三角函数的几何表示.ppt
合集下载
三角函数的几何表示

微积分
在微积分中,三角函数用于解决与极坐标相关的 问题。
线性代数
在矩阵运算中,三角函数用于计算特征值和特征 向量。
三角函数在金融领域的应用
复利计算
01
在金融领域,复利计算涉及到指数函数和三角函数的结合使用。
期权定价
02
在期权定价模型中,三角函数用于计算期权的价值。
风险管理
03
在风险管理领域,三角函数用于计算风险值(VaR)和压力测试。
三角恒等式是三角函数之间的基本关系式,如sin^2 x + cos^2 x = 1、sin(x+y) 和cos(x+y)分别等于sin x cos y + cos x sin y等。
三角恒等式是三角函数运算的基础,对于简化复杂的三角函数表达式、证明性质 以及解决实际问题非常有用。
THANKS FOR WATCHING
简谐运动
物体在平衡点附近的往复 运动可以用三角函数来描 述。
工程中的三角函数应用
结构设计
在工程中,三角函数常用 于结构设计,如梁的弯曲、 拱桥的设计等。
信号处理
在通信和信号处理中,三 角函数用于频谱分析和滤 波器设计。
测量
在测量领域,三角函数用 于角度和距离的测量。
数学中的三角函数应用
解析几何
在解析几何中,三角函数用于解决与角度和长度 相关的问题。
正割函数的图像
正割函数图像是正弦函数的倒数,其周期为$pi$弧度。
在直角坐标系中,正割函数图像呈现为一个双曲线,随着角度的增加,函数值逐渐减小并趋 近于0。
正割函数图像关于原点对称。
余割函数的图像
余割函数图像是余弦函数的倒数,其周期同样为$pi$ 弧度。
在微积分中,三角函数用于解决与极坐标相关的 问题。
线性代数
在矩阵运算中,三角函数用于计算特征值和特征 向量。
三角函数在金融领域的应用
复利计算
01
在金融领域,复利计算涉及到指数函数和三角函数的结合使用。
期权定价
02
在期权定价模型中,三角函数用于计算期权的价值。
风险管理
03
在风险管理领域,三角函数用于计算风险值(VaR)和压力测试。
三角恒等式是三角函数之间的基本关系式,如sin^2 x + cos^2 x = 1、sin(x+y) 和cos(x+y)分别等于sin x cos y + cos x sin y等。
三角恒等式是三角函数运算的基础,对于简化复杂的三角函数表达式、证明性质 以及解决实际问题非常有用。
THANKS FOR WATCHING
简谐运动
物体在平衡点附近的往复 运动可以用三角函数来描 述。
工程中的三角函数应用
结构设计
在工程中,三角函数常用 于结构设计,如梁的弯曲、 拱桥的设计等。
信号处理
在通信和信号处理中,三 角函数用于频谱分析和滤 波器设计。
测量
在测量领域,三角函数用 于角度和距离的测量。
数学中的三角函数应用
解析几何
在解析几何中,三角函数用于解决与角度和长度 相关的问题。
正割函数的图像
正割函数图像是正弦函数的倒数,其周期为$pi$弧度。
在直角坐标系中,正割函数图像呈现为一个双曲线,随着角度的增加,函数值逐渐减小并趋 近于0。
正割函数图像关于原点对称。
余割函数的图像
余割函数图像是余弦函数的倒数,其周期同样为$pi$ 弧度。
新教材人教A版5.4.1正弦函数余弦函数的图象课件(44张)

【解题策略】 “五点法”画函数y=Asin x+b(A≠0)在[0,2π]上的简图的步骤 (1)列表
(2)描点:在平面直角坐标系中描出下列五个点:(0,y1),(
2
,
y 3) ,
(π,y3),(
3 2
,
y
4 ) ,(2π,y5).
(3)连线:用光滑的曲线将描出的五个点连接起来.
【跟踪训练】 请补充完整下面用“五点法”作出y=-sin x(0≤x≤2π)图象的列表.
(ⅰ)画出正弦曲线在[0,2π]上的图象的五个关键点(0,0),__2____,
(π,0),_(_32_ _, _ _1 )_,(2π,0),用光滑的曲线连接;
(ⅱ)将所得图象向左、向右平行移动(每次2π个单位长度).
(3)本质:正弦曲线是正弦函数的图形表示,是正弦函数的一种直观表示.
(4)应用:根据正弦曲线,能帮助学生更直观地认识正弦函数,进而根据正弦
5.4.1 正弦函数、余弦函数的 图象
必备知识·自主学习
(1)正弦曲线 正弦函数y=sin x,x∈R的图象叫正弦曲线.
(2)正弦函数图象的画法 ①几何法: (ⅰ)利用正弦线画出y=sin x,x∈[0,2π]的图象;
(ⅱ)将图象向左、向右平行移动(每次2π个单位长度).
②“五点法”:
( ,1 )
x∈[0,2π]与y=sin x,x∈[2π,4π]的图象 ( )
A.重合
B.形状相同,位置不同
C.关于y轴对称
D.形状不同,位置不同
【解析】选B.根据正弦曲线的作法可知函数y=sin x,x∈[0,2π]与y=
sin x,x∈[2π,4π]的图象只是位置不同,形状相同.
4.如图是下列哪个函数的图象 ( ) A.y=1+sin x,x∈[0,2π] B.y=1+2sin x,x∈[0,2π] C.y=1-sin x,x∈[0,2π] D.y=1-2sin x,x∈[0,2π] 【解析】选C.把 ( , 这0 ) 一点代入选项检验,即可排除A、B、D.
三角函数认识ppt课件

