GNSS:全球导航卫星系统,包括GPS、俄罗斯的GLONASS,欧盟正在筹建中的Galileo,中国的北斗系统。
第二章利用GPS进行定位时,所求的的测站点的坐标属于什么坐标系统?一般为地心坐标,世界大地坐标系是美国建立的全球地心坐标系,其中WGS84被广泛使用。
如何实现两个三维坐标系统的转换?第三章导航电文:由GPS卫星向用户播发的一组反映卫星在空间的位置、卫星的工作状态、卫星钟的修正参数、电离层延迟修正参数等重要数据的二进制代码,也称数据码(D码)。
GPS系统由哪几部分组成?各组成部分的主要作用是什么?(1)空间部分:连续向用户播发用于进行导航定位的测距信号和导航电文,并接收来自地面监控系统的各种信息和命令以维持系统的正常运转。
(2)地面监控部分:1)跟踪GPS卫星,确定卫星的运行轨道及卫星钟改正数,进行预报后再按贵的格式编制成导航电文,并通过注入站送往卫星;2)通过注入站向卫星发布各种指令,通过卫星的轨道及时钟读数,修复故障或启用备用件等。
(3)用户部分:用GPS接收机来测定从接收机至GPS卫星的距离,并根据GPS卫星所给出的观测瞬间卫星在空间的位置等信息来求出自己的三维位置、三维运动速度和钟差等参数。
《GPS测量原理及应用》题库要点
一、单选题(在本题的每一小题的备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内。
多选不给分。
每题2分,共20分)。
1、GPS卫星星座配置有(D)颗在轨卫星。
A.21B.12C.18D.242、UTC是指(C)。
A.协议天球坐标系B.协议地球坐标系C.协调世界时D.国际原子时3、AS政策是指(D)。
A.紧密定位服务B.标准定位服务C.选择可用性D.反电子欺骗4、GPS定位中,信号传播过程中引起的误差主要包括大气折射的影响和(A)影响。
A.多路径效应B.对流层折射C.电离层折射D.卫星中差5、一般地,单差观测值是在(A)的两个观测值之间求差。
A.同卫星、同历元、异接收机B.同卫星、异历元、异接收机C.同卫星、同历元、同接收机D.同卫星、异历元、异接收机6、双差观测方程可以消除(D)。
A.整周未知数B.多路径效应C.轨道误差D.接收机钟差7、C/A码的周期是(A)。
A.1msB.7天C.38星期D.1ns9、在GPS测量中,观测值都是以接收机的(B)位置为准的,所以天线的相位中心应该与其几何中心保持一致。
A、几何中心B、相位中心C、点位中心D、高斯投影平面中心10、岁差和章动旋转变换是用于哪两个坐标系之间的转换(A)。
A、瞬时极天球坐标系与平天球坐标系B、瞬时极天球坐标系与平地球坐标系C、瞬时极天球坐标系与瞬时极地球坐标系D、平天球坐标系与平地球坐标系1.GPS广播星历中不包含…………………………………………………………()GPS卫星的六个轨道根数 GPS观测的差分改正●GPS卫星钟的改正❍GPS卫星的健康状态2.以下哪个因素不会削弱GPS定位的精度………………………………………()晴天为了不让太阳直射接收机,将测站点置于树荫下进行观测测站设在大型水库旁边●在SA期间进行GPS导航定位❍夜晚进行GPS观测3.GPS卫星之所以要发射两个频率的信号,主要目的是………………………()消除对流层延迟 消除电离层延迟●消除多路径误差❍增加观测值个数4.GPS观测值在接收机间求差后可消除……………………………………………()电离层延迟 接收机钟差●卫星钟差❍对流层延迟5.GPS测量中,卫星钟和接收机钟采用的是哪种时间系统……………………()GPS时 恒星时●国际原子时❍协调世界时1、GPS定位的实质就是根据高速运动的卫星瞬间位置作为已知数据,采用(A)的方法,确定待定点的空间位置。
