数学建模——回归分析模型

合集下载

数学建模——线性回归分析实用精品教案

数学建模——线性回归分析实用精品教案

数学建模——线性回归分析实用精品教案一、教学内容本节课选自高中数学教材《数学建模》第四章“数据的拟合与回归”第二节“线性回归分析”。

详细内容包括:线性回归模型的建立,最小二乘法求解线性回归方程,线性回归方程的显著性检验,以及利用线性回归方程进行预测。

二、教学目标1. 理解线性回归分析的基本概念,掌握线性回归方程的建立方法。

2. 学会运用最小二乘法求解线性回归方程,并能解释线性回归方程的参数意义。

3. 能够对线性回归方程进行显著性检验,利用线性回归方程进行预测。

三、教学难点与重点教学难点:最小二乘法的推导和应用,线性回归方程的显著性检验。

教学重点:线性回归模型的建立,线性回归方程的求解及其应用。

四、教具与学具准备教具:多媒体课件,黑板,粉笔。

学具:计算器,草稿纸,直尺,铅笔。

五、教学过程1. 实践情景引入:展示一组关于身高和体重的数据,引导学生思考身高和体重之间的关系。

2. 例题讲解:(1)建立线性回归模型,引导学生根据散点图判断变量间的线性关系。

(2)利用最小二乘法求解线性回归方程,解释方程参数的意义。

(3)对线性回归方程进行显著性检验,判断方程的有效性。

3. 随堂练习:(1)给出另一组数据,让学生尝试建立线性回归模型并求解。

(2)对所求线性回归方程进行显著性检验,并利用方程进行预测。

六、板书设计1. 线性回归模型2. 最小二乘法3. 线性回归方程的显著性检验4. 线性回归方程的应用七、作业设计1. 作业题目:(1)根据给定的数据,建立线性回归模型,求解线性回归方程。

(2)对所求线性回归方程进行显著性检验,并利用方程预测某学生的体重。

2. 答案:(1)线性回归方程为:y = 0.8x + 50(2)显著性检验:F = 40.23,P < 0.01,说明线性回归方程具有显著性。

八、课后反思及拓展延伸1. 课后反思:本节课学生对线性回归分析的理解和应用能力得到了提升,但仍有个别学生对最小二乘法的推导和应用感到困难,需要在课后加强辅导。

数学建模——线性回归分析82页PPT

数学建模——线性回归分析82页PPT

2019/11/15
zhaoswallow
2
表1 各机组出力方案 (单位:兆瓦,记作MW)
方案\机组 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1
2
3
4
5
6
7
8
120
73
180
80
125
125
81.1
90
133.02 73
180
80
125
125
81.1
90
3 -144.25 -145.14 -144.92 -146.91 -145.92 -143.84 -144.07 -143.16 -143.49 -152.26 -147.08 -149.33 -145.82 -144.18 -144.03 -144.32
4 119.09 118.63 118.7 117.72 118.13 118.43 118.82 117.24 117.96 129.58 122.85 125.75 121.16 119.12 119.31 118.84
5 135.44 135.37 135.33 135.41 135.41 136.72 136.02 139.66 137.98 132.04 134.21 133.28 134.75 135.57 135.97 135.06
6 157.69 160.76 159.98 166.81 163.64 157.22 157.5 156.59 156.96 153.6 156.23 155.09 156.77 157.2 156.31 158.26
ˆ0

ˆ1 xi )2

min
0 ,1

数学建模之回归分析法

数学建模之回归分析法

什么就是回归分析回归分析(regression analysis)就是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。

运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析与多元回归分析;按照自变量与因变量之间的关系类型,可分为线性回归分析与非线性回归分析。

如果在回归分析中,只包括一个自变量与一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且因变量与自变量之间就是线性关系,则称为多元线性回归分析。

回归分析之一多元线性回归模型案例解析多元线性回归,主要就是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:毫无疑问,多元线性回归方程应该为:上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:那么,多元线性回归方程矩阵形式为:其中:代表随机误差, 其中随机误差分为:可解释的误差与不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须就是服成正太分别的随机变量。

2:无偏性假设,即指:期望值为03:同共方差性假设,即指,所有的随机误差变量方差都相等4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。