辅助角公式
总结词
用于将三角函数式化为单一三角函数的形式。
详细描述
辅助角公式是三角函数中常用的化简工具,它可以将复杂的三角函数式化为单一三角函数的形式,便于计算和理 解。具体公式如下:sin(x+y)=sinxcosy+cosxsiny,cos(x+y)=cosxcosy-sinxsiny, tan(x+y)=(tanx+tany)/(1-tanxtany)。
三角函数认识ppt课件
目录
• 三角函数的定义 • 三角函数的图像与性质 • 三角函数的应用 • 三角函数的变换公式 • 三角函数的特殊值
01
三角函数的定义
角度与弧度的关系
角度制
以度(°)为单位,规定一周为 360度,每度分为60分,每分为 60秒。
弧度制
以弧度(rad)为单位,规定圆的 周长为2π弧度。角度与弧度的转 换公式为:1° = π/180 rad。
三角函数的基本恒等式
正弦、余弦、正切之间的基本恒等式。
利用这些恒等式,可以方便地进行三角函数的转换和化简,对于解决三角函数问 题非常有用。
THANK YOU
积的和差公式
总结词
用于计算两个角的三角函数值的乘积之和或之差。
详细描述
积的和差公式也是三角函数中常用的公式之一,它可以计算两个角的三角函数值 的乘积之和或之差。具体公式如下:sin(x-y)=sinxcosy-cosxsiny,cos(xy)=cosxcosy+sinxsiny,tan(x-y)=(tanx-tany)/(1+tanxtany)。
详细描述
和差角公式是三角函数中非常重要的公式之一,它可以将两个角的三角函数值 相加或相减,得到新的三角函数值。具体公式如下: sin(x+y)=sinxcosy+cosxsiny,cos(x+y)=cosxcosy-sinxsiny, tan(x+y)=(tanx+tany)/(1-tanxtany)。
《锐角三角函数》课件

锐角三角函数图像与性质
正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02
正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02
三角函数的图象与性质

-
;
-1
y=cosx
2 3
4 5 4 5
6 x 6 x
五.定义域 、值域及取到最值时相应的x的集合:
-6 -5
-4 -3
复习回顾
-2 -
y y=sinx
1 o
-1
2 3
y
si-n6x的对称-5轴:x
k -4
2-,3对 称点-:2(k
,0);
-
y cosx的对称轴:x k , 对称点:(k ,0);
1.4.1正弦、余弦函数的图象
复习
回顾 三角函数
三角函数线
正弦函数 余弦函数 正切函数
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
-1
O
M A(1,0) x
正弦、余弦函数的图象
问题:如何作出正弦、余弦函数的图象?
途径:利用单位圆中正弦、余弦线来解决。
描图:用光滑曲线
复习回顾
一.正弦余弦函数的作图: 几何描点法(利用三角函数线) 五点法作简图
二.周期性:
函数y Asin(x )和y Acos(x ),x R的周期T 2 | |
三.奇偶性:
y sin x为奇函数,图像关于原点对称; y cosx为偶函数图像关于y轴对称。
-6 -5
-4 -3
复习回顾 y y=sinx
(0,11)
3
( 2 ,1)
-
(-o12 ,0)
( 2 ,0)
2
( ,-1)
3
线
4
5 6 x
正弦、余弦函数的图象
y
五点画图法
1
(
2
,1)
锐角的三角函数PPT

余弦函数的符号为cos,表示为cos(θ), 其中θ为锐角。
02
余弦函数的图像是一条周期为2π的余弦 曲线,表示在直角三角形中,邻边的长 度与斜边的长度的比值在[-1,1]之间周 期性变化。
04
正切函数的定义
01
正切函数:tan(θ) = sin(θ) / cos(θ)
02
正切函数的定义域:(0, π/2)
余弦函数的值域:[-1, 1]
余弦函数的图像:一个周期为2π的周 期函数,图像关于y轴对称
余弦函数的奇偶性:偶函数,f(x) = f(-x)
余弦函数的单调性:在[0, π/2]上是 增函数,在[π/2, π]上是减函数
余弦函数的导数:f'(x) = -sin(x)
正切函数的性质
01
02
03
04
05
值域:正弦函数的值域是[-1, 1]
奇偶性:正弦函数是奇函数, 即f(x) = -f(-x)
周期性:正弦函数的周期是 2π,即f(x + 2π) = f(x)
最值:正弦函数的最大值是1, 最小值是-1
图像:正弦函数的图像是一 条正弦曲线,关于原点对称
余弦函数的性质
定义:余弦函数是直角三角形中的一 个角与对边和斜边的比值
03
正切函数的值域:(0, ∞)
04
正切函数的图像:在平 面直角坐标系中,正切 函数的图像是一条以原 点为中心的对称曲线, 在y轴右侧的部分为单调 递增,在y轴左侧的部分 为单调递减。
Part Two
锐角三角函数的性 质
正弦函数的性质
定义:正弦函数是直角三角 形中的一个角(锐角)的正 弦值与对边长度的比值
06
正切函数是锐 角三角函数中 的一种,表示 在一个直角三 角形中,对边 (opposite) 的长度与邻边 (adjacent) 的长度之比。
正弦函数余弦函数的图象完整版课件

