HDB3码型变换实验
[信息与通信]通信原理实验AMIHDB3CMI码型变换波形图
1. 将KX01拔去,使CMI编码输入数据悬空(全0码)。测 量TPX05,输出数据为01码,说明具有丰富的时钟信息。 2. 测量CMI译码输出数据是否与发端一致。 3. 观测译码同步信号。
返回
CMI码编码规则测试
7位m序列
15位m序列
返回
1码状态记忆测量
7位m序列,1码是00/11编码,而0码 不编码跟在1码后保持1码的状态
7. 抗连0码性能测试
CMI码编码规则测试
实验步骤:
1. 观测TPX01和TPX05,用TPX01同步,分析编码 输出数据是否与编码理论一致。 2.将KX02设置在1_2位置,重复上一步骤测量。
返回
1码状态记忆测量
实验步骤:
1. 观测TPX01和1码状态记忆输出TPX03,用TPX01 同步,根据观测结果,分析是否符合相互关系。
第四部分 码型变换技术
实验一 AMI/HDB3码型变换实验 实验二 CMI码型变换实验
返回
实验一 AMI/HDB3码型变换实验
实验目的:
1.了解二进制单极性码变换为 AMI/HDB3码的编码规则
2.熟悉HDB3码的基本特征; 3.熟悉HDB3码的编译码器工作
原理和实现方法; 4.根据测量和分析结果,画出电
15位m序列,1码是00/11编码,而0码 不编码跟在1码后保持1码的状态
返回
CMI码解码波形测试
7位m序列,输入数据与解码数据除时延外一一对应
返回
CMI码编码加错波形观测
加错时的译码输出数据与不加错时不同
返回
CMI码检错功能测试
KX01放在Dt时,TPX06与TPY05
KX01设置在M位置,TPY05无错指示
HDB3码型变换实验.
5、解码部分 解码电路完成恢复位定时再生码的功能, 原理框图如图5-4所示,各部分功能如 下:
IN
HDB3
单 一 双 极 性 变 换 电 路
判 决 电 路
破 坏 点 检 测 电 路
去 除 取 代 电 路
位 定 时 恢 复 电 路
位 定 时
图5-4 解码部分的原理方框图
(1) 双—单极性变换电路 传输线来的HDB3码加入本电路,输入端与外线路匹 配,经变压器将双极性脉冲分成两路单极性的脉冲。 (2) 判决电路 本电路选用合适的判决电平以去除信码经信道传输 之后引入的干扰信号。信码经判决电路之后成为半占空 (请思考为什么要形成半占空码?)的两路信号,相加 后成为一路单极性归“0”信码,送到定时恢复电路和信 码再生电路。 (3) 破坏点检测电路 本电路输入B+和B-两个脉冲序列。由HDB3编码 规则已知在破坏点处会出现相同极性的脉冲,就是说这 时B+和B-不是依次而是连续出现的,所以可以由此 测出破坏点。本电路在V脉冲出现的时刻有输出脉冲。
1.0
非 归 零 码
HDB3
归一化功率谱
AMI
0.5
0.5
fT
1.0
图5-2 HDB3码的频谱示意图
4、编码部分 编码电路接收终端机来的单极性归零信码,并把这种 变换成为HDB3码送往传输信道。编码部分的原理框图 如图5-3所示,各部分功能如下所述: 单极性信码进入本电路,首先检测有无四连“0”码。没 有四连“0”时,信码不改变地通过本电路;有四连“0” 时,在第四个“0”码出现时,将一个“1”码放入信号 中,取代第四个“0”码,补入“1”码称为V码。
三、基本原理
通信原理第一次HDB3码实验报告
HDB3码型变换实验班级:2013级电子一班姓名:王少阳学号:201300800134第一部分:(1)用示波器分别观测编码输入的数据TH3和编码输出的数据TH1(HDB3输出),观察记录波形,有数字示波器的可以观测编码输出信号频谱,验证HDB3编码规则。
(2)保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP2 (HDB3-A1),观察基带码元的奇数位的变换波形。
(3)保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP3 (HDB3-B1),观察基带码元的偶数位的变换波形。
(4)用示波器分别观测模块8的TP2(HDB3-A1)和TP3(HDB3-B1),可从频域角度观察信号所含256KHz频谱分量情况;或用示波器减法功能观察HDB3-A1与HDB3-B1相减后的波形情况,,并与HDB3编码输出波形相比较。
