三角形和四边形中常见的辅助线的作法和类型(绝对经典)

合集下载

全等三角形问题中常见的8种辅助线的作法(有答案解析)

全等三角形问题中常见的8种辅助线的作法(有答案解析)

全等三角形问题中罕有的帮助线的作法(有答案)泛论:全等三角形问题最重要的是结构全等三角形,结构二条边之间的相等,结构二个角之间的相等【三角形帮助线做法】图中有角等分线,可向双方作垂线. 也可将图半数看,对称今后关系现.角等分线平行线,等腰三角形来添. 角等分线加垂线,三线合一尝尝看.线段垂直等分线,常向两头把线连. 要证线段倍与半,延伸缩短可实验.三角形中两中点,衔接则成中位线. 三角形中有中线,延伸中线等中线.1.等腰三角形“三线合一”法:碰到等腰三角形,可作底边上的高,运用“三线合一”的性质解题2.倍长中线:倍长中线,使延伸线段与原中线长相等,结构全等三角形3.角等分线在三种添帮助线4.垂直等分线联络线段两头5.用“截长法”或“补短法”:碰到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后组成等边三角形7.角度数为30.60度的作垂线法:碰到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目标是组成30-60-90的特别直角三角形,然后盘算边的长度与角的度数,如许可以得到在数值上相等的二条边或二个角.从而为证实全等三角形创造边.角之间的相等前提.8.盘算数值法:碰到等腰直角三角形,正方形时,或30-60-90的特别直角三角形,或40-60-80的特别直角三角形,常盘算边的长度与角的度数,如许可以得到在数值上相等的二条边或二个角,从而为证实全等三角形创造边.角之间的相等前提.罕有帮助线的作法有以下几种:最重要的是结构全等三角形,结构二条边之间的相等,二个角之间的相等.1)碰到等腰三角形,可作底边上的高,运用“三线合一”的性质解题,思维模式是全等变换中的“半数”法结构全等三角形.2)碰到三角形的中线,倍长中线,使延伸线段与原中线长相等,结构全等三角形,运用的思维模式是全等变换中的“扭转”法结构全等三角形.3)碰到角等分线在三种添帮助线的办法,(1)可以自角等分线上的某一点向角的双方作垂线,运用的思维模式是三角形全等变换中的“半数”,所考常识点经常是角等分线的性质定理或逆定理.(2)可以在角等分线上的一点作该角等分线的垂线与角的双方订交,形成一对全等三角形.(3)可以在该角的双DCBAEDF CBA方上,距离角的极点相等长度的地位上截取二点,然后从这两点再向角等分线上的某点作边线,结构一对全等三角形.4)过图形上某一点作特定的等分线,结构全等三角形,运用的思维模式是全等变换中的“平移”或“翻转折叠”5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延伸,是之与特定线段相等,再运用三角形全等的有关性质加以解释.这种作法,合适于证实线段的和.差.倍.分等类的标题.6)已知某线段的垂直等分线,那么可以在垂直等分线上的某点向该线段的两个端点作连线,出一对全等三角形.特别办法:在求有关三角形的定值一类的问题时,常把某点到原三角形各极点的线段衔接起来,运用三角形面积的常识解答. 一.倍长中线(线段)造全等例 1.(“愿望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值规模是_________.例2.如图,△ABC 中,E.F 分离在AB.AC 上,DE ⊥DF,D 是中点,试比较BE+CF 与EF 的大小.例 3.如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证:AD 等分∠BAE. 运用:1.(09崇文二模)以ABC ∆的双方AB.AC 为腰分离向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒衔接DE,M.N 分离是BC.DEEDCBADCBAPQCBA的中点.探讨:AM 与DE 的地位关系及数目关系.(1)如图①当ABC ∆为直角三角形时,AM 与DE 的地位关系是, 线段AM 与DE 的数目关系是; (2)将图①中的等腰RtABD∆绕点A 沿逆时针偏向扭转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否产生转变?并解释来由. 二.截长补短1.如图,ABC ∆中,AB=2AC,AD 等分BAC ∠,且AD=BD,求证:CD ⊥AC2.如图,AD ∥BC,EA,EB 分离等分∠DAB,∠CBA,CD 过点E,求证;AB =AD+BC. 3.如图,已知在ABC内,060BAC ∠=,040C ∠=,P,Q 分离在BC,CA 上,并且AP,BQ 分离是BAC ∠,ABC ∠的角等分线.求证:BQ+AQ=AB+BP4.如图,在四边形ABCD 中,BC >BA,AD =CD,BD 等分ABC ∠,求证:0180=∠+∠C A5.如图在△ABC 中,AB >AC,∠1=∠2,P 为AD 上随意率性一点,求证;AB-AC >PB-PC 运用: 三.平移变换例1AD 为△ABC 的角等分线,直线MNDCBFED CBA⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P .例2如图,在△ABC 的边上取两点 D.E,且BD=CE,求证:AB+AC>AD+AE.四.借助角等分线造全等1.如图,已知在△ABC 中,∠B=60°,△ABC 的角等分线AD,CE订交于点O,求证:OE=OD2.如图,△ABC 中,AD 等分∠BAC,DG ⊥BC BC,DE ⊥AB 于E,DF ⊥AC 于F.(1)解释BE=CF 的来由;(2)假如AB=a ,AC=b ,求AE.BE 的长. 运用:1.如图①,OP 是∠MON 的等分线,请你运用该图形画一对以OP 地点直线为对称轴的全等三角形.请你参考这个作全等三角形的办法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD .CE 分离是∠BAC .∠BCA 的等分线,AD .CE 订交于点F .请你断定并写出FE 与FD 之间的数目关系;(2)如图③,在△ABC 中,假如∠ACB 不是直角,而(1)中的其它前提不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证实;若不成立,请解释来由. 五.扭转例1正方形ABCD 中,E 为BC 上的一点,F 为(第23题图)OP AMNEB CD F ACEFBD图①图②图③ACD 上的一点,BE+DF=EF,求∠EAF 的度数.例2D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分离交BC,CA 于点E,F.(1)当MDN ∠绕点D 迁移转变时,求证DE=DF.(2)若AB=2,求四边形DECF 的面积例3如图,ABC ∆是边长为3的等边三角形,BDC ∆是等腰三角形,且0120BDC ∠=,以060角,使其双方分离交AB 于点M,交AC 于点N,衔接MN,则AMN ∆的周长为;运用: 1.已知四边形ABCD中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点扭转,它的双方分离交AD DC ,(或它们的延伸线)于E F ,.当MBN ∠绕B 点扭转到AE CF =时(如图1),易证AE CF EF +=.当MBN ∠绕B 点扭转到AE CF ≠时,在图2和图3这两种情形下,上述结论是否成立?若成立,请赐与证实;若不成立,线段AE CF ,,EF 又有如何的数目关系?请写出你的猜测,不需证实.2.(西城09年一模)已知,PB=4,以AB 为一边作正方形(图1) A B CDEFM N(图2)C(图3)ABC DE F MNDC BAABCD,使P.D 两点落在直线AB 的两侧.(1)如图,当∠APB=45°时,求AB 及PD 的长;(2)当∠APB 变更,且其它前提不变时,求PD 的最大值,及响应∠APB 的大小.3.在等边ABC ∆的双方AB.AC 地点直线上分离有两点M.N,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探讨:当M.N 分离在直线AB.AC 上移动时,BM.NC.MN 之间的数目关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图 2图3(I )如图1,当点M.N 边AB.AC 上,且DM=DN 时,BM.NC.MN 之间的数目关系是; 此时=LQ; (II )如图2,点M.N 边AB.AC 上,且当DM ≠DN 时,猜测(I )问的两个结论还成立吗?写出你的猜测并加以证实;(III ) 如图3,当M.N 分离在边AB.CA 的延伸线上时, 若AN=x ,则Q=(用x .L 暗示). 参考答案与提醒 一.倍长中线(线段)造全等例 1.(“愿望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值规模是_________.解:延伸AD 至E 使AE =2AD,连BE,由三角形性质知 AB-BE <2AD<AB+BE 故AD 的取值规模是1<AD<4EDF CBA例2.如图,△ABC 中,E.F 分离在AB.AC 上,DE ⊥DF,D 是中点,试比较BE+CF 与EF 的大小.解:(倍长中线,等腰三角形“三线合一”法)延伸FD 至G 使FG =2EF,连BG,EG, 显然BG =FC,在△EFG 中,留意到DE ⊥DF,由等腰三角形的三线合一知 EG =EF在△BEG 中,由三角形性质知 EG<BG+BE 故:EF<BE+FC例 3.