正 弦 曲 线 y s in x( x R )
y
1-
-
-
6
4
2
o
-1-
2
4
6
x
因为终边相同的角的三角函数值相同,所以y=sinx,x∈R的图象在
4,2 ,2,0, 0,2, 2,4,…与y=sinx,x∈[0,2π]的图象相同
正弦曲线:ysinx xRy
1
-1
x
-cosx -1 0
1
0 -1
y
y=-cosx x[0,2 ]
1
●
o
●
3●
2
x
2
2
-1 ●
●
思考:
1、函数y=1+sinx的图象与函数y=sinx的图象有什么关系? 2、函数y=-cosx的图象与函数y=cosx的图象有什么关系?
y 2
y=1+sinx x[0, 2]
1
o
3
2
-1
2
2
x
y=sinx x[0, 2]
1
●
●
●
●
●
7 4 3 5 11
6
6 3 2 3 6 2
●
2 0
2 5
●
11
6 32 3 6
●
●
x
●
5
6
-1
●
●
●
3
y
ysinx x [0 ,2 ]
1-
-
-1
o 6
3
2
2 3
5
7
6
6
4 3
3
5
2
3
11 6
2
-1 -
y
1-
-
-
6
4
2
o
-1-
2
4
6
x
因为终边相同的角的三角函数值相同,所以y=sinx,x∈R的图象在
4,2 ,2,0, 0,2, 2,4,…与y=sinx,x∈[0,2π]的图象相同
正弦曲线:ysinx xRy
1
-1
x
-cosx -1 0
1
0 -1
y
y=-cosx x[0,2 ]
1
●
o
●
3●
2
x
2
2
-1 ●
●
思考:
1、函数y=1+sinx的图象与函数y=sinx的图象有什么关系? 2、函数y=-cosx的图象与函数y=cosx的图象有什么关系?
y 2
y=1+sinx x[0, 2]
1
o
3
2
-1
2
2
x
y=sinx x[0, 2]
1
●
●
●
●
●
7 4 3 5 11
6
6 3 2 3 6 2
●
2 0
2 5
●
11
6 32 3 6
●
●
x
●
5
6
-1
●
●
●
3
y
ysinx x [0 ,2 ]
1-
-
-1
o 6
3
2
2 3
5
7
6
6
4 3
3
5
2
3
11 6
2
-1 -
三角函数的几何表示——三角函数线ppt 人教课标版

练习2.
若 sin θ cos θ 0 , 则 θ 在 _____ .
B
A . 第一、二象限 B . 第一、三象
C . 第一、四象限 D . 第二、四象
本节课探究:
角是一个几何概念,同时角的大小也具 有数量特征.我们从数的观点定义了三 角函数,如果能从图形上找出三角函数 的几何意义,就能实现数与形的完美统 一.
sin y |MP | MP
cos x |OM | OM
M
y
O
x
P (x ,y )
思考3:由上分析可知,当角α为第一、三 象限角时,sinα、cosα可分别用有向线 段MP、OM表示,即MP= sinα,OM=cosα, 那么当角α为第二、四象限角时,你能检 验这个表示正确吗?
y
y x
y tan AT x
T
A M
O
TA xP Nhomakorabea思考5:根据上述分析,你能描述正切线 的几何特征吗?
y P O A x T P O A T x y
过点A(1,0)作单位圆的切线,与角α 的终边或其反向延长线相交于点T,则 tanα=AT.
思考6:当角α 的终边在坐标轴上时,角 α 的正切线的含义如何? y
P
P
p p p s i n < <ta n 4 4 4
O
x
当角α 的终边在x轴上时,角α 的正切线 是一个点;当角α 的终边在y轴上时,角 α 的正切线不存在.
三角函数线 把有向线段MP、OM、AT叫做角 的正弦线、余弦线、正切线.
步骤: ⑴ 找出角的终边与单位圆的交点P. ⑵ 从P点向x轴作垂线,垂足为M. ⑶ 过A(1, 0)作x轴垂线与终边(或反向延长 线)交于T.
1.4.1 正弦函数、余弦函数的图象 课件(共21张PPT)

