第三章_测度论
实变3-4
m( limE n) limm( E n )。 ≥
n →∞ n →∞
证明: En = ∩ ∪ En,由于{ ∪ En:k ∈ N }为递减集列,则 lim
n →∞ k ≥1 n ≥ k n ≥k k ≥1 n ≥ k
∩ ∪ En = lim ∪ En;而当k充分大时(k ≥ k 0),m( ∪ En) m( ∪ En) +∞, ≤ <
k →∞ n ≥ k n≥k n ≥ k0 n →∞ k →∞ n ≥ k k →∞ n ≥ k k ≥k 0
⇒ 由可测集列的上连续性知:m( limEn) m( lim ∪ En ) = m( lim ∪ En ) = = lim m( ∪ En ) = limm( ∪ En ) ≥ limm( Ek ) = limm( En ).
n →∞ n →∞ n →∞ n →∞
9.
设E ⊆ R,则m( E ) > 0, 则存在x0 , x1 ∈ E使得:x1 − x0.为无理数。 证明:显然E不是至多可数集, G = {x − x0. | x ∈ E}, ⇒ 显然, = E > ℵ0 , 故G中至少含一个无理数y,即∃x1 ∈ E , x1 − x0. = y. G
而由习题 2 知: m ( G 1 ∪ G 2 ) + m ( G 1 ∩ G 2 ) = m ( G 1 ) + m ( G 2 );
∗ 而 m( A ∪ B ) m ∗ ( A ∩ B ) +
≤ m (G1 ∪ G 2 ) + m (G1 ∩ G 2 ) = m (G1 ) + m (G 2 )
2.R n空间中lebesgue测度的常见性质: 空间中lebesgue测度的常见性质: (定义中10条除外) (定义中10条除外)
第三章 测度论
第三章 测度论教学目的:1.掌握外测度定义及其性质.2.掌握可测集及其性质. 重点难点:要引导学生注意外测度与测度之间的重要差别,测度概念抽象,要与具体点集诸如面积体积等概念进行比较.引 入Lebesgue 测度是长度、体积、重量的推广,对于区间],[b a ,a b -是区间长度,对于矩形 ,ab S =是面积.问题:对任意一个集合R E ⊂,能否定义一个“长度”的概念?不妨记其为E ,这就是本章的内容.上一章我们由个数推广到基数,由开区间推广到开集,此处如何推广?对两个区间 ,其“长度”为每个区间长度之和,三个区间类似,那么可数个区间呢?如开集),(1n n n b a G ∞== ,则长度∑∞=-=1)(n n n a b G (长度允许无穷大)可见开集可以定义长度.到此为止并不满意,因开集、闭集都行,但一般集合怎么办?如何定义 “长度”? 即:要考虑对任意集E ,?=E 希望nn E E ∞==1 ,n E E ∑=,而且定义的长度需满足一定的条件,如空集φ的长度为0等等.为此先介绍广义实数. 称λ为一个广义实数,如果R ∈λ或+∞=λ或-∞=λ.即广义实数全体就是在R 中加入了两个新“数”∞+和∞-.(i)广义实数的加法和减法: 若R a ∈,规定±∞=+±∞=±∞+a a )()(; ∞=±∞- )(a ;±∞=-±∞a )(; ±∞=±∞+±∞)()(;±∞=±∞+±∞)()(没有意义. (ii) 广义实数的乘法和除法: 若R a ∈,规定[]][2a 1b 1a 2b⎪⎩⎪⎨⎧∞∞±=⋅±∞=±∞⋅0)()( a a 000=<>a a a(注意此处不要与数分中不定式∞⋅0混同,0lim =n x , ±∞=n y lim ,那么?lim =n n y x 不确定,但此处的∞±指广义实数而不是变量) ;±∞=±∞⋅±∞)()(;-∞=∞⋅±∞)()( ;01=∞±;)(1±∞⋅=∞±a a )0(≠a (iii)广义实数的大小关系:规定+∞<∞-,此外对任何实数R a ∈,+∞<<∞-a .§3.1 引言若I 是一个有界区间,则I 的长度定义为它的两个端点的距离,记为)(I l ;若I 是一个无界区间,则定义I 的长度为∞,也记成)(I l .这样()()1)1,0(]1,0[==l l ,()∞=-∞]0,[l ,()∞=+∞],1[l .我们的目的是希望把上述仅对区间有定义的长度概念推广到更一般的实数集上去.不妨设上述的长度概念推广到R 上的一个集族Ω上.对任何Ω∈E (即E 是R 的一个子集),我们把它的长度记为)(E m .对Ω,我们希望满足下面三个条件:)(1Ω所有区间都是Ω中的元;)(2Ω若Ω∈E ,则Ω∈-=E R E c ;)(3ΩΩ中任意至多可数个元的并是Ω中的元.而对m ,我们希望它满足下面三个条件:)(1m 对每一个Ω∈E ,)(E m 是一个非负广义实数,即)(E m 或者是一个非负实数,或者是∞;)(2m 对每一个区间I ,)()(I l I m =;)(3m 若{}1≥n n E 是Ω中任何一列两两不相交的元,则)()(n n E m E m ∑= .注:),(m Ω是一起出来的,是一个关系.显然Ω可以构造,如Ω是R 的子集全体,但无m 满足的三条)(1m ~)(3m .现在R 上随便拿一个集合E ,有开集包含它(如取R G =),则)()(G m E m ≤,而对于开集G ,我们知道∑∞=-=1)(n n n a b G ,所以≤)(E m ∑∞=-1)(n n na b,于是)(E m 可以定义为∑∞=-1)(n n na b的下确界,即包含E 的所有开集G 的长度的下确界.这是一种办法.还有另一种办法:对任意集合R E ⊂,可否拿来闭集F ,使F E ⊃?可以(如取E 中一点作为F ),则)()(E m F m ≤.这样,所有包含在E 里的闭集F 的长度取上确界得)(E m .