今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。

通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。

数据如下图所示:(数据可以先用excel建立再通过spss打开)点击“分析”——回归——线性——进入如下图所示的界面:将“销售量”作为“因变量”拖入因变量框内, 将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,您也可以选择其它的方式,如果您选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)如果您选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该就是跟“因变量”关系最为密切,贡献最大的,如下图可以瞧出,车的价格与车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0、05,当概率值大于等于0、1时将会被剔除)“选择变量(E)" 框内,我并没有输入数据,如果您需要对某个“自变量”进行条件筛选,可以将那个自变量,移入“选择变量框”内,有一个前提就就是:该变量从未在另一个目标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:点击“统计量”弹出如下所示的框,如下所示:在“回归系数”下面勾选“估计,在右侧勾选”模型拟合度“与”共线性诊断“两个选项,再勾选“个案诊断”再点击“离群值”一般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值) 点击继续。

数学建模-回归分析

数学建模-回归分析
回归分析
一、变量之间的两种关系 1、函数关系:y = f (x) 。
2、相关关系:X ,Y 之间有联系,但由 其中一个不能唯一的确定另一个的值。 如: 年龄 X ,血压 Y ; 单位成本 X ,产量 Y ; 高考成绩 X ,大学成绩 Y ; 身高 X ,体重 Y 等等。
二、研究相关关系的内容有
1、相关分析——相关方向及程度(第九章)。 增大而增大——正相关; 增大而减小——负相关。 2、回归分析——模拟相关变量之间的内在 联系,建立相关变量间的近似表达式 (经验 公式)(第八章)。 相关程度强,经验公式的有效性就强, 反之就弱。
三、一般曲线性模型 1、一般一元曲线模型
y = f ( x) + ε
对于此类模型的转换,可用泰勒展开 公式,把 在零点展开,再做简单的变 f ( x) 换可以得到多元线性回归模型。 2、一般多元曲线模型
y = f ( x1 , x2源自,⋯ , xm ) + ε
对于此类模型也要尽量转化为线性模 型,具体可参考其他统计软件书,这里不 做介绍。
ˆ ˆ ˆ ˆ y = b0 + b1 x1 + ⋯ + bm x m
2、利用平方和分解得到 ST , S回 , S剩。 3、计算模型拟合度 S ,R ,R 。 (1)标准误差(或标准残差)
S =
S剩 ( n − m − 1)
当 S 越大,拟合越差,反之,S 越小, 拟合越好。 (2)复相关函数
R =
2
仍是 R 越大拟合越好。 注: a、修正的原因:R 的大小与变量的个数以及样本 个数有关; 比 R 要常用。 R b、S 和 R 是对拟合程度进行评价,但S与 R 的分 布没有给出,故不能用于检验。 用处:在多种回归模型(线性,非线性)时, 用来比较那种最好;如:通过回归方程显著性检验 得到:

数学建模:用线性回归模型进行预测分析

数学建模:用线性回归模型进行预测分析

数学建模:用线性回归模型进行预测分析1. 概述数学建模是一种利用数学方法和技巧来解决实际问题的过程。

其中,线性回归模型是最常用的预测分析方法之一,旨在建立一个线性关系来解释自变量(特征)与因变量(目标)之间的关系。

2. 线性回归模型基本原理线性回归模型是基于线性假设,即自变量与因变量之间存在线性关系。

它通过最小化残差平方和来估计自变量对因变量的影响,并确定最佳拟合直线。

2.1 数据集准备在构建线性回归模型之前,需要准备好相关数据集。

数据集应包含自变量和因变量,其中自变量可以是多维的。

2.2 模型训练使用训练集上的数据来训练线性回归模型。

训练过程通过求解最小二乘法方程得到一组最佳参数值。

2.3 模型评价为了评估线性回归模型的准确性,需要使用测试集上的数据进行预测,并计算预测值与真实值之间的误差。

常用指标包括均方误差(MSE)和决定系数(R-squared)等。

3. 线性回归模型的应用场景线性回归模型可以应用于各种预测分析场景。

以下是一些常见的应用场景:3.1 经济学线性回归模型在经济学中常用于预测经济指标,例如GDP、通货膨胀率等。

通过建立一个线性关系,可以帮助经济学家进行政策制定和市场分析。

3.2 市场营销线性回归模型可以用于市场营销领域的广告效果预测、顾客购买意愿预测等。

通过分析不同因素对销售额的影响,可以制定更有效的市场推广策略。

3.3 医疗研究线性回归模型在医疗研究领域广泛应用。

它可以用来预测患者治疗效果、药物剂量与效果之间的关系等,为医生提供决策支持。

4. 线性回归模型的优缺点线性回归模型具有以下几个优点: - 易于理解和解释,模型结果可以直接转化为解释性语言。

- 计算速度快,适用于大规模数据集。

- 可以通过添加交互项和多项式特征来扩展模型的适应能力。

然而,线性回归模型也存在一些缺点: - 对于非线性关系的建模效果较差。

- 对异常值和离群点敏感。

- 对特征之间的相关性较为敏感,可能导致多重共线性问题。

常见数学建模模型

常见数学建模模型

常见数学建模模型一、线性规划模型线性规划是一种常见的数学优化方法,广泛应用于工程、经济、管理等领域。

线性规划模型的目标是在给定的约束条件下,求解一个线性目标函数的最优解。

其中,约束条件通常是线性等式或不等式,而目标函数是一个线性函数。

在实际应用中,线性规划模型可以用于生产计划、资源分配、运输问题等。

例如,一个工厂的生产计划中需要确定每种产品的产量,以最大化利润为目标,并且需要满足一定的生产能力和市场需求的约束条件。

二、整数规划模型整数规划是线性规划的一种扩展形式,其目标函数和约束条件仍然是线性的,但变量需要取整数值。

整数规划模型常用于离散决策问题,如项目选择、设备配置等。

例如,一个公司需要决定购买哪些设备以满足生产需求,设备的数量必须是整数,且需要考虑成本和产能的约束。

三、动态规划模型动态规划是一种求解多阶段决策问题的数学方法。

该模型通常包含一个阶段决策序列和一个状态转移方程,通过递推求解最优解。

动态规划模型被广泛应用于资源分配、路径规划、项目管理等领域。

例如,一个工程项目需要确定每个阶段的最佳决策,以最小化总成本或最大化总效益。

在每个阶段,决策的结果会影响到下一个阶段的状态和决策空间,因此需要使用动态规划模型进行求解。

四、图论模型图论是研究图和网络的数学理论。

图论模型常用于解决网络优化、路径规划、最短路径等问题。

例如,一个物流公司需要确定最佳的送货路径,以最小化运输成本或最短时间。

可以将各个地点看作图中的节点,道路或路径看作边,利用图论模型求解最优路径。

五、回归分析模型回归分析是研究变量之间关系的一种统计方法。

回归分析模型通常用于预测和建立变量之间的数学关系。

例如,一个销售公司需要预测未来销售额与广告投入、市场份额等因素的关系。

可以通过回归分析模型建立销售额与这些因素之间的数学关系,并进行预测和决策。

六、排队论模型排队论是研究排队系统的数学理论。

排队论模型常用于优化服务质量、降低排队成本等问题。

数学建模之回归分析法

数学建模之回归分析法
0
28 400
32
225
W8 1
70 3
192 9
14 114
18 225
0
32
225
1069
70 6
192 0
S甌
29 725
0
42 000
35
210
1146
7U
196 6
20.397
22 25?
0
23 990
1.8
150
1026
632
17S.0
18780
23.555
0
33 950
2.8
200
108.7
0
19.390
3.4
1BD
110.6
72.7
197.9
点击“分析”一一回归一一线性一一进入如下图所示的界面:
将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10个
自变量 拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以 选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的
毫无疑问, 多元线性回归方程应该为
—/?
上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样 本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:
代表随机误差, 其中随机误差分为: 可解释的误差 和 不可解释的误差, 随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)
“选择变量(E)"框内,我并没有输入数据,如果你需要对某个“自变量”进行条件筛选, 可以将那个自变量,移入“选择变量框”内, 有一个前提就是:该变量从未在另一个目标列 表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:

回归分析(数学建模)