单差、双差、三差 2
1. 静态相对定位中,在卫星之间求一次差可有效消除或削弱的误差项为:AA. 卫星钟差B. 电离层延迟误差C. 星历误差D. 接收机钟差2. 什么是单差、双差和三差,它们各有什么特点?答:将直接观测值相减,所获得的结果被当做虚拟观测值,称为载波相位观测值的单差。
包括在卫星间求一次差,在接收机间求一次差,在不同历元间求一次差三种求差法。
在载波相位测量的一次求差基础上继续求差所获得的结果被当成虚拟观测值,称为双差。
常见的二次求差也有三种:在接收机和卫星间求二次差;在接收机和历元间求二次差;在卫星和历元间求二次差。
二次差仍可继续求差,称为求三次差。
只有一种三次差,即在卫星、接收机和历元间求三次差。
考虑到GPS定位的误差源,实际上广为采用的求差法有三种:在接收机间求一次差,在接收机和卫星间求二次差,在卫星、接收机和历元间求三次差。
他们各自的特点分别是:1)在接收机间求一次差:可以消除卫星钟差;接收机钟差参数数量减少,但并不能消除接收机钟差;卫星星历误差、电离层误差、对流层延迟等的影响也可得以减弱。
2)在接收机和卫星间求二次差:卫星钟差被消去;接收机相对钟差也被消去;在每个历元中双差观测方程的数量均比单差观测方程少一个;参数较少用一般的计算机就可胜任数据处理工作。
3)在卫星、接收机和历元间求三次差:在二次差的基础上进一步消去了整周模糊度参数,但这并没有多少实际意义;三差解是一种浮点解;三差方程的几何强度较差。
一般在GPS测量中广泛采用双差固定解而不采用三差解,通常仅被当做较好的初始值,或用于解决整周跳变的探测与修复、整周模糊度的确定等问题。
3.为什么在一般的GPS定位中广泛采用双差观测值?答:由于双差观测存在以下的优点:消去了卫星钟差;接收机相对钟差也被消去;在每个历元中双差观测方程的数量均比单差观测方程少一个;参数大大减少,用一般的计算机就可胜任数据处理工作。
4.为什么在静态相对定位载波测量中广泛采用求差法?答:在载波测量中,多余参数的数量往往非常多,这样数据处理的工作量十分庞大,对计算机及作业人员的素质也会提出较高的要求。
GPS测量中坐标系之间的转换
GPS测量中的坐标系转换第一章绪论1.1概述坐标转化并不是一个新的课题,随着测绘事业的发展,全球一体化的形成,越来越要求全球测绘资料的统一。
尤其是在坐标系统的统一方面.原始的大地测量工作主要是依靠光学仪器进行,这样不免受到近地面大气的影响,同时受地球曲率的影响很大,在通视条件上受到很大的限制,从而对全球测绘资料的一体化产生巨大的约束性。
另外由于每一个国家的大地坐标系的建立和发展具有一定的历史特性,仅常用的大地坐标系就有150余个。
在同一个国家,在不同的历史时期由于习惯的改变或经济的发展变化也会采用不同的坐标系统。
例如:在我国建国之后,为了尽快搞好基础建设,我国采用了应用克氏椭球与我国实际相结合的北京54坐标系;随着经济的发展北京54坐标系的缺陷也随之被表露的越来越明显,特别是对我国经济较发达的东南沿海地区的影响表现得更为明显,进而我国开始研究并使用国家80坐标系。
在实际生活中,在一些地区由于国家建设的急需,来不及布设国家统一的大地控制网,而建立局部的独立坐标系。
而后,再将其转换到国家统一的大地控制网中,这些坐标系的变换都离不开坐标值的转化.在国际上,随着1964年美国海军武器实验室对第一代卫星导航系统─NNSS的研制成功,为测绘资料的全球一体化提供了可能。
到1972年,经过美国国防部的批准,开始了第二代卫星导航系统的开发研究工作,即为现在所说的GPS。
此套卫星导航系统满足了全球范围、全天候、连续实时以及三维导航和定位的要求.正是由于GPS卫星的这些特性,这种技术就很快被广大测绘工作者接受。