但G E F ⊂⊂所定义的长度是否满足三条)(1m ~)(3m ?若)(F m 的上确界与)(G m 的下确界相等,则由两边夹就可能定义)(E m .§3.2 Lebesgue 外测度外测度即)(G m 的下确界. 对R E ⊂)(*E m {}nn n n n n I E I I l ⊂∑=≥是一列开区间并且1}{:)(inf称为E 的Lebesgue 外测度,其中)(n I l 是开区间n I 的长度 (由于开集G是至多可数个两两不相交的开区间的并,所以以上直接用开区间.(我们希望)(*E m 就是前面的m ,满足三条,但不行) .例:设{}1≥n n r 是有理数全体(即{}1≥=n n r Q ),求)(*Q m .解:任取0>ε,)2,2(11+++-=n n n n n r r I εε,则nn I Q ∞=⊂1 ,εε=∑=∑∞=∞=nn n n I l 2)(11所以)(*Q m ε=∑≤∞=)(1n n I l由ε的任意性, 0)(*=Q m .可见,从测度(长度)的观点来说,虽然Q 密密麻麻,但其外测度却是0.由上例可知,R 中任何至多可数子集的外测度为0。
第三章测度论
第三章 测 度 论(总授课时数 14学时)教学目的 引进外测度定义,研究其性质,由此过渡到可测集本章要点 要引导学生注意外测度与测度之间的重要差别 ,测度概念抽象,要与具体点集诸如面积体积等概念进行比较.§1、外测度教学目的1、掌握外测度的定义及其基本性质.2、理解区间及有理点集的外测度及其证明方法.本节要点 外测度的定义及其基本性质. 本节难点 外测度的定义. 授课时数 4学时——————————————————————————————一、引言(1) Riemann 积分回顾(分割定义域)||||01()()lim()nbiiaT i R f x dx f x ξ→==∆∑⎰,1ii i xx x -∆=-,1i i i x x ξ-≤≤积分与分割、介点集的取法无关。
几何意义(非负函数):函数图象下方图形的面积。
(2)新的积分(Lebesgue 积分,从分割值域入手)记1{:()}i i i E x y f x y -=≤<,1i i i y y ξ-≤<,则[,]1()()lim ni i a b i L f x dx mE δξ→==∑⎰问题:如何把长度,面积,体积概念推广? 达布上和与下和上积分(外包)(达布上和的极限)||||01()limnbiiaT i f x dx M x →==∆∑⎰下积分(内填)达布下和的极限||||01()limnbiiaT i f x dx m x →==∆∑⎰二、Lebesgue 外测度(外包)1.定义:设 nE R ⊂,称非负广义实数*({})R R ⋃±∞=11inf{||:,i i i i i m E I E I I ∞∞*===⊂⋃∑为开区间}为E 的Lebesgue 外测度。
下确界:(1)ξ是数集S 的下界,即x S ∀∈,x ξ≤(2)ξ是数集S 的最大下界,即0,,x S ε∀>∃∈使得x ξε≤+11inf{||:,i i i i i m E I E I I ∞∞*===⊂⋃∑为开区间}0,ε∀>∃开区间列{},i I 使得1i i E I ∞=⊂⋃且**1||i i m E I m E ε∞=≤≤+∑即:用一开区间列{}i I “近似”替换集合E例1 设E 是[0,1]中的全体有理数,试证明E 的外测度为0. 证明:由于E 为可数集,故不妨令123[0,1]{,,,}E Q r r r =⋂=0,ε∀>作开区间11(,),1,2,3,22i i i i i I r r i εε++=-+=则1i i E I ∞=⊂⋃且111||2i i i i I εε∞∞+====∑∑,从而*m E ε≤ ,再由ε的任意性知*0m E = 思考:1. 设E 是平面上的有理点全体,则E 的外测度为0提示:找一列包含有理点集的开区间112212((,),1,2,3,i i i i i i i I r r r r r r Q Q i =+⨯-∈⨯=2.平面上的x 轴的外测度为0提示:找一列包含x 轴的开区间11(1,1)(,),1,2,3,22i i i i i i I r r r Z i εε++=-+⨯-∈=,3. 对Lebesgue 外测度,我们用可数个开区间覆盖[0,1]中的有理数全体,是否这可数个开区间也覆盖[0,1](除可数个点外).注:对可数个开区间不一定有从左到右的一个排列(如Cantor 集的余集的构成区间) 2.Lebesgue 外测度的性质(1)非负性:0m E *≥,当E 为空集时,0m E *= (2)单调性:若A B ⊂,则m A m B **≤证明:能覆盖B 的开区间列也一定能覆盖A ,从而能覆盖B 的开区间列比能覆盖A 的开区间列要少,相应的下确界反而大。
实变函数与泛函分析
开 G n , 集 E 使 G n 且 m ( G 得 n E ) 1 n
令O
n 1
Gn
,则 O为 G型集, EO 且
m ( O E ) m ( G n E ) 1 n ,n 1 ,2 ,3 , L
故m(OE)0
例: 设E为[0,1]中的有理数全体, 试各写出一个与E只相差一 零测度集的G 型集或 F 型集。
可测集可由 G 型集去掉一零集, 或 F 型集添上一零集得到。
(2).若E可测,则存在 F 型集H, 使 H E 且 m (EH )0
(1).若E可测,则存在G 型集 O, 使 E O 且 m (O E )0
(2).若E可测,则存在 F 型集H, 使 H E 且 m (EH )0
证明:若(1)已证明,由Ec可测可知