(5)用示波器对比观测编码输入的数据和译码输出的数据,观察记录HDB3译码波形与输入信号波形。
思考:译码过后的信号波形与输入信号波形相比延时多少?答:波形相比延迟了五个时钟周期。
(6)用示波器分别观测TP4(HDB3-A2)和TP8(HDB3-B2),从时域或频域角度了解HDB3码经电平变换后的波形情况。
(7)用示波器分别观测模块8的TH7(HDB3输入)和TH6(单极性码),从频域角度观测双极性码和单极性码的256KHz频谱分量情况。
(8)用示波器分别观测编码输入的时钟和译码输出的时钟,观察比较恢复出的位时钟波形与原始位时钟信号的波形。
思考:此处输入信号采用的单极性码,可较好的恢复出位时钟信号,如果输入信号采用的是双极性码,是否能观察到恢复的位时钟信号,为什么?答:不能。
因为采用双极性码时,接收时钟信号与发出的时钟信号不同步。
第二部分:(1)用示波器分别观测编码输入的数据TH3和编码输出的数据TH1(HDB3输出),观察记录波形,有数字示波器的可以观测编码输出信号频谱,验证HDB3编码规则。
hdb3码型变换实验
HDB3码型变换实验一、实验目的1、了解几种常用的数字基带信号的特征和作用。
2、掌握 HDB3码的编译规则。
3、了解滤波法位同步在的码变换过程中的作用。
二、实验步骤实验工程一:HDB3编译码〔256KHz归零码实验〕1、用示波器分别观测编码输入的数据TH3和编码输出的数据TH1(HDB3输出):输入数据TH3位于上方,编码为:110101111…输出数据TH1位于下方,从4bit位开场为:+1 -1 0 +1 0 -1 +1 -1此处采用了HDB3的归零码编码,符合编码规则,延迟4bit。
2、保持示波器测量编码输入数据TH3的通道不变,另一通道中间测试点TP2〔HDB3-A1〕:以上图和TH3的比照可以知道,在延迟4bit后,可以得到在TH3的奇数位为1信号,则得到变换波形为1〔码元占空比50%〕,否则为0。
3、保持示波器测量编码输入数据TH3的通道不变,另一通道中间测试点TP3〔HDB3-B1〕:以上图和TH3的比照可以知道,在延迟4bit后,可以得到在TH3的偶数位为1信号,则得到变换波形为1〔码元占空比50%〕,否则为0。
4、用示波器分别观测模块8的TP2〔HDB3-A1〕和TP3〔HDB3-B1〕:通过3,4的分析,从上图中可以看出TP2与TP3的减法可以得到HDB3码,说明是通过这样的方法来得到HDB3码的。
5、用示波器比照观测编码输入的数据和译码输出的数据:从上图可以看出,输入与输出的数据形状是一样的,但是输出滞后了8bit.6、用示波器分别观测TP4(HDB3-A2)和TP8(HDB3-B2):从图中可以看出,在经过点评变换后,TP1与编码后的HDB3-A1一样,即奇数码元变换波形;TP1与编码后的HDB3-A2一样,即偶数码元变换波形。
7、用示波器菲苾观测模块8的TH7〔HDB3输入)和TH6(单极性码):从图中可以看出,HDB3码与单极性码在同一时间的1、0信号位置一样,不同的是双极性的是+1,-1交替出现。
AMIHDB3码型变换实验
(一)实验中遇到的主要问题及解决方法
(二)实验心得
(三)意见与建议(没有可省略)
五、指导教师评语
成绩
批阅人
日期
1.AMI码编码规则验证
(1)将输入信号选择跳线开关KD01设置在M位置(右端)、单/双极性码输出选择开关设置KD02设置在2_3位置(右端)、AMI/HDB3编码开关KD03设置在AMI位置(右端),使该模块工作在AMI码方式。
(2)将CMI编码模块内的跳线开关KX01设置在2_3位置(右端),将CMI编码模块内的M序列类型选择跳线开关KX02设置在2_3位置(右端),产生7位周期m序列。用示波器同时观测输入数据TPD01和AMI输出双极性编码数据TPD05波形及单极性编码数据TPD08波形,观测时用TPD01同步。分析观测输入数据与输出数据关系是否满足AMI编码关系,画下一个M序列周期的测试波形。
(3)将CMI编码模块内的M序列类型选择跳线开关KX02设置在2_3位置(右端),产生7位周期m序列。重复上译步骤测量,记录测试结果。问:此时HDB3编码和译码的的数据时延是多少,为什么?
