最优化模型-线性规划
1.线性规划
通常是求最大值或 最小值;
2.解决问题的约束条件是一组多个决策变量的线性不
等式或等式。
【例1.2】某商场决定:营业员每周连续工作5天后连续休息2天, 轮流休息。根据统计,商场每天至少需要的营业员如表1.2所示。
表1.2 营业员需要量统计表
min f (x), s.t. x∈.
约束条件
可行解域
线性规划(Linear Programming,缩写为LP) 是运筹学的重要分支之一,在实际中应用得较广 泛,其方法也较成熟,借助计算机,使得计算更方便, 应用领域更广泛和深入。 线性规划通常研究资源的最优利用、设备最佳运 行等问题。例如,当任务或目标确定后,如何统筹兼 顾,合理安排,用最少的资源(如资金、设备、原标 材料、人工、时间等)去完成确定的任务或目标;企 业在一定的资源条件限制下,如何组织安排生产获得 最好的经济效益(如产品量最多 、利润最大)。
运筹学的主要内容
数 学 规 划 组 合 优 化 随 机 优 化
线性规划 非线性规划 整数规划 动态规划 多目标规划 双层规划 最优计数问题 网络优化 排序问题 统筹图 对策论 排队论 库存论 决策分析 可靠性分析
学 科
内
容
许多生产计划与管理问题都可以归纳为最优 化问题, 最优化模型是数学建模中应用最广泛的 模型之一,其内容包括线性规划、整数线性规划、 非线性规划、动态规划、变分法、最优控制等. 近几年来的全国大学生数学建模竞赛中,几 乎每次都有一道题要用到此方法. 此类问题的一般形式为: 目标函数
星 期 需要 人数 星 期 需要 人数
一
二 三 四
300
300 350 400
最优化方法-线性规划
引言
对线性规划贡献最大的是美国数学家G.B.Dantig(丹捷格),他 在1947年提出了求解线性规划的单纯形法(Simple Method),并同时给出了许多很有价值的理论,为线性规划 奠定了理论基础。在1953年,丹捷格又提出了改进单纯形法, 1954年Lemke(兰母凯)提出了对偶单纯形法(dual simplex method)。 在1976年, R. G. Bland 提出避免出现循环的方法后,使线 性规划的理论更加完善。但在1972年,V. Klee和G .Minmty 构造了一个例子,发现单纯形法的迭代次数是指数次运算,不 是好方法——并不是多项式算法(多项式算法被认为是好算 法),这对单纯形法提出了挑战。
B2
B3
70
50 60
A2
60 110 160
[解] 设xij 表示 Ai运往Bj的运量(万块) minS=50x11+60x12+70x13+60x21+110x22+160x23 S.t. x11+x12+x13=23 x21+x22+x23=27 x11+x21=17 x12+x22=18 x13+x23=15 xij≥0, i=1,2、j=1,2,3
2.线性规划问题的几何意义
2.1基本概念 凸集:设k为n维欧氏空间的一点集,任取X,Y∈K,若 连接X,Y的线段仍属于K,则称K为凸集。即任取α ,0<α <1 α X+(1-α )Y∈K 称K为凸集。 顶点(极点):设K是凸集,X∈K,若X不能用不同的两
点 X(1) ∈K,X2) ∈K 的线性组合表示为 X=α X(1)+(1-α )X(2) (0<α <1) 则称X为极点。
最优化方法-线性规划的基本定理
若k=m,则P1,P2,…,Pk可用来构成一个基,所以X是基 本解。而已知X是可行解,故X又是基可行解。
若k<m,由于A的秩为m,比可从A中再挑出m-k个列向 量,与P1,P2,…,Pk ,一起构成一个线性无关极大组,即 为一个基,由此可知X是基可行解。
定义1.7:设集合S是n维欧式空间En中的闭凸 集,d是En中的非零向量。如果对于S的每 个点X,以及一切非负的数λ,都有
X+λd∈S,λ≥0