(2)若 E可测 , 0 则 ,闭F 集 , 使F 得 E且 m(EF)
(1)若 E可测 , 则 0,开G 集 , (2)若 E可测 , 0 则 ,闭F 集 , 使E 得 G且 m(GE) 使F 得 E且 m(EF)
证明:若(1)已证明,由Ec可测可知
0 , 开 G , 集 E c 使 G 且 m ( G 得 E c )
令 O n 1 G n , 则 O 为 G 型 集 , E O 且
m ( O E ) m ( G n E ) 1 n ,n 1 ,2 ,3 ,
故m(OE)0 从 而 E O (O E ) 为 可 测 集
例:设E为[0,1]中的有理数全体, 试各写出一个与E只相差一小
测度集的开集和闭集。E{r1,r2,r3,}
取F=G c,则F为闭集 FE
且 m (EF )m (E F c)
m (E (c)c F c)m (F cE c)m (G E c)
可测集类
(1).若E可测,则存在Gδ 型集 O, 使 E ⊂ O且m(O − E ) = 0 若 可测 可测, (2).若E可测,则存在 Fσ 型集 使 H ⊂ E且m( E − H ) = 0 若 可测 可测, 型集H,
证明: 已证明, 证明:若(1)已证明,由Ec可测可知 已证明
∃Gδ 型 O,使得 E c ⊂ O且 m (O − E c ) = 0
∀ 1 , ∃ 开区间列 { I ni }, 使得 E ⊂ ∪ I ni 且 m * E ≤ n
i =1 ∞
∑
i =1
∞
| I ni | ≤ m * E +
1 n
令 G n = ∪ I n i , 则 G n 为 开 集 , E ⊂ G n, 且
i =1
∞
m*E ≤ mGn ≤
∞
∑
∞
i =1
m I ni ≤
( 2 ) 若 E 可测,则 ∀ ε > 0 , ∃ 闭集 F , 使得 F ⊂ E 且 m ( E − F ) < ε
(1) 若 E 可测,则 ∀ ε > 0 , ∃ 开集 G , ) 若 E 可测,则 ∀ ε > 0 , ∃ 闭集 F , (2 使得 E ⊂ G 且 m ( G − E ) < ε
∃开集Gn,使得E ⊂ Gn且m (Gn − E ) <
∞ n =1
∗
1 n
令 O = ∩ G n, 则 O 为 G δ 型 集 , E ⊂ O 且
m∗ (O − E ) ≤ m∗ (Gn − E ) ≤ 1 , n = 1,2,3,L n
故m (O − E ) = 0
从而E = O − (O − E )为可测集
H 取H=O c,则H为Fσ 型集 , ⊂ E 且 为
实变函数第三章测度论习题解答
实变函数第三章测度论习题解答第三章测度论习题解答1.证明:若E 有界,则+∞<="" m="" p="">证明 E 有界,必有有限开区间E 使得I E ?,因此+∞<≤I m E m **.2.证明可数点集的外测度为零证明设E ,对任意0>ε,存在开区间i I ,使得i i I x ∈,且i i I 2ε=(在p R 空间中取边长为pi2ε的包含i x 的开区间i I ),所以E Ii i∞= 1,且ε=∑∞=1i i I ,由ε的任意性得0*=E m 。
3.设E 是直线上一有界集合0*>E m ,则对任意小于E m *的正数c ,恒有E 的子集1E ,使c E m =1*。
证明设x b x a Ex Ex ∈∈==sup ,inf ,则[]b a E ,?,令[]E x a E x ,?,b x a ≤≤,)(x f =x E m *是[]b a ,上的连续函数;当0>?x 时,x x x m E E m E m E m x f x x f x x x x x x ?=?+≤-≤-=-?+?+?+),()()()(****于是当0→?x用类似方法可证明,当0>?x ,0→?x 时,)()(x f x x f →?-,即)(x f 是[]b a ,上的连续函数。
由闭区间上连续函数的介值定理)(a f ={}0)(**==a E m E m a ,)(b f =[]E m b a E m **),(= ,因此对任意正数c ,E m c *<,存在[]b a x ,0∈,使c x f =)(0,即[]c E x a m E m x ==),(0**0 ,令[]E E x a E ?= 01,,则c E m =1*。
4.设n S S S ,,,21 是一些互不相交的可测集合,n i S E i i ,,2,1, =?,求证 n n E m E m E m E E E m *2*1*21*)(+++=证明因为n S S S ,,,21 是一些互不相交的可测集合,由§2定理3 推论1,对任意T有∑===ni i ni i S T m S T m 1*1*)()( ,特别取 ni i S T 1==,则i i nj j i E S E S T === )(1,i in i i ES T 11)(===,所以∑∑=======ni i ni i ni i ni i E m S T m S T m E m 1*1*1*1*)())(()( 。
《实变函数》第三章_测度论
第三章 测 度 论(总授课时数 14学时)教学目的 引进外测度定义,研究其性质,由此过渡到可测集本章要点 要引导学生注意外测度与测度之间的重要差别 ,测度概念抽象,要与具体点集诸如面积体积等概念进行比较.§1、外测度教学目的1、掌握外测度的定义及其基本性质.2、理解区间及有理点集的外测度及其证明方法.本节要点 外测度的定义及其基本性质. 本节难点 外测度的定义. 授课时数 4学时——————————————————————————————一、引言(1) Riemann 积分回顾(分割定义域)||||01()()lim()nbiiaT i R f x dx f x ξ→==∆∑⎰,1ii i xx x -∆=-,1i i i x x ξ-≤≤积分与分割、介点集的取法无关。