实验报告
实验报告
四、实验小结(包括问题和解决方法、心得体会、意见与建议等)
中文五号宋体,英文五号Times new roman字体,1.25倍行距
(3)将CMI编码模块内的M序列类型选择跳线开关KX02设置在1_2位置(左端),产生15位周期m序列。重复上述测试步骤,记录测试结果。
(4)使输入数据端口悬空产生全1码(方法同1),重复上述测试步骤,记录测试结果。
(5)使输入数据为全0码(方法同1),重复上述测试步骤,记录测试结果。
通信原理实验 HDB3码型变换 实验报告
姓名:学号:班级:第周星期第大节实验名称:HDB3码型变换一、实验目的1.掌握AMI编码规则,编码和解码原理。
2.掌握HDB3编码规则,编码和解码原理。
3.了解锁相环的工作原理和定时提取原理。
4.了解输入信号对定时提取的影响。
5.了解信号的传输时延。
6.了解AMI/HDB3编译码集成芯片CD22103。
二、实验仪器1.ZH5001A通信原理综合实验系统2.20MHz双踪示波器三、实验内容1.HDB3码变换规则验证(1)通过KX02的设置,产生7位周期m序列。
用示波器观测如下数据:(3)拔除KD01,输入数据为全1码。
用示波器观测如下数据:(4)KD01跳线中间接地,输入数据为全0码。
用示波器观测如下数据:♦输入数据(TPD01),HDB3输出单极性码数据(TPD08)2.HDB3码译码和时延测试(2)KD01设置为M;通过KX02的设置,产生7位周期m序列;KP02设置在HDB3位置。
用示波器观测如下数据:输入数据(TPD01),HDB3译码输出数据(TPD07)8个时钟周期3.HDB3编码信号中同步时钟分量定性观测(1)通过KX02的设置,产生7位周期m序列;KP02设置在HDB3位置;KD01设置为输入m序列;KD02分别设置为单极性码输出和双极性码输出。
用示波器观测如下数据:♦M序列,单极性码时同步时钟分量(TPP01)♦M序列,双极性码时同步时钟分量(TPP01)♦M序列,双极性码时放大后同步时钟分量(TPP02)(2)KD01设置为输入全1序列。
用示波器观测如下数据:♦全1序列时单极性码时同步时钟分量(TPP01)(3)KD01设置为输入全0序列。
用示波器观测如下数据:得到了正弦信号。
结论:●HDB3单极性码含有时钟分量;双极性码不含有时钟分量或是较少的时钟分量。
●HDB3码是否含有时钟分量与发送的序列无关,无论是M序列,全0码,全1码4.HDB3译码位定时恢复测量(1)通过KX02的设置,产生7位周期m序列;KP02设置在HDB3位置。
AMIHDB3CMI码型变换实验
实验七AMI/HDB3/CMI码型变换实验一、实验原理在实际的基带传输系统中,并不是所有码字都能在信道中传输。
例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变。
同时,一般基带传输系统都从接收到的基带信号流中提取收定时信号,而收定时信号却又依赖于传输的码型,如果码型出现长时间的连“0”或连“1”符号,则基带信号可能会长时间的出现0电位,从而使收定时恢复系统难以保证收定时信号的准确性。
实际的基带传输系统还可能提出其他要求,因而对基带信号也存在各种可能的要求。
归纳起来,对传输用的基带信号的主要要求有两点:1.对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型;2.对所选码型的电波波形要求,期望电波波形适宜于在信道中传输。
前一问题称为传输码型的选择;后一问题称为基带脉冲的选择。
这是两个既有独立性又有互相联系的问题,也是基带传输原理中十分重要的两个问题。
传输码(传输码又称为线路码)的结构将取决于实际信道特性和系统工作的条件。
在较为复杂的基带传输系统中,传输码的结构应具有下列主要特性:1.能从其相应的基带信号中获取定时信息;2.相应的基带信号无直流成分和只有很小的低频成分;3.不受信息源统计特性的影响,即能适应于信息源的变化;4.尽可能地提高传输码型的传输效率;5.具有内在的检错能力,等等。
满足或部分满足以上特性的传输码型种类繁多,主要有:AMI、HDB3、CMI码等等。
(一)AMI码AMI码的全称是传号交替反转码。
这是一种将消息代码0(空号)和1(传号)按如下规则进行编码的码:代码的0仍变换为传输码的0,而把代码中的1交替地变换为传输码的+1、–1、+1、–1…由于AMI码的传号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0电位保持不变的规律。
由此看出,这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。
由AMI码的编码规则看出,它已从一个二进制符号序列变成了一个三进制符号序列,即把一个二进制符号变换成一个三进制符号。
AMI和HDB3码型变换试验.
AMI/HDB3 码型变换实验一、实验目的了解二进制单极性码变换为AMI/HDB3 码的编码规则;熟悉HDB3 码的基本特征;熟悉HDB3 码的编译码器工作原理和实现方法; 根据测量和分析结果,画出电路关键部位的波形;二、实验内容AMI 码编码规则验证AMI 码译码和时延测量AMI 编码信号中同步时钟分量定性观测AMI 译码位定时恢复测量HDB3 码变换规则验证HDB3 码译码和时延测量HDB3 编码信号中同步时钟分量定性观测HDB3 译码位定时恢复测量三、实验仪器1.JH5001通信原理综合实验系统一台2.20MHz 双踪示波器一台四、原理与电路AMI 码的全称是传号交替反转码。