则称向量d是凸集S的一个方向。如果d1, d2是S的方向,且d1≠αd2, ∀ α>0,则d1, d2是两个不同的方向。
进一步,如果d是凸集S的一个方向,且 不能表示为S的另外两个不同的方向的正组 合,则称d是S的一个极方向。
约定A是行满秩的m行n列矩阵。
2、基、基向量、基变量、基本解、基本可 行解、可行基、最优解、最优基
基:矩阵A中一个m阶非奇异子矩阵 基向量:基的列向量 基变量:基向量对应的变量 基本解:非基变量全为零的解
基本可行解:非基变量为零,基变量都大 于等于零的解
可行基:基可行解对应的基 最优解:基本解中使目标函数最大的解 最优基:最优解对应的基
X=λX(1)+(1-λ)X(2)
上式的分量表达形式为 显然,当j>m时,有
x
j
xj
xj1 xj1x j2
1 0
xj2
,
j
1,
2,
,n
m
再由于X(1),X(2)均是可行点,故可推知 xjiPj b,i 1, 2
两式相减,得
数学建模~最优化模型(课件)
投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法
决策优化方法
决策优化方法在当今信息爆炸的社会中,决策是各个领域中不可或缺的环节。
无论是企业管理、政策制定,还是个人生活中的抉择,决策都直接关系到成败与否。
因此,如何有效地进行决策就成为了研究的焦点。
随着计算机科学和数学的发展,决策优化方法应运而生,极大地提高了决策的准确性和效率。
本文将介绍以下几种主要的决策优化方法:线性规划、整数规划、动态规划和遗传算法。
一、线性规划线性规划是一种基于线性数学模型的最优化方法。
它的决策变量和目标函数都是线性的,并且满足一定的约束条件。
线性规划在管理、经济学和运筹学等领域具有广泛的应用。
通过确定目标函数和约束条件,并结合线性规划算法,可以求得最优解,从而做出最佳决策。
线性规划方法简单有效,但对于非线性问题的处理能力有限。
二、整数规划整数规划是线性规划的一种扩展形式,在决策变量中引入了整数约束条件。
整数规划可以更准确地刻画现实世界中的问题,并且适用范围更广。
在许多实际问题中,决策变量只能取整数值,比如生产批量、货物配送路线等。
整数规划求解复杂度较高,需要采用专门的算法和工具进行求解。
但整数规划方法能够提供更可行、更实际的解决方案。
三、动态规划动态规划是一种寻找最优决策序列的方法,适用于问题具有重叠子问题和最优子结构的情况。
动态规划通过将原问题分解为一系列子问题,并利用子问题的最优解来构造原问题的最优解。
动态规划方法通常用于具有多阶段、多决策的问题,比如资源分配、项目管理等。
动态规划方法能够充分利用已知信息,避免重复计算,从而提高决策的效率。
四、遗传算法遗传算法是一种模拟自然生物进化过程的启发式搜索方法。
它通过模拟自然选择、遗传变异和交叉等操作,生成新的解,并通过适应度函数评估解的适应性。
遗传算法可以应用于多种决策问题,特别适合于复杂的优化问题。
遗传算法方法具有良好的全局搜索能力和较强的鲁棒性,但求解过程较为复杂,需要充分考虑问题的特点和约束条件。
在实际应用中,根据问题的特点和需求,可以综合运用以上几种决策优化方法,以获得更好的决策结果。
最优化方法:第2章 线性规划
Z=CBB-1b+(σm+1,
σm+k ,
xm+1
σn
)
CB B-1b+σ m+k
xn
因为 m+k 0,故当λ→+∞时,Z→+∞。
用初等变换求改进了的基本可行解
假设B是线性规划 maxZ=CX,AX=b,X 0的可行基,则
AX=b
(BN)
XB XN
b
(I,B-1 N)
➢ 若在化标准形式前,m个约束方程都是“≤”的形式, 那么在化标准形时只需在一个约束不等式左端都加上一个松弛变 量xn+i (i=12…m)。
➢ 若在化标准形式前,约束方程中有“≥”不等式, 那么在化标准形时除了在方程式左端减去剩余变量使不等式变 成等式以外,还必须在左端再加上一个非负新变量,称为 人工变量.
