数学专题七第1讲坐标系与参.ppt
人教版七年级数学下册同步用坐标表示地理位置
![人教版七年级数学下册同步用坐标表示地理位置](https://img.taocdn.com/s3/m/7f424d62a88271fe910ef12d2af90242a895ab02.png)
为处;敌舰C在正东方向,图上距离为1cm处. 小生强态家 园的位位于置县坐城标东记北作方向__5_千__米__处__,__如_图_.表示准确的是( )
40˚
敌方舰 艇B
O 1cm
1cm
˚
敌方 舰艇 C
敌方 舰艇 A
随堂演练
1.如图,若以解放公园为原点建立平面直角坐标系,则博 物馆的坐标为( D ) A.(2,3) B.(0,3) C.(3,2) D.(2,2)
2.如图是天安门广场周围的景点分布示意图的一部分,若表示
“王府井”的点的坐标为(4,1),表示“人民大会堂”的点的坐
小刚家:出校门向东走1500m,再向北走2000m. 小强家:出校门向西走2000m,再向北走3500m,最后向东走500m. 小敏家:出校门向南走1000m,再向东走3000m,最后向南走750m.
1. 根据题意,小刚家,小强家,小敏家的位置均是以学校及东西方 向、南北方向为参照来描述的,故选学校位置为原点. 2. 以正东方向为x轴正方向,以正北方向为y轴正方向.
应尽量使较多的点落在坐标轴上.
获取新知
知识点二:用方位角来表示位置
探究
如图,一艘船在A处遇险后向相 距35 n mile 位于B处的救生船报 警,如何用方向和距离描述救生船 相对于遇险船的位置?
救生船接到报警后准备前往救 援,如何用方向和距离描述遇险船 相对于救生船的位置?
上册微专题七网格坐标系中的旋转作图及旋转证明人教版九级数学全一册优质课件
![上册微专题七网格坐标系中的旋转作图及旋转证明人教版九级数学全一册优质课件](https://img.taocdn.com/s3/m/510d67137fd5360cbb1adb0a.png)
上册 微专题七 网格(坐标系)中的旋转作图及旋转 证明-20 20秋人 教版九 年级数 学全一 册课件 (共27 张PPT)
∴OC′=OC= 3,B′C′=BC=1,∠B′C′O=∠BCO=90°,
∴点 B′坐标为( 3,-1).
上册 微专题七 网格(坐标系)中的旋转作图及旋转 证明-20 20秋人 教版九 年级数 学全一 册课件 (共27 张PPT)
上册 微专题七 网格(坐标系)中的旋转作图及旋转 证明-20 20秋人 教版九 年级数 学全一 册课件 (共27 张PPT)
如图 3,A 点的坐标为(-1,5),B 点的坐标为(3,3),C 点的坐标为(5, 3),D 点的坐标为(3,-1).小明发现线段 AB 与线段 CD 存在一种特殊关系,即其 中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐 标是____(1_,__1_)_或__(_4_,__4_) __.
上册 微专题七 网格(坐标系)中的旋转作图及旋转 证明-20 20秋人 教版九 年级数 学全一 册课件 (共27 张PPT)
解:BE=DC. 理由:∵△ABD 是等边三角形, ∴AB=AD,∠BAD=60°, 同理得 AE=AC,∠EAC=60°, ∴以点 A 为旋转中心将△ABE 顺时针旋转 60°就得到△ADC, ∴△ABE≌△等,借此可以在较复杂的图形中发现等量(或全 等)关系,或通过旋转(割补)图形,把分散的已知量聚合起来,便于找到解题突破口, 疏通解题思路.
解:(1)如答图,△A1B1C1 即为所求; (2)如答图,△A2B2C2 即为所求.
上册 微专题七 网格(坐标系)中的旋转作图及旋转 证明-20 20秋人 教版九 年级数 学全一 册课件 (共27 张PPT)
专题1 点的坐标:规律题(解析版)七年级数学下册
![专题1 点的坐标:规律题(解析版)七年级数学下册](https://img.taocdn.com/s3/m/2a498067366baf1ffc4ffe4733687e21af45ffb4.png)
第04讲专题1点的坐标:规律题1.小静同学观察台球比赛,从中受到启发,抽象成数学问题如下:如图,已知长方形OABC,小球P从(0,3)出发,沿如图所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,第一次碰到长方形的边时的位置为P1(3,0),当小球P第2024次碰到长方形的边时,若不考虑阻力,点P2024的坐标是()A.(1,4)B.(7,4)C.(0,3)D.(3,0)【解答】解:因为点P1的坐标为(3,0),根据点P的运动方式,结合反射角等于入射角可知,点P2的坐标为(7,4),点P3的坐标为(8,3),点P4的坐标为(5,0),点P5的坐标为(1,4),点P6的坐标为(0,3),点P7的坐标为(3,0),…,由此可见,点P每反弹6次,点的坐标循环出现,由因为2024÷6=337余2,所以点P2024的坐标为(7,4).故选:B.2.如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1),点A4(6,3)…,按照这样的规律下去,点A2024的坐标为()A.(3035,1011)B.(3036,1011)C.(3035,1013)D.(3036,1013)【解答】解:由题知,点A1的坐标为(2,0);点A2的坐标为(3,2);点A3的坐标为(5,1);点A4的坐标为(6,3);点A5的坐标为(8,2);点A6的坐标为(9,4);点A7的坐标为(11,3);点A8的坐标为(12,5);…,由此可见,点A n的坐标为(),点A n﹣1的坐标为()(n为正偶数);当n=2024时,,,所以点A2024的坐标为(3036,1013).故选:D.3.如图,在平面直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7,⋯都是斜边在x轴上的等腰直角三角形,点A1(﹣2,0),A2(﹣1,﹣1),A3(0,0),⋯;则根据图示规律,点A1020的坐标为()A.(﹣1,﹣510)B.(2,510)C.(﹣2,510)D.(1,﹣510)【解答】解:由题知,点A1的坐标为(﹣2,0);点A2的坐标为(﹣1,﹣1);点A3的坐标为(0,0);点A4的坐标为(﹣2,2);点A5的坐标为(﹣4,0);点A6的坐标为(﹣1,﹣3);点A7的坐标为(2,0);点A8的坐标为(﹣2,4);…,由此可知,点A4n的坐标为(﹣2,2n)(n为正整数),又因为1020÷4=255,所以2×255=510,所以点A1020的坐标为(﹣2,510).故选:C.4.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,其对应的点坐标依次为(0,0),(1,0),(1,1),(0,1),(0,2),(1,2),(2,2),(2,1),…,根据这个规律,第2023个点的横坐标为()A.44B.45C.46D.47【解答】解:第一个正方形上有4个点,添上第二个正方形后,一共有3×3=9个点,添上第三个正方形后,一共有4×4=16个点,∵添上第44个正方形后,一共有45×45=2025个点,∴第2025个点的坐标是(44,0),∴第2023个点的横坐标为44,故选:A.5.如图,动点M按图中箭头所示方向运动,第1次从原点运动到点(2,2),第2次运动到点(4,0),第3次运动到点(6,4),…,按这样的规律运动,则第2024次运动到点()A.(2024,2)B.(4048,0)C.(2024,4)D.(4048,4)【解答】解:∵第1次从原点运动到点(2,2),第2次运动到点(4,0),第3次运动到点(6,4),第4次从原点运动到点(8,0),第5次运动到点(10,2)……,∴动点M的横坐标为2n,纵坐标按照2,0,4,0四个为一组进行循环,∵2024÷4=504,∴第2023次运动到点(2×2024,0),即:(4048,0);故选:B.6.如图,将边长为1的正方形OAPB沿x轴正方向边连续翻转2023次,点P依次落在点P1,P2,P3,…,P2023的位置,则P2023的横坐标x2023为()A.2021B.2022C.2023D.不能确定【解答】解:从P到P4要翻转4次,横坐标刚好加4,∵2023÷4=505……3,∴505×4﹣1=2019,还要再翻三次,即完成从P到P3的过程,横坐标加3,则P2023的横坐标x2023=2022.故选:B.7.如图,在平面直角坐标系中,动点P从A1(1,0)出发,沿着A1(1,0)→A2(2,0)→A3(2,1)→A4(1,1)→A5(1,2)→A6(3,2)→A7(3,4)→A8(1,4)→A9(1,6)→A10(4,6)→⋯的路线运动,按此规律,则点P运动到A47时坐标为()A.(13,156)B.(1,156)C.(1,144)D.(13,144)【解答】解:由题知,∵A4(1,1),A8(1,4),A12(1,9),…,∴(n为正整数).当n=12时,A48(1,144).再结合点A47和点A48的位置可知,点A47在点A48的右边12个单位长度,∴1+12=13,故点A47的坐标为(13,144).故选:D.8.如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…,按这样的运动规律,动点P第2023次运动到点()A.(2023,0)B.(2022,﹣2)C.(2023,1)D.(2022,0)【解答】解:由题意可知,第1次运动到点(0,1)、第2次运动到点(1,0)、第3次运动到点(2,﹣2)、第4次运动到点(3,0)、第5次运动到点(4,1),∴可得到,第n次运动到点的横坐标为n﹣1,纵坐标为4次一循环,循环规律为1→0→﹣2→0→1,∵2023÷4=505......3,∴动点P第2023次运动到点的坐标为(2022,﹣2),故选:B.9.