是由于坐标系统的不同,对GPS技术的推广使用造成了一定的障碍。
这样坐标转换的问题再一次被提到了重要的位置。
为了描述卫星运动,处理观测数据和表示测站位置,需要建立与之相应的坐标系统。
在GPS测量中,通常采用两种坐标系统,即协议天球坐标系和协议地球坐标系。
其中协议地球坐标系采用的是1984年世界大地坐标系(Word Geodetic System 1984─WGS-84)其主要参数为:长半轴 a=6378137; 扁率 f=1:298.257223563.而我国采用的坐标系并不是WGS-84坐标系而是BJ-54坐标系,这个坐标系是与前苏联的1942年普耳科沃坐标系有关的,其主要参数为: 长半轴 a=6378245; 扁率 f=1:298.3.这就使得同一点在不同的坐标系下有不同的坐标值,这样使测绘资料的使用范围受到很大的限制,并且对GPS系统在我国的广泛使用造成了一定的约束性,对我国的测绘事业的发展不利。
单差、双差、三差的方法原理
单差、双差、三差的方法原理
单差、双差和三差是指在大地测量学中常用的一种数据处理方法,用于消除测量中的系统误差和提高测量精度。
这些方法的原理如下:
1. 单差方法原理:
单差方法是最简单的差分方法之一。
它的原理是通过将同一基准站的两次观测数据进行差分处理,消除了一些观测误差,例如大气延迟、钟差等。
通过这种方法,可以得到相对较为准确的测量结果。
单差方法适用于基线较短的测量,但对于长基线的测量精度较低。
2. 双差方法原理:
双差方法是在单差方法的基础上进一步发展而来的。
它的原理是通过同时观测多个测站,利用差分消除了更多的系统误差,包括了接收机钟差、大气延迟等。
通过双差方法,可以大大提高测量精度,尤其适用于长基线的测量。
3. 三差方法原理:
三差方法是在双差方法的基础上再进一步发展而来的。
它的原
理是通过引入第三个测站的观测数据,进一步消除系统误差,提高
测量精度。
三差方法在处理大地测量中的基线测量时,可以得到非
常高的精度,尤其适用于需要高精度的测量任务。
总的来说,单差、双差和三差方法都是利用差分消除系统误差,提高测量精度的方法。
它们在大地测量学中有着广泛的应用,可以
根据实际情况选择合适的方法来进行数据处理,以获得更加准确的
测量结果。
(完整版)空间大地测量思考题答案
《空间大地丈量学》思虑题1.简述天球坐标系与地球坐标系的差别。
答:天球坐标系:不随处球自转的地心坐标系,是空间固定坐标系,用于对卫星地点描绘。
地球坐标系:与地球固联的地心坐标系,用于描绘用户空间地点。
也就是把地球视为理想球体,以其旋转轴两极的最短球面连线为经线,垂直于经线的是纬线形成的角度坐标系。
二者差别:天球坐标是天文用的,地球坐标是地理用的;天球坐标能描绘星体有关于地球的角度地点,地球坐标只描绘物体在地球表面的地点。
它们都是角坐标系,可是地球坐标是以地球表面为球面的,是有半径的;而天球坐标半径没关,只假如某一球面即可2.试述历元天球坐标系到协议地球坐标系的变换过程。
答:(1)岁差旋转变换ZM (t0) 表示历元 J2000.0 年平天球坐标系z 轴指向, ZM(t )表示所论历元时辰t 真天球坐标系 z 轴指向。
两个坐标系间的变换式为:xyzM ( t )R z (Z A )R y ( A )R z (xA )yz M ( t0 )式中:ζ A,θ A,ZA为岁差参数。
(2)章动旋转变换近似地有章动旋转变换式:xyzc( t)R x () R z () R x ( )xyzM (t )式中:ε为所论历元的平黄赤交角,⊿ψ,⊿ε分别为黄经章动和交角章动参数。
( 3)刹时极天球坐标系与刹时极地球坐标系的变换关系为:x xy R z ( G ) yzet zct下标 et 表示对应 t 时辰的刹时极地球坐标系,ct 表示对应 t 时辰的刹时极天球坐标系。