单纯形法简介
考虑到如下线性规划问题 maxZ=CX AX=b X 0
其中A一个m×n矩阵,且秩为m,b总可以被调整为一 个m维非负列向量,C为n维行向量,X为n维列向量。
根据线性规划基本定理: 如果可行域D={ X∈Rn / AX=b,X≥0}非空有界, 则D上的最优目标函数值Z=CX一定可以在D的一个顶 点上达到。 这个重要的定理启发了Dantzig的单纯形法, 即将寻优的目标集中在D的各个顶点上。
非基变量所对应的价值系数子向量。
要判定 Z=CBB-1b 是否已经达到最大值,只需将
XB =B-1b-B-1NX N 代入目标函数,使目标函数用非基变量
表示,即:
Z=CX=(CBCN
)
XB XN
=CBXB +CNXN =CB (B-1b-B-1NXN )+CNXN
第1章-线性规划模型-宋
第一章 线性规划模型线性规划(Linear Programming )是数学规划的一个重要组成部分,是最优化与运筹学理论中的一个重要分支和常用的方法,是最优化理论的基础性内容。
第一节 线性规划问题及其数学模型一、问题的提出在生产管理和经营活动中经常提出一类问题,即如何利用有限的人力、物力、财力等资源,以便得到最好的经济效果。
例1 生产计划问题某工厂在计划期内要安排生产Ⅰ、Ⅱ的两种产品,已知生产单位产品所需的设备台时,A 、B 两种原材料的消耗以及每件产品可获得的利润如下表所示。
问应如何安排生产计划使该工厂获利最多?解:设12,x x 分别表示在计划期内生产产品Ⅰ、Ⅱ的产量。
由于资源的限制,所以有:机器设备的限制条件: 1228x x +≤原材料A 的限制条件: 1416x ≤(称为资源约束条件) 原材料B 的限制条件: 2412x ≤同时,产品Ⅰ、Ⅱ的产量不能是负数,所以有120,0x x ≥≥(称为变量的非负约束)。
显然,在满足上述约束条件下的变量取值,均能构成可行方案,且有许许多多。
而工厂的目标是在不超过所有资源限量的条件下,如何确定产量12,x x 以得到最大的利润,即使目标函数1223z x x =+的值达到最大。
综上所述,该生产计划安排问题可用以下数学模型表示:例2 运输问题某公司经销某种产品,三个产地和四个销地的产量、销量、单位运价如下表所示。
问在保证产销平衡的条解:(1)决策变量:设(1,2,3;1,2,3,4)ij x i j ==为从产地i 运到销地j 的运量(2)目标函数:总运费最小3411min ij iji j z c x===∑∑(3)约束条件: 产量约束 销量约束 非负约束 模型为:二、线性规划问题的模型上述几例所提出的问题,可归结为在变量满足线性约束条件下,求使线性目标函数值最大或最小的问题。
它们具有以下共同的特征。
(1)每个问题都可用一组决策变量12(,,,)n x x x 表示某一方案,其具体的值就代表一个具体方案。
最优化问题数学模型
• 进入该区域的飞机在到达区域边缘时,与区域内 飞机的距离应在60km以上;
根据当年竞赛题目给出的数据,可以验证 新进入的飞机与区域内的飞机的距离超过 60公里。
• 最多需考虑六架飞机;
cij xij 表示该队员的成 目标函数:当队员i入选泳姿j时, 绩,否则 cij xij 0 。于是接力队的成绩可表示为
f cij xij .
j 1 i 1
4
5
约束条件:根据接力队要求, xij 满足约束条件
a. 每人最多只能入选4种泳姿之一,即
x
j 1
4
ij
1.
b. 每种泳姿必须有1人而且只能有一人入选,即
分析,对实际问题进行合理的假设、简化,首先考虑用
线性规划模型,若线性近似误差较大时,则考虑用非线 性规划.