如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证:AD 等分∠BAE.解:延伸AE 至G 使AG =2AE,连BG,DG, 显然DG =AC,∠GDC=∠ACD 因为DC=AC,故∠ADC=∠DAC 在△ADB 与△ADG 中, BD =AC=DG,AD =AD,∠ADB=∠ADC+∠ACD=∠ADC+∠GDC =∠ADG故△ADB ≌△ADG,故有∠BAD=∠DAG,即AD 等分∠BAE 运用:1.(09崇文二模)以的双方AB.AC 为腰分离向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒衔接DE,M.N 分离是ABC ∆BC.DE的中点.探讨:AM与DE的地位关系及数目关系.∆为直角三角形时,AM与DE的地位关系是,(1)如图①当ABC线段AM与DE的数目关系是;(2)将图①中的等腰Rt ABD∆绕点A沿逆时针偏向扭转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否产生转变?并解释来由.C∴DE AM ⊥,DE AM 21=二.截长补短1.如图,ABC ∆中,AB=2AC,AD 等分BAC ∠,且AD=BD,求证:CD ⊥AC 解:(截长法)在AB 上取中点F,连FD△ADB 是等腰三角形,F 是底AB 中点,由三线合一知 DF ⊥AB,故∠AFD =90° △ADF ≌△ADC (SAS )∠ACD =∠AFD =90°即:CD ⊥AC2.如图,AD ∥BC,EA,EB 分离等分∠DAB,∠CBA,CD 过点E,求证;AB =AD+BC解:(截长法)在AB 上取点F,使AF =AD,△ADE ≌△AFE (SAS )∠ADE =∠AFE, ∠ADE+∠BCE =180° ∠AFE+∠BFE =180°CBA故∠ECB =∠EFB △FBE ≌△CBE (AAS ) 故有BF =BC 从而;AB =AD+BC3.如图,已知在△ABC 内,060BAC ∠=,040C ∠=,P,Q 分离在BC,CA 上,并且AP,BQ 分离是BAC ∠,ABC ∠的角等分线.BQ+AQ=AB+BP解:(补短法, 盘算数值法)延伸AB 至D,使BD BP,连DP在等腰△BPD 中,可得∠BDP =40° 从而∠BDP =40°=∠ACP △ADP ≌△ACP (ASA ) 故AD =AC又∠QBC =40°=∠QCB 故 BQ =QC BD =BP从而BQ+AQ=AB+BP4.如图,在四边形ABCD 中,BC >BA,AD =CD,BD 等分ABC ∠,求证: 0180=∠+∠C A解:(补短法)延伸BA 至F,使BF =BC,连△BDF ≌△BDC (SAS ) 故∠DFB =∠DCB ,FD =DC 又AD =CD故在等腰△BFD中∠DFB=∠DAF故有∠BAD+∠BCD=180°5.如图在△ABC中,AB>AC,∠1=∠2,P为AD上随意率性一点,求证;AB-AC>PB-PC解:(补短法)延伸AC至F,使AF=AB,连PD△ABP≌△AFP(SAS)故BP=PF由三角形性质知PB-PC=PF-PC < CF=AF-AC=AB-AC运用:剖析:此题衔接AC,把梯形的问题转化成等边三角形的问题,然后运用已知前提和等边三角形的性质经由过程证实三角形全等解决它们的问题.B∴FEC AED ∠=∠ 在ADE ∆与FCE ∆中CFE EAD ∠=∠,EF AE =,FEC AED ∠=∠∴FCE ADE ∆≅∆ ∴FC AD = ∴AE AD BC +=点评:此题的解法比较新鲜,把梯形的问题转化成等边三角形的问题,然后运用全等三角形的性质解决. 三.平移变换例1 AD 为△ABC 的角等分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P .解:(镜面反射法)延伸BA 至F,使AF =AC,连FEAD 为△ABC 的角等分线, MN ⊥AD 知∠FAE =∠CAE 故有△FAE ≌△CAE (SAS ) 故EF =CE在△BEF 中有: BE+EF>BF=BA+AF=BA+AC 从而P B =BE+CE+BC>BF+BC=BA+AC+BC=P A例 2 如图,在△ABC 的边上取两点 D.E,且BD=CE,求证:O ED CB AAB+AC>AD+AE.证实:取BC中点M,连AM并延伸至N,使MN=AM,连BN,DN.∵BD=CE,∴DM=EM,∴△DMN≌△EMA(SAS),∴DN=AE,同理BN=CA.延伸ND交AB于P,则BN+BP>PN,DP+PA>AD,相加得BN+BP+DP+PA>PN+AD,各减去DP,得BN+AB>DN+AD,∴AB+AC>AD+AE.四.借助角等分线造全等1.如图,已知在△ABC中,∠B=60°,△ABC的角等分线AD,CE 订交于点O,求证:OE=OD,DC+AE =AC证实(角等分线在三种添帮助线,盘算数值法)∠B=60度,则∠BAC+∠BCA=120度;AD,CE均为角等分线,则∠OAC+∠OCA=60度=∠AOE=∠COD;∠AOC=120度.在AC上截取线段AF=AE,衔接OF.又AO=AO;∠OAE=∠OAF.则⊿OAE≌ΔOAF(SAS),OE=OF;AE=AF;∠AOF=∠AOE=60度.则∠COF=∠AOC-∠AOF=60度=∠COD;又CO=CO;∠OCD=∠OCF.故⊿OCD≌ΔOCF(SAS),OD=OF;CD=CF.OE=ODDC+AE=CF+AF=AC.2.如图,△ABC中,AD等分∠BAC,DG⊥BC且等分BC,DE⊥AB于E,DF⊥AC于F.(1)解释BE=CF的来由;(2)假如AB=a,AC=b,求AE.BE的长.解:(垂直等分线联络线段两头)衔接BD,DCDG垂直等分BC,故BD=DC因为AD等分∠BAC, DE⊥AB于E,DF⊥ACEDGFC BA于F,故有 ED =DF故RT △DBE ≌RT △DFC (HL ) 故有BE =CF. AB+AC =2AE AE =(a+b )/2 BE=(a-b)/2 运用:1.如图①,OP 是∠MON 的等分线,请你运用该图形画一对以OP 地点直线为对称轴的全等三角形.请你参考这个作全等三角形的办法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD .CE 分离是∠BAC .∠BCA 的等分线,AD .CE 订交于点F .请你断定并写出FE 与FD 之间的数目关系;(2)如图③,在△ABC 中,假如∠ACB 不是直角,而(1)中的其它前提不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证实;若不成立,请解释来由. 解:(1)FE 与FD 之间的数目关系为FD FE = (2)答:(1)中的结论FD FE =仍然成立.证法一:如图1,在AC 上截取AE AG =,贯穿连接FG ∵21∠=∠,AF 为公共边, ∴AGF AEF ∆≅∆(第23题图) OP A MN E B C D F ACEFBD图①图②图③FED CBA∴AFG AFE ∠=∠,FG FE =∵︒=∠60B ,AD .CE 分离是BAC ∠.BCA ∠的等分线 ∴︒=∠+∠6032∴︒=∠=∠=∠60AFG CFD AFE ∴︒=∠60CFG∵43∠=∠及FC 为公共边 ∴CFD CFG ∆≅∆ ∴FD FG = ∴FD FE =证法二:如图2,过点F 分离作AB FG ⊥于点G ,BC FH ⊥于点H ∵︒=∠60B ,AD .CE 分离是BAC ∠.BCA ∠∴可得︒=∠+∠6032,F 是ABC ∆的心坎 ∴160∠+︒=∠GEF ,FG FH =又∵1∠+∠=∠B HDF ∴HDF GEF ∠=∠ ∴可证DHF EGF ∆≅∆ ∴FD FE = 五.扭转例 1 正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF,求∠EAF 的度数.证实:将三角形ADF 绕点A 顺时针扭转90度,至三角形ABG图 1图 2则GE=GB+BE=DF+BE=EF又AE=AE,AF=AG,所以三角形AEF全等于AEG所以∠EAF=∠GAE=∠BAE+∠GAB=∠BAE+∠DAF又∠EAF+∠BAE+∠DAF=90所以∠EAF=45度例 2 D为等腰Rt ABC∆斜边AB的中点,DM⊥DN,DM,DN分离交BC,CA于点E,F.(1)当MDN∠绕点D迁移转变时,求证DE=DF.(2)若AB=2,求四边形DECF的面积.解:(盘算数值法)(1)衔接DC,D为等腰Rt ABC∆斜边AB的中点,故有CD⊥AB,CD=DA CD等分∠BCA=90°,∠ECD=∠DCA=45°因为DM⊥DN,有∠EDN=90°因为 CD⊥AB,有∠CDA=90°从而∠CDE=∠FDA=故有△CDE≌△ADF(ASA)故有DE=DF(2)S△ABC=2, S四DECF= S△ACD=1例3 如图,ABC∆是等腰三角形,且∆是边长为3的等边三角形,BDC60角,使其双方分离交AB于点M,∠=,以D为极点做一个0BDC120交AC于点N,衔接MN,则AMN∆的周长为;解:(图形补全法, “截长法”或“补短法”, 盘算数值法) AC 的延伸线与BD的延伸线交于点F,在线段CF上取点E,使CE=BM∵△ABC为等边三角形,△BCD为等腰三角形,且∠BDC=120°,∴∠MBD=∠MBC+∠DBC=60°+30°=90°,∠DCE=180°-∠ACD=180°-∠ABD=90°,又∵BM=CE,BD=CD,∴△CDE≌△BDM,∴∠CDE=∠BDM,DE=DM,∠NDE=∠NDC+∠CDE=∠NDC+∠BDM=∠BDC-∠MDN=120°-60°=60°,∵在△DMN和△DEN中,DM=DE∠MDN=∠EDN=60°DN=DN∴△DMN≌△DEN,∴MN=NE∵在△DMA和△DEF中,DM=DE∠MDA=60°- ∠MDB=60°- ∠CDE=∠EDF (∠CDE=∠BDM)∠DAM=∠DFE=30° ∴△DMN ≌△DEN (AAS), ∴MA=FEAMN ∆的周长为AN+MN+AM=AN+NE+EF=AF=6运用: 1.