回归分析(数学建模)
156.23 155.09 156.77 157.2 156.31 158.26
16 17 18 19 20 21
166.88 164.07 164.27 164.57 163.89 166.35
141.4 143.03 142.29 141.44 143.61 139.29
-144.34 -140.97 -142.15 -143.3 -140.25 -144.2
正规方程组
一元线性回归
整理得
n n n 0 xi 1 yi i 1 i 1 n n 2 xi 0 xi 1 i 1 i 1
( 2)
x
i 1
n
i
yi
一元线性回归
ˆ ˆ 0 y x 1 n x i y i n xy ˆ 1 i 1 n 2 2 xi n x i 1
(x
i 1 n
n
i
x )( y i y )
2
( 3)
( xi x )
i 1
1一元线性回归一元线性回归模型为其中x是自变量y是因变量为未知的待定常数称为回归系数是随机误差且假设其中相互独立且使其随机误差的平方和达到最小即一元线性回归正规方程组一元线性回归整理得一元线性回归其中参数的最小二乘估计一元线性回归xxxx的无偏估计量
线性回归分析
华北电力大学数理系 雍雪林
一、引言
2004年全国数模竞赛的B题 “电力市场的 输电阻塞管理” 第一个问题: 某电网有8台发电机组,6条主要线路,表 1和表2中的方案0给出了各机组的当前出力和 各线路上对应的有功潮流值,方案1~32给出了 围绕方案0的一些实验数据,试用这些数据确 定各线路上有功潮流关于各发电机组出力的近 似表达式。

数学建模——回归分析

数学建模——回归分析
编号 1 2 3 4 5 6 7 8 身高/cm 165 165 157 170 175 165 155 170
体重/kg 48 57 50 54 64 61 43 59
求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为 172cm的女大学生的体重。
解:1、选取身高为自变量x,体重为因变量y,作散点图:
由于解释变量和随机误差的总效应(总偏差平方和)为354,而随机误差的效应为 128.361,所以解析变量的效应为
354-128.361=225.639 这个值称为回归平方和。
解析变量和随机误差的总效应(总偏差平方和) =解析变量的效应(回归平方和)+随机误差的效应(残差平方和)
我们可以用相关指数R2来刻画回归的效果,其计算公式是
R2越接近1,表示回归的效果越好(因为R2越接近1,表示解释变量和预报变量的 线性相关性越强)。
如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值 来做出选择,即选取R2较大的模型作为这组数据的模型。
总的来说:
相关指数R2是度量模型拟合效果的一种指标。
在线性模型中,它代表自变量刻画预报变量的能力。
虽然这种向中心回归的现象只是特定领域里的结论,并不具有普遍性,但从它 所描述的关于X为自变量,Y为不确定的因变量这种变量间的关系看,和我们现在的 回归含义是相同的。
不过,现代回归分析虽然沿用了“回归”一词,但内容已有很大变化,它是一种应用 于许多领域的广泛的分析研究方法,在经济理论研究和实证研究中也发挥着重要作用。
回归分析:研究一个随机变量Y对另一个(X)或一组(X1, X2,…,Xk)变量的相依关系的统计分析方法
回归分析(regression analysis)是确定两种或两种以上变数 间相互依赖的定量关系的一种统计分析方法。运用十分广泛, 回归分析按照涉及的自变量的多少,可分为一元回归分析和 多元回归分析;按照自变量和因变量之间的关系类型,可分 为线性回归分析和非线性回归分析。如果在回归分析中,只 包括一个自变量和一个因变量,且二者的关系可用一条直线 近似表示,这种回归分析称为一元线性回归分析。如果回归 分析中包括两个或两个以上的自变量,且因变量和自变量之 间是线性关系,则称为多元线性回归分析。

2024年数学建模——线性回归分析实用精彩教案

2024年数学建模——线性回归分析实用精彩教案

2024年数学建模——线性回归分析实用精彩教案一、教学目标1.让学生理解线性回归分析的基本概念和方法。

2.培养学生运用线性回归分析解决实际问题的能力。

3.培养学生的团队协作精神和创新意识。

二、教学内容1.线性回归分析的基本概念2.线性回归方程的求解3.线性回归模型的检验4.实际案例分析与讨论三、教学过程1.导入同学们,大家好!今天我们要学习的是数学建模中的一种重要方法——线性回归分析。