这是一种将消息代码0(空号和1(传号按如下规则进行编码的码:代码的0 仍变换为传输码的0,而把代码中的 1 交替地变换为传输码的+1、-、+1、-1…由于AMI 码的传号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0 电位保持不变的规律。
由此看出,这种基带信号无直流成分,且只有很小的低频成分, 因而它特别适宜在不允许这些成分通过的信道中传输。
由AMI 码的编码规则看出,它已从一个二进制符号序列变成了一个三进制符号序列,即把一个二进制符号变换成一个三进制符号。
把一个二进制符号变换成一个三进制符号所构成的码称为1B/1T 码型。
AMI 码除有上述特点外,还有编译码电路简单及便于观察误码情况等优点,它是一种基本的线路码,并得到广泛采用。
但是,AMI 码有一个重要缺点,即接收端从该信号中来获取定时信息时,由于它可能出现长的连0串,因而会造成提取定时信号的困难。
为了保持AMI 码的优点而克服其缺点,人们提出了许多种类的改进AMI码,HDB3码就是其中有代表性的一种。
HDB3AMI非归零码HDB3码的全称是三阶高密度双极性码。
它的编码原理是这样的:先把消息代码变换成AMI码,然后去检查AMI码的连0串情况,当没有4个以上连0串时,则这时的AMI 码就是HDB3码;当出现4个以上连0串时,则将每4个连0小段的第4个0变换成与其前一非0符号(+1或-同极性的符号。
HDB3码型变换实验报告
HDB3码型变换实验报告实验报告:HDB3码型变换实验摘要:本实验通过使用HDB3编码技术实现了二进制数据的高密度编码和解码。
通过此实验,我们了解了HDB3编码的原理和过程,并验证了其在数据传输中的有效性和稳定性。
一、引言HDB3码型(High Density Bipolar Three Zero)是一种高密度双极三零编码方法,主要用于在数字通信系统中将二进制串转换为双极信号传输。
HDB3码型通过对数据串进行特定规则的编码,使得传输的信号中没有长时间的直流成分,从而提高了信号的稳定性和抗干扰性。
本实验通过编写程序,模拟HDB3编码过程,并通过软件实现数据的编码和解码。
二、实验原理1.编码过程HDB3编码过程中,每四个连续的0通过特定规则映射为一个与前面信号相反的双极信号,并在此信号的前后分别插入额外的零信号。
具体编码规则如下:-如果输入数据位为1,则保持信号不变。
-如果输入数据位为0,并且前面连续的0的个数为偶数,则将该输入数据位变换为与前面信号相反的双极信号。
-如果输入数据位为0,并且前面连续的0的个数为奇数,则将该输入数据位变换为与前面信号相同的双极信号,并在这个信号的前后分别插入额外的零信号。
2.解码过程HDB3解码过程中,根据出现的信号序列对双极信号进行解码,并还原为二进制数据串。
具体解码规则如下:-如果连续出现的双极信号为0,则输出0。
-如果连续出现的双极信号为正或负信号,则输出1,并通过观察插入的零信号个数来判断是否需要进行数据位反转。
三、实验步骤1.编写HDB3编码程序,实现编码过程。
2.编写HDB3解码程序,实现解码过程。
3.设计测试数据,包括正常数据和噪声数据,用于验证编码和解码的有效性和稳定性。
4.运行编码程序,将测试数据进行编码,并输出编码结果。
5.运行解码程序,将编码结果进行解码,并输出解码结果。
6.对比解码结果与原始数据,验证编码和解码的正确性。
四、实验结果经过实验,我们得到了准确的编码和解码结果,与原始数据完全一致。
北交通原实验1 HDB3码型变换
通信系统原理实验报告HDB3码型变换姓名学号班级成员老师时间2014年11月30日一、实验目的1、掌握HDB3编码规则、编码和解码原理。
2、了解锁相环的工作原理和定时提取原理。
3、了解输入信号对定时提取的影响4、了解信号的传输时延二、实验仪器1、ZH5001A通信原理综合实验系统一台2、20MHz双踪示波器一台三、实验内容(一)实验原理1、HDB3编码规则HDB3码全称三阶高密度双极性码,属伪三进制码。
主要是为了应对AMI码中连“0”过多不易提取缺点而对AMI码进行改进的结果。
它的编码规则是:(1)当连“0”码的个数不大于3时,HDB3编码规律与AMI码相同,即“1”码变为“+1”、“-1”交替脉冲;(2)当代码序列中出现4个连“0”码或超过4个连“0”码时,把连“0”段按4个“0”分节,即“0000”,并使第4个“0”码变为“1”码,用V脉冲表示。
这样可以消除长连“0”现象。
为了便于识别V脉冲,使V脉冲极性与前一个“1”脉冲极性相同。
这样就破坏了AMI码极性交替的规律,所以V脉冲为破坏脉冲,把V脉冲和前三个连“0”称为破坏节“000V”;(3)为使脉冲序列仍不含直流分量,则必须使相邻的破坏点V脉冲极性交替;(4)为了保证(2)(3)两条件成立,必须使相邻的破坏点之间有奇数个“1”码。
如果原序列中破坏点之间的“1”码为偶数个,则必须补为奇数,即将破坏节中的第一个“0”码变为“1”,用B脉冲表示。
这时破坏节变为“B00V”形式。