已知四边形ABCD中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点扭转,它的双方分离交AD DC ,(或它们的延伸线)于E F ,.当MBN ∠绕B 点扭转到AE CF =时(如图1),易证AE CF EF +=.当MBN ∠绕B 点扭转到AE CF ≠时,在图2和图3这两种情形下,上述结论是否成立?若成立,请赐与证实;若不成立,线段AE CF ,,EF 又有如何的数目关系?请写出你的猜测,不需证实.解:(1)∵AD AB ⊥,CD BC ⊥,BC AB =,CF AE =∴CBF ABE ∆≅∆(SAS ); ∴CBF ABE ∠=∠,BF BE =∵︒=∠120ABC ,︒=∠60MBN∴︒=∠=∠30CBF ABE ,BEF ∆为等边三角形 ∴BF EF BE ==,BE AE CF 21==∴EF BE CF AE ==+(图1) A B C D EF MN (图2)AB C DE F MN(图3)ABC DE F MN(2)图2成立,图3不成立.证实图2,延伸DC 至点K ,使AE CK =,衔接BK 则BCK BAE ∆≅∆∴BK BE =,KBC ABE ∠=∠ ∵︒=∠60FBE ,︒=∠120ABC ∴︒=∠+∠60ABE FBC ∴︒=∠+∠60KBC FBC ∴︒=∠=∠60FBE KBF ∴EBF KBF ∆≅∆ ∴EF KF = ∴EF CF KC =+ 即EF CF AE =+图3不成立,AE .CF .EF 的关系是EF CF AE =- 2.(西城09年一模)已知以AB 为一边作正方形ABCD,使P.D 两点落在直线AB 的两侧.(1)如图,当∠APB=45°时,求AB 及PD 的长;(2)当∠APB 变更,且其它前提不变时,求PD 的最大值,及响应∠APB 的大小.剖析:(1)作帮助线,过点A 作PB AE ⊥于点E ,在PAE Rt ∆中,已知APE ∠,AP 的值,依据三角函数可将AE ,PE 的值求出,由PB 的值,可求BE 的值,在ABE Rt ∆中,依据勾股定理可将AB 的值求出;求PD 的值有两种解法,解法一:可将PAD ∆绕点A 顺时针扭转︒90得到K ABCDE FMN图 2AB P '∆,可得AB P PAD '∆≅∆,求PD 长即为求B P '的长,在P AP Rt '∆中,可将P P '的值求出,在B P P Rt '∆中,依据勾股定理可将B P '的值求出;解法二:过点P 作AB 的平行线,与DA 的延伸线交于F ,交PB 于G ,在AEG Rt ∆中,可求出AG ,EG 的长,进而可知PG 的值,在PFG Rt ∆中,可求出PF ,在PDF Rt ∆中,依据勾股定理可将PD 的值求出;(2)将PAD ∆绕点A 顺时针扭转︒90,得到AB P '∆,PD 的最大值即为B P '的最大值,故当P '.P .B 三点共线时,B P '取得最大值,依据PB P P B P +'='可求B P '的最大值,此时︒='∠-︒=∠135180P AP APB .解:(1)①如图,作PB AE ⊥于点E ∵PAE Rt ∆中,︒=∠45APB ,2=PA∴()1222===PE AE∵4=PB∴3=-=PE PB BE 在ABE Rt ∆中,︒=∠90AEB ∴1022=+=BE AE AB②解法一:如图,因为四边形ABCD 为正方形,可将将PAD ∆绕点A 顺时针扭转︒90得到AB P '∆,,可得AB P PAD '∆≅∆,B P PD '=,A P PA '=∴︒='∠90P PA ,︒='∠45P AP ,︒='∠90PB P ∴2='P P ,2=PA∴52422222=+=+'='=PB P P B P PD ;解法二:如图,过点P 作AB 的平行线,与DA 的延伸线交于F ,设DA 的延伸线交PB 于G .EPA DCBP ′PA CBDEP ′PACBDP ′PACBD在AEGRt ∆中,可得310cos cos =∠=∠=ABE AE EAG AE AG ,31=EG ,32=-=EG PE PG在PFG Rt ∆中,可得510cos cos =∠=∠=ABE PG FPG PG PF ,1510=FG 在PDF Rt ∆中,可得(2)如图所示,将PAD ∆绕点A 顺时针扭转︒90,得到AB P '∆,PD 的最大值,即为B P '的最大值∵B P P '∆中,PB P P B P +'' ,22=='PA P P ,4=PB 且P .D 两点落在直线AB 的两侧∴当P '.P .B 三点共线时,B P '取得最大值(如图)此时6=+'='PB P P B P ,即B P '的最大值为6此时︒='∠-︒=∠135180P AP APB3.在等边ABC ∆的双方AB.AC 地点直线上分离有两点M.N,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探讨:当M.N 分离在直线AB.AC 上移动时,BM.NC.MN 之间的数目关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图2图3(I )如图1,当点M.N 边AB.AC 上,且DM=DN 时,BM.NC.MN 之G FP A CBDE间的数目关系是; 此时=LQ; (II )如图2,点M.N 边AB.AC 上,且当DM ≠DN 时,猜测(I )问的两个结论还成立吗?写出你的猜测并加以证实;(III ) 如图3,当M.N 分离在边AB.CA 的延伸线上时, 若AN=x ,则Q=(用x .L 暗示).剖析:(1)假如DN DM =,DNM DMN ∠=∠,因为DC BD =,那么︒=∠=∠30DCB DBC ,也就有︒=︒+︒=∠=∠903060NCD MBD ,直角三角形MBD .NCD 中,因为DC BD =,DN DM =,依据HL 定理,两三角形全等.那么NC BM =,︒=∠=∠60DNC BMD ,三角形NCD 中,︒=∠30NDC ,NC DN 2=,在三角形DNM 中,DN DM =,︒=∠60MDN ,是以三角形DMN 是个等边三角形,是以BM NC NC DN MN +===2,三角形AMN 的周长=++=MN AN AM QABAC AB NC MB AN AM 2=+=+++,三角形ABC 的周长ABL 3=,是以3:2:=L Q .(2)假如DN DM ≠,我们可经由过程构建全等三角形来实现线段的转换.延伸AC 至E ,使BM CE =,衔接DE .(1)中我们已经得出,︒=∠=∠90NCD MBD ,那么三角形MBD 和ECD 中,有了一组直角,CEMB =,DCBD =,是以两三角形全等,那么DE DM =,CDE BDM ∠=∠,︒=∠-∠=∠60MDN BDC EDN .三角形MDN 和EDN中,有DE DM =,︒=∠=∠60MDN EDN ,有一条公共边,是以两三角形全等,NE MN =,至此我们把BM 转换成了CE ,把MN 转换成了NE ,因为CE CN NE +=,是以CN BM MN +=.Q与L 的关系的求法同(1),得出的成果是一样的.图 1N MAD CB (3)我们可经由过程构建全等三角形来实现线段的转换,思绪同(2)过D 作MDB CDH ∠=∠,三角形BDM 和CDH 中,由(1)中已经得出的︒=∠=∠90MB DCH ,我们做的角CDH BDM ∠=∠,CD BD =,是以两三角形全等(ASA ).那么CH BM =,DH DM =,三角形MDN 和NDH 中,已知的前提有DH MD =,一条公共边ND ,要想证得两三角形全等就须要知道HDN MDN ∠=∠,因为MDB CDH ∠=∠,是以︒=∠=∠120BDC MDH ,因为︒=∠60MDN ,那么︒-︒=∠60120NDH︒=60,是以NDH MDN ∠=∠,如许就组成了两三角形全等的前提.三角形MDN 和DNH 就全等了.那么BM AC AN NH NM -+==,三角形AMN 的周长+++=++=BM AB AN MN AM AN QAB AN BM AC AN 22+=-+.因为x AN =,L AB 31=,是以三角形AMN 的周长L x Q 322+=. 解:(1)如图1,BM .NC .MN 之间的数目关系:MN NC BM =+;此时32=LQ .(2)猜测:结论仍然成立.证实:如图2,延伸AC 至E ,使BM CE =,衔接DE ∵CD BD =,且︒=∠120BDC ∴︒=∠=∠30DCB DBC 又ABC ∆是等边三角形 ∴︒=∠=∠90NCD MBD 在MBD ∆与ECD ∆中 ∴ECD MBD ∆≅∆(SAS )E 图 2NMAD CB NA∴DE DM =,CDE BDM ∠=∠ ∴︒=∠-∠=∠60MDN BDC EDN 在MDN ∆与EDN ∆中 ∴EDN MDN ∆≅∆(SAS ) ∴BM NC NE MN +== 故AMN∆的周长=++=MN AN AM Q ()()AB AC AB NC AN BM AM 2=+=+++而等边ABC ∆的周长AB L 3= ∴3232==ABAB LQ(3)如图3,当M .N 分离在AB .CA 的延伸线上时,若x AN =,则L x Q 322+=(用x .L 暗示).点评:本题考核了三角形全等的剖断及性质;标题中线段的转换都是依据全等三角形来实现的,当题中没有显著的全等三角形时,我们要依据前提经由过程作帮助线来构建于已知和所求前提相干的全等三角形.。