θ G为对应平格林尼治子午面的真春分点时角。
( 4)平川球坐标系与刹时地球坐标系的变换公式:x xy R y (x p) R x ( y p ) yzem zet下标 em表示平川球坐标系,et表示t时的刹时地球坐标系,x p , y p为t时辰以角度表示的极移值。
3.简述恒星时、真太阳时与平太阳时的差别。
恒星时是以春分点为参照点,同春分点的周日视运动所确立的时间,春分点两次经过地方上子午圈的时间间隔为一恒星日。
5,距离测量与定位方法
(5-7)
对流层折射延迟改正
(5-8)
GPS测量与数据处理
利用测距码测定卫地距>测距码测距的误差方程
伪距测量的误差方程
站星几何距离 (X, Y, Z) T 为接收机在空间的位置
i ( xi X ) 2 ( yi Y ) 2 zi Z ) 2
式中, i , yi , zi ) T 为卫星星历所求得的卫星i的空间位置 (x 将i 进行线性化,用泰勒级数展开,保留一阶项,有:
P码 + W码 = Y码
0
1
0
0
1
0
0(1)
0
1
0
0
1
0
• Z跟踪技术
– 原理
在一个W 码码元内 P码(W码为“0”时) Y码 P码(W码为“1”时)
P码 + W码 = Y码 1(-1) 0 1 0 0 1 0
– 将相关间隔(积分间隔)限 定在一个W码码元内
1
0
1
1
0
1
GPS测量与数据处理
§5.2
载波相位测量
GPS测量与数据处理
载波相位测量
载波相位测量
对于测距码来说,如果测量精度为码元宽 度的百分之一,则P(Y)码约为0.3m,而C/A 码为3m左右,只能满足一般卫星导航和低 精度定位的要求。 而载波的波长很短,L1为19.0cm,L2为 24.4cm,L5为25.5cm,因此,载波相位的 测量精度可以达到0.2-0.3mm,是测距码的 测量精度的2-3个数量级。
§5.1 利用测距码测定卫地距
GPS测量与数据处理
利用测距码测定卫地距
GPS定位的基本原理 • 需解决的两个关键问题
GPS相对定位基本原理
G P S 相对定位原理相对定位原理归纳不论是测码伪距绝对定位还是测相伪距绝对定位,由于卫星星历误差、接收机钟与卫星钟同步差、大气折射误差等各种误差的影响,以致其定位精度较低。
诚然这些误差已作了必然的办理,但是实践证明绝对定位的精度仍不能够满足精美定位测量的需要。
为了进一步除掉或减弱各种误差的影响,提高定位精度,一般采用相对定位法。
相对定位,是用两台GPS接收机,分别部署在基线的两端,同步察看相同的卫星,经过两测站同步采集GPS数据,经过数据办理以确定基线两端点的相对地址或基线向量(图1-1)。
这种方法能够实行到多台GPS接收机部署在若干条基线的端点,经过同步察看相同的GPS卫星,以确定多条基线向量。
相对定位中,需要多个测站中最少一个测站的坐标值作为基准,利用察看出的基线向量,去求解出其他各站点的坐标值。
S 2S3S4S1基线向A B量图1-1GPS相对定位在相对定位中,两个或多个察看站同步察看同组卫星的情况下,卫星的轨道误差、卫星钟差、接收机钟差以及大气层延缓误差,对察看量的影响拥有必然的相关性。
利用这些察看量的不相同组合,依照测站、卫星、历元三种要素来求差,能够大大削弱相关误差的影响,从而提高相对定位精度。
依照定位过程中接收机所处的状态不相同,相对定位可分为静态相对定位和动向相对定位(或称差分GPS定位)。
静态相对定位原理设置在基线两端点的接收机有对于周围的参照物固定不动,经过连续察看获得充分的节余察看数据,解算基线向量,称为静态相对定位。
静态相对定位,一般均采用测相伪距察看值作为基本察看量。