解析:如图所示.
答案:2
栏目 导引
第一章 三角函数
方法感悟
作三角函数图象 (1)已知 y=sin x 的图象求作 y=cos x 的图象,只需把 y=sin x 的图象向左平移π2即可得到 y=cos x 的函数图象. (2)已知 y=sin x 的图象求作 y=|sin x|的图象,只需把 y=sin x 在 x 轴下方的图象翻折到 x 轴上方,即可得到 y=|sin x|的图象. (3)“五点法”是画三角函数图象的基本方法,在要求精确度不 高的情况下常用此法,要切实掌握好.
第一章 三角函数
1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象
第一章 三角函数
学习导航
学习目标
实例
―了―解→
利用正弦线作正弦 函数图象的方法
―掌―握→
正、余弦函数的图象, 知道它们之间的关系
重点难点 重点:会用“五点法”画正、余弦函数的图象. 难点:能根据正弦、余弦函数的图象观察、归纳出正弦函 数、余弦函数的图象特征及图象间的关系.
如何利用规律实现更好记忆呢?
栏目 导引
超级记忆法--场景法
第一章 三角函数
人教版七年级上册Unit4 Where‘s my backpack?
栏目 导引
第一章 三角函数
超级记忆法-记忆方法
TIP1:在使用场景记忆法时,我们可以多使用自己熟悉的场景(如日常自己的 卧 室、平时上课的教室等等),这样记忆起来更加轻松; TIP2:在场景中记忆时,可以适当采用一些顺序,比如上面例子中从上到下、 从 左到右、从远到近等顺序记忆会比杂乱无序乱记效果更好。
第一章 三角函数
【名师点评】 作形如 y=asin x+b(或 y=acos x+b),x∈[0,2π] 的图象时,可由“五点法”作出,其步骤是:①列表取 x=0,π2, π,32π,2π;②描点;③用光滑曲线连线成图.
答案:2
栏目 导引
第一章 三角函数
方法感悟
作三角函数图象 (1)已知 y=sin x 的图象求作 y=cos x 的图象,只需把 y=sin x 的图象向左平移π2即可得到 y=cos x 的函数图象. (2)已知 y=sin x 的图象求作 y=|sin x|的图象,只需把 y=sin x 在 x 轴下方的图象翻折到 x 轴上方,即可得到 y=|sin x|的图象. (3)“五点法”是画三角函数图象的基本方法,在要求精确度不 高的情况下常用此法,要切实掌握好.
第一章 三角函数
1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象
第一章 三角函数
学习导航
学习目标
实例
―了―解→
利用正弦线作正弦 函数图象的方法
―掌―握→
正、余弦函数的图象, 知道它们之间的关系
重点难点 重点:会用“五点法”画正、余弦函数的图象. 难点:能根据正弦、余弦函数的图象观察、归纳出正弦函 数、余弦函数的图象特征及图象间的关系.
如何利用规律实现更好记忆呢?
栏目 导引
超级记忆法--场景法
第一章 三角函数
人教版七年级上册Unit4 Where‘s my backpack?
栏目 导引
第一章 三角函数
超级记忆法-记忆方法
TIP1:在使用场景记忆法时,我们可以多使用自己熟悉的场景(如日常自己的 卧 室、平时上课的教室等等),这样记忆起来更加轻松; TIP2:在场景中记忆时,可以适当采用一些顺序,比如上面例子中从上到下、 从 左到右、从远到近等顺序记忆会比杂乱无序乱记效果更好。
第一章 三角函数
【名师点评】 作形如 y=asin x+b(或 y=acos x+b),x∈[0,2π] 的图象时,可由“五点法”作出,其步骤是:①列表取 x=0,π2, π,32π,2π;②描点;③用光滑曲线连线成图.
三角函数的图像和性质PPT课件

三角函数的图像和性质
2021/6/7
1
一、三角函数图像的作法 二、三角函数图像的性质 三、f(x)= Asin(x+) 的性质
几何法 五点法 图像变换法
2021/6/7
2
一、三角函数图象的作法
1.几何法 y=sinx 作图步骤:
y
(1)等分单位圆作出特殊角的三角函数线;
(2)平移三角函数线; (3)用光滑的曲线连结各点.
得 到 y = s i n ( ω x + ) 在 某 周 期 内 的 简 图
步骤4
各点纵的坐纵标坐标变为伸原长来或的缩A倍短(横坐标不变);
得 到 y = A s i n ( ω x + ) 在 某 周 期 内 的 简 图
沿x轴
扩展
步骤5
得 到 y = A s i n ( ω x + ) 在 R 上 的 图 象
3
x
11
返回目录
二、三角函数图象的性质
函数 y sin x
ycosx
y tanx
图象
y 1
0
1
2 x
y
1
0
1
2
x
y
2
3 2
2
0
3 2
x
单调性
[2k, 32k](kz)
2
2
递减
[ 2 k, 2 2 k](k 递z)增
[2k, 2k](kz) 递增 [2 k,2 k](k z)
22
递减
纵向伸长3倍
y=3sinx
左移 π 3π
y=3横si向n(缩x+短31) y=3sin(2x+ 2π) 方法2: y=sinx 3
2021/6/7
1
一、三角函数图像的作法 二、三角函数图像的性质 三、f(x)= Asin(x+) 的性质
几何法 五点法 图像变换法
2021/6/7
2
一、三角函数图象的作法
1.几何法 y=sinx 作图步骤:
y
(1)等分单位圆作出特殊角的三角函数线;
(2)平移三角函数线; (3)用光滑的曲线连结各点.
得 到 y = s i n ( ω x + ) 在 某 周 期 内 的 简 图
步骤4
各点纵的坐纵标坐标变为伸原长来或的缩A倍短(横坐标不变);
得 到 y = A s i n ( ω x + ) 在 某 周 期 内 的 简 图
沿x轴
扩展
步骤5
得 到 y = A s i n ( ω x + ) 在 R 上 的 图 象
3
x
11
返回目录
二、三角函数图象的性质
函数 y sin x
ycosx
y tanx
图象
y 1
0
1
2 x
y
1
0
1
2
x
y
2
3 2
2
0
3 2
x
单调性
[2k, 32k](kz)
2
2
递减
[ 2 k, 2 2 k](k 递z)增
[2k, 2k](kz) 递增 [2 k,2 k](k z)
22
递减
纵向伸长3倍
y=3sinx
左移 π 3π
y=3横si向n(缩x+短31) y=3sin(2x+ 2π) 方法2: y=sinx 3
高中数学课件三角函数ppt课件完整版