初中几何辅助线大全-最全

初中几何辅助线大全-最全

三角形中作辅助线的常用方法举例一、延长已知边构造三角形:分析:欲证 AD =BC ,先证分别含有AD ,BC 的三角形全等,有几种方案:△ADC 与△BCD ,△AOD 与△BOC ,△ABD 与△BAC ,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。

证明:分别延长DA ,CB ,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD (已知) ∴∠CAE =∠DBE =90° (垂直的定义) 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE (AAS )∴ED =EC EB =EA (全等三角形对应边相等) ∴ED -EA =EC -EB 即:AD =BC 。

(当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。

)二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。

三、有和角平分线垂直的线段时,通常把这条线段延长。

分析:要证BD =2CE ,想到要构造线段2CE ,同时CEAE FABCDE17-图O与∠ABC 的平分线垂直,想到要将其延长。

证明:分别延长BA ,CE 交于点F 。

∵BE ⊥CF (已知)∴∠BEF =∠BEC =90° (垂直的定义)在△BEF 与△BEC 中,∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BEC (ASA )∴CE=FE=21CF (全等三角形对应边相等) ∵∠BAC=90° BE ⊥CF (已知)∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC在△ABD 与△ACF 中⎪⎩⎪⎨⎧∠=∠∠=∠)()()(已知=已证已证AC AB BFC BDA CAF BAC∴△ABD ≌△ACF (AAS )∴BD =CF (全等三角形对应边相等) ∴BD =2CE四、取线段中点构造全等三有形。

常见辅助线作法

常见辅助线作法

常见辅助线作法第一篇:常见辅助线作法初中几何常见辅助线作法(整理教师:燕东腾)人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

【两线两腰】角平分线加垂线,三线合一试试看。

【三线合一】线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

【长截短补】三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

【中心对称】四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

【双垂直组合】圆半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

第二篇:初中几何常见辅助线作法口诀初中几何常见辅助线作法口诀三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

全等三角形经典辅助线做法汇总(供参考)

全等三角形经典辅助线做法汇总(供参考)

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最要紧的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一碰运气。

线段垂直平分线,常向两头把线连。

要证线段倍与半,延长缩短可实验。

三角形中两中点,连接那么成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:碰到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两头5.用“截长法”或“补短法”:碰到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后组成等边三角形7.角度数为30、60度的作垂线法:碰到三角形中的一个角为30度或60度,能够从角一边上一点向角的另一边作垂线,目的是组成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,如此能够取得在数值上相等的二条边或二个角。