几何意义(非负函数):函数图象下方图形的面积。
(2)新的积分(Lebesgue 积分,从分割值域入手)记1{:()}i i i E x y f x y -=≤<,1i i i y y ξ-≤<,则[,]1()()lim ni i a b i L f x dx mE δξ→==∑⎰问题:如何把长度,面积,体积概念推广? 达布上和与下和上积分(外包)(达布上和的极限)||||01()limnbiiaT i f x dx M x →==∆∑⎰下积分(内填)达布下和的极限||||01()limnbiiaT i f x dx m x →==∆∑⎰二、Lebesgue 外测度(外包)1.定义:设 n E R ⊂,称非负广义实数*({})R R ⋃±∞=11inf{||:,i i i i i m E I E I I ∞∞*===⊂⋃∑为开区间}为E 的Lebesgue 外测度。
下确界:(1)ξ是数集S 的下界,即x S ∀∈,x ξ≤(2)ξ是数集S 的最大下界,即0,,x S ε∀>∃∈使得x ξε≤+11inf{||:,i i i i i m E I E I I ∞∞*===⊂⋃∑为开区间}0,ε∀>∃开区间列{},i I 使得1i i E I ∞=⊂⋃且**1||i i m E I m E ε∞=≤≤+∑即:用一开区间列{}i I “近似”替换集合E例1 设E 是[0,1]中的全体有理数,试证明E 的外测度为0. 证明:由于E 为可数集,故不妨令123[0,1]{,,,}E Q r r r =⋂=0,ε∀>作开区间11(,),1,2,3,22i i i i i I r r i εε++=-+=则1i i E I ∞=⊂⋃且111||2i i i i I εε∞∞+====∑∑,从而*m E ε≤ ,再由ε的任意性知*0m E =思考:1. 设E 是平面上的有理点全体,则E 的外测度为0提示:找一列包含有理点集的开区间112212((,),1,2,3,i i i i i i i I r r r r r r Q Q i =⨯-∈⨯=2.平面上的x 轴的外测度为0提示:找一列包含x 轴的开区间11(1,1)(,),1,2,3,22i i i i i i I r r r Z i εε++=-+⨯-∈=,3. 对Lebesgue 外测度,我们用可数个开区间覆盖[0,1]中的有理数全体,是否这可数个开区间也覆盖[0,1](除可数个点外).注:对可数个开区间不一定有从左到右的一个排列(如Cantor 集的余集的构成区间) 2.Lebesgue 外测度的性质(1)非负性:0m E *≥,当E 为空集时,0m E *= (2)单调性:若A B ⊂,则m A m B **≤证明:能覆盖B 的开区间列也一定能覆盖A ,从而能覆盖B 的开区间列比能覆盖A 的开区间列要少,相应的下确界反而大。
第三章测度
第三章可测集合一、内容结构在R积分的情形,被积函数的定义域是区间或简单区域, 定义域的度量有明确的意义——长度、面积或体积。
在实变函数论中,被积函数的定义域是可测点集,推广积分的概念,首先要定义一般点集的度量,就是本章讨论的集合测度。
测度理论的建立有多种方法,不同的实变函数教材引入的方法有所不同,本章为了更直观、更好地理解掌握L积分,通过测度理论的建立推广R积分的数学思想与方法,直接从L测度的引入建立测度理论。
对于可测集合性质,主要讨论可测集合的充要条件、零测度集及其性质、可测集合的运算性质、可测集合与Gδ型集、Fδ型集的关系、最常用的可测集类型。
主要内容:勒贝格外测度的定义及其基本性质;勒贝格可测集及其基本性质;勒贝格可测集类;开集、闭集、Gδ型集、Fδ型集、Borel集之间的联系。
基本要求:理解勒贝格可测集的定义及其几何意义、勒贝格测度及其基本性质,特别是可数可加性;掌握怎样用开集、闭集、Gδ型集、Fδ型集刻画勒贝格可测集;可测集合的类型与充要条件。
二、主要的数学思想与方法1、从长度、面积、体积到一般点集测度概念由内、外测度建立的思想与方法。
2、Lebesgue当初首先引入外测度m* 与内测度 m*,然后通过条件m* A = m*A 定义可测集, Caratheodory 给出的可测集的导入法:m*T = m * (T∩E ) + m *(T∩CT) (∀T)称E可测,把m*E称为E的测度,记为mE。
两种定义引入的背景、相互间的关系、在学习讨论可测集相关性质等问题时的意义与作用。
3、合列极限定义的思想与方法。
4、零测集的引入及其在实变函数学习中的意义与作用。
5、一般可测集由Gδ集、Fδ集、零测集构成的思想与方法。
三、疑难点学习方法(一)直线上有界点集的测度点集的测度更着重于直线上有界点集的测度。
用构造的方法来讲解点集的测度,从中我们可以学到一种成套理论的模型。
先从最简单的开集测度出发,再学习闭集的测度、一般点集的内测度与外测度及可测集合。
第三章 测度论
例题 5:对于区间I 有 mI I
3、勒贝格外测度涵义 优点:任何集合都有外测度。
缺点:外测度只具有次可数可加性,不具有可数可加性。
对外测度加以限制,设法在Rn 中找出某一集合类 ,在 上满足
(1)封闭性: 对某些运算应该封闭;
(2)可数可加性:
m
Байду номын сангаасi
m (Ei )
乐,得之心/而寓之酒也。节奏划分思考“山行/六七里”为什么不能划分为“山/行六七里”?
