小学解方程的方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学解方程的方法

我在五年级的教学内容中,遇到的主要问题是第九册教材中有关解方程方法的问题。同样,此问题也引起了我的思考,并进行了调查和分析。

《全日制义务教育数学课程标准》要求“会用等式的性质解简单的方程”,也就是说在教学中应该抛弃原来根据四则运算的互逆关系解方程的方法,改为用等式的性质来解方程。那么,利用等式的性质解方程与根据四则运算的互逆关系解方程那种方法学生更易掌握?我做了如下实验:在起初用等式的性质解方程的方法,在后来讲授用四则运算的互逆关系解方程的方法。之后出示相同的习题请学生练习。

利用四则运算的互逆关系解以上2题的整体正确率为96%,出现错误的主要原因是通分或者计算过程马虎。

通过上面的试验完全可以说明两种解题方法中,利用四则运算的互逆关系解方程,学生更容易接受和掌握,而且不存在解方程部分题型不能解或不会解的情况。

既然如此,课标中为何要把学生容易接受和掌握的方法改为用等式的性质来解方程呢?在新课程改革时,一些专家认为小学用算术思路解方程,到了中学却是用等式的基本性质或方程的同解原理来教学解方程,小学的思路对中学代数起步教学有一定影响。因此,在小学阶段改用等式性质解方程用意在于与初中的教学接轨。但是,这样做并没有产生良好的效果。除了上述试验中反映的计算技能的降低外,还表现在以下方面:

1、与课标提倡的算法多样化矛盾

《全日制义务教育数学课程标准》中明确提出:“应重视口算,加强估算,提倡(鼓励)算法多样化”。在“教学建议”第二学段中指出:“教学中应尊重每一个学生的个性特征,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法,用不同的知识解决问题”。通过教学实践,我们也体会到:提倡算法多样化,就是尊重学生的选择,尊重学生的独立思考成果,尽量让学生获得成功体现,充分体现“不同的人在数学上得到不同的发展”的新理念。而解方程正是向学生介绍算数思路与代数思路良好机会,如果为了给学生建立代数思想和解决中小学衔接等问题,而要求利用等式性质解方程,不仅影响了学生的学习效果,也与《全日制义务教育数学课程标准》的理念相悖。

2、影响学生完整知识体系的建立

新教材认为,因为学生尚未学习正负数和分式方程的有关知识,因此a-x=b 和a÷x=b类的方程不适合在小学阶段学习,故而教材将它们回避掉了。然而,绝大部分教师都认为,对于a-x=b和a÷x=b,低年级学生就已经会解决,如一年级学生就会做7-()=4。可学到了五年级,我们却认为学生是不会做的,因而不出现这类方程,这是说不过去的。学习了解方程,却不会解答a-x=b和a÷x=b,这至少是影响了学生完整知识体系的建立。

3、影响学生列方程解决问题的后续学习以及对方程优越性的认识

在列方程解决现实问题时,x当作减数或者当作除数,应当是非常常见也很必要的现象。因为学生如果都能列出后两个方程,那就说明他们已经非常熟悉其中的数量关系了,此时,用算术方法即可,哪还有列方程来解的必要呢?那又怎谈让学生感受方程解法的优越性呢?

针对以上情况,我们又该怎样开展解方程的教学呢?我认为可以以四则运算的互逆关系解方程为主,等式性质解方程为辅向学生介绍这两种不同的方法。既

让学生扎实掌握解方程的技能,又使他们的算术思想和代数思想都有所发展。这样或许能够避免单纯教学算术思路或代数思路解方程而产生的种种问题。

以上种种思考,仅是个人浅陋之见。

相关文档
最新文档