2024/1/26
单调性
在各象限内,正弦、余弦 函数的单调性及其变化规 律。
最值问题
利用三角函数的性质求最 值,如振幅、周期等参导公式与恒等 式
REPORTING
2024/1/26
7
诱导公式及其应用
01
诱导公式的基本形式
通过角度的加减、倍角、半角等关系,将任意角的三角函数值转化为基
8
恒等式及其证明方法
2024/1/26
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变 量取何值,等式都成立。
恒等式的证明方法
通常采用代数法、几何法或三角法等方法进行证明。其中,代数法是通过代数运算和变换 来证明恒等式;几何法是通过几何图形的性质和关系来证明恒等式;三角法是通过三角函 数的性质和关系来证明恒等式。
化简为简单的形式。
12
三角函数的乘除运算规则
乘积化和差公式
通过乘积化和差公式,可以将两 个三角函数的乘积转化为和差的
形式,从而简化运算。
商的化简
利用同角三角函数的基本关系, 可以将三角函数的商转化为简单
的三角函数运算。
倍角公式
通过倍角公式,可以将三角函数 的乘方运算转化为简单的三角函
数运算。
2024/1/26
建立三角函数与数列、概率统计相关 的数学模型
结合计算机编程和数学软件,实现模 型的数值模拟和可视化
2024/1/26
利用数学分析、高等代数等方法求解 模型
22
PART 06
总结回顾与拓展延伸
REPORTING
2024/1/26
23
本章节知识点总结回顾
三角函数图像
正弦、余弦、正切函数的图像 及其周期性、奇偶性等性质。
单调性
在各象限内,正弦、余弦 函数的单调性及其变化规 律。
最值问题
利用三角函数的性质求最 值,如振幅、周期等参导公式与恒等 式
REPORTING
2024/1/26
7
诱导公式及其应用
01
诱导公式的基本形式
通过角度的加减、倍角、半角等关系,将任意角的三角函数值转化为基
8
恒等式及其证明方法
2024/1/26
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变 量取何值,等式都成立。
恒等式的证明方法
通常采用代数法、几何法或三角法等方法进行证明。其中,代数法是通过代数运算和变换 来证明恒等式;几何法是通过几何图形的性质和关系来证明恒等式;三角法是通过三角函 数的性质和关系来证明恒等式。
化简为简单的形式。
12
三角函数的乘除运算规则
乘积化和差公式
通过乘积化和差公式,可以将两 个三角函数的乘积转化为和差的
形式,从而简化运算。
商的化简
利用同角三角函数的基本关系, 可以将三角函数的商转化为简单
的三角函数运算。
倍角公式
通过倍角公式,可以将三角函数 的乘方运算转化为简单的三角函
数运算。
2024/1/26
建立三角函数与数列、概率统计相关 的数学模型
结合计算机编程和数学软件,实现模 型的数值模拟和可视化
2024/1/26
利用数学分析、高等代数等方法求解 模型
22
PART 06
总结回顾与拓展延伸
REPORTING
2024/1/26
23
本章节知识点总结回顾
三角函数图像
正弦、余弦、正切函数的图像 及其周期性、奇偶性等性质。
三角函数定义课件(角度、弧度及基本关系式)