会员免费下载 明确:“山行”意指“沿着山路走”,“山行”是个状中短语,不能将其割裂。“望之/蔚然而深秀者”为什么不能划分为“望之蔚然/而深秀者”?明确:“蔚然而深秀”是两个并列的词,不宜割裂,“望之”是总起词语,故应从其后断句。【教学提示】引导学生在反复朗读的过程中划分朗读节奏,在划分节奏的过程中感知文意。对于部分结构复杂的句子,教师可做
(4)可列可加性:设{Ei}
是一列互不相交的可测集
m
Ei
mEi
i1 i1
§3 可测集类
1、零测集 凡外测度为0的集合都是可测集,称为零测集。 零测集性质: (1)零测度集的任何子集都为零测度集。 (2)有限个或可数个零测度之和集仍为零测度集。
2、常见可测集
(1)区间I(不论开、闭或半开半闭区间)都是可测集合, 且 mI I (2)凡开集、闭集皆可测。
(2)有限可加性:如果E1, E2,..., En两两不相交,那么
m(E1 E2 ... En ) m(E1) m(E2 ) ... m(En )
(3)正则性:m([0,1]) 1
该长度公理实际上只给出了区间的长度,黎曼积分中划分之后区间的 长度就是一个点集,已经不是一个区间,再如[0,1]中有理数集合的长度 或是无理数集合的长度也无法确定,这就是点集测度的由来。
33实变函数与泛函分析第三章 测度论
Ei )
2i
令G
i1
Gi
,ห้องสมุดไป่ตู้
则G为开集,E
G,且
m(G
E)
m( i 1
Gi
i 1
Ei
)
m(i1(Gi
Ei ))
i 1
m((Gi
Ei )
i 1
2i
例1.设E Rn,若 0, 开集G,使得E G 且m(G E) ,则E是可测集。
证明:对任意的1/n,
开集 Gn,使得 E
Gn且m (Gn
证明:若(1)已证明,由Ec可测可知
G型O,使得E c O且m(O E c ) 0
取H=O c,则H为 F 型集 ,H E 且
m(E H ) m(E H c ) m((Ec )c H c ) m(H c Ec ) m(O Ec ) 0
下证(1):
(1).若E可测,则存在G 型集 O, 使 E O且m(O E) 0
n
2i1
, ri
)) n
2i1
F 型集:空集
注:上面的交与并不可交换次序
例5:设E*为[0,1]中的无理数全体,试各写出一个与E*只相差一 零测度集的G 型集或F 型集。
G型集: (0,1)
F 型集:H
[0,1] n1(i1(ri
1 n
2i1
, ri
1
)) n
2i1
定理7:若E可测,则
(1) mE inf{mG : G是开集,E G} (2) mE sup{mK : G是开集,K E} 外、内正规性
有理数集可看成可数个单点集的并,而单点集是闭集;
通过取余G 型集与 F 型集相互转化(并与交,开集与闭集互换)
第三章_测度论
趋于同一个数值,这个值便是图形的面积。
↓
外测度和内测度相等→可测
§1 外测度
1、勒贝格外测度 设E为 R n 中任一点集,对于每一列覆盖E的开区间 Ii E ,
| 做出它的体积总和 | I i ( 可以等于
i 1 i 1
S 也可测。
i i 1
n
(5)设 S1 , S2 可测,则 S1 S2 也可测。 (6)设{Si } 是一列互不相交的可测集,则 Si 也是可测集,且
i 1
m Si mSi i 1 i 1
i 1
推广:设 {Si }是一列可测集,则 Si , Si 也是可测集。
ðS 可测。
(3)设S1 , S2可测,则 S1 S2 也可测,并且当S1 S2 ,对于任 意集合T总有 m T S1 S 2 m (T S1 ) m (T S 2 )
推广:设 Si (i 1, 2,..., n) 可测,则 Si也可测,并且当 Si S j ,
i 1 n
3、勒贝格测度性质 (1) m() 0 (2)非负性:m E 0 (3)单调性:设A, B 可测,且 A B ,则 mA mB
(4)可列可加性:设 {Ei } 是一列互不相交的可测集 m Ei mEi i 1 i 1
为长度、面积、体积等概念的推广,这就产生了测度的概念。
测度论的思想和方法已经是近代分析、概率论及其他学科必不可 少的工具。
实变函数论部分的主要目的,就是介绍在理论和应用上都十分重要
的勒贝格测度与勒贝格积分理论。
长度公理: 设有实数直线上的一些点集所构成的集合族 ,若对于每
第三章测度
第三章可测集合一、内容结构在R积分的情形,被积函数的定义域是区间或简单区域, 定义域的度量有明确的意义——长度、面积或体积。
在实变函数论中,被积函数的定义域是可测点集,推广积分的概念,首先要定义一般点集的度量,就是本章讨论的集合测度。
测度理论的建立有多种方法,不同的实变函数教材引入的方法有所不同,本章为了更直观、更好地理解掌握L积分,通过测度理论的建立推广R积分的数学思想与方法,直接从L测度的引入建立测度理论。
对于可测集合性质,主要讨论可测集合的充要条件、零测度集及其性质、可测集合的运算性质、可测集合与Gδ型集、Fδ型集的关系、最常用的可测集类型。
主要内容:勒贝格外测度的定义及其基本性质;勒贝格可测集及其基本性质;勒贝格可测集类;开集、闭集、Gδ型集、Fδ型集、Borel集之间的联系。
基本要求:理解勒贝格可测集的定义及其几何意义、勒贝格测度及其基本性质,特别是可数可加性;掌握怎样用开集、闭集、Gδ型集、Fδ型集刻画勒贝格可测集;可测集合的类型与充要条件。
二、主要的数学思想与方法1、从长度、面积、体积到一般点集测度概念由内、外测度建立的思想与方法。
2、Lebesgue当初首先引入外测度m* 与内测度 m*,然后通过条件m* A = m*A 定义可测集, Caratheodory 给出的可测集的导入法:m*T = m * (T∩E ) + m *(T∩CT) (∀T)称E可测,把m*E称为E的测度,记为mE。
两种定义引入的背景、相互间的关系、在学习讨论可测集相关性质等问题时的意义与作用。
3、合列极限定义的思想与方法。
4、零测集的引入及其在实变函数学习中的意义与作用。
5、一般可测集由Gδ集、Fδ集、零测集构成的思想与方法。
三、疑难点学习方法(一)直线上有界点集的测度点集的测度更着重于直线上有界点集的测度。