从而为证明全等三角形制造边、角之间的相等条件。

8.计算数值法:碰到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,如此能够取得在数值上相等的二条边或二个角,从而为证明全等三角形制造边、角之间的相等条件。

常见辅助线的作法有以下几种:最要紧的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)碰到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)碰到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)碰到角平分线在三种添辅助线的方式4)(1)能够自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”DCB AEDFCBA,所考知识点常常是角平分线的性质定理或逆定理.(2)能够在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

(完整版)全等三角形常用辅助线做法

(完整版)全等三角形常用辅助线做法

五种辅助线助你证全等姚全刚在证明三角形全等时有时需增加辅助线,对学习几何证明不久的学生而言常常是难点.下面介绍证明全等常常有的五种辅助线,供同学们学习时参照.一、截长补短一般地,当所证结论为线段的和、差关系,且这两条线段不在同素来线上时,平时能够考虑用截长补短的方法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.例 1.如图 1,在△ ABC 中,∠ ABC=60 °, AD 、CE 分别均分∠ BAC 、∠ ACB .求证:AC=AE+CD .解析:要证AC=AE+CD ,AE 、CD 不在同素来线上.故在AC 上截取 AF=AE ,则只要证明 CF=CD .证明:在 AC 上截取 AF=AE ,连接 OF.∵ AD 、 CE 分别均分∠ BAC 、∠ ACB ,∠ ABC=60 °∴∠ 1+∠ 2=60 °,∴∠ 4=∠ 6=∠ 1+∠ 2=60 °.显然,△ AEO ≌△ AFO ,∴∠ 5=∠4=60°,∴∠ 7=180°-(∠ 4+ ∠ 5) =60 °在△ DOC 与△ FOC 中,∠ 6=∠ 7=60°,∠ 2=∠ 3, OC=OC∴△ DOC ≌△ FOC, CF=CD∴ AC=AF+CF=AE+CD.截长法与补短法,详尽作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲, AD∥BC,点 E 在线段 AB上,∠ ADE=∠CDE,∠ DCE=∠ECB。

求证: CD=AD+BC。

思路解析:1)题意解析:此题观察全等三角形常有辅助线的知识:截长法或补短法。

2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在 CD上截取 CF=CB,只要再证 DF=DA即可,这就转变成证明两线段相等的问题,进而达到简化问题的目的。

常见辅助线作法

常见辅助线作法

辅助线的作法正确熟练地掌握辅助线的作法和规律,也是迅速解题的关键,如何准确地作出需要的辅助线,简单介绍几种方法: 方法一:从已知出发作出辅助线:例1.已知:在△ABC 中,AD 是BC 边的中线,E 是AD 的中点,F 是BE 延长线与AC 的交点,求证:AF=FC 21分析:题设中含有D 是BC 中点,E 是AD 中点,由此可以联想到三角形中与边中点有密 切联系的中位线,所以,可有如下2种辅助线作法:(1)过D 点作DN ∥CA ,交BF 于N ,可得N 为BF 中点,由中位线定理得DN=FC 21,再证△AEF ≌△DEN ,则有AF=DN ,进而有AF=FC 21(2)过D 点作DM ∥BF ,交AC 于M ,可得FM=CM ,FM=AF ,则有AF=FC 21方法二:分析结论,作出辅助线例2:如图,AD 是△ABC 的高,AE 是△ABC 的外接圆直径, 求证:AB ·AC=AE ·AD分析:要证AB ·AC=AE ·AD ,需证ACAEAD AB =(或AC AD AE AB =),需证△ABE ∽△ADC (或△ABD ∽△AEC ), 这就需要连结BE (或CE ),形成所需要的三角形,同时得∠ABE=∠ADC=900(或∠ADB=∠ACE=900)又∠E=∠C (或∠B=∠E ) 因而得证。

方法三:“两头凑”(即同时分析已知和结论)作出辅助线例3:过△ABC 的顶点C 任作一直线,与边AB 及中线AD 分别交于点F 和E ; 求证:AE ∶ED=2AF ∶FB分析:已知D 是BC 中点,那么在 三角形中可过中点作平行线得中位线;若要出现结论中的AE ∶ED ,则应有一条与EF 平行的直线。

所以,过D 点作DM ∥EF 交AB 于M ,可得FMAFFM AF ED AE 22==,再证BF=2FM 即可。

方法四:找出辅助线的一般规律,将对证题时能准确地作出所需辅助线有很大帮助。

初中数学:19种有关三角形的辅助线方法归纳,结合例题实战演练

初中数学:19种有关三角形的辅助线方法归纳,结合例题实战演练

初中数学:19种有关三角形的辅助线方法归纳,结合例题实战演练初中数学:有关三角形的辅助线方法归纳,共是19种类型,结合例题实战演练,适合想要提升自己解题能力的同学。

辅助线的使用对大部分初中同学来说是难以逾越的一条鸿沟,难度大,无从下手已经成为常态,今天唐老师带大家一起搞定三角形有关的辅助线使用方法。

第一类型:在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可以连接两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证明。

第二类型:在利用三角形的外角大于任何不相邻的内角证明角的不等关系时,如果证不出来,就连接两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处于内角的位置上,再利用外角定理证明。

第三类型:有角平分线时常在角两边截取相等的线段,构造全等三角形。

第四种类型:有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形。

第五类型:在三角形中有中线时,常加倍延长中线构造全等三角形。

第六种类型:截长补短作辅助线的方法。

其实这个很好理解的,截长表示在较长的线段上截取与较短线段相等长度的线段,反之补短则是通过延长较短线段与已知较长线段相等的方法。

总之截长补短的方法的使用还是要看具体的情况而定,唐老师在这只是给大家提出解决问题的具体方法,大家可以顺着这个思路看看下面的例题,然后找相同类型的题进行练习。

只有熟练运用这个方法,才能在考试的做题中自由发挥。

反之,没有深刻的理解和熟练的运用,遇到题目时,总感觉自己很乏力,没有做题的思路,甚至都找不到突破口。

对于大部分的同学来说,解难题已经很困难了,要是遇到需要做辅助线才能完成的题目,那将更是雪上加霜了。

第七类型:条件不足时,延长已知边构造三角形。

第八类型:连接四边形的对角线,把四边形问题转化为三角形问题来解决。

解题的方法并不是唯一的,但适时地打开思维,找到解题的突破口那将是变化多端。

第九类型:有和角平分线垂直的线段时,通常把这条线段延长。

全等三角形问题中常见的8种辅助线的作法(有答案) (1)

全等三角形问题中常见的8种辅助线的作法(有答案) (1)

全等三角形问题中常见的辅助线的作法(有答案)之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,能够从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样能够得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样能够得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.D C BAED F CB A2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)能够自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)能够在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

(完整版)全等三角形经典题型——辅助线问题

(完整版)全等三角形经典题型——辅助线问题

全等三角形问题中常见的辅助线的作法(含答案) 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,D C BAED F CB A利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