倍角公式
$sin 2theta = 2sin theta cos theta$
半角公式
$sin frac{theta}{2} = pm sqrt{frac{1-cos theta}{2}}$
03 弧度制下三角函数关系式
弧长与圆心角关系
弧长公式
$l = rtheta$,其中 $l$ 是弧长,$r$ 是半径,$theta$ 是圆心角的弧度。
正切函数 $tan x$
定义域为 $x neq frac{pi}{2} + kpi, k in Z$,值域为全体实数 $R$。
弧度制下三角函数图像变换
01
平移变换
02
伸缩变换
函数 $y = Asin(omega x + varphi)$ 或 $y = Acos(omega x + varphi)$ 的图像可以通过平移 $varphi$ 个单 位得到。
最值问题和极值点求解
最值问题
余弦函数的最大值为1,最小值为-1。
正弦函数在 $x = frac{pi}{2} + 2kpi$($k in mathbb{Z}$)处取得最大值,在 $x = -frac{pi}{2} + 2kpi$($k in mathbb{Z}$)处取得最小值。
正弦函数的最大值为1,最小值为-1。
3
记忆常用弧度的角度值
与角度转弧度类似,也可以记忆一些常用弧度的 角度值。
转换过程中注意事项和技巧
保持单位一致
在进行角度和弧度转换时,要确保所使用的单位是一致的,避免出 现混淆。
注意精度问题
由于π是一个无理数,因此在转换过程中可能会遇到精度问题。在 需要高精度计算时,可以使用专门的数学软件或库来进行转换。
$sin 2theta = 2sin theta cos theta$
半角公式
$sin frac{theta}{2} = pm sqrt{frac{1-cos theta}{2}}$
03 弧度制下三角函数关系式
弧长与圆心角关系
弧长公式
$l = rtheta$,其中 $l$ 是弧长,$r$ 是半径,$theta$ 是圆心角的弧度。
正切函数 $tan x$
定义域为 $x neq frac{pi}{2} + kpi, k in Z$,值域为全体实数 $R$。
弧度制下三角函数图像变换
01
平移变换
02
伸缩变换
函数 $y = Asin(omega x + varphi)$ 或 $y = Acos(omega x + varphi)$ 的图像可以通过平移 $varphi$ 个单 位得到。
最值问题和极值点求解
最值问题
余弦函数的最大值为1,最小值为-1。
正弦函数在 $x = frac{pi}{2} + 2kpi$($k in mathbb{Z}$)处取得最大值,在 $x = -frac{pi}{2} + 2kpi$($k in mathbb{Z}$)处取得最小值。
正弦函数的最大值为1,最小值为-1。
3
记忆常用弧度的角度值
与角度转弧度类似,也可以记忆一些常用弧度的 角度值。
转换过程中注意事项和技巧
保持单位一致
在进行角度和弧度转换时,要确保所使用的单位是一致的,避免出 现混淆。
注意精度问题
由于π是一个无理数,因此在转换过程中可能会遇到精度问题。在 需要高精度计算时,可以使用专门的数学软件或库来进行转换。
三角函数 ppt课件

ppt课件
12
④理解同角三角函数的基本关系式:sin2x+cos2x=1,
sin x/cos x=tan x.
⑤结合具体实例,了解y=Asin(ωx+φ)的实际意义; 能借助计算器或计算机画出
y=Asin(ωx+φ)的图象.
观察参数A,ω ,φ对函数图象变化的影响.
⑥会用三角函数解决一些简单实际问题,体会三角 函数是描述周期变化现象的重要函数模型.
ppt课件
13
三、本章内容的定位
1.引言 提供背景:自然界广泛地存在着周期性现象,
圆周上一点的运动是一个简单又基本的例子.
提出问题:用什么样的数学模型来刻画周期性
运动?
明确任务:建构这样的数学模型.
教学的起点是:对周期性现象的数学(分析)
研究.
教材的定位是:展示对周期现象进行数学研究
的过程,即建构刻画周期性现象的数学模型的 (思维)过程.
ppt课件
8
第一章 三角函数 (约16课时)
ppt课件
9
一、本章结构
周期现象
任意角
弧度
三角函数
三角函数线
同角三角函数关系 诱导公式 三角函数图象性质
综合运用
ppt课件
10
二、内容与要求
(1)任意角、弧度 了解任意角的概念和弧度制,能进行弧度与角度 的互化.
(2)三角函数 ①借助单位圆理解任意角三角函数(正弦、余
ppt课件
37
(2)要充分发挥形数结合思想方法在本章 的运用.发挥单位圆、三角函数线、图象 的作用.
ppt课件
38
(3)运用和深化函数思想方法.
三角函数是学生在高中阶段系统学习的又一个 基本初等函数,教学中应当注意引导学生以数学l 中学到的研究函数的方法为指导来学习本章知识, 即在函数观点的指导下,学习三角函数,这对进 一步理解三角函数概念,理解函数思想方法对提 高学生在学习过程中的数学思维水平都是十分重 要的.
高三数学第二轮复习三角函数的图像与性质课件ppt.ppt

则同时具有以下两个性质的函数是( A ) ①最小正周期是π ②图象关于点(π/6,0)对称.
2.已知f(x)=sin(x+π/2),g(x)=cos(x-π/2),则下列结论
中正确的是( D) (A)函数y=f(x)·g(x)的周期为2π (B)函数y=f(x)·g(x)的最大值为1 (C)将f(x)的图象向左平移π/2单位后得g(x)的图象 (D)将f(x)的图象向右平移π/2单位后得g(x)的图象
直于 x 轴的直线, 对称中心为图象与 x 轴的交点).
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
[2k5.单+ 2调, 性2k:+y=3s2in]x(k在[Z2)k上-单2调, 2递k减+2;
](kZ)上单调递增, 在
6
是 (k ,k ],k z 使 g(x) 0 且递减的区间是
12
6
(k ,k 5 ],k z ,
6
12
∴当 0 a 1时,函数 f (x) 的递增的区间是
(k ,k 5 ],k z ,
6
12
当 a 1时,函数 f (x) 的递增的区间是 (k ,k ],k z .
且f (0) 3 , f ( ) 1 .
2 42
(1)求 f (x) 的最小正周期; (2)求 f (x) 的单调递减区间; (3)函数 f (x) 的图象经过怎样的平移才能 使所得图象对应的函数成为奇函数?
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
高中数学新人教A版必修一三角函数的概念课件34张