如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2023的横坐标为()A.﹣1010B.1010C.1012D.﹣1012【解答】解:∵图中的各三角形都是等腰直角三角形,斜边长分别为2,4,6,…∴A1(2,0),A2(1,﹣1),A3(0,0),A4(2,2),A5(4,0),A6(1,﹣3),A7(﹣2,0),A8(2,4),A9(6,0),A10(1,﹣5),A11(﹣4,0),A12(2,6),...总结得出规律:A4n+1(2n+2,0),A4n+2(1,﹣2n﹣1),A4n+3(﹣2n,0),A4n+4(2,2n+2),∵2023=4×505+3,∴点A2023在x轴负半轴上,横坐标为﹣2×505=﹣1010.故选:A.10.如图,在平面直角坐标系中A(﹣1,1),B(﹣1,﹣2),C(3,﹣2),D(3,1),一只瓢虫从点A 出发以2个单位长度/秒的速度沿A→B→C→D→A循环爬行,问第2025秒瓢虫在点()A.(﹣1,0)B.(﹣1,﹣1)C.(﹣1,﹣2)D.(0,﹣2)【解答】解:∵AB+BC+CD+DA=3+4+3+4=14,14÷2=7,∴瓢虫7秒爬行一圈,∵2025÷7=289……2,2×2=4,4﹣3=1,∴第2025秒瓢虫在点(0,﹣2),故选:D.11.如图,动点P在平面直角坐标系中按图中所示方向运动,第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,1),第三次运动到点P3(3,0),第四次运动到点P4(4,﹣2),第五次运动到点P5(5,0),第六次运动到点P6(6,2),按这样的运动规律,点P2023的纵坐标是()A.﹣2B.0C.1D.2【解答】解:观察图象,结合动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,1),第三次运动到点P3(3,0),第四次运动到点P4(4,﹣2),第五次运动到点P5(5,0),第六次运动到点P6(6,2),运动后的点的坐标特点可以发现规律,横坐标与次数相等,纵坐标每6次运动组成一个循环:P1(1,1),P2(2,1),P3(3,0),P4(4,﹣2),P5(5,0),P6(6,2),P7(7,0),P8(8,1)…,∵2023=7×289,∴动点P2023的坐标是(2023,0),∴动点P2023的纵坐标是0,故选:B.12.如图,在平面直角坐标系中,已知点A(1,1)、B(﹣1,1)、C(﹣1,﹣2)、D(1,﹣2),动点P 从点A出发,以每秒2个单位的速度按逆时针方向沿四边形ABCD的边做环绕运动;另一动点Q从点C 出发,以每秒3个单位的速度按顺时针方向沿四边形CBAD的边做环绕运动,则第2023次相遇点的坐标是()A.(﹣1,﹣1)B.(﹣1,1)C.(﹣2,2)D.(1,1)【解答】解:∵点A(1,1)、B(﹣1,1)、C(﹣1,﹣2)、D(1,﹣2),∴AB=CD=1﹣(﹣1)=2,AD=BC=1﹣(﹣2)=3,∴矩形的周长为2×(2+3)=10,由题意,经过1秒时,P、Q在点B(﹣1,1)处相遇,接下来P、Q两点走的路程和是10的倍数时,两点相遇,相邻两次相遇间隔时间为10÷(2+3)=2秒,∴第二次相遇点是CD的中点(0,﹣2),第三次相遇点是点A(1,1),第四次相遇点是点(﹣1,﹣1),第五次相遇点是点(1,﹣1),第六次相遇点是点B(﹣1,1),……,由此发现,每五次相遇点重合一次,∵2023÷5=404⋯⋯3,∴第2023次相遇点的坐标与第三次相遇点的坐标重合,即A(1,1),故选:D.13.如图,在直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A1,第2次移动到点A2,…第n次移动到点A n,则点A2023的坐标是()A.(1011,0)B.(1012,1)C.(1012,0)D.(1011,1)【解答】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),……,∵2023÷4=505……3,∴点A2023的坐标为(505×2+1,0),∴A2023(1011,0),故选:A.14.如图,将边长为1的正方形依次放在坐标系中,其中第一个正方形的两边OA1,OA3分别在y轴和x轴上,第二个正方形的一边A3A4与第一个正方形的边A2A3共线,一边A3A6在x轴上…以此类推,则点A2022的坐标为()A.(672,﹣1)B.(673,﹣1)C.(674,1)D.(674,0)【解答】解:∵(2022﹣1)÷3=673…2,∴点A2022的坐标为(674,0).故选:D.15.如图,一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点,按如此规律走下去,当机器人走到A6点时,则A6的坐标为()A.(9,15)B.(6,15)C.(9,9)D.(9,12)【解答】解:由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:A n﹣1A n=3n,当机器人走到A6点时,A5A6=18米,点A6的坐标是(9,12).故选:D.16.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2023次,点P依次落在点P1,P2,P3,…,P2023的位置,则点P2023的横坐标为()A.2022B.2023C.2024D.2022.5【解答】解:观察图形结合翻转的方法可以得出P1、P2的横坐标是1,P3的横坐标是2.5,P4、P5的横坐标是4,P6的横坐标是5.5…依此类推下去,∴P3n+1的横坐标为3n+1,P3n+2的横坐标为:3n+1,P3n+3的横坐标为3n+(n为自然数),∵2023=674×3+1,∴点P2023的横坐标为2023.故选:B.二.填空题(共4小题)17.如图,点A(1,0)第一次跳动至点A1(﹣1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次跳动至点A4(3,2),…,依此规律跳动下去,点A第2024次跳动至点A2024的坐标是(1013,1012).【解答】解:由题知,因为点A的坐标为(1,0),根据点A的运动方式可知,点A1的坐标为(﹣1,1);点A2的坐标为(2,1);点A3的坐标为(﹣2,2);点A4的坐标为(3,2);点A5的坐标为(﹣3,3);点A6的坐标为(4,3);…,由此可见,点A n的坐标为()(n为正偶数),当n=2024时,,=1012,即点A2024的坐标为(1013,1012).故答案为:(1013,1012).18.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P2024的坐标是(675,1).【解答】解:由图可得,P6(2,0),P12(4,0),…,P6n(2n,0),P6n+1(2n,1),2024÷6=337……2,(2×337+1,1),∴P6×337+2即P2024(675,1),故答案为:(675,1).19.如图,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→…的顺序用线段依次连接起来.根据这个规律,第50个点的坐标为(8,0).【解答】解:第1圈有1个点:(1,0),第2圈有3个点:(1,0),(2,1),(1,1),前2圈共有1+3=4个点,第3圈有5个点:(2,1),(2,2),(3,2),(3,1),(3,0),前3圈共有1+3+5=9=32个点,第4圈有7个点:(4,0),(4,1),(4,2),(4,3),(3,3),(2,3),(1,3),前4圈共有1+3+5+7=16=42个点,……,前圈共有n2个点,∵50=72+1,∴第50个点再第8圈,是第一个点,其坐标为(8,0),故答案为:(8,0).20.在平面直角坐标系中,若干个等腰直角三角形按如图所示的规律摆放.点P从原点O出发,沿着“O →A1→A2→A3→A4…”的路线运动(每秒一条直角边),已知A1坐标为(1,1),A2(2,0),A3(3,1)A4(4,0)…,设第n秒运动到点P n(n为正整数),则点P2023的坐标是(2023,1).【解答】解:由题意知,A1(1,1),A2(2,0),A3(3,1),A4(4,0),A5(5,﹣1),A6(6,0),A7(7,1),…,由上可知,每个点的横坐标等于序号,纵坐标每6个点依次为:1,0,1,0,﹣1,0这样循环,∵点P从原点O出发,第n秒运动到点P2023,即点A2023,∴P2023(2023,1),故答案为:(2023,1).。
高考数学二轮复习第2部分专题篇素养提升文理专题7选修部分第1讲选修44坐标系与参数方程课件新人教版
![高考数学二轮复习第2部分专题篇素养提升文理专题7选修部分第1讲选修44坐标系与参数方程课件新人教版](https://img.taocdn.com/s3/m/57017fd34a7302768f9939d1.png)
典例3 (2020·南平三模)在平面直角坐标系 xOy 中,以原点
O 为极点,以 x 轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为
ρ=1-c2os
θ,直线
l1
的参数方程为xy==ttcsions
α α
(t 为参数),π2<α<π,点 A
为直线 l1 与曲线 C 在第二象限的交点,过 O 点的直线 l2 与直线 l1 互相垂 直,点 B 为直线 l2 与曲线 C 在第三象限的交点.