测相伪距静态相对定位是当前GPS定位中精度最高的一种方法。
在测相伪距察看的数据办理中,为了可靠的确定载波相位的整周未知数,静态相对定位一般需要较长的察看时间(),称为经典静态相对定位。
可见,经典静态相对定位方法的测量效率较低,如何缩短察看时间,以提高作业效率便成为广大GPS用户宽泛关注的问题。
理论与实践证明,在测相伪距察看中,首要问题是如何快速而精确的确定整周未知数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 静态相对定位中,在卫星之间求一次差可有效消除或削弱的误差项为:AA. 卫星钟差B. 电离层延迟误差C. 星历误差D. 接收机钟差2. 什么是单差、双差和三差,它们各有什么特点?答:将直接观测值相减,所获得的结果被当做虚拟观测值,称为载波相位观测值的单差。
包括在卫星间求一次差,在接收机间求一次差,在不同历元间求一次差三种求差法。
在载波相位测量的一次求差基础上继续求差所获得的结果被当成虚拟观测值,称为双差。
常见的二次求差也有三种:在接收机和卫星间求二次差;在接收机和历元间求二次差;在卫星和历元间求二次差。
二次差仍可继续求差,称为求三次差。
只有一种三次差,即在卫星、接收机和历元间求三次差。
考虑到GPS定位的误差源,实际上广为采用的求差法有三种:在接收机间求一次差,在接收机和卫星间求二次差,在卫星、接收机和历元间求三次差。
他们各自的特点分别是:1)在接收机间求一次差:可以消除卫星钟差;接收机钟差参数数量减少,但并不能消除接收机钟差;卫星星历误差、电离层误差、对流层延迟等的影响也可得以减弱。
2)在接收机和卫星间求二次差:卫星钟差被消去;接收机相对钟差也被消去;在每个历元中双差观测方程的数量均比单差观测方程少一个;参数较少用一般的计算机就可胜任数据处理工作。
3)在卫星、接收机和历元间求三次差:在二次差的基础上进一步消去了整周模糊度参数,但这并没有多少实际意义;三差解是一种浮点解;三差方程的几何强度较差。
一般在GPS测量中广泛采用双差固定解而不采用三差解,通常仅被当做较好的初始值,或用于解决整周跳变的探测与修复、整周模糊度的确定等问题。
3.为什么在一般的GPS定位中广泛采用双差观测值?答:由于双差观测存在以下的优点:消去了卫星钟差;接收机相对钟差也被消去;在每个历元中双差观测方程的数量均比单差观测方程少一个;参数大大减少,用一般的计算机就可胜任数据处理工作。
4.为什么在静态相对定位载波测量中广泛采用求差法?答:在载波测量中,多余参数的数量往往非常多,这样数据处理的工作量十分庞大,对计算机及作业人员的素质也会提出较高的要求。
此外,未知参数过多使得解的稳定性减弱。
而通过观测值相减即求差法可消除多余观测数,从而大大降低了工作量。
5.什么是宽巷观测值?如何利用宽巷观测值?答:宽巷观测值为两个不同频率的载波(L1,L2)相位观测值间的一种线性组合,即。
其对应的频率为,对应的波长为,对应的整周模糊度为。
由于宽巷观测值的波长达86cm,利用它可以很容易准确确定其整周模糊度,进而准确确定N1和N2。
GPS误差GPS 测量是通过地面接收设备接收卫星传送来的信息,计算同一时刻地面接收设备到多颗卫星之间的伪距离,采用空间距离后方交会方法,来确定地面点的三维坐标。
因此,对于GPS卫星、卫星信号传播过程和地面接收设备都会对GPS 测量产生误差。
主要误差来源可分为:与GPS卫星有关的误差;与信号传播有关的误差;与接收设备有关的误差与卫星有关的误差(1)卫星星历误差卫星星历误差是指卫星星历给出的卫星空间位置与卫星实际位置间的偏差,由于卫星空间位置是由地面监控系统根据卫星测轨结果计算求得的,所以又称为卫星轨道误差。