【跟踪训练 3】 若角α的终边与直线 y=3x 重合,且 sin α<0,又 P(m,n)是角α终边
上一点,且|OP|= 10 ,则 m-n=
.
解析:由题,所以n=3m, 又m2+n2=10, 所以m2=1. 又sin α<0,所以m=-1,所以n=-3. 故m-n=2.
答案:2
考查角度2:三角函数值的符号 【例4】 (2018·石家庄质检)已知sin α<0,tan α>0. (1)求角α的集合;
(A) 4 5
(B)- 4 (C) 3
5
5
(D)- 3 5
解析:因为点 A 的纵坐标 yA= 4 ,且点 A 在第二象限,又因为圆 O 为单位圆,所以 A 5
点的横坐标 xA=- 3 ,由三角函数的定义可得 cos α=- 3 .故选 D.
5
5
【例2】 若角θ的终边过点P(-4a,3a)(a≠0). (1)求sin θ+cos θ的值;
(A)1 (B)-1 (C)±1 (D)±2
解析:sin α= 2 = 2 ,x=2,tan α= y = 2 =1.故选 A.
x2 22 x
x2
4.(教材改编题)若sin α<0且tan α<0,则α是( D ) (A)第一象限角 (B)第二象限角 (C)第三象限角 (D)第四象限角
解析:由sin α<0,得α在第三或第四象限;由tan α<0,得α在第二或第四象 限,故α在第四象限.故选D.
2.弧度制
(1)定义 长度等于 (2)公式
半径长
角α的弧度数公式
角度与弧度的换算 弧长公式
扇形面积公式
的弧所对的圆心角叫做1弧度的角.弧度记作rad.
|α|= ①1°=
高中数学人教版A版必修4《任意角的三角函数》优质PPT课件