在实际生活中,我们经常会遇到一些变量之间的关系,如何用数学的方法来描述这些关系呢?让我们一起学习线性回归分析的基本概念和方法。

2.线性回归分析的基本概念(1)线性回归模型:描述两个变量之间关系的数学模型,其中一个变量是自变量,另一个变量是因变量。

(2)线性回归方程:描述线性回归模型的数学方程,形式为y=a+bx,其中a是常数项,b是回归系数。

3.线性回归方程的求解(1)最小二乘法:求解线性回归方程的一种方法,通过使实际观测点到回归直线的距离平方和最小来确定回归系数。

(2)计算步骤:a.收集数据,绘制散点图。

b.根据散点图,初步判断变量之间是否存在线性关系。

c.利用最小二乘法求解回归系数。

d.写出线性回归方程。

4.线性回归模型的检验(1)拟合优度检验:通过计算判定系数R²来评估回归模型的拟合程度。

(2)假设检验:利用t检验和F检验来评估回归系数的显著性。

5.实际案例分析与讨论案例1:某地区房价与收入关系的研究(1)收集数据:收集某地区近年来的房价和收入数据。

(2)绘制散点图:观察房价和收入之间的关系。

(3)求解线性回归方程:利用最小二乘法求解回归系数。

(4)模型检验:计算判定系数R²,进行假设检验。

(5)结论:根据线性回归方程和模型检验结果,分析房价与收入之间的关系。

案例2:某企业产量与广告费用关系的研究(1)收集数据:收集某企业近年来的产量和广告费用数据。

(2)绘制散点图:观察产量和广告费用之间的关系。

数学建模-回归分析例题

数学建模-回归分析例题
数学建模-回归分析例题
目录
引言 线性回归模型 非线性回归模型 多元回归模型 回归分析在实践中的应用
01
CHAPTER
引言
01
02
主题背景
在许多领域,如经济学、生物学、医学和社会学等,都需要用到回归分析来探索变量之间的因果关系或预测未来的发展趋势。
回归分析是数学建模中常用的统计方法,用于研究变量之间的关系。
残差分析
R方值
AIC和BIC值
预测能力
多元回归模型的评估
01
02
03
04
分析残差与拟合值之间的关系,检验模型的假设条件。
计算模型的决定系数,评估模型对数据的拟合程度。
使用信息准则评估模型的复杂度和拟合优度。
使用模型进行预测,评估预测结果的准确性和可靠性。
05
CHAPTER
回归分析在实践中的应用
线性回归模型
它基于最小二乘法原理,通过最小化预测值与实际值之间的平方误差来拟合数据。
线性回归模型适用于因变量与自变量之间存在线性关系的情况,且自变量对因变量的影响是线性的。
线性回归模型是一种预测模型,通过找到最佳拟合直线来描述因变量和自变量之间的关系。
线性回归模型介绍
首先需要明确研究的问题和目标,并确定因变量和自变量。
结果解释
数据分析
THANKS
感谢您的观看。
非线性回归模型
非线性回归模型适用于因变量和自变量之间存在幂函数、对数函数、多项式函数等非线性关系的场景。
适用场景
非线性回归模非线性函数。
数学表达式
非线性回归模型介绍
非线性回归模型的建立
数据准备
收集包含自变量 (x) 和因变量 (y) 的数据集,确保数据具有足够的数量和代表性。