B脉冲极性与前一“1”脉冲极性相反,而B脉冲极性和V脉冲极性相同。
2、HDB3的译码每个破坏点总与前一非“0”码元同极性。
也就是说,从接收到的信号中找到破坏点V 很容易,而V码及其前面三个码元必为连续的三个“0”,从而将恢复四个连“0”,再将所有“-1”变为“+1”后即可得到原码。
3、编解码电路编译码电路采用集成芯片CD22103实现HDB3的编码工作。
同时电路中采用运放完成对HDB3的输出进行电平变换,将输出变换为单极性或双极性码。
hdb3码型变换实验报告
hdb3码型变换实验报告HDB3码型变换实验报告引言:HDB3码型是一种高密度双极性三零码,广泛应用于数字通信系统中的信号编码。
本实验旨在通过对HDB3码型的变换过程进行实际操作,深入理解其原理和应用。
一、实验目的本实验的主要目的是通过实际操作,掌握HDB3码型的变换过程,并了解其在数字通信系统中的应用。
二、实验原理HDB3码型是一种基于双极性三零码的信号编码方式。
它的原理是通过对信号进行特定规则的变换,将原始数据转换为HDB3码型。
在HDB3码型中,每个数据位通过特定规则的变换后,可以表示为正脉冲、负脉冲或无脉冲。
这种编码方式可以有效地降低传输线上的直流成分,并提高传输效率。
三、实验步骤1. 准备实验设备:计算机、信号发生器、示波器等。
2. 连接信号发生器和示波器,并设置合适的参数。
3. 打开计算机上的信号发生器软件,并选择HDB3码型。
4. 输入原始数据,并观察示波器上的信号波形。
5. 分析示波器上的波形,观察HDB3码型的变换规律。
6. 记录实验数据,并进行数据分析。
四、实验结果与分析通过实验操作,我们成功地将原始数据转换为HDB3码型,并观察到了信号波形的变化。
根据实验数据和示波器上的波形,我们可以得出以下结论:1. HDB3码型的变换规律:根据HDB3码型的规则,连续两个零位之间的脉冲数目不能超过三个。
当连续两个零位之间的脉冲数目为偶数时,HDB3码型中会插入一个反向脉冲,以保持脉冲数目为偶数;当连续两个零位之间的脉冲数目为奇数时,HDB3码型中会插入一个反向脉冲,并使其后的一个脉冲变为无脉冲,以保持脉冲数目为偶数。
2. HDB3码型的优点:HDB3码型通过特定的编码规则,使得信号波形中的直流成分降低,从而提高了传输效率。
同时,HDB3码型具有较好的抗噪声性能,能够有效地减少传输过程中的误码率。
3. HDB3码型的应用:HDB3码型广泛应用于数字通信系统中,特别是在高速传输环境下。
它可以用于数字电话网络、数字广播、数字电视等领域,有效地提高信号传输的可靠性和稳定性。
AMI-HDB3-码型变换实验
AMI/HDB3 码型变换实验一、实验目的1.了解二进制单极性码变换为AMI/HDB3码的编码规则;2.熟悉HDB3码的基本特征;3.熟悉HDB3码的编译码器工作原理和实现方法;4.根据测量和分析结果,画出电路关键部位的波形;二、实验原理AMI码的全称是传号交替反转码。
这是一种将消息代码0(空号)和1(传号)按如下规则进行编码的码:代码的0仍变换为传输码的0,而把代码中的1交替地变换为传输码的+1、–1、+1、–1……由于AMI码的传号交替反转,这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。
AMI码除有上述特点外,还有编译码电路简单及便于观察误码情况等优点。
但是,AMI码有一个重要缺点,即接收端从该信号中来获取定时信息时,由于它可能出现长的连0串,因而会造成提取定时信号的困难。
为了保持AMI码的优点而克服其缺点,人们提出了许多种类的改进AMI码,HDB3码就是其中有代表性的一种。
HDB3码的全称是三阶高密度双极性码。
它的编码原理是这样的:先把消息代码变换成AMI码,然后去检查AMI码的连0串情况,当没有4个以上连0串时,则这时的AMI码就是HDB3码;当出现4个以上连0串时,则将每4个连0小段的第4个0变换成与其前一非0符号(+1或–1)同极性的符号。
显然,这样做可能破坏“极性交替反转”的规律。
这个符号就称为破坏符号,用V符号表示(即+1记为+V,-1记为–V)。
为使附加V符号后的序列不破坏“极性交替反转”造成的无直流特性,还必须保证相邻V符号也应极性交替。
这一点,当相邻符号之间有奇数个非0符号时,则是能得到保证的;当有偶数个非0符号时,则就得不到保证,这时再将该小段的第1个0变换成+B或–B符号的极性与前一非0符号的相反,并让后面的非0符号从V符号开始再交替变化。
HDB3码的译码比较简单。
从上述原理看出,每一个破坏符号V总是与前一非0符号同极性(包括B在)。
HDB3码型变换实验
实验二HDB3码型变换实验
一、实验目的:
1、了解二进制单极性变换为HDB3码的编码规则,掌握它的工作原理和实现方法。
2、掌握HDB3码的位同步码的提取方法。
二、实验内容:
1、观察HDB3编译码的各种波形。
2、观察全0码和全1码时的HDB3码的编码波形
3、观察从HDB编码信号中提取位同步信号的过程
三、实验原理:略
四、实验步骤:略
五、各测量点参考波形
TP101:下图码元序列为11100000100000001100000011100000
TP102:F=170.6KHz ,占空比为50%的方波