例题讲解
例1 1995年全国数学建模A题:飞行管理问题 在约1万米的高空的某边长为160km的正方 形区域内,经常有若干架飞机作水平飞行,区 域内每架飞机的位置和速度向量均由计算机记 录其数据,以便进行飞行管理。当一架欲进入 该区域的飞机到达区域边缘时,计算机记录其 数据后,要立即计算并判断是否会发生碰撞。 若会发生碰撞,则应计算如何调整各架飞机 (包括新进入的飞机)飞行的方向角,以避免 碰撞,且使飞机的调整的幅度尽量小,
目标:求函数极值或最值,求取得极值时变量的取值。
x
1.线性规划
问题:某工厂在计划期内要安排生产I、II两种产品,已 知生产单位产品所需的设备台时及A、B两种原材料的消 耗,如下表所示
I 设备 1 II 2 8台时
线性规划讲义
线性规划讲义一、引言线性规划是一种数学优化方法,用于解决线性约束条件下的目标最优化问题。
它在各个领域都有广泛的应用,如生产计划、资源分配、运输问题等。
本讲义将介绍线性规划的基本概念、模型建立和求解方法。
二、基本概念1. 线性规划模型线性规划模型由目标函数和一组线性约束条件组成。
目标函数是要最小化或者最大化的线性表达式,而约束条件是对决策变量的限制条件。
2. 决策变量决策变量是问题中需要决策的变量,它们的取值将影响目标函数的值。
决策变量通常用符号x表示。
3. 约束条件约束条件是对决策变量的限制条件,可以是等式约束或者不等式约束。
等式约束表示某些决策变量之间的关系,不等式约束表示某些决策变量的取值范围。
4. 目标函数目标函数是线性规划模型中要最小化或者最大化的线性表达式。
它通常由决策变量和系数构成。
三、模型建立1. 确定决策变量根据问题的具体情况,确定需要决策的变量,并用符号x表示。
2. 建立目标函数根据问题要求,建立一个线性表达式作为目标函数。
目标函数可以是最小化或者最大化的。
3. 建立约束条件根据问题中给出的限制条件,建立一组线性不等式或者等式作为约束条件。
每一个约束条件都要写成决策变量的线性表达式。
4. 确定变量的取值范围根据问题的实际情况,确定决策变量的取值范围。
这些范围可以是非负数、整数或者其他限制条件。
四、求解方法1. 图形法当决策变量的个数较少时,可以使用图形法来求解线性规划问题。
图形法通过绘制约束条件的图形,并找到目标函数的最优解。
2. 单纯形法单纯形法是一种常用的求解线性规划问题的方法。
它通过迭代计算,逐步逼近最优解。
单纯形法的核心是构造单纯形表,并进行基变量的选择和迭代计算。
3. 整数线性规划当决策变量需要取整数值时,可以使用整数线性规划方法来求解。
整数线性规划是一种复杂的优化问题,通常需要使用分支定界等算法来求解。
五、案例分析以一个生产计划问题为例,假设一个工厂有两个产品A和B,需要决定每一个产品的生产数量,以最大化利润。
最优化方法—线性规划问题
称xj为决策变量,cj为价值系数和费用系数, aij为约束系数或技术系数,bi为资源系数。
线性规划有关的问题
• 4.运输问题 :m个物资产地B1, B2, …, Bm,n个物资销地A1, A2,…, An,si为 产地Bi产量,dj为销地Aj的销量,cij表 示把物资从产地Bi运到销地Aj的单位 运价,xij表示把物资从产地Bi运到销 地Aj的运输量,问应如何运输才能使 运费最小?
j 1 n
n aij x j bi i 1, , m s.t. j 1 x 0 j 1, , n j
min f C T X AX b s.t. X 0
min{CT X | AX b, X 0}
求线性规划方法-软件
LINDO软件包首先由Linus Schrage开 发,现在,美国的LINDO系统公司 (LINDO System Inc.)拥有版权,是 一种专门求解数学规划(优化问题)的 软件包。它能求解线性规划、(0,1) 规划、整数规划、二次规划等优化问题, 并能同时给出灵敏度分析、影子价格以 及最优解的松弛分析,非常方便实用。
线性规划问题
某工厂拥有A、B、C三种类型的设备, 生产甲、乙两种产品,每种产品在生产中需 要占用的设备机时数,每件产品可以获得的 利润以及三种设备可利用的机时数如下表
产品甲 设备A 设备B 3 2 产品乙 设备能力(h) 2 1 65 40
设备C
利润(元/件)
0
1500
3
2500
线性规划
x12 x13
线性规划的典型实例
运输问题
数学模型
10x11 min f s.t. x11 x12 x 21 x 22 x11 x 21 x12 x13 x ij x 22 x 23 0 (i 1, 2; j 12x12 9x13 x13 35 x 23 55 26 38 26 1, 2, 3) 8x 21 11x 22 13x 23
基本解不是线性规划问题的解,而是仅满足约束方程组的解
线性规划问题中解的概念
可行解、可行域
上面的分析仅考虑了约束方程组Ax=b,下面进一步考虑线性规划问题的非负 约束。我们称既满足约束方程组Ax=b,又满足非负约束x≥0的解为线性规划 问题的可行解,即可行解满足线性规划问题的所有约束。可行解的集合称为可 行域,记作:
下面将分步骤详细分析如何获得这个线性规划问题的解,同时介绍在这类问题 中的几个概念
线性规划问题中解的概念
基本解
如果线性规划问题的解存在,则它必定是满足Ax=b的有限多个“基本解”中 选出的,那么我们的第一个任务就是找出满足方程Ax=b的基本解 假设独立方程的个数为m个,故Ax=b的系数矩阵A的秩为m,于是A中必有m 个列向量是线性无关的,不妨假设A中的前m个列向量线性无关,则这m个列 向量可以构成矩阵A的m阶非奇异子矩阵,用矩阵B表示:
D x | Ax b, x 0
基本可行解
特别的,若线性规划问题的基本解能够满足线性规划问题中的非负约束,即:
xB B 1b 0
则称该解xB为基本可行解,简称基可行解,称B为可行基。基可行解的数量不 m 会超过 C n 个。显然,基本可行解一定是可行解,基可行解是可行域中一种特 殊的解
最优解
最优化计算方法-第5章(线性规划)
第五章线性规划线性规划(Linear Programming,简记为LP)是数学规划的一个重要的分支,其应用极其广泛.1939年,前苏联数学家康托洛维奇(Л.B.Kah )在《生产组织与计划中的数学方法》一书中,最早提出和研究了线性规划问题.1947年美国数学家丹泽格(G. B. Dantzig)提出了一般线性规划的数学模型及求解线性规划的通用方法─单纯形方法,为这门科学奠定了基础.此后30年,线性规划的理论和算法逐步丰富和发展.1979年前苏联数学家哈奇扬提出了利用求解线性不等式组的椭球法求解线性规划问题,这一工作有重要的理论意义,但实用价值不高.1984年在美国工作的印度数学家卡玛卡(N. Karmarkar)提出了求解线性规划的一个新的内点法,这是一个有实用价值的多项式时间算法.这些为线性规划更好地应用于实际提供了完善的理论基础和算法.第一节线性规划问题及其数学模型一、问题的提出例1 某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,已知条件如表所示。
问应如何安排计划使该工厂获利最多?ⅠⅡ现有资源设备原材料A 原材料B 14248台时16kg12kg每件利润23ⅠⅡ现有资源设备原材料A 原材料B 1402048台时16kg12kg每件利润23解: 设x 1、x 2 分别表示在计划期内产品Ⅰ、Ⅱ的产量。
12max 23z x x =+..s t 1228x x +≤1416x ≤2412x ≤12,0x x ≥二、线性规划问题的标准型112211112211211222221122123max ..,,0n nn n n n m m m mn n mn z c x c x c x s t a x a x a x b a x a x a x b a x a x a x b x x x x =+++⎧⎪+++=⎪⎪+++=⎨⎪⎪+++=⎪≥⎩,,其中1,,0m b b ≥11max ..,1,2,,0,1,2,,nj jj nij j i j j z c x s t a x b i mx j n=====≥=∑∑ 12(,,,)T n c c c =c 12(,,,)Tn x x x =x 12(,,,)Tm b b b =b 111212122212n nm m mn a a a a a a a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 12[,,,]n = p p pmax ..()Tz s t ⎧=⎪=≥⎨⎪≥⎩c x Ax b b x 001max ..()Tnj j j z s tx =⎧=⎪⎪=≥⎨⎪⎪≥⎩∑c xp bb x 00对于不是标准形式的线性规划问题,可以通过下列方法将线性规划的数学模型化为标准形式:(1)目标函数的转换对min z 可以化max()z -(2)右端项的转换对0i b <,给方程两边同时乘以1-(3)约束条件的转换约束条件为≤方程左边加上一个变量,称为松弛变量约束条件为≥方程左边减上一个变量,称为剩余变量(4)变量的非负约束变量j x 无限制时,令,,0j j j j j x x x x x ''''''=-≥变量0j x ≤时,令j jx x '=-例将下列线性规划模型转化为标准形式12312312312312min 23..7232500x x x s t x x x x x x x x x x x -+-⎧⎪++≤⎪⎪-+≥⎨⎪--=-⎪≥≥⎪⎩,解(1)变量的非负约束令345x x x =-1245max 233x x x x -+-..s t 612457x x x x x ++-+=712452x x x x x -+--=12453225x x x x -++-=§2 两变量线性规划问题的图解法例1 求下列线性规划的解12121212max ..284300z x x s t