19
1.(2020·中原区校级模拟)在平面直角坐标系 xOy 中,以坐标原点为 极点,x 轴正半轴为极轴建立极坐标系,曲线 C1:ρ=4sin θ,曲线 C2:ρ =4cos θ.
(1)求曲线 C1 与 C2 的直角坐标方程; (2)若直线 C3 的极坐标方程为 θ=π3(ρ∈R),设 C3 与 C1 和 C2 的交点 分别为 M,N,求|MN|.
25
典例2 (2020·河南模拟)在平面直角坐标系 xOy 中,曲线 C
的
参
数
方
程
为
x=2cos α y= 3sin α
(α
为参数),直线
l 的参数方程为
x=1+tcos α y=tsin α
(t 为参数).
(1)求曲线 C 和直线 l 的一般方程;
(2)已知点 P(1,0),直线 l 和曲线 C 交于 A,B 两点,若|PA|·|PB|=152,
14
典例1 (2020·沙坪坝区校级模拟)在平面直角坐标系 xOy 中, 以原点 O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线 C1 的极坐标
方程为
ρ=2acosθ,曲线
C2
的极坐标方程为
7.3坐标系与参数方程PPT课件
![7.3坐标系与参数方程PPT课件](https://img.taocdn.com/s3/m/b289ca515e0e7cd184254b35eefdc8d376ee148f.png)
考点二 参数方程与普通方程的互化
例 2 (1)(2013·江苏)在平面直角坐标系 xOy 中,直线 l 的参数
方
程
为
x=t+1, y=2t
(t
为参数),曲线
C 的参数方程为
本 讲 栏
x=2tan2θ, y=2tan θ
(θ 为参数).试求直线 l 和曲线 C 的普通方程,
目 开
并求出它们的公共点的坐标.
因此 M(cos α+cos 2α,sin α+sin 2α).
热点分类突破
专题七 第3讲
M 的轨迹的参数方程为
本
x=cos α+cos 2α, y=sin α+sin 2α
(α 为参数,0<α<2π).
讲
栏 目
②M 点到坐标原点的距离
开
关 d= x2+y2= 2+2cos α(0<α<2π).
当 α=π,d=0,故 M 的轨迹过坐标原点.
∴e=
ac22=
3b32-b2 b2=
23=
6 3.
热点分类突破
专题七 第3讲
(2)在平面直角坐标系 xOy 中,以原点 O 为极点,x 轴为极轴
本 讲
建立极坐标系,曲线
C1
的参数方程为x=tan1 φ, y=tan12φ
(φ 为参
栏
目 数),曲线 C2 的极坐标方程为 ρ(cos θ+sin θ)=1,若曲线 C1
P、Q
都在曲线
C:xy==22scions
t, t
(t 为参数)上,对应参数分别为 t=α 与 t=2α(0<α<2π),M 为
本 PQ 的中点.
讲 栏
①求 M 的轨迹的参数方程;
【新】高考数学二轮复习专题七选修系列第1讲坐标系与参数方程课时规范练文
![【新】高考数学二轮复习专题七选修系列第1讲坐标系与参数方程课时规范练文](https://img.taocdn.com/s3/m/170cbf62c850ad02de8041d0.png)
第1讲 坐标系与参数方程(选修4-4)1.(2017·江苏卷)在平面坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t 2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s (s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.(导学号 55410137)解:由⎩⎪⎨⎪⎧x =-8+t ,y =t 2消去t ,得l 的普通方程为x -2y +8=0,因为点P 在曲线C 上,设点P (2s 2,22s ). 则点P 到直线l 的距离d =|2s 2-42s +8|5=2(s -2)2+45,所以当s =2时,d 有最小值45=455. 2.(2016·北京卷改编)在极坐标系中,已知极坐标方程C 1:ρcos θ-3ρsin θ-1=0,C 2:ρ=2cos θ.(1)求曲线C 1,C 2的直角坐标方程,并判断两曲线的形状; (2)若曲线C 1,C 2交于A ,B 两点,求两点间的距离. 解:(1)由C 1:ρcos θ-3ρsin θ-1=0, 所以x -3y -1=0,表示一条直线. 由C 2:ρ=2cos θ,得ρ2=2ρcos θ. 所以x 2+y 2=2x ,则(x -1)2+y 2=1, 所以C 2是圆心为(1,0),半径为1的圆. (2)由(1)知,点(1,0)在直线x -3y -1=0上, 因此直线C 1过圆C 2的圆心.所以两交点A ,B 的连线段是圆C 2的直径, 因此两交点A ,B 间的距离|AB |=2r =2.3.(2017·全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.解:(1)直线l 1:⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数)化为普通方程y =k (x -2).① 直线l 2化为普通方程x +2=ky .② 联立①,②消去k ,得x 2-y 2=4(y ≠0). 所以C 的普通方程为x 2-y 2=4(y ≠0). (2)将直线l 3化为普通方程为x +y =2, 联立⎩⎨⎧x +y =2,x 2-y 2=4得⎩⎪⎨⎪⎧x =322,y =-22,所以ρ2=x 2+y 2=184+24=5,所以与C 的交点M 的极径为 5.4.(2017·西安调研)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π6=4.(导学号 55410138)(1)写出曲线C 的极坐标方程和直线l 的直角坐标方程;(2)若射线θ=π3与曲线C 交于O ,A 两点,与直线l 交于B 点,射线θ=11π6与曲线C 交于O ,P 两点,求△PAB 的面积.解:(1)由⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),消去θ.普通方程为(x -2)2+y 2=4.从而曲线C 的极坐标方程为ρ2-4ρcos θ=0,即ρ=4cos θ,因为直线l 的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π6=4,即32ρsin θ+12ρcos θ=4,所以直线l 的直角坐标方程为x +3y -8=0.(2)依题意,点A ⎝ ⎛⎭⎪⎫2,π3,B ⎝⎛⎭⎪⎫4,π3,联立射线θ=11π6与曲线C 的极坐标方程可得,P ⎝ ⎛⎭⎪⎫23,11π6.所以|AB |=2,所以S △PAB =12×2×23sin ⎝ ⎛⎭⎪⎫π3+π6=2 3.5.(2016·全国卷Ⅱ)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程是ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153. 6.(2017·长郡中学联考)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =1+t sin α(t 为参数,0≤α<π),以坐标原点O 为极点,x 轴的正半轴为极轴,并取相同的长度单位,建立极坐标系,曲线C 1:ρ=1.(1)若直线l 与曲线C 1相交于点A ,B ,点M (1,1),证明:|MA |·|MB |为定值; (2)将曲线C 1上的任意点(x ,y )作伸缩变换⎩⎨⎧x ′=3x ,y ′=y后,得到曲线C 2上的点(x ′,y ′),求曲线C 2的内接矩形ABCD 周长的最大值.解:(1)由ρ=1得ρ2=1,所以曲线C 1的直角坐标方程为x 2+y 2=1.①又直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =1+t sin α,代入①式得t 2+2t (cos α+sin α)+1=0.所以t 1t 2=1,由参数t 的几何意义,得|MA |·|MB |=|t 1t 2|=1.(2)由⎩⎨⎧x ′=3x ,y ′=y 得曲线C 2:x 23+y 2=1.所以曲线C 2的参数方程为⎩⎨⎧x =3cos θ,y =sin θ.不妨设点A (m ,n )在第一象限,θ∈⎝⎛⎭⎪⎫0,π2.利用对称性,矩形ABCD 的周长为4(m +n )=4(3cos θ+sin θ)=8sin ⎝ ⎛⎭⎪⎫θ+π3≤8,当θ=π6时,等号成立,故周长最大值为8.7.(2016·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t(t 为参数,a >0).在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解:(1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2,C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,所以a =1(a >0).当a =1时,极点也为C 1,C 2的公共点,在直线C 3上. 所以实数a =1.8.(2017·乐山二模)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos θ,y =t sin θ(t 为参数,0≤θ<π),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=-4cos α,圆C 的圆心到直线l 的距离为32.(导学号 55410139)(1)求θ的值;(2)已知P (1,0),若直线l 与圆C 交于A ,B 两点,求1|PA |+1|PB |的值.解:(1)由直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos θ,y =t sin θ(t 为参数,0≤θ<π),消去参数t ,可得:x sin θ-y cos θ-sin θ=0.圆C 的极坐标方程为ρ=-4cos α,即ρ2=-4ρcos α. 所以圆C 的普通坐标方程为x 2+y 2+4x =0, 则C (-2,0).所以圆心C (-2,0)到直线l 的距离d =|-2sin θ-sin θ|sin 2 θ+cos 2θ=3sin θ. 由题意d =32,即3sin θ=32,则sin θ=12,因为0≤θ<π,所以θ=π6或θ=5π6. (2)已知P (1,0),点P 在直线l 上,直线l 与圆C 交于A ,B 两点,将⎩⎪⎨⎪⎧x =1+t cos θ,y =t sin θ代入圆C 的普通坐标方程x 2+y 2+4x =0,得(1+t cos θ)2+(t sin θ)2+4(1+t cos θ)=0, 所以t 2+6t cos θ+5=0.设A ,B 对应参数为t 1,t 2,则t 1+t 2=-6cos θ,t 1·t 2=5, 因为t 1·t 2>0,t 1,t 2是同号.所以1|PA |+1|PB |=1|t 1|+1|t 2|=|t 1|+|t 2||t 1t 2|=335.。