完整版)全等三角形常用辅助线做法

完整版)全等三角形常用辅助线做法

完整版)全等三角形常用辅助线做法证明三角形全等时,有时需要添加辅助线,对于初学几何证明的学生来说,这往往是一个难点。

下面介绍证明全等时常见的五种辅助线,供同学们研究时参考。

一、截长补短当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法。

具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法适用于证明线段的和、差、倍、分等类的题目。

例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB。

要证明AC=AE+CD,因为AE、CD不在同一直线上,所以在AC上截取AF=AE,只要证明CF=CD即可。

具体证明过程为:在AC上截取AF=AE,连接OF。

由于AD、CE分别平分∠BAC、∠ACB,∠ABC=60°,因此∠1+∠2=60°,∠4=∠6=∠1+∠2=60°。

显然,△AEO≌△AFO,因此∠5=∠4=60°,∠7=180°-(∠4+∠5)=60°。

在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC,因此△DOC≌△FOC,CF=CD,所以XXX。

另一个例子是在图甲中,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。

要证明CD=AD+BC。

因为结论是CD=AD+BC,可以考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证明DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。

具体证明过程为:在CD上截取CF=BC,如图乙,因此△XXX≌△BCE(SAS),∴∠2=∠1.又因为AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠XXX°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,∴△XXX≌△ADE(ASA),∴DF=DA,因此CD=DF+CF,∴XXX。

(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)