数学建模——回归分析模型 ppt课件

数学建模——回归分析模型  ppt课件

有最小值:
n n i 1 i 1
i
2 2 ( y a bx ) i i i
ppt课件
ˆx ˆi a ˆ b y i
6
数学建模——回归分析模型
一元线性回归模型—— a, b, 2估计
n ( xi x )( yi y ) ˆ i 1 b n ( xi x )2 i 1 ˆ ˆ y bx a
数学建模——回归分析模型
Keep focused Follow me —Jiang
ppt课件
1
数学建模——回归分析模型
• • • • • 回归分析概述 几类回归分析模型比较 一元线性回归模型 多元线性回归模型 注意点
ppt课件
2
数学建模——回归分析模型
回归分析 名词解释:回归分析是确定两种或两种以上变数 间相互赖的定量关系的一种统计分析方法。 解决问题:用于趋势预测、因果分析、优化问题 等。 几类常用的回归模型:
可决系数(判定系数) R 2 为:
可决系数越靠近1,模型对数据的拟合程度越好。 ppt课件 通常可决 系数大于0.80即判定通过检验。 模型检验还有很多方法,以后会逐步接触
15
2 e ESS RSS i R2 1 1 TSS TSS (Yi Y )2
数学建模——回归分析模型
2 i i 1
残差平 方和
13
数学建模——回归分析模型
多元线性回归模型—— 估计 j 令上式 Q 对 j 的偏导数为零,得到正规方程组,
用线性代数的方法求解,求得值为:
ˆ ( X T X )1 X TY
ˆ 为矩阵形式,具体如下: 其中 X , Y ,

数学建模案例分析第十章统计回归模型

数学建模案例分析第十章统计回归模型

岭回归原理及步骤
• 原理:岭回归是一种专用于共线性数据分析的有偏估计回归方 法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘 法的无偏性,以损失部分信息、降低精度为代价获得回归系数 更为符合实际、更可靠的回归方法,对病态数据的拟合要强于 最小二乘法。
岭回归原理及步骤
• 原理:岭回归是一种专用于共线性数据分析的有偏估计回归方 法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘 法的无偏性,以损失部分信息、降低精度为代价获得回归系数 更为符合实际、更可靠的回归方法,对病态数据的拟合要强于 最小二乘法。
一元线性回归
01
02
03
模型建立
一元线性回归模型用于描 述两个变量之间的线性关 系,通常形式为y=ax+b, 其中a和b为待估参数。
参数估计
通过最小二乘法等方法对 参数a和b进行估计,使得 预测值与实际观测值之间 的误差平方和最小。
假设检验
对模型进行假设检验,包 括检验模型的显著性、参 数的显著性等,以判断模 型是否有效。
线性回归模型检验
拟合优度检验
通过计算决定系数R^2等指标, 评估模型对数据的拟合程度。
残差分析
对模型的残差进行分析,包括残 差的分布、异方差性检验等,以
判断模型的合理性。
预测能力评估
通过计算预测误差、均方误差等 指标,评估模型的预测能力。同 时可以使用交叉验证等方法对模
型进行进一步的验证和评估。
线性回归模型检验
逐步回归原理及步骤
01
3. 对模型中已有的自变量进行检 验,如果不显著则将其从模型中 剔除。
02
4. 重复步骤2和3,直到没有新的 自变量可以进入模型,也没有不显 著的自变量可以从模型中剔除。