用构造的方法来讲解点集的测度,从中我们可以学到一种成套理论的模型。
先从最简单的开集测度出发,再学习闭集的测度、一般点集的内测度与外测度及可测集合。
测度论
测度的扩张摘要:主要讨论了如何将定义在环上的测度扩张成σ-环上的测度。
文中首先介绍了由一个测度可以引出一个外测度 , 由一个外测度也可以引 出一个侧度。
然后我们从一个测度μ出发,先建立由它引出的外测度 , 再建立由u *引出的测度μ, 我们要问:u 与μ之间存在什么关系?关健词:测度;外测度;测度的扩张定义1:设u 是定义在环ℜ上的非负广义实值集函数,如果它具有可 列可加性,并且()0u φ=,则称为u 测度。
定义2:设u 是一个测度,如果它能满足下列条件:若E R ∈,F E ⊂,且()0u E =,则F R ∈,则称为u 的完全测度。
定义3:设δ是一个非空类,如果它能满足下列条件:E δ∈,F E ⊂,则F δ∈,则称δ是可传的。
定义4:设u *是定义在可传σ-环上的非负广义实值单调集函数,如果它具有部分可加性,并且()0uφ*=外测度,则称u *为外测度。
定义5:设u *是定义可传可传σ-环上的外测度,中的集E 称为u *- 可测的,如果对于中的每一个集A ,有()()()u A u A E u A E ***'=+。
定义6:设是1ℜ和2ℜ是空间X 的某些子集所组成的两个环,1u 与2u 分别是1ℜ和2ℜ上的测度,如果12ℜ⊂ℜ,且在1ℜ上,12u u ≡,则称2u 是1u 由1ℜ扩张到2ℜ的扩张测度。
定义7:设有一个以集为元素的类u ,如果对于u 中之集的每个单调序列n E ,都有limE n n u →∞∈,则称u 是单调的。
定义8:设()E H ∈ℜ,()F S ∈ℜ,E F ∈,如果对于()S ℜ中满足关系式G F E ⊂-的每一个集G ,有()0u G =,则称F 是E 的一个可测覆盖。
2、测度引出的外测度定理1 设u 是环ℜ上的测度,如果对于()ℜ中每一个集E ,定义: ()11inf (E ):E ,n 1,2,...;E E n n n n n u E u R ∞∞*==⎧⎫=∈=⊂⎨⎬⎩⎭∑,则u *是u 扩张到()ℜ上的一个外测度;如果u 是σ-有限的,则u *也一样。
第三章 测度论的思维过程
长度公理:对于实数直线上的一些点集所构成的集合 族 ,若对于每个E ,都对应一个实数m,使得 m( E ) 0 (1)(非负性); (2)(有限可加性)如果E两两不相交,那么
m( E1 E2 En ) m( E1 ) m( E2 ) m( En ) m[0,1] 1 (3)(正则性) 。
第三章 测度论的思维过程
一 测度概念的提出 日常生活中,我们已经有了长度,面积,体积概 念。他们都是一些几何图形 ( 点集)所具有的数量特 征。 线段有了长度,折线可以有长度,有限个线段之并集 有长度,推广:无限个线段的并集是否有长度? (级数理论) 矩形有面积,三角形,多边形有面积,利用极限方法, 可以求曲边梯形的面积,产生了定积分的思想。 体积类似。 结论:三角形,圆,曲边梯形等都是“可求面积” 的图形。 归纳:我们客观上已经使用了长度公理
m m( E) 0
m[a, b] b a 。 (3)(正则性) 根据这一公理,[0,1] 中的“有理数集合”是可数个点之并,每个 点的测度是0,所以中的“有理数集合”的勒贝格测度是0。[0,1] 中的“无理数集合”是不可数集合之并,其长度不会是0而是1
m( E1 E2 En ) m( E1 ) m( E2 ) m( En )
m ( E) m ( E),当m (E) m理,非负性,正则性的要求非常自然,因而不能改, 可以改的只有有限可加性,我们设想改成“无限可加性”。 m(a, a) 0 假设“无限可加性”成立, 首先,一个点a集的长度 那么[0,1]中的有理数集合和全体无理数集合的长度都是0 ,于是, 区间[0,1]的长度是0,显然,简单的推广“无限可加性”是不行 的,于是“退而求其次”,数学家勒贝格用可数可加性来考察如 下的“测度”: 勒贝格测度公理:对于实数直线上的一部分集合族 ,若对于每 个 E ,都对应一个实数 ,使得 (1)(非负性) ; (2)(可列可加性)如果 E1 , E2 , En 两两不相交,那么
测度论的知识要点与复习自测
测度论的知识要点与复习自测测度论(Measure theory)是数学分析中的一个重要分支,它研究的是如何用一种衡量的方法来度量集合的大小。
测度论的基本概念是测度(Measure),它是一个函数,将一些集合映射到实数,并满足一定的性质,可以用来度量集合的大小或者说容量。
1.集合理论基础:测度论的起点是集合理论的基础知识,包括集合的包含关系、交、并、补、差等运算。
此外,还需要了解基本的记号和符号,如A∪B代表集合A和集合B的并集,A∩B代表集合A和集合B的交集,A\B代表集合A和集合B的差集等。
2.可测集与测度:在测度论中,我们关注的是可测集。
可测集的定义是指它满足一定的性质,使得我们可以为其赋予一个测度值。
测度是一个函数,将一些集合映射到实数,并满足一定的性质。
常见的测度有长度、面积、体积等。
3.测度的性质与运算:测度具有一些基本的性质和运算规则。
比如,互不相交的可测集的并的测度等于它们各自测度的和;任意一个可测集可以表示为一个有限个或可列个互不相交的可测集的并。
此外,测度还满足可列可加性、单调性等性质。
4.测度空间与可测函数:通过引入测度的概念,我们可以定义测度空间。
测度空间是一个包含一个可测集类的集合,其中的每个可测集都与一个测度相对应。
可测函数是一个定义在测度空间上的函数,它可以在其中一种意义上保持测度的性质。
5. Lebesgue测度与Lebesgue积分:Lebesgue测度是测度论中的一个重要概念,它扩展了传统的长度、面积、体积等概念,并能够应用于更广泛的情况。
Lebesgue积分是一种基于Lebesgue测度的积分方法,相较于传统的黎曼积分,Lebesgue积分具有更广泛的适用性和更强的理论基础。
除了以上的知识要点,复习时还可以通过做一些相关的习题来深化理解和掌握测度论的知识。
以下是一些复习自测题目,供参考:1.证明测度的次可列可加性。