它是一种起始数据误差,其大小取决于卫星跟踪站的数量及空间分布、观测值的数量及精度、轨道计算时所用的轨道模型及定轨软件的完善程度等。
星历误差是GPS 测量的重要误差来源.(2)卫星钟差卫星钟差是指GPS卫星时钟与GPS标准时间的差别。
为了保证时钟的精度,GPS卫星均采用高精度的原子钟,但它们与GPS标准时之间的偏差和漂移和漂移总量仍在1ms~0.1ms以内,由此引起的等效误差将达到300km~30km。
这是一个系统误差必须加于修正。
(3)SA干扰误差SA误差是美国军方为了限制非特许用户利用GPS进行高精度点定位而采用的降低系统精度的政策,简称SA政策,它包括降低广播星历精度的ε技术和在卫星基本频率上附加一随机抖动的δ技术。
实施SA技术后,SA误差已经成为影响GPS定位误差的最主要因素。
虽然美国在2000年5月1日取消了SA,但是战时或必要时,美国可能恢复或采用类似的干扰技术。
(SA技术其主要内容是:1.在广播星历中有意地加入误差,使定位中的已知点(卫星)的位置精度大为降低;2.有意地在卫星钟的钟频信号中加入误差,使钟的频率产生快慢变化,导致测距精度大为降低.)(4)相对论效应的影响这是由于卫星钟和接收机所处的状态(运动速度和重力位) 不同引起的卫星钟和接收机钟之间的相对误差。
编辑本段与传播途径有关的误差(1)电离层折射在地球上空距地面50~100 km 之间的电离层中,气体分子受到太阳等天体各种射线辐射产生强烈电离,形成大量的自由电子和正离子。
当GPS 信号通过电离层时,与其他电磁波一样,信号的路径要发生弯曲,传播速度也会发生变化,从而使测量的距离发生偏差,这种影响称为电离层折射。
对于电离层折射可用3 种方法来减弱它的影响: ①利用双频观测值,利用不同频率的观测值组合来对电离层的延尺进行改正。
②利用电离层模型加以改正。
③利用同步观测值求差,这种方法对于短基线的效果尤为明显。
(2)对流层折射对流层的高度为40km 以下的大气底层,其大气密度比电离层更大,大气状态也更复杂。
对流层与地面接触并从地面得到辐射热能,其温度随高度的增加而降低。
GPS 信号通过对流层时,也使传播的路径发生弯曲,从而使测量距离产生偏差,这种现象称为对流层折射。
减弱对流层折射的影响主要有3 种措施: ①采用对流层模型加以改正,其气象参数在测站直接测定。
②引入描述对流层影响的附加待估参数,在数据处理中一并求得。
③利用同步观测量求差。
(3)多路径效应测站周围的反射物所反射的卫星信号(反射波)进入接收机天线,将和直接来自卫星的信号(直接波) 产生干涉,从而使观测值偏离,产生所谓的“多路径误差”。
这种由于多路径的信号传播所引起的干涉时延效应被称作多路径效应。
减弱多路径误差的方法主要有: ①选择合适的站址。
测站不宜选择在山坡、山谷和盆地中,应离开高层建筑物。
②选择较好的接收机天线,在天线中设置径板,抑制极化特性不同的反射信号编辑本段与GPS 接收机有关的误差(1)接收机钟差GPS 接收机一般采用高精度的石英钟,接收机的钟面时与GPS 标准时之间的差异称为接收机钟差。
把每个观测时刻的接收机钟差当作一个独立的未知数,并认为各观测时刻的接收机钟差间是相关的,在数据处理中与观测站的位置参数一并求解,可减弱接收机钟差的影响。
(2)接收机的位置误差接收机天线相位中心相对测站标石中心位置的误差,叫接收机位置误差。
其中包括天线置平和对中误差,量取天线高误差。
在精密定位时,要仔细操作,来尽量减少这种误差影响。
在变形监测中,应采用有强制对中装置的观测墩。
相位中心随着信号输入的强度和方向不同而有所变化,这种差别叫天线相位中心的位置偏差。
这种偏差的影响可达数毫米至厘米。
而如何减少相位中心的偏移是天线设计中的一个重要问题。