第七章平面直角坐标系专题《巧用面积法求坐标》教案
![第七章平面直角坐标系专题《巧用面积法求坐标》教案](https://img.taocdn.com/s3/m/c0e6cbb7988fcc22bcd126fff705cc1754275f70.png)
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-在解决实际问题时,例如“已知矩形的对角线顶点坐标,求矩形的另一个顶点坐标”,学生需要学会抓住关键信息,忽略次要信息,建立正确的数学模型。难点在于引导学生如何从复杂的实际问题中提炼出关键信息,进行有效建模。
本节课的教学难点与重点是紧密围绕课本内容,注重培养学生解决实际问题的能力。在教学过程中,教师需针对这些难点与重点进行有针对性的讲解和指导,确保学生能够透彻理解并掌握本节课的知识。
-能够将实际问题转化为数学模型,运用面积法求解坐标:培养学生建立数学模型解决问题的能力,将所学知识应用于解决实际问题。
举例解释:
-在讲解面积法求解坐标时,重点强调三角形的面积计算公式,以及如何将这个公式应用于坐标求解。
-通过示例题,如“已知三角形ABC的三个顶点坐标,求顶点D的坐标(D点在坐标轴上)”,引导学生掌握将实际问题转化为数学模型的过程。
3.重点难点解析:在讲授过程中,我会特别强调面积法的基本原理和坐标与面积的关系这两个重点。对于难点部分,我会通过实际例题和图形分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与面积法求坐标相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过操作,演示面积法的基本原理。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
初三年级上册数学专题07网格(坐标系)中的旋转作图及旋转证明(典题精析)
![初三年级上册数学专题07网格(坐标系)中的旋转作图及旋转证明(典题精析)](https://img.taocdn.com/s3/m/a4392f89b9f3f90f76c61b90.png)
微专题七__网格(坐标系)中的旋转作图及旋转证明__[学生用书A30]一网格(坐标系)中的旋转作图(教材P62习题23.1第4题)如图1,分别画出△ABC绕点O逆时针旋转90°和180°后的图形.图1解:如答图,△A1B1C1是△ABC绕点O逆时针旋转90°后的图形;△A2B2C2是旋转180°后的图形.教材母题答图【思想方法】网格(坐标系)中旋转作图的一般步骤:①找出原图形中的关键点;②确定旋转中心、旋转角及旋转方向;③根据旋转的性质作出关键点的对应点;④按原图的关键点连接顺序连接作出的所有点,并标上相应字母.[2018·青岛]如图2,将线段AB绕点P按顺时针方向旋转90°,得到线段A′B′,其中点A,B的对应点分别是点A′,B′,则A′点的坐标是(D)图2A.(-1,3)B.(4,0)C.(3,-3)D.(5,-1)[2017·威海]如图3,A点的坐标为(-1,5),B点的坐标为(3,3),C 点的坐标为(5,3),D点的坐标为(3,-1).小明发现线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是__(1,1)或(4,4)__.图3【解析】先根据点A,B的坐标建立坐标系,当A和C,B和D为对应点时,如答图①,旋转中心是(1,1);当A和D,B和C为对应点时,如答图②,旋转中心是(4,4).变形2答图[2017·齐齐哈尔]如图4,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(-3,4),B(-5,2),C(-2,1).(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2.图4变形3答图解:(1)如答图,△A1B1C1即为所求;(2)如答图,△A2B2C2即为所求.二旋转证明(教材P63习题23.1第10题)如图5,△ABD,△AEC都是等边三角形.BE与DC有什么关系?你能用旋转的性质说明上述关系成立的理由吗?图5解:BE=DC.理由:∵△ABD是等边三角形,∴AB=AD,∠BAD=60°,同理得AE=AC,∠EAC=60°,∴以点A为旋转中心将△ABE顺时针旋转60°就得到△ADC,∴△ABE≌△ADC,∴BE=DC.【思想方法】旋转前后的图形全等,借此可以在较复杂的图形中发现等量(或全等)关系,或通过旋转(割补)图形,把分散的已知量聚合起来,便于找到解题突破口,疏通解题思路.[2017·舟山改编]如图6,一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12cm(如图①),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是__12(3-1)cm__.现将三角板DEF绕点G按顺时针方向旋转60°(如图②),则点H的初位置与旋转后的末位置间的距离是__(12-63)cm__.(结果保留根号)图6变形1答图【解析】如答图,作HM⊥BC于M,设HM=x,则MC=x,BM=3x,∴x+3x=12,解得x=6(3-1),BH=2x=12(3-1)cm;当三角板DEF绕点G按顺时针方向旋转60°时,点F恰好落在AB上的点H1处,△CGH1为等边三角形,作H1N⊥BC于N,则GH1=6cm,NH1=33cm,BH1=63cm,HH1=BH1-BH=63-12(3-1)=(12-63)cm.如图7,将一个钝角三角形ABC(其中∠ABC=120°)绕点B顺时针旋转得到△A1BC1,使得C点落在AB边延长线上的点C1处,连接AA1.图7(1)写出旋转角的度数;(2)求证:∠A1AC=∠C1.解:(1)旋转角的度数为60°;(2)证明:∵∠ABC=∠A1BC1=120°,∴∠ABA1=∠CBC1=60°,∴∠A1BC=60°.∵AB=A1B,∴△ABA1是等边三角形,∴∠AA1B=∠A1BC=60°,∴AA1∥BC,∴∠A1AC=∠C.∵△ABC≌△A1BC1,∴∠C=∠C1,∴∠A1AC=∠C1.[2018·绍兴]小敏思考解决如下问题:原题:如图8①,点P,Q分别在菱形ABCD的边BC,CD上,∠P AQ=∠B,求证:AP=AQ.图8(1)小敏进行探索,若将点P,Q的位置特殊化:把∠P AQ绕点A旋转得到∠EAF,使AE⊥BC,点E,F分别在边BC,CD上,如图②,此时她证明了AE=AF.请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图③,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明.(3)如果在原题中添加条件:AB=4,∠B=60°,如图①.请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).解:(1)证明:在菱形ABCD中,∠B+∠C=180°,∠B=∠D,AB=AD,∵∠EAF=∠B,∴∠C+∠EAF=180°,∴∠AEC+∠AFC=180°,∵AE⊥BC,∴∠AEB=∠AEC=90°,∴∠AFC=∠AFD=90°,∴△AEB≌△AFD,∴AE=AF.(2)证明:∵∠PAQ=∠B,∴∠C+∠P AQ=180°,∴∠APC+∠AQF=180°,∵∠APC+∠APE=180°,∴∠AQF=∠APE,又∵∠AEP=∠AFQ=90°,AE=AF,∴△AEP≌△AFQ,∴AP=AQ.(3)不唯一,举例如下:层次1:①求∠D的度数.答案:∠D=60°.②分别求∠BAD,∠BCD的度数.答案:∠BAD=∠BCD=120°.③求菱形ABCD的周长.答案:16.④分别求BC,CD,AD的长.答案:4,4,4.层次2:①求PC+CQ的值.答案:4.②求BP+QD的值.答案:4.③求∠APC+∠AQC的值.答案:180°.层次3:①求四边形APCQ的面积.答案:4 3.②求△ABP与△AQD的面积和.答案:4 3.③求四边形APCQ周长的最小值.答案:4+4 3.[2018·烟台]【问题解决】一节数学课上,老师提出了这样一个问题:如图9①,点P是正方形ABCD内一点,PA=1,PB=2,PC=3,你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB 的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP′B,连接PP′,求出∠APB 的度数.(1)请参考小明的思路,任选一种写出完整的解答过程.【类比探究】(2)如图②,若点P是6正方形ABCD外一点,P A=3,PB=1,PC=11,求∠APB 的度数.图9解:(1)选思路一:如答图①,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∵PB=P′B=2,∠P′BP=90°,∴PP′=22,∠BPP′=45°.又∵AP′=CP=3,AP=1,∴AP2+P′P2=1+8=9=P′A2,∴∠APP′=90°,∴∠APB=45°+90°=135°.变形4答图(2)如答图②,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∵PB=P′B=1,∠P′BP=90°,∴PP′=2,∠BPP′=45°.又∵AP′=CP=11,AP=3,∴AP2+P′P2=9+2=11=P′A2,∴∠APP′=90°,∴∠APB=90°-45°=45°.观察可知每2次变换,A点向左平移1个单位,故A2018为A向左平移1009个单位,即A2-20172,。
【创新课堂】高考数学总复习 专题07 第1节 空间几何体的结构及其三视图和直观图课件 文
![【创新课堂】高考数学总复习 专题07 第1节 空间几何体的结构及其三视图和直观图课件 文](https://img.taocdn.com/s3/m/bed47e34ef06eff9aef8941ea76e58fafab04544.png)
()
A. ①② B. ②③ C. ①③ D. ②④
4. 如图,几何体的正视图和侧视图都正确的是 ( )
5. 如图是利用斜二测画法画出的△ABO的直观图,已知O′B′=4, A′B′∥y′轴,且△ABO的面积为16,过A′作A′C′⊥x′轴,则A′C′的 长为________.