x x x x x x =+⎧⎪+≤⎪⎪≤⎨⎪≤⎪≥≥⎪⎩,解(1)画可行域c A B D C 2x 1x O (2)画出目标函数的梯度向量:(3)作目标函数的一条等值线,120x x z +=将等值线沿梯度方向移动当等值线即将离开可行例2 求下列线性规划的解12121212max 2..284300z x x s t x x x x x x =+⎧⎪+≤⎪⎪≤⎨⎪≤⎪≥≥⎪⎩,解(1)画可行域c A B D C 2x 1x O (2)画出目标函数的梯度向量:(3)作目标函数的一条等值线,1202x x z +=将等值线沿梯度方向移动当等值线即将离开可行域时与可行域“最后的交点点为问题的最优解例3 求下列线性规划的解12121212max ..2200z x x s t x x x x x x =+⎧⎪-≤⎪⎨-≥-⎪⎪≥≥⎩,c2x 1x O无解例4 求下列线性规划的解12121212min 3..123600z x x s t x x x x x x =-⎧⎪≤⎪⎨≥⎪⎪≥≥⎩++,2x 1x O线性规划问题的性质:(1)线性规划的可行域为凸集,顶点个数有限.若可行域非空有界,则可行域为凸多边形.(2)线性规划可能有唯一最优解,可能有无数多个最优解,也可能无解最优解.无最优解可能是目标函数在可行域上无界,也可能可行域为空集.(3)若线性规划有最优解,则最优解必可在可行域的某个顶点达到.若两个顶点都为最优解,那么这两点连线上的所有点都是线性规划的最优解.§3 线性规划解的概念及其性质1 线性规划解的概念考虑线性规划问题max ..()Tz s t ⎧=⎪=≥⎨⎪≥⎩c x Ax b b x 00定义.1 矩阵A 中任何一组m 个线性无关的列向量构成的可逆矩阵B 称为线性规划的一个基矩阵与这些列向量对应的变量称为基变量(basis variable )其余变量称为基对应的非基变量(nonbasis variable )B 若设一个基为12(,,)m B p p p = ,12,,,m x x x ——为基B 对应的基变量1,,m n x x + ——为基B 对应的非基变量1B m x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦1m N n x x x +⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦12(,,,)m m n ++= N p p p (,)=A B N 从而令=Ax b 则(,)N x ⎡⎤=⎢⎥⎣⎦B x B N b11B Nx B b B Nx --=-B N Bx Nx b+=令0N x =则1B x B b-=10B b -⎡⎤⎢⎥⎣⎦——基本解(basis solution )满足10B b -⎡⎤≥⎢⎥⎣⎦,=≥0Ax b x 的基本解——基本可行解(basis feasible solution )对应的基称为可行基(feasible basis ).B 可以写成即:定义4 若基本可行解中所有基变量都为正,这样的基本可行解称为非退化解(non-degenerate solution).若基本可行解中某基变量为零,这样的基本可行解称为退化解(degenerate solution).例1212112max ..28400z x x s t x x x x x =-⎧⎪+≤⎪⎨≤⎪⎪≥≥⎩,标准化得:12123141234max ..28400,00z x x s t x x x x x x x x x =-⎧⎪++=⎪⎨+=⎪⎪≥≥≥≥⎩,,12341210(,,,)1001⎡⎤==⎢⎥⎣⎦A p p p p 子阵是否为基基变量非基变量基本解目标函数值134(,)=B p p 34,x x 12,x x (0,0,8,4)是231(,)=B p p 31,x x 24,x x (4,0,4,0)312(,)=B p p 12,x x 34,x x (4,2,0,0)424(,)=B p p 24,x x 13,x x (0,4,0,4)-4514(,)=B p p 14,x x 23,x x (8,0,0,4)-是是是是042基本可行解1x O(4,0)(4,2)(0,4)(8,0)2x 顶点2 解的判别定理定理1 最优解的判别准则设B 为线性规划LP 的一个基,1(1)0-≥B b 1(2)T T--≥0Bc B A c 则基对应的基本可行解1-⎡⎤⎢⎥⎣⎦0B b 是LP 的最优解.1(1,2,,)σ--== TBj j j c B p c j n 为变量对应的检验数j x 112[0,,0,,,]σσσ-++-= ,T TBm m n c B A c 显然基变量对应得检验数为零.定理2 无穷多个最优解的判别定理在线性规划的最优解中,某个非基变量对应的检验数为零,则线性规划有无数多最优解.定理3 无界解的判别定理设B 为线性规划的一个可行基,若基本可行解中s x 对应的检验数0σ<s ,且1-≤0s B p 则线性规划具有无界解(或称无解).