(提示:可以通过构造互不相交的可测集序列来证明次可列可加性。
10、开集体积、点集外测度
黎曼积分
f ( x, y )
I = {( x, y ); a ≤ x ≤ b, c ≤ y ≤ d }
< xn = b; c = y0 < y1 <
n ,m i, j
Δ : a = x0 < x1 <
< ym = d
n ,m i, j
S Δ ( f ) − sΔ ( f ) < ε
SΔ ( f ) = ∑ Bi , j I i , j , sΔ ( f ) = ∑ bi , j I i , j
∗ m ( E ) = m 则有 ∪ j ∑ Ej ∗
j =1 j =1
∞
∞
(5)外测度在平移和旋转变换下是不变的(58页8)
n 注1 外测度不满足可数可加性,即设 E j ⊂ R , j = 1, 2,
,互不相交
m (∪ E j ) = ∑ m∗ E j ,不一定成立 ,例如:55页例题
∗ j =1 j =1
我们希望平面上的每个点集 E 都有类似区间面积 E ,同样 希望对一般空间点集 E 都有类似的量 E , 这个量应是一维 空间区间长度、二维空间矩形面积、三维空间长方体的体 积等概念的推广,保持面积如下的性质:
(1) 非负性:
E ≥0
(2)单调性: 若E1 ⊂ E2, 有 E1 ≤ E2 (3)可加性:若E1 ∩ E2 = Φ,有 E1 ∪ E2 = E1 + E2 (4)次可加性: E1 ∪ E2 ≤ E1 + E2 (5)平移不变性和旋转不变性:
实变函数论
第10讲
第三章 测度论
§1开集的体积 §2 点集的外测度
19世纪下半叶,不少分析学家进行一系列扩充长度和面 积概念的探索,逐渐形成测量概念。1898年,博雷尔(Borel )建立了一维点集的测度,法国数学家勒贝格(Lebesgue)在 20世纪初叶系统的建立了测度论,并成功地建立起新的积分 理论,它发表于1902年的论文《积分、长度与面积》被公认 为现代测度和积分理论的奠基之作。1915年,法国数学家弗 雷歇(M.Frechet)提出在一般代数上建立测度,开始创立抽 象测度理论。1918年左右希腊数学家卡拉泰奥多里( Caratheodory)关于外测度的研究,对于现代形式测量理论 的形成起了关键作用。本章将介绍基于卡拉泰奥多里外测度 理论上的测度理论。 上点集的测度是关于点集的一种度量,它是长度、面积 和体积的一种直接而自然的推广;它是积分理论的基石。积 分是黎曼积分的推广,它将积分对象从黎曼可积函数类扩充 到更大一类函数——可测函数。
3.1开集体积
k 1
所以 ( I j
j 1
2 j1
)
M
Gj
j 1
N
Fk
k 1
N
( Jk
k 1
2 j1
).
N
从而可得 I j Jk .由N的任意性可知 I j Jk .
j 1
k 1
j 1
k 1
又由的任意性, I j Jk .同理可证 I j Jk .
j 1
k 1
j 1
k 1
于是 I j Jk .
因为I j G,所以 I j G. j 1
(4)另一方面,对(x, y) G,因G为开集,从而对上述所作
的半开闭正方形,当n充分大时,必有某一个闭正方形I nj
使(x, y) Inj G,取满足此性质的最小正整数n0,则此时
对应的In0 j0必为{Un0 j}中的一个,从而有(x, y) Un0 j0
(3) G j G j ;(次可加性)
j 1
j 1
(4)若{G j}j1互不相交,则 G j G j .(可加性)
j 1
j 1
证明 : (2)不妨设G1 .将G1和G2分别表成可数个互不相 交的左开
右闭区间之并 G1 I j和G2 Jk .
j 1
k 1
对 0及自然数j,取开区间Vj J j及闭区间Fj I j ,
第三章 测度理论
第一节 开集的体积
(1) 引 言
Riemann积分回顾(分割定义域)
积分与分割、介点集的取法无关
几何意义(非负函数): 函数图象下方图形的面积。
xi-1 xi
其中 xi xi xi1
b
n
(R)
a
f (x)dx lim ||T ||0 i1
3.1 开集的体积
证明:对 0及自然数j , 取开区间G j I j 及闭区间F j J j , 满足 G j I j
2
且 Fj J j j 1
2
j 1
.
N N
对任意给定的N 1,有 G j I j G J k Fk .
j 1 j 1 k 1 k 1
1 这样得到可列个边长为 n 1 的互不相交的半开闭正方形, 2 取完全含于G中,而不在{U ij }, (i 1,2, , n 1) 中的正方形,记为 U nj },它最多也为可列个互不相交 { 的正方形且与{U ij }, (i 1,2, , n 1)互不相交.
上述所作{U nj }的全体,每一个均为含于G中的半开闭正方形 且互不相交,其个数最多为可数个.从而可将它们记为 I j }, { 因为I j G , 所以 I j G.
i
新的积分(Lebesgue积分,从分割值域入手)
yi yi-1
Ei {x : yi 1 f ( x) yi }
yi 1 i yi
用 mEi 表示 Ei 的“长度”
( L)
[ a ,b ]
f ( x)dx lim i mEi
0
i 1
n
问题:如何把长度,面积,体积概念推广?
j 1
(4)另一方面,对( x, y ) G ,因G为开集,从而对上述所作 的半开闭正方形,当n充分大时,必有某一个闭正方形I nj 使( x, y ) I nj G,取满足此性质的最小正整数n0 , 则此时 对应的I n0 j0 必为{U n0 j }中的一个,从而有( x, y ) U n0 j0 I j .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勒贝格测度公理:
设有实数直线上的一部分集合族 ,使得每一个E ,都 对应一个实数 m(在 上定义了一个实函数 m(E) ,满足
(1)非负性:m(E) 0
(2)可列可加性:如果 E1, E2,..., En ,... 两两不相交,那么 m(E1 E2 ... En ...) m(E1) m(E2 ) ... m(En ) ...