答案:
1. C 解析:由棱柱定义可判断,最简单的棱柱为三棱柱,故C
答案:2 3 解析:由正视图和俯视图可知几何体是正方体切割后的一部分
(四棱锥C1ABCD),还原在正方体中,如图所示.
多面体最长的一条棱即为正方体的体对角线,
由正方体棱长AB=2知最长棱的长为2 3
9.若一个底面是正三角形的直三棱柱的正视图如图所示,
则其侧面积等于
()
A. 3
B.2
C.2 3
D.6
图1
图2
高考体验
(2012 高考浙江文 3)已知某三棱锥的三视图(单位:cm)如图 所示,则该三棱锥的体积是
A.1cm3 B.2cm3 C.3cm3 D.6cm3
【答案】C
【解析】由题意判断出,底面是一个直角三角形,两个直角
边分别为 1 和 2,整个棱锥的高由侧视图可得为 3,所以三棱
锥的体积为
1 3
3. D 解析:由母线的定义可知①、③错.
4. B 解析:注意实、虚线的区别.
5.2 2 解析:由题意知,在△ABO中,边OB上的高AB=16/4*2=8,
则在直观图中A′B′=4,∴A′C′=A′B′sin 45°=4*
2 2 2. 2
6.如图所示,矩形O′A′B′C′是水平放置的一个平面图形的直观 图,其中O′A′=6 cm,O′C′=2 cm,则原图形是 ( )
第七讲坐标系中的几何问题(包含答案)
![第七讲坐标系中的几何问题(包含答案)](https://img.taocdn.com/s3/m/1ff8babcbcd126fff6050b10.png)
中考数学重难点专题讲座第七讲 坐标系中的几何问题【前言】前面六讲我们研究了几何综合题及代数综合题的各种方面,相信很多同学都已经掌握了。
但是中考中,最难的问题往往都是几何和代数混杂在一起的,一方面涉及函数,坐标系,计算量很大,另一方面也有各种几何图形的性质体现。
所以往往这类问题都会在最后两道题出现,而且基本都是以多个小问构成。
此类问题也是失分最高的,往往起到拉开分数档次的关键作用。
作为想在中考数学当中拿高分甚至满分的同学,这类问题一定要重视。
此后的两讲我们分别从坐标系中的几何以及动态几何中的函数两个角度出发,去彻底攻克此类问题。
第一部分 真题精讲【例1】2010,石景山,一模已知:如图1,等边ABC ∆的边长为x 轴上且()10A ,AC 交y 轴于点E ,过点E 作EF ∥AB 交BC 于点F .(1)直接写出点B C 、的坐标;(2)若直线()10y kx k =-≠将四边形EABF 的面积两等分,求k 的值;(3)如图2,过点A B C 、、的抛物线与y 轴交于点D ,M 为线段OB 上的一个动点,过x 轴上一点()2,0G -作DM 的垂线,垂足为H ,直线GH 交y 轴于点N ,当M 点在线段OB 上运动时,现给出两个结论:① GNM CDM ∠=∠ ②MGN DCM ∠=∠,其中有且只有一个结论是正确的,请你判断哪个结论正确,并证明.图2图1【思路分析】 很多同学一看到这种题干又长条件又多又复杂的代几综合压轴题就觉得头皮发麻,稍微看看不太会做就失去了攻克它的信心。
在这种时候要慢慢将题目拆解,条分缕析提出每一个条件,然后一步一步来。
第一问不难,C 点纵坐标直接用tg60°来算,七分中的两分就到手了。
第二问看似较难,但是实际上考生需要知道“过四边形对角线交点的任意直线都将四边形面积平分”这一定理就轻松解决了,这个定理的证明不难,有兴趣同学可以自己证一下加深印象。
由于EFAB 还是一个等腰梯形,所以对角线交点非常好算,四分到手。
【专题课件】人教版七年级下册第七章《平面直角坐标系》第一课:有序数对及平面直角坐标系
![【专题课件】人教版七年级下册第七章《平面直角坐标系》第一课:有序数对及平面直角坐标系](https://img.taocdn.com/s3/m/7555905bb7360b4c2e3f64e1.png)
合作与交流:
A
类似于利用数
C
轴确定直线上点的
位置,能不能找到
一种方法来确定平
面内的点的位置呢?
D B
一、平面直角坐标系的概念 y
5
在平面内画两条
互相垂直的数轴,
4
构成平面直角坐
3
标系.
2
1
-4 -3 -2 -1 O -1
x轴与y轴的交点叫平
-2
面直角坐标系的原点. -3
-4
竖直的叫y轴或纵轴; y轴取向上为正方向
y
D (-3,3)
C (3,3)
A (-3,-3)
B (3,-3)
x
当堂练习
1.请你根据下列各点的坐标判定它们分别在第 几象限或在什么坐标轴上?
A(-5,2)
第二象限
E(1,8)
第一象限
B (3,-2) C(0,4) D(-6,0)
第四象限 y轴的正半轴上 x轴的负半轴上
F(0,0) G(5,0) H(-6,-4) M (0,-3)
数对表示物体的位置. (重点、难点)
导入新课
情境引入
周末小明父子俩 去电影院看国产大 片《湄公河行动》 ,买了两张票去观 看,座位号分别是7 排9号和7排11号.怎 样才能既快又准地 找到座位?
讲授新课
有序数对的定义及应用
思考1 在班里老师想找一个学生,你知道是谁吗? 提示1 只给一个数据“第2列”,你能确定老师 要找的学生是谁吗? 提示2 给出两个数据“第2列,第3排”,你能 确定是谁了吗?
预祝
此 次 片区 活
(E,3) (E,1) (C,5) (D,4) (A,1) (D,3)
动圆
满成功 !
高中数学专题:极坐标与参数方程
![高中数学专题:极坐标与参数方程](https://img.taocdn.com/s3/m/fe961e128e9951e79a89274c.png)
综上,所求C1的方程为y=-43|x|+2.
第7页
栏目导航
2.(2018·全国卷Ⅱ)在直角坐标系xOy中,曲线C的参数方程为
x=2cos y=4sin
θ, θ
(θ为
参数),直线l的参数方程为xy= =12+ +ttcsions
α, α
(t为参数).
(1)求C和l的直角坐标方程;
(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.
x=
2 2 sin
2α,
y=-
22-
2 2 cos
2α
α为参数,π4<α<34π.
第28页
栏目导航
2.(2019·西安模拟)在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.
(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(2)直线l的参数方程是xy= =ttcsions
α, α
(t为参数),l与C交于A,B两点,|AB|=
10,
求l的斜率.
第29页
栏目导航
解:(1)由x=ρcos θ,y=ρsin θ可得,圆C的极坐标方程为ρ2+12ρcos θ+11=0.
(2)在(1)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).
设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程得ρ2+ 12ρcos α+11=0.