在实际工作中若使用同一类天线,在相距不远的两个或多个测站同步观测同一组卫星,可通过观测值求差来减弱相位偏移的影响。
但这时各测站的天线均应按天线附有的方位标进行定向,使之根据罗盘指向磁北极。
(3)接收机天线相位中心偏差在GPS 测量时,观测值都是以接收机天线的相位中心位置为准的,而天线的相位中心与其几何中心,在理论上应保持一致。
但是观测时天线的相位中心随着信号输入的强度和方向不同而有所变化,这种差别叫天线相位中心的位置偏差。
这种偏差的影响可达数毫米至厘米。
而如何减少相位中心的偏移是天线设计中的一个重要问题。
编辑本段差分GPS(DGPS)原理根据差分GPS基准站发送的信息方式可将差分GPS定位分为三类,即:位置差分、伪距差分和相位差分。
这三类差分方式的工作原理是相同的,即都是由基准站发送改正数,由用户站接收并对其测量结果进行改正,以获得精确的定位结果。
所不同的是,发送改正数的具体内容不一样,其差分定位精度也不同。
编辑本段位置差分原理这是一种最简单的差分方法,任何一种GPS接收机均可改装和组成这种差分系统。
安装在基准站上的GPS接收机观测4颗卫星后便可进行三维定位,解算出基准站的坐标。
由于存在着轨道误差、时钟误差、SA影响、大气影响、多径效应以及其他误差,解算出的坐标与基准站的已知坐标是不一样的,存在误差。
基准站利用数据链将此改正数发送出去,由用户站接收,并且对其解算的用户站坐标进行改正。
最后得到的改正后的用户坐标已消去了基准站和用户站的共同误差,例如卫星轨道误差、SA影响、大气影响等,提高了定位精度。
以上先决条件是基准站和用户站观测同一组卫星的情况。
位置差分法适用于用户与基准站间距离在100km以内的情况。
编辑本段伪距差分原理伪距差分是目前用途最广的一种技术。
几乎所有的商用差分GPS接收机均采用这种技术。
国际海事无线电委员会推荐的RTCM SC-104也采用了这种技术。
在基准站上的接收机要求得它至可见卫星的距离,并将此计算出的距离与含有误差的测量值加以比较。
利用一个α-β滤波器将此差值滤波并求出其偏差。
然后将所有卫星的测距误差传输给用户,用户利用此测距误差来改正测量的伪距。
最后,用户利用改正后的伪距来解出本身的位置,就可消去公共误差,提高定位精度。
与位置差分相似,伪距差分能将两站公共误差抵消,但随着用户到基准站距离的增加又出现了系统误差,这种误差用任何差分法都是不能消除的。
用户和基准站之间的距离对精度有决定性影响。
编辑本段载波相位差分原理测地型接收机利用GPS卫星载波相位进行的静态基线测量获得了很高的精度(10-6~10-8)。
但为了可靠地求解出相位模糊度,要求静止观测一两个小时或更长时间。
这样就限制了在工程作业中的应用。
于是探求快速测量的方法应运而生。
例如,采用整周模糊度快速逼近技术(FARA)使基线观测时间缩短到5分钟,采用准动态(stop and go),往返重复设站(re-occupation)和动态(kinematic)来提高GPS作业效率。
这些技术的应用对推动精密GPS测量起了促进作用。
但是,上述这些作业方式都是事后进行数据处理,不能实时提交成果和实时评定成果质量,很难避免出现事后检查不合格造成的返工现象。
差分GPS的出现,能实时给定载体的位置,精度为米级,满足了引航、水下测量等工程的要求。
位置差分、伪距差分、伪距差分相位平滑等技术已成功地用于各种作业中。
随之而来的是更加精密的测量技术—载波相位差分技术。
载波相位差分技术又称为RTK技术(real time kinematic),是建立在实时处理两个测站的载波相位基础上的。
它能实时提供观测点的三维坐标,并达到厘米级的高精度。
与伪距差分原理相同,由基准站通过数据链实时将其载波观测量及站坐标信息一同传送给用户站。