(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

初中几何辅助线大全

初中几何辅助线大全

三角形中作辅助线的常用方法举例一、延长已知边构造三角形:分析:欲证 AD =BC,先证分别含有AD,BC 的三角形全等,有几种方案:△ADC 与△BCD,△AOD 与△BOC,△ABD 与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角;证明:分别延长DA,CB,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD 已知∴∠CAE =∠DBE =90° 垂直的定义 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE AAS∴ED =EC EB =EA 全等三角形对应边相等 ∴ED -EA =EC -EB 即:AD =BC;当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件;二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决; 三、有和角平分线垂直的线段时,通常把这条线段延长;ABCDE17-图O分析:要证BD =2CE,想到要构造线段2CE,同时CE 与∠ABC 的平分线垂直,想到要将其延长; 证明:分别延长BA,CE 交于点F; ∵BE ⊥CF 已知∴∠BEF =∠BEC =90° 垂直的定义在△BEF 与△BEC 中,∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BECASA ∴CE=FE=21CF 全等三角形对应边相等 ∵∠BAC=90° BE ⊥CF 已知∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC在△ABD 与△ACF 中∴△ABD ≌△ACF AAS ∴BD =CF 全等三角形对应边相等 ∴BD =2CE四、取线段中点构造全等三有形;分析:由AB =DC,∠A =∠D,想到如取AD 的中点N,连接NB,NC,再由SAS 公理有19-图DCBA E F12△ABN ≌△DCN,故BN =CN,∠ABN =∠DCN;下面只需证∠NBC =∠NCB,再取BC 的中点M,连接MN,则由SSS 公理有△NBM ≌△NCM,所以∠NBC =∠NCB;问题得证;证明:取AD,BC 的中点N 、M,连接NB,NM,NC;则AN=DN,BM=CM,在△ABN 和△DCN 中 ∵⎪⎩⎪⎨⎧=∠=∠=)()()(已知已知辅助线的作法DC AB D A DN AN ∴△ABN ≌△DCN SAS∴∠ABN =∠DCN NB =NC 全等三角形对应边、角相等在△NBM 与△NCM 中∵⎪⎩⎪⎨⎧)()()(公共边=辅助线的作法=已证=NM NM CM BM NC NB∴△NMB ≌△NCM,SSS ∴∠NBC =∠NCB 全等三角形对应角相等∴∠NBC +∠ABN =∠NCB +∠DCN 即∠ABC =∠DCB;巧求三角形中线段的比值例1. 如图1,在△ABC 中,BD :DC =1:3,AE :ED =2:3,求AF :FC;解:过点D 作DG 如图2,BC =CD,AF =FC,求EF :FD解:过点C 作CG如图3,BD :DC =1:3,AE :EB =2:3,求AF :FD;111-图DCBAM N解:过点B 作BG如图4,BD :DC =1:3,AF =FD,求EF :FC;解:过点D 作DG如图5,BD =DC,AE :ED =1:5,求AF :FB;2. 如图6,AD :DB =1:3,AE :EC =3:1,求BF :FC;答案:1、1:10; 2. 9:1二 由角平分线想到的辅助线图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等;对于有角平分线的辅助线的作法,一般有两种;①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形如作法是在一侧的长边上截取短边;通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形;至于选取哪种方法,要结合题目图形和已知条件;与角有关的辅助线一、截取构全等例1. 如图1-2,AB 21证:BD=2CE;分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形;图1-3ABCDE 图1-4A BC DE图2-1ABCD E F图2-2ABCDE 图2-3P AB CM ND F 图示3-1AB CDH E例3.已知:如图3-3在△ABC 中,AD 、AE 分别∠BAC 的内、外角平分线,过顶点B 作BFAD,交AD 的延长线于F,连结FC 并延长交AE 于M;求证:AM=ME;分析:由AD 、AE 是∠BAC 内外角平分线,可得EA ⊥AF,从而有BF 212121∠∠21图,△ABC 中,∠BAC=90°,AB=AC,AE 是过A 的一条直线,且B,C 在AE 的异侧, BD ⊥AE 于D,CE ⊥AE 于E;求证:BD=DE+CE四 由中点想到的辅助线三角形中两中点,连接则成中位线;三角形中有中线,延长中线等中线;一、由中点应想到利用三角形的中位线例2.如图3,在四边形ABCD 中,AB=CD,E 、F 分别是BC 、AD 的中点,BA 、CD 的延长线分别交EF 的延长线G 、H;求证:∠BGE=∠CHE;证明:连结BD,并取BD 的中点为M,连结ME 、MF, ∵ME 是ΔBCD 的中位线, ∴MECD,∴∠MEF=∠CHE,∵MF 是ΔABD 的中位线, ∴MFAB,∴∠MFE=∠BGE,∵AB=CD,∴ME=MF,∴∠MEF=∠MFE, 从而∠BGE=∠CHE;二、由中线应想到延长中线例3.图4,已知ΔABC 中,AB=5,AC=3,连BC 上的中线AD=2,求BC 的长; 解:延长AD 到E,使DE=AD,则AE=2AD=2×2=4; 在ΔACD 和ΔEBD 中,D AE C BD C BAMBD C AE D CB A图3-3DBEF N ACM图3-4nEBADCM FDCB AE D FCB A ∵AD=ED,∠ADC=∠EDB,CD=BD, ∴ΔACD≌ΔEBD ,∴AC=BE, 从而BE=AC=3;在ΔABE 中,因AE 2+BE 2=42+32=25=AB 2,故∠E=90°, ∴BD===,故BC=2BD=2;例4.如图5,已知ΔABC 中,AD 是∠BAC 的平分线,AD 又是BC 边上的中线;求证:ΔABC 是等腰三角形;证明:延长AD 到E,使DE=AD; 仿例3可证: ΔBED≌ΔCAD , 故EB=AC,∠E=∠2, 又∠1=∠2, ∴∠1=∠E,∴AB=EB,从而AB=AC,即ΔABC 是等腰三角形;三、直角三角形斜边中线的性质例5.如图6,已知梯形ABCD 中,AB 2:如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF,D 是中点,试比较BE+CF 与EF 的大小.3:如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证:AD 平分∠BAE.中考应用例题:以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.1如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ;DMCEA BB ECD AA BDC E FAD CBA2将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ0<θ<90后,如图②所示,1问中得到的两个结论是否发生改变并说明理由.二、截长补短1.如图,ABC ∆中,AB=2AC,AD 平分BAC ∠,且AD=BD,求证:CD ⊥AC 2:如图,AC ∥BD,EA,EB 分别平分∠CAB,∠DBA,CD 过点E,求证;AB =AC+BD 3:如图,已知在ABC 内,60BAC ∠=分别在BC,CA 上,并且AP,BQ 分别是BAC ∠,ABC ∠线;求证:BQ+AQ=AB+BP4:如图,在四边形ABCD 中,BC >BA,AD 平分ABC ∠,求证:0180=∠+∠C A5三、借助角平分线造全等1:如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O,求证:OE=OD2:06郑州市中考题如图,△ABC 中,AD 平分∠且平分BC,DE ⊥AB 于E,DF ⊥AC 于F. 1说明BE=CF AB=a ,AC=b ,求AE 、BE 的长.3.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形;请你参考这个作全等三角形的方法,解答下列问题:1如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F ;请你判断并写出FE 与FD 之间的数量关系;E DGFCBAAFEDCBA2如图③,在△ABC 中,如果∠ACB 不是直角,而1中的其它条件不变,请问,你在1中所得结论是否仍然成立若成立,请证明;若不成立,请说明理由;四、旋转1:正方形ABCD 中,E 为BC 上的一点,F 为C D 上的一点,BE+DF=EF,求∠EAF 的度数.2:D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F;(1) 当MDN ∠绕点D 转动时,求证(2)若AB=2,求四边形DECF 的面积;3.如图,ABC ∆是边长为3的等边三角形,BDC∆是等腰三角形,且0120BDC ∠=,以D 为顶点做一个060使其两边分别交AB 于点M,交AC 于点N,连接MN,则AMN ∆4.已知四边形ABCD 中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,或它们的延长线于E F ,.当MBN ∠绕B 点旋转到AE CF =时如图1,易证AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系请写出你的猜想,不需证明.5.以AB 为一边作正方形ABCD,使P 、D 两点落在直线AB 的两侧.1,求AB 及PD 的长;2且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.第23题图OP AMN EB C D F ACEF BD图① 图② 图③图1 图2 图36.在等边ABC ∆的两边AB 、AC 所在直线上分别有两点M 、N,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图2 图3I 如图1,当点M 、N 边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; 此时=LQ; II 如图2,点M 、N 边AB 、AC 上,且当DM ≠DN 时,猜想I 问的两个结论还成立吗写出你的猜想并加以证明;III 如图3,当M 、N 分别在边AB 、CA 的延长线上时, 若AN=x ,则Q= 用x 、L 表示.梯形中的辅助线1、平移一腰:例1. 如图所示,在直角梯形ABCD 中,∠A =90°,AB ∥DC,AD =15,AB =16,BC =17. 求CD 的长.解:过点D 作DE ∥BC 交AB 于点E. 又AB ∥CD,所以四边形BCDE 是平行四边形. 所以DE =BC =17,CD =BE. 在R t △DAE 中,由勾股定理,得 AE 2=DE 2-AD 2,即AE 2=172-152=64. 所以AE =8.所以BE =AB -AE =16-8=8. 即CD =8.例2如图,梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围; 解:过点B作B M)(2121CH BG BC GH EF --==512=⨯=BE ED BD DH ABDCEH A BCDABCDE6251252DH BC)(AD ABCD =⨯=⨯+=∴梯形S 25252522222100)25()25(AE CE AC ==+=+DCEACD ABD S S S ∆∆∆==DBEABCDS S ∆=梯形2222DH AC DH DE EH -=-=9121522=-=1612202222=-=-=DH BD BH )(15012)169(21212cm DH BE S DBE =⨯+⨯=⋅=∆如图所示,四边形ABCD 中,AD 不平行于BC,AC =BD,AD =BC. 判断四边形ABCD 的形状,并证明你的结论.解:四边形ABCD 是等腰梯形.证明:延长AD 、BC 相交于点E,如图所示. ∵AC =BD,AD =BC,AB =BA, ∴△DAB ≌△CBA. ∴∠DAB =∠CBA.∴EA =EB.又AD =BC,∴DE =CE,∠EDC =∠ECD.而∠E +∠EAB +∠EBA =∠E +∠EDC +∠ECD =180°, ∴∠EDC =∠EAB,∴DC ∥AB. 又AD 不平行于BC,∴四边形ABCD 是等腰梯形.三、作对角线即通过作对角线,使梯形转化为三角形; 例9如图6,在直角梯形ABCD中,ADcmBE AE 33==2342)(cmAE BC AD S ABCD=⨯+=梯形21AD OE 21=)(21AD BC EF -=A BCD ABCDEABCDE FBG EF 21=AD BC CG BC BG -=-=)(21AD BC -=如图所示,已知等腰梯形ABCD 中,AD ∥BC,∠B =60°,AD =2,BC =8,则此等腰梯形的周长为A. 19B. 20C. 21D. 228. 如图所示,梯形ABCD 中,AD ∥BC,1若E 是AB 的中点,且AD +BC =CD,则DE 与CE 有何位置关系2E 是∠ADC 与∠BCD 的角平分线的交点,则DE 与CE 有何位置关系 A B DC E FAB CD EF MN.圆中作辅助线的常用方法:例题1:如图2,在圆O 中,B 为的中点,BD 为AB 的延长线,∠OAB=500,求∠CBD 的度数; 解:如图,连结OB 、OC 的圆O 的半径,已知∠OAB=500∵B 是弧AC 的中点∴弧AB=弧BC∴AB==BC又∵OA=OB=OC∴△AOB ≌△BOC 图2∴∠OBC=∠ABO=500∵∠ABO+∠OBC+∠CBD=1800∴∠CBD=1800 - 500- 500∴∠CBD=800答:∠CBD 的度数是800.例题2:如图3,在圆O 中,弦AB 、CD 相交于点P,求证:∠APD的度数=21弧AD+弧BC 的度数; 证明:连接AC,则∠DPA=∠C+∠A∴∠C 的度数=21弧AD 的度数 ∠A 的度数=21弧BC 的度数 ∴∠APD=21弧AD+弧BC 的度数; 图3 一、造直角三角形法1.构成Rt △,常连接半径例1. 过⊙O 内一点M ,最长弦AB = 26cm,最短弦CD = 10cm ,求AM 长;2.遇有直径,常作直径上的圆周角例2. AB 是⊙O 的直径,AC 切⊙O 于A,CB 交⊙O 于D,过D 作⊙O 的切线,交AC 于E.求证:CE = AE;3.遇有切线,常作过切点的半径例3 .割线AB 交⊙O 于C 、D,且AC=BD,AE 切⊙O 于E,BF 切⊙O 于F.求证:∠OAE = ∠OBF;4.遇有公切线,常构造Rt △斜边长为圆心距,一直角边为两半径的差,另一直角边为公切线长例4 .小 ⊙O 1与大⊙O 2外切于点A,外公切线BC 、DE 分别和⊙O 1、⊙O 2切于点B 、C和D 、E,并相交于P,∠P = 60°;求证:⊙O 1与⊙O 2的半径之比为1:3;5.正多边形相关计算常构造Rt △例5.⊙O 的半径为6,求其内接正方形ABCD 与内接正六边形AEFCGH 的公共部分的面积.二、欲用垂径定理常作弦的垂线段例6. AB 是⊙O 的直径,CD 是弦,AE ⊥CD 于E,BF ⊥CD 于F.1求证:EC = DF; 2若AE = 2,CD=BF=6,求⊙O 的面积;三、转换割线与弦相交的角,常构成圆的内接四边形例7. AB 是⊙O 直径,弦CD ⊥AB,M 是AC 上一点,AM 延长线交DC 延长线于F. 求证: ∠F = ∠ACM;四、切线的综合运用 1.已知过圆上的点,常_________________例8.如图, 已知:⊙O 1与⊙O 2外切于P,AC 是过P 点的割线交⊙O 1于A,交⊙O 2于C,过点O 1的直线AB ⊥BC 于B.求证: BC 与⊙O 2相切. 六、开放性题目 例17.已知:如图,以ABC △的边AB 为直径的O 交边AC 于点D ,且过点D 的切线DE 平分边BC .1BC 与O 是否相切请说明理由;2当ABC △满足什么条件时,以点O ,B,E ,D 明理由.第23题。