常见数学建模模型

常见数学建模模型

常见数学建模模型数学建模是数学与现实问题相结合的一门学科,通过数学方法和技巧对现实问题进行抽象和描述,从而得到问题的解决方案。

常见数学建模模型有线性规划模型、回归分析模型、离散事件模型和优化模型等。

下面将分别介绍这些常见数学建模模型的基本原理和应用领域。

一、线性规划模型线性规划模型是一种数学模型,用于解决具有线性约束条件的最优化问题。

其基本原理是通过线性目标函数和线性约束条件,找到使目标函数取得最大或最小值的变量取值。

线性规划模型广泛应用于生产调度、物流配送、资源优化等领域。

二、回归分析模型回归分析模型是通过建立变量之间的数学关系,预测或解释一个变量与其他变量之间的关系。

常见的回归分析模型包括线性回归模型、多项式回归模型和逻辑回归模型等。

回归分析模型在市场预测、金融风险评估等领域有广泛的应用。

三、离散事件模型离散事件模型是一种描述系统内离散事件发生和演化的数学模型。

该模型中,系统的状态随着事件的发生而发生改变,事件之间的发生是离散的。

离散事件模型广泛应用于排队系统、供应链管理、网络优化等领域。

四、优化模型优化模型是通过建立目标函数和约束条件,寻找使目标函数取得最大或最小值的变量取值。

常见的优化模型包括整数规划模型、非线性规划模型和动态规划模型等。

优化模型广泛应用于生产调度、资源分配、路径规划等领域。

以上是常见数学建模模型的基本原理和应用领域。

数学建模模型的应用能够帮助我们解决实际问题,优化决策过程,提高效率和准确性。

在实际应用中,我们可以根据具体问题的特点选择合适的数学建模模型,并通过数学方法求解得到最优解。

回归分析模型

回归分析模型

回归分析模型一、什么是回归分析自然界中许多变量间都存在着某种相互联系和相互制约的关系,这种关系一般有两类,一类是确定性关系,也称之为函数关系。

如21y x =+中变量x 与y 的关系就是确定性关系。

另一类是不确定性关系,也称之为相关关系或统计关系。

这种变量间的关系尚无法表示成精确的函数关系,如人的身高与体重间的关系;商品的销售量与价格间的关系;树高与生长时间的关系等等均属于这类关系。

所谓回归分析是指通过试验和观测,去寻找隐藏在变量间的统计关系的一种数学方法。

设我们要研究变量y 与x 之间的统计关系,希望找出y 的值是如何随x 的变化而变化的规律,这时称y 为因变量,x 为自变量。

通常x 被认为是非随机变量,它是可以精确测量或严格控制的;y 是一个随机变量,它是可观测的,但存在测量误差。

于是y 与x 的关系可表示为()y f x ε=+. (1)其中ε是一切随机因素影响的总和,有时也简称为随机误差。

通常假设ε满足 2()0,()E D εεσ==. 由(1)式得到()()E y f x =, (2) (2)式称为理论回归方程。

由于()f x 的函数形式未知,或者()f x 的函数形式已知,但其中含有未知参数,即01(;,,,)l f x βββ,其中01,,,l βββ为未知参数。

故理论回归方程一般无法直接写出。

为了得到理论回归方程的近似表达式,通常先对()f x 的函数形式作出假定,然后通过观测得到关于(,)x y 的n 组独立观测数据(,)(1,2,,)i i x y i n =。

利用这些观测数据来估计出01( ;,,,)l f x βββ中的未知参数,得到经验回归方程01ˆˆˆˆ( ;,,,)ly f x βββ= (3)(3)式又称为回归方程,()f x 称为y 对x 的回归函数。

当()f x 是线性函数时,(3)式称为线性回归方程,而获得线性回归方程的方法称为线性回归分析。

若所进行的线性回归分析中自变量是一元的,则称之为一元线性回归分析;若自变量是多元的,则称之为多元线性回归分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
性回归
多元 一次
y k1x1 k2x2 ... kn xn , n 2, k R Yi 0 1X1i 2 X 2i L K X Ki ui
多元多次及
非线性回归(暂不说明)
其他函数形 式
Y

1 1 exp(2
3x )

(Logistic模型)
工作 10 11 12 13 14 15 16 17 18 19 时长
出品 45 51 54 61 66 70 74 78 85 89 率
在生活中竞赛,在竞赛中生活
数学建模——回归分析模型
解:n 10, x 14.5, y 67.3
n

( xi
i 1 n
x )( yi y) (xi x )2

n
(xi x )( yi y )
bˆ i1 n



y

( xi
i 1
bˆx

x )2
这样我们就求得了未知参数
ˆ 2

n
1
2
n i 1
( yi

a, b 的值,我们记
yˆi )2
yˆ aˆ bˆx
为关于的经验回归方程,简称回归方程,其图形为回归直线。
在生活中竞赛,在竞赛中生活
数学建模——回归分析模型
一元线性回归模型——模型
随机变Y量(因变量)与实际变 x量(因变量)
存在着某种相关关系。现对Y 做正态假设确定 这种关系为:
Y ~ N (a bx, 2 )
其中 a,b, 2为未知参数,与x无关。上式等价于
Y a bx , ~ N (0, 2 )
在生活中竞赛,在竞赛中生活
Excel是做一元线性回归的其中一种 软件,还有Spss,Matlab都可以做
数学建模——回归分析模型
多元线性回归模型——模型
现实生活中,一个变量往往受到多个因素的影响,假设有n 个因
素,称为解释变量,这种多个解释变量与因变量构成的这种关系称为 多元线性关系,由这种关系构成的函数关系式称为多元线性回归模 型,其一般式如下:
这就是一元线性回归模型,b 为回归系数。 ~ N (0, 2 ) 是随机误差,是人们不可控制的。
在生活中竞赛,在竞赛中生活
数学建模——回归分析模型
一元线性回归模型—— a,b, 2估计 方法:最小二乘法
求解:对x取不全相同的值做独立实验,得到样本。
(x1,Y1), (x2 ,Y2 ),..., (xn ,Yn )
数学建模——回归分析模型
Keep focused
Follow me —Jiang
在生活中竞赛,在竞赛中生活
数学建模——回归分析模型
• 回归分析概述 • 几类回归分析模型比较 • 一元线性回归模型 • 多元线性回归模型 • 注意点
在生活中竞赛,在竞赛中生活
数学建模——回归分析模型
回归分析
➢ 名词解释:回归分析是确定两种或两种以上变数 间相互赖的定量关系的一种统计分析方法。
i1[1,1]
)(
lxx
l1
n
n
yy ( xi
i 1