例题 5:对于区间I 有 mI I
3、勒贝格外测度涵义 优点:任何集合都有外测度。
缺点:外测度只具有次可数可加性,不具有可数可加性。
对外测度加以限制,设法在Rn 中找出某一集合类 ,在 上满足
(1)封闭性: 对某些运算应该封闭;
(2)可数可加性:
m
Ei
m (Ei )
i 1
一般有不同的 ),所有这一切的 组成一个下方有界的数
集,它的下确界(由E完全确定)称为E的勒贝格外测度,简
称L外测度或外测度,即
mE inf
| Ii |
E Ii i1
i1
例题 1:有限点集的外测度是0.
例题 2:可数点集的外测度为0.
设E为[0,1]中的全体有理数,则 mE 0
i1 i1
(3)正则性: 包含在 Rn 中的所有有限开区间。
问题:如何从 Rn 中挑出集合类 呢?
如下构造:从可加性条件加以思考,附加一个判断 Rn 中 集合属于 的条件即可。
设 E Rn ,如果 E ,由于 Rn 中任何开区间I都属于 ,由 的运算封闭性,则 (I E) , (I ðE) ,
(2)S可测 ðS 可测。
(3)设S1
,
S
可测,则
2
S1
S2 也可测,并且当S1
S2
,对于任
意集合T总有 m T S1 S2 m(T S1) m (T S2 )
n
推广:设 Si (i 1, 2,..., n)可测,则 i1 Si也可测,并且当 Si S j ,
第三章 测度论
引言
§1 外测度
§2 可测集
§3 可测集类
引言:
19世纪的数学家们已经认识到,古典的黎曼积分在理论上有很大的 局限性,为了解决分析中提出的许多问题,有必要改造和推广原有的积 分定义。注意到黎曼积分与长度、面积、体积等度量有密切的关系,所 以积分概念的推广,自然要想到对Rn中的点集给于一种度量,使之成 为长度、面积、体积等概念的推广,这就产生了测度的概念。
↓ 开集
取包含E的那些开集的测度的下确界→外测度
当格子越来越密时,小正方形的面积趋于0,过剩和不足近似值能够
趋于同一个数值,这个值便是图形的面积。
↓
外测度和内测度相等→可测
§1 外测度
1、勒贝格外测度
设E为Rn 中任一点集,对于每一列覆盖E的开区间 Ii E ,
i 1
做出它的体积总和 | Ii (| 可以等于 ,不同的区间列
可得到:有理数所成之集是零测集。
Hale Waihona Puke 2、勒贝格外测度性质 (1) m 0 (2)非负性:mE 0
(3)单调性:设 A B,则 mA mB
(4)次可数可加性
m
Ai
m Ai
i1 i1
例题 3:可数个零测积之和集是否为零测集?
例题 4:康托集是零测集。
(4)可列可加性:设{Ei}
是一列互不相交的可测集
m
Ei
mEi
i1 i1
§3 可测集类
1、零测集 凡外测度为0的集合都是可测集,称为零测集。 零测集性质: (1)零测度集的任何子集都为零测度集。 (2)有限个或可数个零测度之和集仍为零测度集。
2、常见可测集
(1)区间I(不论开、闭或半开半闭区间)都是可测集合, 且 mI I (2)凡开集、闭集皆可测。
Si
lim
n
Sn
,则
mS
lim
n
mSn
(8)设{Si} 是一列递降的可测集:S1 S2
Sn
令
S
i 1
Si
lim
n
Sn
,则当
mS1
时,
mS
lim
n
mSn
3、勒贝格测度性质
(1)m() 0
(2)非负性:m E 0
(3)单调性:设A, B 可测,且 A B ,则 mA mB
(6)设{Si} 是一列互不相交的可测集,则 Si 也是可测集,且
i 1
m
Si
mSi
i1 i1
推广:设 {Si}是一列可测集,则
Si
,
Si 也是可测集。
i 1
i 1
(7)设{Si} 是一列递增的可测集:S1 S2 Sn
令
S
i 1
(2)有限可加性:如果E1, E2,..., En两两不相交,那么
m(E1 E2 ... En ) m(E1) m(E2 ) ... m(En )
(3)正则性:m([0,1]) 1
该长度公理实际上只给出了区间的长度,黎曼积分中划分之后区间的 长度就是一个点集,已经不是一个区间,再如[0,1]中有理数集合的长度 或是无理数集合的长度也无法确定,这就是点集测度的由来。
i j, 对于任意集合T总有
m
T
n
Si
n
m (T Si )
i1 i1
(4)设 S1, S2 可测,则 S1 S2也可测。
n
推广:设 Si (i 1, 2,..., n) 可测,则 Si 也可测。 i 1
(5)设 S1, S2 可测,则 S1 S2 也可测。
(3)正则性:m([a,b]) b a
问题:是否每一个集合都有测度?
内填外包法(测量不规则图形的面积)→集合E
内填:内部填满图形的那些格子的面积之和中的最大者,
即不足近似值。 ↓
↓ 闭集
用来填上E的内部的闭集的测度的上确界→内测度
外包:外部包围图形的那些格子的面积之和中的最小者,
即过剩近似值。 ↓
(I E) (I ðE) I , (I E) (I ðE) ,
所以有
mI m(I E) m (I ðE)
(1)
反之,如果存在某个开区间I,使上式不成立,则E自然不应该属于
引理:设 E Rn,则(1)是对 Rn 中任何开区间都成立的充要 条件是对 Rn 中的任何点集T都有
测度论的思想和方法已经是近代分析、概率论及其他学科必不可 少的工具。
实变函数论部分的主要目的,就是介绍在理论和应用上都十分重要 的勒贝格测度与勒贝格积分理论。
长度公理:
设有实数直线上的一些点集所构成的集合族 ,若对于每 一个E ,都对应一个实数m (在 上定义了一个实函数m(E)
使得
(1)非负性:m(E) 0
mT m(T E) m (T ðE)
§2 可测集
1、勒贝格测度
设E为Rn 中的点集,如果对任一点集T都有
mT m (T E) m (T ðE)
则称E是L可测的,这时E的L外测度 mE 即称为E的L测度, 记为 mE
2、勒贝格测度运算性质
(1)集合E可测 对于A E, B ðE ,总有 m A B mA mB