初中几何图形的定义、性质、判定精编版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形
定义
1 有两条边相等的三角形是等腰三角形,相等的两个边称为这个三角形的腰
性质
2 等腰三角形的两个底角相等(简称“等边对等角”)
3 等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简称“三线合一”)
4 等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴
判定
5 如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)
等边三角形
定义
1 三边都相等的三角形是等边三角形。

性质
2 等边三角形是特殊的等腰三角形,具有等腰三角形的一切性质
3 等边三角形的每个内角都等于60º
4 等边三角形是锐角三角形
5 等边三角形是轴对称图形,它有3条对称轴
判定
6 有一个角是60º的等腰三角形是等边三角形
7 有两个角是60º的三角形是等边三角形
直角三角形
定义
1 有一个角为90°的三角形,叫做直角三角形(Rt三角形)。

性质
2 在直角三角形中,两个锐角互余。

3 直角三角形斜边上的中线等于斜边的一半
4 直角三角形两直角边的平方和等于斜边的平方。

(勾股定理)
5 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
6 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

判定
7 斜边和一条直角边对应相等的两个直角三角形全等(简写为“HL”)
平行四边形
定义
1 在同一平面内,两组对边分别平行的四边形叫做平行四边形
性质
2 平行四边形是中心对称图形,对角线的交点是它的对称中心
3 平行四边形的对边相等、对角相等、对角线互相平分
判定
4 一组对边平行且相等的四边形是平行四边形
5 两条对角线互相平分的四边形是平行四边形
6 两组对边分别相等的四边形是平行四边形
7 两组对角分别相等的四边形是平行四边形
8 一组对边平行,一组对角相等的四边形是平行四边形
矩形
定义
1 有一个角是直角的平行四边形叫做矩形,通常叫长方形
性质
2 矩形是特殊的平行四边形,它具有平行四边形的一切性质
3 矩形既是抽对称图形也是中心对称图形,对称中心是对角线中点
4 矩形的对角线相等,四个角都是直角
判定
5 对角线相等的平行四边形是矩形
6 有一个角是直角的平行四边形是矩形
7 有3个角是直角的四边形是矩形
菱形
定义
1 一组邻边相等的平行四边形叫做菱形
性质
2 菱形是特殊的平行四边形,它具有平行四边形的一切性质
3 菱形既是抽对称图形也是中心对称图形,对称中心是对角线中点
4 菱形的四条边相等
5 菱形的对角线互相垂直并且每一条对角线平分一组对角
6 S菱形=½×对角线的积
判定
7 四边都相等的四边形是菱形
8 对角线互相垂直的平行四边形是菱形
9 有一组邻边相等的平行四边形是菱形
10 有一条对角线平分一组对角的平行四边形是菱形
正方形
定义
1 有一组邻边相等并且有一个角是直角的平行四边形是正方形
性质
2 正方形具有矩形和菱形的性质
3 正方形既是抽对称图形也是中心对称图形,对称轴有4条,对称中心是对角线中点
判定
4 有一组邻边相等的矩形是正方形
5 有一个角是直角的菱形是正方形
梯形
1 一组对边平行而另一组对边不平行的四边形是梯形
2 梯形的中位线平行于两底,并且等于两底和得一半
3 S梯形=(上底+下底)×高÷2=½(a+b)h=中位线×高
等腰梯形
定义
1 两腰相等的梯形是等腰梯形
性质
2 等腰梯形是轴对称图形
3 两条对角线相等
4 等腰梯形的同一底上的两角相等
判定
5 同一底上的两个角相等的梯形是等腰梯形
直角梯形
1 有一个角是直角的梯形叫做直角梯形
三角形全等
1 有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。

2 有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。

3 有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)
4 三组对应边分别相等的两个三角形全等(简称SSS或“边边边”)
5 直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
三角形相似
1 如果两个三角形的两个角对应相等,那么这两个三角形相似
2 对应角相等,对应边成比例的两个三角形叫做相似三角形
3 如果两个三角形的两条边对应成比例,且夹角相等,那么这两个三角形相似
4 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
5 如果两个三角形的三组对应边的比相等,那么这两个三角形相似
顺次连接
1 顺次连接任意四边形四边中点所得四边形是平行四边形
2 顺次连接矩形四边中点所得四边形是菱形
3 顺次连接菱形四边中点所得四边形是矩形
1 如果顺次连接四边形四边中点所得四边形是菱形,那么原四边形两条对角线相等
2 如果顺次连接四边形四边中点所得四边形是矩形,那么原四边形两条对角线互相垂直
3 如果顺次连接四边形四边中点所得四边形是正方形,那么原四边形两条对角线互相垂直且平分。

相关文档
最新文档