TP105:与TP101双踪. CH2为TP101的波形,码元序列为100000001100000011100000 。
CH1为TP105的波形,波形延迟,其对应的HDB3码为-1000-V000+1-1+B00+V00-1+1-1000-V0+1
TP103: 与TP105双踪.。
CH1为HDB3正极性编码波形,与TP105波形的正极对应
TP104:与TP105双踪。
CH1为HDB3负极性编码波形,与TP105波形的负极对应
TP106: 与TP105双踪。
CH1为TP106的整流后的HDB3波形
TP107:输出为频率和幅度都不确定的正弦波,其频率F=156.7KHZ
TP108:锁相环本振输出,F=170.6kHz,占空比为50%的方波
TP109:位同步信号输出,F=171.0KHz,占空比为50%的方波,波形比TP108的稳定
TP110:解调信号输出,输出信号与输入信号一致。
HDB3码型变换实验
HDB3码型变换实验实验二 HDB3码型变换实验一、实验目的1.理解二进制单极性码变换为AMI码的编码规则,掌握它的工作原理和实现方法;2.理解二进制单极性码变换为HDB3码的编码规则,掌握它的工作原理和实现方法。
二、实验仪器1.HDB3码型变换实验模块2.伪随机码发生器及误码仪3.直流稳压电源JWY-30-44.双踪同步示波器SR85.高频Q表6.频谱分析仪*三、实验原理数字通信系统中,有时不经过数字基带信号与信道信号之间的变换,只由终端设备进行信息与数字基带信号之间的变换,然后直接传输数字基带信号。
数字基带信号的形式有许多种,在基带传输中经常采用AMI码(符号交替反转码)和HDB3码(三阶高密度双极性码)。
1.传输码型在数字复用设备中,内部电路多为一端接地,输出的信码一般是单极性不归零信码。
当这种码在电缆上长距离传输时,为了防止引进干扰信号,电缆的两根线都不能接地(即对地是平衡的),这里就要选用一种适合线路上传输的码型,通常有以下几点考虑:(1)在选用的码型的频谱中应该没有直流分量,低频分量也应尽量少。
这是因为终端机输出电路或再生中继器都是经过变压器与电缆相连接的,而变压器是不能通过直流分量和低频分量的。
(2)传输型的频谱中高频分量要尽量少。
这是因为电缆中信号线之间的串话在高频部分更为严重,当码型频谱中高频分量较大时,就限制了信码的传输距离或传输质量。
(3)码型应便于再生定时电路从码流中恢复位定时。
若信号中连“0”较长,则等效于一段时间没有收脉冲,恢复位定时就困难,所以应该使变换后的码型中连“0”较少。
(4)设备简单,码型变换容易实现。
(5)选用的码型应使误码率较低。
双极性基带信号波形的误码率比单极性信号的低。
根据这些原则,在传输线路上通常采用AMI码和HDB3码。
2.AMI码我们用“0”和“1”代表传号和空号。
AMI码的编码规则是“0”码不变,“1”码则交替地转换为+1和-1。
当码序列是1 0 0 1 0 0 0 1 1 1 0 1时,AMI码就变为:+1 0 0 -1 0 0 0 +1 -1+1 0 -1。
hdb3码型变换实验实验报告
hdb3码型变换实验实验报告HDB3码型变换实验实验报告引言:HDB3码型变换是一种常用的数字信号处理技术,用于在数字通信中传输数据。
本实验旨在通过实际操作,探索HDB3码型变换的原理和应用。
一、实验目的本实验的主要目的是通过实际操纵,了解HDB3码型变换的基本原理和应用,掌握其编码和解码的过程,并通过实验验证其正确性和可靠性。
二、实验原理HDB3码型变换是一种常用的数字信号处理技术,用于在数字通信中传输数据。
它通过对原始数据进行编码,将其转换为特定的信号格式,以便在传输过程中保持信号的稳定性和可靠性。
HDB3码型变换的原理基于两个基本概念:零值替代和脉冲宽度调制。
在HDB3编码中,连续的零值被替换为特定的非零值,以保持传输信号的直流平衡。
同时,脉冲宽度调制技术用于保持信号的稳定性,通过对信号的脉冲宽度进行调整,确保传输过程中的信号完整性。
三、实验步骤1. 准备实验所需材料和设备,包括计算机、HDB3码型变换器等。
2. 连接计算机和HDB3码型变换器,确保信号传输的正常连接。
3. 打开HDB3码型变换器软件,进入编码界面。
4. 输入待编码的原始数据,根据实验要求选择编码方式。
5. 点击“编码”按钮,开始进行HDB3码型变换编码。
6. 观察编码结果,并记录下来。
7. 进行解码实验,将编码结果输入到解码界面。
8. 点击“解码”按钮,进行HDB3码型变换解码。
9. 观察解码结果,并与原始数据进行对比。
10. 分析实验结果,总结HDB3码型变换的特点和应用。
四、实验结果与分析通过实验,我们得到了一组编码结果和解码结果。
经过对比和分析,我们发现HDB3码型变换具有以下特点:1. HDB3码型变换能够有效地保持信号的直流平衡,避免了传输过程中信号的漂移和失真。
2. HDB3码型变换通过替换连续的零值,减少了传输信号中的冗余信息,提高了信号传输的效率。
3. HDB3码型变换的解码过程较为简单,能够快速还原原始数据。
通信原理实验指导书
通信原理实验指导书实验一HDB3码型变换实验一、实验目的1、了解几种常用的数字基带信号的特征和作用。
2、掌握HDB3码的编译规则。
3、了解滤波法位同步在的码变换过程中的作用。