x)2
1 n
yi nBiblioteka (i 1y) yi
y)2
称为拟合优度检验
判别准则
方法:相关系数法(还有其他方法)
样本相关系数如右式。R 为相关 系数。
|||RRR| |接近1 | |RRR||| 接近0
线性相关关系显著 线性相关关系不显著
R 0, yˆ aˆ y 与x无关系,不相关
记第i 组实验的误差
有最小值:
i,使yi总误差尽i 量小,即下式
n
n

2 i

( yi a bxi )2
i 1
i 1
yˆi aˆ bˆxi
在生活中竞赛,在竞赛中生活
数学建模——回归分析模型
一元线性回归模型——a,b, 2估计
令其偏导数为零,求得最大似然估计为:

上面右式为计算 2 公式, 2 越小,用一次线性函数研究
随机变量与的关系就越有效。
在生活中竞赛,在竞赛中生活
数学建模——回归分析模型
一元线性回归模型——线性假设的 显著性检验
必要性:上面我们假设 Y 关于 x 的回
归形式是否为线性函数需要检验,
ˆRXY
R lxy
1 n
n
(xi x
➢ 解决问题:用于趋势预测、因果分析、优化问题 等。
➢ 几类常用的回归模型:
线性回归
一元线性回归 多元线性回归
有何区别 与联系?
非线性回归
在生活中竞赛,在竞赛中生活
数学建模——回归分析模型
回归模型方程式
一元线 性回归
自变量
一元 一次
eg(. 仅从形式上)
y kx b, x R
线性回归 多元线
R 1,bˆ
lyy lxx
存在相关关系
在生活中竞赛,在竞赛中生活
当︱R ︱ >Rα(n2), (通常取0.8) 认为X与Y之间的线性相关关系显著, 反之,则不显著
数学建模——回归分析模型
一元线性回归模型——应用举例
在研究机器工作效应时,测得工作时间与出品率 如下表所示,求出品率关于工作时间的回归方程 并作拟合优度检验。
相关系数值为:
R lxy 0.9981 lxx lyy
相关系数接近1,说明随机 变量与x具有显著的相关性, 线性回归的拟合度较高,检
验通过
在生活中竞赛,在竞赛中生活
数学建模——回归分析模型
一元线性回归的Excel实现
(1)将数据导入Excel工作表;
请同学用 Excel完成上
面的例题
(2)工具栏中选插入—图表—XY散点图;

398.5 82.5
4.8303
i 1
aˆ y bˆx 67.3 4.830314.5 2.7394
请同学将结论与实 际问题结合,分析 工作时长与出品率 的关系,并预测20 小时和6小时时的出 品率?时间趋于无
限大呢?
所以回归方程为:
yˆ 4.8303x 2.7394
(3)选择数据区域,填写标题、图例等内容,完成;
(4)右击散点图—选添加趋势线—线性(类型)—在选项中 选显示公式和R平方值。此时作出了回归图并求得方程;
(5)在工具栏中选工具—数据分析—找到回归并确定—选择 数据区域、输出数据区域,勾选置信度残差、标准残差、 线性拟合图。此时得到几个表格,可查得回归系数、常数 项及R平方值。
Yi 0 1X1i 2 X 2i L K X Ki i ,i 1, 2,..., n
相关文档
最新文档