第一部分 高考层级专题突破 层级二 7个保分专题 师生共研
第1页
栏目导航
专题七 选修系列(4) 第一讲 极坐标与参数方程
第2页
栏目导航
栏 目 导 航
第3页
栏目导航
感悟真题 考点突破 课时跟踪检测
参数方程(7-25)
![参数方程(7-25)](https://img.taocdn.com/s3/m/69af02996bec0975f465e2ff.png)
第2讲 坐标系与参数方程编者:郭红霞 审核:曹金凤考纲要求:方程的互化,常见曲线的参数方程及参数方程的简单应用.以极坐标、参数方程与普通方程的互化为主要考查形式,同时考查直线与曲线位置关系等解析几何知识.高考中以解答题形式出现,中档难度.预习案知识与方法 见《步步高》P57 考题再现:1、(2010江苏卷21)在极坐标系中,已知圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a=0相切,则实数a 的值是___________。
2、(2011江苏卷21)在平面直角坐标系xOy 中,过椭圆5cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)的右焦点且与直线423x ty t=-⎧⎨=-⎩(t 为参数)平行的直线的普通方程是___________。
3、(2012江苏 21)已知圆C 经过点()4P π,,圆心为直线sin 3ρθπ⎛⎫-= ⎪⎝⎭与极轴的交点,则圆C 的极坐标方程是 。
4、(2013年江苏21)在平面直角坐标系xoy 中,直线l 的参数方程为⎩⎨⎧=+=ty t x 21(t 为参数),曲线C 的参数方程为⎩⎨⎧==θθtan 2tan 22y x (θ为参数),它们公共点的直角坐标是 。
探究案考点一 极坐标与直角坐标的互化例1 在以O 为极点的极坐标系中,直线l 与曲线C 的极坐标方程分别是ρcos(θ+π4)=32和ρsin 2θ=8cos θ,直线l 与曲线C 交于点A 、B ,求线段AB 的长.考点二 参数方程与普通方程的互化例2已知动点P 、Q 都在曲线C :⎪⎩⎪⎨⎧==ty tx sin 2cos 2 (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. ①求M 的轨迹的参数方程;②将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.考点三 极坐标与参数方程的综合应用例3 在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧+==ααsin 22cos 2y x (α为参数).M 是C 1上的动点,P 点满足OP →=2OM →,点P 的轨迹为曲线C 2. (1)求C 2的参数方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB .训练案1.已知曲线C的参数方程为13()x y t t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数,0t >).则曲线C 的普通方程是______。
2024年七年级数学下册专题7.1 平面直角坐标系【八大题型】(举一反三)(人教版)(解析版)
![2024年七年级数学下册专题7.1 平面直角坐标系【八大题型】(举一反三)(人教版)(解析版)](https://img.taocdn.com/s3/m/3f92ea5624c52cc58bd63186bceb19e8b9f6ec7e.png)
专题7.1 平面直角坐标系【八大题型】【人教版】【题型1 判断点所在的象限】 (1)【题型2 坐标轴上点的坐标特征】 (3)【题型3 点到坐标轴的距离】 (4)【题型4 平行与坐标轴点的坐标特征】 (6)【题型5 坐标确定位置】 (8)【题型6 点在坐标系中的平移】 (11)【题型7 图形在坐标系中的平移】 (13)【题型8 图形在格点中的平移变换】 (15)【题型1 判断点所在的象限】【例1】(2022春•洪山区期末)已知点P(x,y)在第四象限,则点Q(﹣x﹣3,﹣y)在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第四象限的横纵坐标范围,可求得x,y的取值范围,再确定Q点横纵坐标的取值范围即可解答.【解答】解:点P(x,y)在第四象限,∴x>0,y<0,∴﹣x﹣3<0,﹣y>0,∴点Q(﹣x﹣3,﹣y)在第二象限.故选:B.【变式1-1】(2022春•长沙期末)已知点P(﹣a,b),ab>0,a+b<0,则点P在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据有理数的乘法、有理数的加法,可得a、b的符号,根据第一象限内点的横坐标大于零,纵坐标大于零,可得答案.【解答】解:因为ab>0,a+b<0,所以a<0,b<0,所以﹣a>0,所以点P(﹣a,b)在第四象限,故选:D.【变式1-2】(2022春•青山区期末)已知,点A的坐标为(m﹣1,2m﹣3),则点A一定不会在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据每个象限点的坐标的符号特征列出不等式组,解不等式组,不等式组无解的选项符合题意.【解答】解:A选项,{m―1>02m―3>0,解得:m>32,故该选项不符合题意;B选项,{m―1<02m―3>0,不等式组无解,故该选项符合题意;C选项,{m―1<02m―3<0,解得:m<1,故该选项不符合题意;D选项,{m―1>02m―3<0,解得:1<m<32,故该选项不符合题意;故选:B.【变式1-3】(2022春•晋州市期中)对任意实数x,点P(x,x2+3x)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】利用各象限内点的坐标性质分析得出答案.【解答】解:当x>0,则x2+3x>0,故点P(x,x2+3x)可能在第一象限;当x<0,则x2+3x>0或x2+3x<0,故点P(x,x2+3x)可能在第二、三象限;当x=0时,点P(x,x2+3x)在原点.故点P(x,x2+3x)一定不在第四象限.故选:D.均为0.【题型2 坐标轴上点的坐标特征】【例2】(2022春•陇县期中)在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点P (m﹣1,1﹣m)在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据x轴上的点纵坐标为0,可得m+1=0,从而求出m的值,进而求出点P的坐标,最后根据平面直角坐标系中每一象限点的坐标特征,即可解答.【解答】解:由题意得:m+1=0,∴m=﹣1,当m=﹣1时,m﹣1=﹣2,1﹣m=2,∴点P(﹣2,2)在第二象限,故选:B.【变式2-1】(2022春•海淀区校级期中)在平面直角坐标系中,点P的坐标为(2m﹣4,m+1),若点P在y轴上,则m的值为( )A.﹣1B.1C.2D.3【分析】根据y轴上的点横坐标为0,可得2m﹣4=0,然后进行计算即可解答.【解答】解:由题意得:2m﹣4=0,解得:m=2,故选:C.【变式2-2】(2022春•仓山区校级期中)已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用x轴以及y轴上点的坐标得出m,n的值,进而得出答案.【解答】解:∵点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,∴2m+3=0,n﹣4=0,解得:m=―32,n=4,则点C(m,n)在第二象限.故选:B.【变式2-3】(2022春•东莞市期中)已知点P(2a﹣4,a+1),若点P在坐标轴上,则点P 的坐标为 .【分析】分两种情况:当点P在x轴上,当点P在y轴上,分别进行计算即可解答.【解答】解:分两种情况:当点P在x轴上,a+1=0,∴a=﹣1,当a=﹣1时,2a﹣4=﹣6,∴点P的坐标为:(﹣6,0),当点P在y轴上,2a﹣4=0,∴a=2,当a=2时,a+1=3,∴点P的坐标为:(0,3),综上所述,点P的坐标为:(﹣6,0)或(0,3),故答案为:(﹣6,0)或(0,3).【题型3 点到坐标轴的距离】【例3】(2022春•巴南区期末)已知点P在x轴的下方,若点P到x轴的距离是3,到y 轴的距离是4,则点P的横坐标与纵坐标的和为 .【分析】根据题意可得点P在第三象限或第四象限,再根据点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵点P在x轴下方,点P到x轴的距离是3,到y轴的距离是4,∴点P的横坐标为±4,纵坐标为﹣3,∴点P的坐标为(4,﹣3)或(﹣4,﹣3),点P的横坐标与纵坐标的和为4﹣3=1或﹣4﹣3=﹣7.故答案为:1或﹣7.【变式3-1】(2021秋•城固县期末)已知点M(a,b)在第一象限,点M到x轴的距离等于它到y轴距离的2倍,且点M到两坐标轴的距离之和为6,则点M的坐标为 .【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,可得答案.【解答】解:因为点M(a,b)在第一象限,所以a>0,b>0,又因为点M(a,b)在第一象限,点M到x轴的距离等于它到y轴距离的2倍,且点M 到两坐标轴的距离之和为6,所以{b=2aa+b=6,解得{a=2b=4,所以点M的坐标为(2,4).故答案为:(2,4).