角平分线的性质ppt

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
为什么OC是角平分线呢?
已知:OM=ON,MC=NC.
M
求证:OC平分∠AOB.
C
证明:连接CM,CN
在△OMC和△ONC中,
OM=ON,
MC=NC, OC=OC,
B
N
O
∴ △OMC≌△ONC
(SSS)
∴∠MOC=∠NOC
即:OC平分∠AOB
探究角平分线的性质
[猜想]角平分线上的点到角的两边的距离相等
A
E B
F
D
C
Back
2).布置作业 作业(选做题) (4)如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC, 垂足分别是E,F,连接EF.EF与AD交于G.AD与EF垂直吗? 证明你的结论.
A
E G F
B
D
C
Back
Fra Baidu bibliotek
授课教师:赵刚 2016.09.28
探索作已知角的平分线的方法
·A
[思考]工人师傅常用如图所示的
简易平分角的仪器来画角的平分线.
· (AB=AD,BC=CD),将A点放在角的B
顶点处,AB和AD沿角的两边放下,
·D
过AC画一条射线AE,AE即为 ∠BAD的平分线.你能说明其中的

道理吗?
E
尺规作角的平分线
观察领悟作法,探索思考证明方法:
画法:
A
1.以O为圆心,适当 长为半径作弧,交OA于M,

交OBN于.

2.分别以M,N为
圆心.大于 1/2 MN的长
为半径作弧.两弧在∠A
OB的内部交于C.



3.作射线OC.
射线OC即为所求. 老师提示:
作角平分线是最基本的尺规作图,这种方 法要确实掌握.
[想一想]
题设:一个点在一个角的平分线上 结论:它到角的两边的距离相等 已知:OC是∠AOB的平分线,点P在OC上,PD ⊥OA , PE ⊥OB,垂足分别是D、E.求证:PD=PE.
生活中的数学: 小明家居住在一栋居民楼的一
楼,刚好位于一条自来水管和天然 气管道所成角的平分线上的P点,要自来水 从P点建两条管道,分别与自来水管 道和天然气管道相连. 问题1:怎样修建管道最短? 问题2:新修的两条管道长度有什么 关系,画来看看.
天然气
.P
生活中的数学:
要在S区建一个集贸市场,使它到公路,铁 路距离相等且离公路,铁路的交叉处500 米,应建在何处?(比例尺 1:20 000)

公路
铁路

实践与应用
A
E
C
P
判断正误,并说明理由:
O
(1)如图1,P在射线OC上,PE⊥OA,
PF⊥OB,则PE=PF.
(2)如图2,P是∠AOB的平分线OC上
C
F C
E DB
E DB
小结与作业
1)评价反思 a.这节课你有哪些收获,还有什么困惑? b.通过本节课你了解了哪些思考问题的方法?
2)布置作业 必做题:教材第51页第1、2、3题 选做题:教材第52页第6题
2)布置作业作业(必做题) (1)用三角尺可按下面方法画角平分线:在已知的∠AOB的 两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂 线,交点为P,画射线OP,则OP平分∠AOB,为什么? (2)△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB, DF ⊥ AC,垂足分别为E,F.求证:EB=FC. (3)如图,CD ⊥ AB,BE ⊥ AC,垂足分别为DE,BE, CD相交于点O,OB=OC.求证:∠1= ∠2
E,F.求证:EB=FC.
E
B
A
F
D
C
拓展与提升
变题1:如图,△ABC中,AD是∠BAC的平
分线, ∠C=90°, DE⊥AB于E,F 在AC 上,且BD=DF,求证:CF=EB.
A
变题2:如图,△ABC中, AD是∠BAC的平分线, ∠C =90°,DE⊥AB于E,BC=8, A BD=5,求DE.
FB
图1
A
E
C
P
的一点,E、F分别在OA、OB上,则
O
图2 F B
PE=PF.
A
(3)如图3,在∠AOB的平分线OC上 任取一点P,若P到OA的距离PE为3cm, 则P到OB的距离PF为3cm.
E
C P
O 图3 F B
[例题讲解]
例1 如图,在△ABC中,AD是它
的角平分线,且BD=CD,
DE⊥AB,DF⊥AC,垂足分别是
相关文档
最新文档