第一章 三角函数
§1.2 任意角的三函数
明目标、知重点
内容 索引
01 明目标
知重点
填要点 记疑缺
04
明目标、知重点
明目标、知重点 1.通过借助单位圆理解并掌握任意角的三角函数定义, 了解三角函数是以实数为自变量的函数. 2.借助任意角的三角函数的定义理解并掌握正弦、余弦、 正切函数在各象限内的符号. 3.通过对任意角的三角函数定义的理解,掌握终边相同 角的同一三角函数值相等.
明目标、知重点
(2)sin(-1 320°)cos 1 110°+cos(-1 020°)sin 750°+tan 495°. 解 原式=sin(-4×360°+120°)cos(3×360°+30°)+ cos (-3×360°+60°)sin(2×360°+30°)+tan(360°+135°) =sin 120°cos 30°+cos 60°sin 30°+tan 135°
明目标、知重点
(2)cos α=xr(r>0),因此cos α的符号与x的符号相同,当α的终边 在第一、四象限时,cos α>0;当α的终边在第二、三象限时, cos α<0. (3)tan α=yx,因此tan α的符号由x、y确定,当α终边在第一、三 象限时,xy>0,tan α>0;当α终边在第二、四象限时,xy<0, tan α<0.
明目标、知重点
当堂测·查疑缺
1234
1.已知角α的终边经过点(-4,3),则cos α等于( D )
4
3
A.5
B.5
C.-35
D.-45
解析 因为角 α 的终边经过点(-4,3),所以 x=-4,y=3,r=5,
所以 cos α=xr=-45.
§1.2 任意角的三函数
明目标、知重点
内容 索引
01 明目标
知重点
填要点 记疑缺
04
明目标、知重点
明目标、知重点 1.通过借助单位圆理解并掌握任意角的三角函数定义, 了解三角函数是以实数为自变量的函数. 2.借助任意角的三角函数的定义理解并掌握正弦、余弦、 正切函数在各象限内的符号. 3.通过对任意角的三角函数定义的理解,掌握终边相同 角的同一三角函数值相等.
明目标、知重点
(2)sin(-1 320°)cos 1 110°+cos(-1 020°)sin 750°+tan 495°. 解 原式=sin(-4×360°+120°)cos(3×360°+30°)+ cos (-3×360°+60°)sin(2×360°+30°)+tan(360°+135°) =sin 120°cos 30°+cos 60°sin 30°+tan 135°
明目标、知重点
(2)cos α=xr(r>0),因此cos α的符号与x的符号相同,当α的终边 在第一、四象限时,cos α>0;当α的终边在第二、三象限时, cos α<0. (3)tan α=yx,因此tan α的符号由x、y确定,当α终边在第一、三 象限时,xy>0,tan α>0;当α终边在第二、四象限时,xy<0, tan α<0.
明目标、知重点
当堂测·查疑缺
1234
1.已知角α的终边经过点(-4,3),则cos α等于( D )
4
3
A.5
B.5
C.-35
D.-45
解析 因为角 α 的终边经过点(-4,3),所以 x=-4,y=3,r=5,
所以 cos α=xr=-45.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M
o
x
p
M
o
x
p
思考:设α为锐角,你能根据正弦线和 余弦线说明sinα+cosα>1吗?
y
P
MP+OM>OP=1
OM x
问题1:如图,设角α为第一象限角,其终边与单 位圆的交点为P(x,y),则 tan y 是正数,用 哪条有向线段表示角α的正切值最合x适?
tan
y x
MP OM
AT OA
α
o
MA x
若角α的终边落在轴上
则|sinα|和|cosα|必有一个为1,
另一个为0, sin²α+cos²α=1
课堂小结
1、单位圆:半径为单位长度的圆 2、三角函数线: (1)正弦线 (2)余弦线 (3)正切线 3、三角函数线的应用
(1)
(2) 5
4
6
比较大小: sin1和sin1.5;
解:由三角函数线得 sin1<sin1.5 cos1>cos1.5
例2 在0~2 内,求使 sin a > 3 成立的α的取值
范围.
2
y
y= 3 2
P2
P P1
OM
x
, 2
3 3
例3 求函数 f (a ) = 2 cos a - 1 的定义域. y
P2 P
OM
x
x
P1
=
1
2
3
2k
,
3
2k
,
k
Z
求函数
的定义域.
求函数
的定义域.
思考:观察下列不等式:
sin tan
66
6
sin tan
44
4
sin tan
33
3
你有什么一般猜想?
思考:对于不等式 sin a < a < tan a
三角函数的几何表示
一、任意角三角函数的定义:
定 义 : 设是 任 意 角 , 它 的 终 边 与 单 位 圆 交 于 点 P( x,y) , 则
sin=y cos=x
y tan= x (x0) 以 上 三 者 是 以为 自 变 量 , 以 单 位 圆上点的坐标或坐标比值为函数值 的函数,统称为三角函数。
AT
正切线:AT
yT P
O MA x
正切线
问题2:若角α为第四象限角,其终边与单位 圆的交点为P(x,y),则 tan y 是负数, 此时用哪条有向线段表示角α的正切x 值最合
适?
y
tan y AT
x
MA
O
x
P T
思考:若角α为第二象限角,其终边与单位圆的交 点为P(x,y),则 tan y 是负数,此时用哪条 有向线段表示角α的正切值最x 合适?
++
-
-
sin
-+
-+
cos
-+ +tan
α
00 300 450 600 900 1800 2700 3600
弧度 0
6
43
2
3
2
sin α 0
cos α 1 tan α
0
1
2
2
2
3
2
22
3
1
3
31
0
2
1 0 -1
2
3 不存在 0
-1 0 01 不存在 0
sin( k 2 ) sin , cos( k 2 ) cos , tan( k 2 ) tan ,
y
tan y AT T P
x
A
AMO
x
T
思考:若角α为第三象限角,其终边与单位圆的交点 为P(x,y),则 tan y 是正数,此时用哪条有向 线段表示角α的正切值最合x 适?
tan y AT
x
y T
AM O Ax
P
T
思考:根据上述分析,你能描述正切线的几何特征吗?
yT P
y
P(x,y)
O
M A(1,0) x
定义2:任意角α的三角函数还可以用终边上任意点P(x,y)
表示,设OP=r,则
r
有s
x2 y
in
2y.,c
os
x ,tan
y.
r
r
x
二、三角函数的定义域
三角函数
定义域
sinα
R
cosα tanα
R {α|α≠ +2kπ(k∈Z)}
三、三角函数在各象限的符号
(其中α为锐角),你能用数形结合思想证明吗?
yT P
O M Ax
例练讲解
例3 设α是任意角,作α的正弦线、余弦线、正切线,
由图证明下列各等式:
y
sin²α+cos²α=1 ;
T
证明:(1)若角α终边落在象限内,由
N
P
图可知sin²α+cos²α
=ON² +OM² =PM² +OM² =OP² =1
探究:角是一个几何概念,同时角的大小也具有数量
特征.我们从数的观点定义了三角函数,如果能从图形 上找出三角函数的几何意义,就能实现数与形的完美统 一.
MP y sin
OM x cos
y
p(x , y)
M
oM x
P(x,y)
p p(x , y)
oM x
Mo
x
正弦线
y 余弦线
y
O
Ax
y P
A
O
x
T
过点A(1,0)作单位圆的切线,与角α的终边或其反 向延长线相交于点T,则AT=tanα.
思考:当角α的终边在坐标轴上时,角α的正切线 的含义如何?
y P P
Ox
当角α的终边在x轴上时,角α的正切线是一个点;当 角α的终边在y轴上时,角α的正切线不存在.
例1 作出下列各角的正弦线、余弦线、正切线:
终边相同的角的同一 三角函数的值相等。
其中k∈Z
一、背景知识
任意角的三角函数是三角学中最基本
最重要的概念之一。三角学起源于对三角 形边角关系的研究,始于古希腊的喜帕恰 斯、梅内劳斯和托勒密等人对天文的测量, 在相当长的时期里隶属于天文学。直到 1464年,德国数学家雷基奥蒙坦著《论各 种三角形》,才独立于天文学之外对三角 知识作了较系统的阐说;14~16世纪,三角 学曾一度成为欧洲数学的主要内容,研究 的方面包括三角函数值表的编制、平面三 角形和球面三角形的解法,三角恒等式的 建立和推导等等。1631年,三角学输入中 国,三角学在中国早期比较通行的名称是 “八线”和“三角”。“八线”是指在单 位圆上的八种三角函数线:正弦线、余弦 线、正切线、余切线、正割线、余割线、 正矢线、余矢线。随着科学的发展,三角 函数成为研究自然界和生产实践中周期变 化现象的重要数学工具,它在测量、力学 工程和无线电学中有着广泛的应用。