初中三角形四边形常见辅助线做法

初中三角形四边形常见辅助线做法
(1)考虑三线合一 (2)旋转一定的度数,构造全都三角形,等腰一般旋转顶 角的度数,等边旋转60 °
►三角形中常见辅助线的添加 3. 与等腰等边三角形相关的
(1)考虑三线合一
►三角形中常见辅助线的添加 3. 与等腰等边三角形相关的
(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 °
3. 和菱形有关的辅助线的作法
(1)作菱形的高 (2)连结菱形的对角线
►四边形中常见辅助线的添加 3. 和菱形有关的辅助线的作法
(1)作菱形的高
►四边形中常见辅助线的添加 3. 和菱形有关的辅助线的作法
(2)连结菱形的对角线
►四边形中常见辅助线的添加
4. 与正方形有关辅助线的作法
正方形是一种完美的几何图形,它既是轴对称图形,又 是中心对称图形,有关正方形的试题较多.解决正 方形的问 题有时需要作辅助线,作正方形对角线是解决正方形问题的 常用辅助线
►三角形中常见辅助线的添加 2. 与线段长度相关的
(1) 截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一 段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可
►三角形中常见辅助线的添加
2. 与线段长度相关的
(2) 补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长 一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段 等于那一条长线段即可
初中 三角形四边形 辅助线典型用法
►三角形中常见辅助线的添加
1. 与角平分线有关的
(1)向两边作垂线 (2)作平行线,构造等腰三角形 (3)在角的两边截取相等的线段,构造全等三角形
►三角形中常见辅助线的添加

三角形和四边形中常见地辅助线地作法和类型(绝对经典)

三角形和四边形中常见地辅助线地作法和类型(绝对经典)

DCB AEDFCBA三角形和四边形中常见的辅助线的作法和类型(绝对经典)一、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________.例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.E D CBA二、截长补短1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥ACCAEDCBADAPQCBA2、如图,AD ∥BC,EB,EA 分别平分∠CBA,∠DAB ,CD 过点E ,求证;AB =AD+BC注意:三角形中位线与梯形中位线3、如图,已知在ABC V 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。

求证:BQ+AQ=AB+BP4、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠, 求证: 0180=∠+∠C AP21DCBA5、如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PC三、平移变换例1 AD 为△ABC 的角平分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P .例2 如图,在△ABC 的边上取两点D 、E ,且BD=CE ,求证:AB+AC>AD+AE.OEDCBAED CBA四、借助角平分线造全等1、如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD2、如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F. (1)说明BE=CF 的理由;(2)如果AB=a ,AC=b ,求AE 、BE 的长.EDGFCBAN M E FAC B A FE DC B A五、旋转例1 正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF ,求∠EAF 的度数.例2 D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
C
B A
E
D
F
C
B
A
三角形和四边形中常见的辅助线的作法和类型(绝对
经典)
一、倍长中线(线段)造全等
例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________.
例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.
例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.
E D C
B
A
二、截长补短
1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC
C
D
B
A
C
C
B
A
2、如图,AD ∥BC,EB,EA 分别平分∠CBA,∠DAB ,CD 过点E ,求证;AB =AD+BC
注意:三角形中位线与梯形中位线
3、如图,已知在ABC V 内,0
60BAC ∠=,0
40C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,
BQ 分别是BAC ∠,ABC ∠的角平分线。

求证:BQ+AQ=AB+BP
4、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠, 求证: 0
180=∠+∠C A
P
21
C
B
A
5、如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PC
三、平移变换
例1 AD 为△ABC 的角平分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P .
例2 如图,在△ABC 的边上取两点D 、E ,且BD=CE ,求证:AB+AC>AD+AE.
C
B
A
E
D C
B
A
四、借助角平分线造全等
1、如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD
2、如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F. (1)说明BE=CF 的理由;(2)如果AB=a ,AC=b ,求AE 、BE 的长.
E
D
G
F
C
B
A
A F E D C
B A 五、旋转
例1 正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF ,求∠EAF 的度数.
例2 D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F 。

(1) 当MDN ∠绕点D 转动时,求证DE=DF 。

(2) 若AB=2,求四边形DECF 的面积。

例3 如图,ABC ∆是边长为3的等边三角形,BDC ∆是等腰三角形,且0
120BDC ∠=,以D 为顶点做一个0
60角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则AMN ∆的周长为 ;
B C
六、利用对称性
例题:如图,点A是∠MON内的一点,试分别在边OM、ON上确定点B、点C,使△ABC 的周长最小.要求画出草图并写出作图的主要步骤.
解:
七、利用三角形三边关系
例1:已知如图1-1:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE. 证明:(法一)将DE 两边延长分别交AB 、AC 于M 、N , 在△AMN 中,AM +AN > MD +DE +NE;(1) 在△BDM 中,MB +MD >BD ; (2) 在△CEN 中,CN +NE >CE ; (3) 由(1)+(2)+(3)得:
AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE ∴AB +AC >BD +DE +EC
(法二:)如图1-2, 延长BD 交 AC 于F ,延长CE 交BF 于G ,
在△ABF 和△GFC 和△GDE 中有:
AB +AF > BD +DG +GF (三角形两边之和大于第三边)(1)
A B C D E N
M 1
1-图A B C D E F G
21-图
GF +FC >GE +CE (同上)………………………………(2) DG +GE >DE (同上)……………………………………(3) 由(1)+(2)+(3)得:
AB +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE
∴AB +AC >BD +DE +EC 。

八、利用三角形内外角关系
例题:如图2-1:已知D 为△ABC 内的任一点,求证:∠BDC >∠BAC 。

九、四边形转化为三角形
例题:如图8-1:AB ∥CD ,AD ∥BC 求证:AB=CD 。

十、利用面积法
例1:已知△ABC 中,AB=AC ,D 为边BC 上任一点,过点D 作DE 垂直于AB ,交AB 于点E,过点D 作DF 垂直于AC ,交AC 于点F,过点B 作G 垂直于AC ,交AC 于点G.求证:DE+DF=BG
A B C D E F G 12-图A B C
D 1
8-图123
4
例2、已知△ABC为等边三角形,变成为6,D为边BC上任一点,过点D作DE垂直于AB,交AB于点E,过点D作DF垂直于AC,交AC于点F,求DE+DF的值。

例3、已知四边形ABCD为正方形,边长为6,以点B为圆心,以BC长为半径画弧,交BD 于点E,连接EC,在EC上任找点F,过点F分别作FG、FH垂直于BD、BC,分别交BD于G,交BC于G。

求FG+FH的值
十一、求最小值
例题1、(将军饮马问题)、已知点A、B在直线L的同侧,在直线L上找点C,使AC+BC取得最小值
例题2、(三点共线)、已知△ABC 为等边三角形,边长为a,点A 、B 分别在y 轴正半轴上、x 轴正半轴上,点C 在第一象限内,在AB 上找点D,使OD+CD 取得最小值。

例题3、如图,在锐角ABC △
中,45AB BAC =∠=°,
BAC ∠的平分线交BC 于点D M N ,、分别是AD 和AB 上的动点,则BM MN +的最小值是___________ .
例4、如图,等边△ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是AB 边上一点,若AE=2,求EM+BM 的最小值.
A B
C
D
N M (第16题图)。

相关文档
最新文档