【变式3-2】(2022春•云阳县期中)坐标平面内有一点A(x,y),且点A到x轴的距离为3,到y轴的距离恰为到x轴距离的2倍.若xy<0,则点A的坐标为( )A.(6,﹣3)B.(﹣6,3)C.(3,﹣6)或(﹣3,6)D.(6,﹣3)或(﹣6,3)【分析】根据题意可得x,y异号,然后再利用点到x的距离等于纵坐标的绝对值,点到y 的距离等于横坐标的绝对值,即可解答.【解答】解:∵xy<0,∴x,y异号,∵点A到x轴的距离为3,到y轴的距离恰为到x轴距离的2倍,∴点A(6,﹣3)或(﹣6,3),故选:D.【变式3-3】(2021秋•阳山县期末)在平面直角坐标系中,点A的坐标是(3a﹣5,a+1).若点A到x轴的距离与到y轴的距离相等,且点A在y轴的右侧,则a的值为( )A.1B.2C.3D.1 或3【分析】根据点A到x轴的距离与到y轴的距离相等可得3a﹣5=a+1或3a﹣5=﹣(a+1),解出a的值,再由点A在y轴的右侧可得3a﹣5>0,进而可确定a的值.【解答】解:∵点A到x轴的距离与到y轴的距离相等,∴3a﹣5=a+1或3a﹣5=﹣(a+1),解得:a=3或1,∵点A在y轴的右侧,∴点A的横坐标为正数,∴3a﹣5>0,∴a>5 3,∴a=3.故选:C.【题型4 平行与坐标轴点的坐标特征】【例4】(2022春•东莞市期末)在平面直角坐标系中,点A的坐标为(3,2),AB平行于x轴,若AB=4,则点B的坐标为( )A.(7,2)B.(1,5)C.(1,5)或(1,﹣1)D.(7,2)或(﹣1,2)【分析】线段AB∥x轴,A、B两点纵坐标相等,又AB=4,B点可能在A点左边或者右边,根据距离确定B点坐标.【解答】解:∵AB∥x轴,∴A、B两点纵坐标都为2,又∵AB=4,∴当B点在A点左边时,B(﹣1,2),当B点在A点右边时,B(7,2);故选:D.【变式4-1】(2022春•延津县期中)在平面直角坐标系中,点A(﹣2,1),B(2,3),C (a,b),若BC∥x轴,AC∥y轴,则点C的坐标为( )A.(﹣2,1)B.(2,﹣3)C.(2,1)D.(﹣2,3)【分析】根据已知条件即可得到结论.【解答】解:∵点A(﹣2,1),B(2,3),C(a,b),BC∥x轴,AC∥y轴,∴b=3,a=﹣2,∴点C的坐标为(﹣2,3),故选:D.【变式4-2】(2022春•涪陵区期末)在平面直角坐标系中,若点P和点Q的坐标分别为P (﹣2,m),Q(﹣2,1),点P在点Q的上方,线段PQ=5,则m的值为( )A.6B.5C.4D.7【分析】借助图形,采用数形结合的思想求解.【解答】解:∵P(﹣2,m),Q(﹣2,1),点P在点Q的上方,线段PQ=5,∴m=1+5=6.故选:A.【变式4-3】(2022春•硚口区期中)如图,已知点A(4,0),B(0,2),C(﹣5,0),CD∥AB交y轴于点D.点P(m,n)为线段CD上(端点除外)一点,则m与n满足的等量关系式是( )A.m+2n=﹣5B.2m+n=﹣10C.m﹣n=﹣5D.2m﹣n=﹣6【分析】利用平移的性质可得点B与C对应时,点A的对应点为(﹣1,﹣2),由此可确定点P满足的等量关系式.【解答】解:∵AB∥CD,A(4,0),B(0,2),C(﹣5,0),当B与C对应时,点A平移后对应的点是(﹣1,﹣2),∵点P(m,n)为线段CD上(端点除外)一点,将点C(﹣5,0)和(﹣1,﹣2)分别代入m+2n=﹣5,2m+n=﹣10,m﹣n=﹣5,2m﹣n=﹣6中,只有m+2n=﹣5满足条件.故选:A.【题型5 坐标确定位置】【例5】(2022春•中山市期中)中国象棋具有悠久的历史,战国时期,就有了关于象棋的正式记载,如图是中国象棋棋局的一部分,如果用(2,﹣1)表示“炮”的位置,(﹣2,0)表示“士”的位置,那么“将”的位置应表示为( )A.(﹣2,3)B.(0,﹣5)C.(﹣3,1)D.(﹣4,2)【分析】直接利用已知点坐标建立平面直角坐标系,进而得出答案.【解答】解:如图所示:“将”的位置应表示为(﹣3,1).故选:C.【变式5-1】(2021秋•渠县校级期中)在大型爱国主义电影《长津湖》中,我军缴获了敌人防御工程的坐标地图碎片(如图),若一号暗堡坐标为(1,2),四号暗堡坐标为(﹣3,2),指挥部坐标为(0,0),则敌人指挥部可能在( )A.A处B.B处C.C处D.D处【分析】根据一号暗堡和四号暗堡的横纵坐标分别确定x轴和y轴的大致位置,然后画出直角坐标系即可得到答案.【解答】解:∵一号暗堡的坐标为(1,2),四号暗堡的坐标为(﹣3,2),∴它们的连线平行于x轴,∵一号暗堡和四号暗堡的纵坐标为正数,四号暗堡离y轴要远,如图,∴B点可能为坐标原点,∴敌军指挥部的位置大约是B处.故选:B.【变式5-2】(2022春•朝阳区期末)为更好的开展古树名木的系统保护工作,某公园对园内的6棵百年古树都利用坐标确定了位置,并且定期巡视.(1)在如图所示的正方形网格中建立平面直角坐标系xOy,使得古树A、B的位置分别表示为A(1,2),B(0,﹣1);(2)在(1)建立的平面直角坐标系xOy中,①表示古树C的位置的坐标为 ;②标出另外三棵古树D(﹣1,﹣2),E(1,0),F(1,1)的位置;③如果“(﹣2,﹣2)→(﹣2,﹣1)→(﹣2,0)→(﹣2,1)→(﹣1,2)→(0,2)→(1,2)→(1,1)→(1,0)→(1,﹣1)→(0,﹣1)→(0,﹣2)→(﹣1,﹣2)”表示园林工人巡视古树的一种路线,请你用这种形式画出园林工人从原点O出发巡视6棵古树的路线(画出一条即可).【分析】(1)根据A(1,2),B(0,﹣1)建立坐标系即可;(2)①根据坐标系中C的位置即可求得;②直接根据点的坐标描出各点;③根据6棵古树的位置得出运动路线即可.【解答】解:(1)如图:(2)①古树C的位置的坐标为(﹣1,2);故答案为:(﹣1,2);②标出D(﹣1,﹣2),E(1,0),F(1,1)的位置如上图;③园林工人从原点O出发巡视6棵古树的路线:(0,0)→(1,0)→(1,1)→(1,3)→(﹣1,2)→(﹣1,2)→(0,1).【变式5-3】(2022春•海淀区校级期中)如图1,将射线OX按逆时针方向旋转β角(0°≤β<360°),得到射线OY,如果点P为射线OY上的一点,且OP=m,那么我们规定用(m,β)表示点P在平面内的位置,并记为P(m,β).例如,图2中,如果OM=5,∠XOM=110,那么点M在平面内的位置,记为M(5,110°),根据图形,解答下列问题:(1)如图3,点N在平面内的位置记为N(6,30°),那么ON= ,∠XON= .(2)如果点A、B在平面内的位置分别记为A(4,30°),B(3,210°),则A、B 两点间的距离为 .【分析】(1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x 轴所夹的角的度数;(2)根据相应的度数判断出AB 是一条线段,从而得出AB 的长为4+3=7.【解答】解:(1)根据点N 在平面内的位置记为N (6,30°)可知,ON =6,∠XON =30°.故答案为:6,30°;(2)如图所示:∵A (4,30°),B (3,210°),∴∠AOX =30°,∠BOX =210°,∴∠AOB =180°,∵OA =4,OB =3,∴AB =4+3=7.故答案为:7.) 【例6】(2022春•洪湖市期中)在平面直角坐标系中,将点(1,﹣4)平移到点(﹣3,﹣2),经过的平移变换为( )A .先向左平移4个单位长度,再向下平移6个单位长度B .先向右平移4个单位长度,再向上平移6个单位长度C .先向左平移4个单位长度,再向上平移2个单位长度)向左平移a 个单位再向上平移b 个单向下平移b 个单位D.先向右平移4个单位长度,再向下平移2个单位长度【分析】根据点向左平移,纵坐标不变的特点即可求解.【解答】解:∵点(1,﹣4)平移到点(﹣3,﹣2),∴﹣3﹣1=﹣4,∴﹣2﹣(﹣4)=2,∴先向左平移4个单位长度,再向上平移2个单位长度故选:C.【变式6-1】(2022春•武侯区期末)在平面直角坐标系中,将点M(3m﹣1,m﹣3)向上平移2个单位长度得到点M',若点M'在x轴上,则点M的坐标是( )A.(2,﹣2)B.(14,2)C.(﹣2,―103)D.(8,0)【分析】让点M的纵坐标加2后等于0,求得m的值,进而得到点M的坐标.【解答】解:∵将点M(3m﹣1,m﹣3)向上平移2个单位长度得到点M',若点M'在x 轴上,∴m﹣3+2=0,解得:m=1,∴3m﹣1=2,m﹣3=﹣2,∴M(2,﹣2).故选:A.【变式6-2】(2022春•碑林区校级期中)在平面直角坐标系中,将点P(a,b)向右平移3个单位,再向下平移2个单位,得到点Q.若点Q位于第四象限,则a,b的取值范围是( )A.a>0,b<0B.a>1,b<2C.a>1,b<0D.a>﹣3,b<2【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【解答】解:P(a,b)向右平移3个单位,再向下平移2个单位得到(a+3,b﹣2),∵Q位于第四象限,∴a+3>0,b﹣2<0,∴a>﹣3,b<2.故选D.【变式6-3】(2021秋•苏州期末)在平面直角坐标系中,把点P(a﹣1,5)向左平移3个单位得到点Q(2﹣2b,5),则2a+4b+3的值为 .【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:将点P(a﹣1,5)向左平移3个单位,得到点Q,点Q的坐标为(2﹣2b,5),∴a﹣1﹣3=2﹣2b,∴a+2b=6,∴2a+4b+3=2(a+2b)+3=2×6+3=15,故答案为:15.