二、实验器材1、主控&信号源、2号、8号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、HDB3编译码实验原理框图HDB3输出信号源PN15数据HDB3编码HDB3-A1电平变换CLK时钟HDB3-B1数据移位输出取绝对值缓存4bitHDB3-A2极性反变换HDB3输入时钟HDB3-B2信号检测译码时钟输入单极性码8#基带传输编译码模块数字锁相环法位同步BS2数字锁相环输入13#载波同步及位同步模块HDB3编译码实验原理框图2、实验框图说明我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。
而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。
当没有连续4个连0时与AMI编码规则相同。
当4个连0时最后一个0变为传号A,其极性与前一个A的极性相反。
若该传号与前一个1的极性不同,则还要将这4个连0的第一个0变为B,B的极性与A相同。
实验框图中编码过程是将信号源经程序处理后,得到HDB3-A1和HDB3-B1两路信号,再通过电平转换电路进行变换,从而得到HDB3编码波形。
同样AMI译码只需将所有的±1变为1,0变为0即可。
而HDB3译码只需找到传号A,将传号和传号前3个数都清0即可。
传号A的识别方法是:该符号的极性与前一极性相同,该符号即为传号。
实验框图中译码过程是将HDB3码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。
四、实验步骤实验项目一HDB3编译码(256KHz归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证HDB3编译码规则。
1、关电,按表格所示进行连线。
源端口信号源:PN据)信号源:CLK 钟)模块8:TH1(HDB3输出)模块8:TH5(单极性码)模块13:TH5(BS2)模块8:TH7(HDB3输入)块模块13:TH7(数字锁相环输入)模块8:TH9(译码时钟输入)数字锁相环位同步提取提供译码位时钟将数据送入译码模模块8:TH4(编码输入-时提供编码位时钟目的端口模块8:TH3(编码输入-数连线说明基带信号输入2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【HDB3编译码】→【256K归零码实验】。
HDB3码型变换
HDB3双极性数据
1
-11-11源自-11-1
1
-1
1
-1
1
-1
输入数据
1
1
1
1
1
1
1
1
1
1
1
1
1
1
全1码输入的时候,HDB3双极性码正负极性交替出现。
输入数据(TPD01),HDB3输出单极性码数据(TPD08)
从示波器中可以看出:
HDB3单极性数据
-1
-1
-1
-1
-1
-1
-1
-1
输入一个周期的数据如下:
HDB3双极性数据
1
-1
0
0
1
0
-1
输入数据
1
1
0
0
1
0
1
(2)输入数据(TPD01),AMI输入单极性码数据(TPD08)
从示波器中可以看出:
HDB3蛋极性数据
-1
-1
0
0
-1
0
-1
-1
-1
0
0
-1
0
-1
输入数据
1
0
1
1
1
0
0
1
0
1
1
1
0
0
(3)拔除KD01,输入数据为全1码。用示波器观测数据如下:
(8)TPD08:HDB3输出(单极性码)。
3、定时提取
位定时提取电路采用锁相环方法。在系统工作中锁相环将接收端的256kHz时钟锁定在发端的256kHz的时钟上,来获得系统的同步时钟。该锁相环模块由锁相环,数字分频器,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
HDB3码型变换实验
HDB3码型变换实验
一、实验目的
1、了解几种常用的数字基带信号的特征和作用。
2、掌握 HDB3码的编译规则。
3、了解滤波法位同步在的码变换过程中的作用。
二、实验步骤
实验项目一:HDB3编译码(256KHz归零码实验)
1、用示波器分别观测编码输入的数据TH3和编码输出的数据
TH1(HDB3输出):
输入数据TH3位于上方,编码为:110101111…
输出数据TH1位于下方,从4bit位开始为:+1 -1 0 +1 0 -1 +1 -1 此处采用了HDB3的归零码编码,符合编码规则,延迟4bit。
2、保持示波器测量编码输入数据TH3的通道不变,另一通道中间
测试点TP2(HDB3-A1):
以上图和TH3的对比可以知道,在延迟4bit后,可以得到在TH3的奇数位为1信号,那么得到变换波形为1(码元占空比50%),否则为0。
3、保持示波器测量编码输入数据TH3的通道不变,另一通道中间
测试点TP3(HDB3-B1):
以上图和TH3的对比可以知道,在延迟4bit后,可以得到在TH3的偶数位为1信号,那么得到变换波形为1(码元占空比50%),否则为0。
4、用示波器分别观测模块8的TP2(HDB3-A1)和TP3(HDB3-B1):
通过3,4的分析,从上图中可以看出TP2与TP3的减法可以得到HDB3码,
说明是通过这样的方法来得到HDB3码的。
5、用示波器对比观测编码输入的数据和译码输出的数据:
从上图可以看出,输入与输出的数据形状是相同的,但是输出滞后了
8bit.