【例7】(2022春•胶州市期末)如图,△ABC的顶点坐标A(2,3),B(1,1),C(4,2),将△ABC先向左平移3个单位,再向下平移1个单位,得到△A'B'C',则BC边上一点D(m,n)的对应点D'的坐标是( )A.(m+3,n+1)B.(m﹣3,n﹣1)C.(﹣1,2)D.(3﹣m,1﹣n)【分析】根据坐标平移规律解答即可.【解答】解:∵将△ABC先向左平移3个单位,再向下平移1个单位,得到△A'B'C',∴BC边上一点D(m,n)的对应点D'的坐标是(m﹣3,n﹣1).故选:B.【变式7-1】(2022•青岛二模)如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段A'B'有一个点P'(a,b),则点P'在AB上的对应点P的坐标为( )A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)【分析】先利用点A它的对应点A′的坐标特征得到线段AB先向右平移2个单位,再向下平移3个单位得到线段A′B′,然后利用点平移的坐标规律写出点P(a,b)平移后的对应点P′的坐标.【解答】解:由图知,线段A'B'向右平移2个单位,再向下平移3个单位即可得到线段AB,所以点P'(a,b)在AB上的对应点P的坐标为(a+2,b﹣3),故选:D.【变式7-2】(2022春•滨城区期中)如图,第一象限内有两点P(m﹣4,n),Q(m,n﹣3),将线段PQ平移,使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是( )A.(﹣2,0)B.(0,3)C.(0,3)或(﹣4,0)D.(0,3)或(﹣2,0)【分析】设平移后点P、Q的对应点分别是P′、Q′.分两种情况进行讨论:①P′在y 轴上,Q′在x轴上;②P′在x轴上,Q′在y轴上.【解答】解:设平移后点P、Q的对应点分别是P′、Q′.分两种情况:①P′在y轴上,Q′在x轴上,则P′横坐标为0,Q′纵坐标为0,∵0﹣(n﹣3)=﹣n+3,∴n﹣n+3=3,∴点P平移后的对应点的坐标是(0,3);②P′在x轴上,Q′在y轴上,则P′纵坐标为0,Q′横坐标为0,∵0﹣m=﹣m,∴m﹣4﹣m=﹣4,∴点P平移后的对应点的坐标是(﹣4,0);综上可知,点P平移后的对应点的坐标是(0,3)或(﹣4,0).故选:C.【变式7-3】(2022春•如东县期中)三角形ABC在经过某次平移后,顶点A(﹣1,m+2)的对应点为A(2,m﹣3),若此三角形内任意一点P(a,b)经过此次平移后对应点P1(c,d).则a+b﹣c﹣d的值为( )A.8+m B.﹣8+m C.2D.﹣2【分析】由A(﹣1,2+m)在经过此次平移后对应点A1(3,m﹣3),可得△ABC的平移规律为:向右平移3个单位,向下平移5个单位,由此得到结论.【解答】解:∵A(﹣1,2+m)在经过此次平移后对应点A1(2,m﹣3),∴△ABC的平移规律为:向右平移3个单位,向下平移5个单位,∵点P(a,b)经过平移后对应点P1(c,d),∴a+3=c,b﹣5=d,∴a﹣c=﹣3,b﹣d=5,∴a+b﹣c﹣d=﹣3+5=2,故选:C.【题型8 图形在格点中的平移变换】【例8】(2021春•抚远市期末)在平面直角坐标系xOy中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(﹣3,﹣1),点N的坐标为(3,﹣2).(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对应点为B.①点M平移到点A的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;②点B的坐标为 ;(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求△ABC的面积.【分析】(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;(2)割补法求解可得.【解答】解:(1)如图,①点M平移到点A的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;②点B的坐标为(6,3),故答案为:右、3、上、5、(6,3);(2)如图,S△ABC=6×4―12×4×4―12×2×3―12×6×1=10.【变式8-1】(2022春•长沙期末)如图,△ABC的顶点A(﹣1,4),B(﹣4,﹣1),C (1,1).若△ABC向右平移4个单位长度,再向下平移3个单位长度得到△A'B'C',且点C的对应点坐标是C'.(1)画出△A'B'C',并直接写出点C'的坐标;(2)若△ABC内有一点P(a,b)经过以上平移后的对应点为P',直接写出点P'的坐标;(3)求△ABC的面积.【分析】(1)首先确定A、B、C三点平移后的对应点位置,然后再连接即可;(2)由平移的性质可求解;(3)利用面积的和差关系可求解.【解答】解:(1)如图所示:∴点C(5,﹣2);(2)∵△ABC向右平移4个单位长度,再向下平移3个单位长度得到△A'B'C',∴点P'(a+4,b﹣3);(3)S△ABC=5×5―12×3×5―12×2×3―12×5×2=25﹣7.5﹣3﹣5=9.5.【变式8-2】(2022春•江岸区校级月考)如图,三角形A′B′C′是由三角形ABC经过某种平移得到的,点A与点A′,点B与点B′,点C与点C′分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:(1)分别写出点B和点B′的坐标,并说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的;(2)连接BC′,直接写出∠CBC′与∠B′C′O之间的数量关系 ;(3)若点M(a﹣1,2b﹣5)是三角形ABC内一点,它随三角形ABC按(1)中方式平移后得到的对应点为点N(2a﹣7,4﹣b),求a和b的值.【分析】(1)由图形可得出点的坐标和平移方向及距离;(2)根据平移的性质和平角的定义和平行线的性质即可求解;(3)根据以上所得平移方式,利用“横坐标,右移加,左移减;纵坐标,上移加,下移减”的规律列出关于a、b的方程,解之求得a、b的值.【解答】解:(1)由图知,B(2,1),B′(﹣1,﹣2),三角形A′B′C′是由三角形ABC向左平移3个单位,向下平移3个单位得到的;(2)∠CBC′与∠B′C′O之间的数量关系∠CBC′﹣∠B′C′O=90°.故答案为:∠CBC′﹣∠B′C′O=90°;(3)由(1)中的平移变换得a﹣1﹣3=2a﹣7,2b﹣5﹣3=4﹣b,解得a=3,b=4.故a的值是3,b的值是4.【变式8-3】(2021春•安阳县期中)在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A ,A' .(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.【分析】(1)根据已知图形可得答案;(2)由A(1,0)的对应点A′(﹣4,4)得平移规律,即可得到答案;(3)由(2)平移规律得出m、n的方程.【解答】解:(1)由图知A(1,0),A'(﹣4,4),故答案为:(1,0),(﹣4,4);(2)A(1,0)对应点的对应点A′(﹣4,4)得A向左平移5个单位,向上平移4个单位得到A′,三角形A'B'C'是由三角形ABC向左平移5个单位,向上平移4个单位得到.(3)△ABC内M(m,4﹣n)平移后对应点M'的坐标为(m﹣5,4﹣n+4),∵M'的坐标为(2m﹣8,n﹣4),∴m﹣5=2m﹣8,4﹣n+4=n﹣4,∴m=3,n=6.。
课件:高二理科数学第二章参数方程专题(7)
![课件:高二理科数学第二章参数方程专题(7)](https://img.taocdn.com/s3/m/716148dadd36a32d727581df.png)
4.把下列极坐标方程化为直角坐标方程. (1)ρ2cos 2θ=1;
(2)ρ=2cos(θ-π4). 解:(1)因为ρ2cos 2θ=1, 所以ρ2cos2θ-ρ2sin2θ=1. 所以化为直角坐标方程为x2-y2=1. (2)因为 ρ=2cos θcosπ4+2sin θsinπ4= 2cos θ+ 2sin θ, 所以 ρ2= 2ρcos θ+ 2ρsin θ. 所以化为直角坐标方程为 x2+y2- 2x- 2y=0.
数方程为yx==44scions
θ, θ
(θ 为参数).
(1)求直线 l 和圆 C 的普通方程;
(2)若直线 l 与圆 C 有公共点,求实数 a 的取值范围.
【解】 (1)直线 l 的普通方程为 2x-y-2a=0, 圆 C 的普通方程为 x2+y2=16. (2)因为直线 l 与圆 C 有公共点, 故圆 C 的圆心到直线 l 的距离 d=|-25a|≤4, 解得-2 5≤a≤2 5.
3. 进行直角坐标方程与极坐标方程的互化: (1)y2=4x;(2)x2+y2-2x-1=0; (3)ρ=2-c1os θ. [思路点拨] 将方程的互化转化为点的互化:
x=ρcos θ, ρ2=x2+y2,
y=ρsin θ,
tan
θ=xyx≠0.
[解] (1)将 x=ρcos θ,y=ρsin θ 代入 y2=4x,
4 所以x 2, 2 所以普通方程是x2 y, x 2, 2 .
例2、求参数方程
x
y
|
cos
2 1 (1 2
sin
2
sin )
|, (0
2
)
表示
(
)
(((BCA)))抛双双物曲曲线线线的的的一一一部支支分,,,这这这支支部过过分点点过(((–11,1,12, 12)112):);; (D)抛物线的一部分,这部分过(–1,2 )