6、用示波器分别观测TP4(HDB3-A2)和TP8(HDB3-B2):
从图中可以看出,在经过点评变换后,TP1与编码后的HDB3-A1相同,即奇数码元变换波形;TP1与编码后的HDB3-A2相同,即偶数码元变换波
形。
7、用示波器菲苾观测模块8的TH7(HDB3输入)和TH6(单极性码):
从图中可以看出,HDB3码与单极性码在同一时间的1、0信号位置相同,不同的是双极性的是+1,-1交替出现。
(码元占空比为50%)
8、用示波器分别观测编码输入的时钟和译码输出的时钟:
编码输入与译码输出时钟具有一定的时间,但频率相同,时钟大致相同。
采用双极性码无法观察到,因为没有离散分量,无法直接提取。
实验项目二:HDB3编译码(256KHz归零码实验)
1、用示波器分别观测编码输入的数据TH3和编码输出的数据
TH1(HDB3输出):
同归零码实验,不过HDB3再在整个码元周期信号连续。
2、保持示波器测量编码输入数据TH3的通道不变,另一通道中间
测试点TP2(HDB3-A1):
以上图和TH3的对比可以知道,在延迟4bit后,可以得到在TH3的奇数位为1信号,那么得到变换波形为1(整个码元周期),否则为0。
3、保持示波器测量编码输入数据TH3的通道不变,另一通道中间
测试点TP3(HDB3-B1):
以上图和TH3的对比可以知道,在延迟4bit后,可以得到在TH3的偶数位为1信号,那么得到变换波形为1(整个码元周期),否则为0。
4、用示波器分别观测模块8的TP2(HDB3-A1)和TP3(HDB3-B1):
通过3,4的分析,从上图中可以看出TP2与TP3的减法可以得到HDB3码,
说明是通过这样的方法来得到HDB3码的。
5、用示波器对比观测编码输入的数据和译码输出的数据:
从上图可以看出,输入与输出的数据形状是相同的,但是输出滞后了8bit.
6、用示波器分别观测TP4(HDB3-A2)和TP8(HDB3-B2):
从图中可以看出,在经过点评变换后,TP1与编码后的HDB3-A1相同,即奇数码元变换波形;TP1与编码后的HDB3-A2相同,即偶数码元变换波
形。
7、用示波器观测模块8的TH7(HDB3输入)和TH6(单极性码):
从图中可以看出,在整个码元周期内,HDB3码与单极性码在同一时间的1、0信号位置相同,不同的是双极性的是+1,-1交替出现。
8、用示波器分别观测编码输入的时钟和译码输出的时钟:
编码输入与译码输出时钟相同,但频率相同。
实验项目三:HDB3码对连0信号的编码、直流分量以及时钟信号提取观测
1、观察含有长连0信号的HDB3编码波形:
码型为11110000,对应的码型应为+1-1+1-1+B00-V,这与途中的现象相
符,首先得到的应该是1111000V,由于连续不断那么两个V之间存在偶数个1,故加上B,从而得到相应的码.
HDB3码在没有四个以上的长连0时,编码规则与AMI码是相同
的;当出现四个以上的长连0时,HDB3码通过长连0最后一个改为V(破坏符:打破正负交替),当两个V之间有偶数个1时,
长连0的第一个改为B,遵循交替规则。
2、观察HDB3编码信号中是否含有直流分量:
编码为初始状态时:
开关拨起:
通过2的分析可知,1的正负交替,加上BV的成对出现,使得HDB3码没有直流成分,这也是改进进AMI码的地方。
3、观察HDB3编码信号所含时钟频谱分量:
上方为时钟,下方为数据信号。
开关全置零:
开关全1:
数据和时钟能恢复,HDB3码和AMI码比较,HDB3码的恢复情况更好。
其原因是HDB3编码信号频谱所含能量比AMI编码信号频谱所含能量多。
实验项目四:CMI码型变换
1、用示波器分别观测编码输入的数据和编码输出的数据:
从图中可以看到,CH1的编码:…0100…,输出延迟6bit后
为…010001…,故验证了CMI编码规则。
2、用示波器分别观测编码输入的数据和译码输出的数据:
从此图中可以看出,当输入为0011时,输出在延迟6bit输出为01011100,故CMI大的延时为6bit。
总结
通过本次实验,对HDB3码的相关性质编解码规则进行了验证,同时熟悉了码变换的过程与形式。
了解编码中能够带来的便利,分析了码型变换。
在本次实验中遇到了很多问题,通过自己的细心观察,验证了通信原理的知识,并利用这些知识对实验进行了相关的指导,本次实验让我受益匪浅,了解边界码过程带来的时间延迟,以及它的实现。