某非基变量§3.4 单纯形表设B 为线性规划的一个基,x 为对应的可行解,则=Ax b两边同乘得1-B 11--=B Ax B b两边同乘得T Bc 11T T --=BBc B Ax c B b T z =c xTz -=c x 11T T --+-=TBBz c B Ax c x c B b 11(T T --+-=)TBBz c B A c x c B b1111()T TT z ----⎧+-=⎨=⎩BBc B A c x c B b B Ax B b 11111T T Tz ----⎡⎤⎡⎤-⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦0BBc B b c B A c x B A B b 定义矩阵1111TT----⎡⎤-⎢⎥⎣⎦T BBc B b c B A c B bB A 为基B 对应的单纯形表(table of simplex ),记为()T B1111()T T----⎡⎤-=⎢⎥⎣⎦T BBc B b c B A c T B B bB A 检验数函数值基变量的值各变量的系数100T b -=Bc B b 101020(,,,)--= T TBn c B A c b b b 10201-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥ b b B b则单纯形表可写成000101011102()⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦B n n m m mn b b b b b b T b b b 1112121222111112(,,)---⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦n n n m m mn b b b b b b B A B p B p bb b上例中1212112max ..28400z x x s t x x x x x =-⎧⎪+≤⎪⎨≤⎪⎪≥≥⎩,标准化得:121231412max ..28400z x x s t x x x x x x x =-⎧⎪++=⎪⎨+=⎪⎪≥≥⎩,12341210(,,,)1001⎡⎤==⎢⎥⎣⎦A p p p p 子阵是否为基基变量非基变量基本解目标函数值134(,)=B p p 34,x x 12,x x (0,0,8,4)是231(,)=B p p 31,x x 24,x x (4,0,4,0)312(,)=B p p 12,x x 34,x x (4,2,0,0)424(,)=B p p 24,x x 13,x x (0,4,0,4)-4514(,)=B p p 14,x x 23,x x (8,0,0,4)-是是是是042基本可行解1x O(4,0)(4,2)(0,4)(8,0)2x 顶点13410(,)01⎡⎤==⎢⎥⎣⎦B p p 231(,)=B p p 12341210(,,,)1001⎡⎤==⎢⎥⎣⎦A p p p p T(0,0)=B C 10()T⎡⎤-=⎢⎥⎣⎦c T B b A 34011008121041001z x x -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦23140101()4021141001x x ⎡⎤⎢⎥=-⎢⎥⎢⎥z T B 121101--⎡⎤=⎢⎥⎣⎦B 31401014021141001z x x ⎡⎤⎢⎥−−→-⎢⎥⎢⎥⎣⎦T(0,1)=B C单纯形表的特点:1、基变量对应的检验数为零2、基变量的系数构成单位阵§5旋转变换(基变换)设已知12(,,,,,)= r m j j j j B p p p p T()=B 1 r m j j j z x x x 1sn x x x 0001001011110102⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦sn s n r r rs rn m m ms mn b b b b b b b b b b b b b b b b为了将s x 变为基变量,而将r j x 变为非基变量,必须使表中的第s 列向量变为单位向量,变换按下列步骤进行:(1)将()T B 中第r 行,第s 列的元素化为1.01(,,,,,1,,) rj r rnr rs rs rs rsb b b b b b b b (2)将()T B 中第s 列的的其余元素化为0.0101(,,,,,0,,)---- is rn is rj is r is r i i ij in rs rs rs rsb b b b b b b b b b b b b b b b由此得出变换后矩阵中各元素的变换关系式如下,其中,01== ,,,rjrj rsb b j nb ,,01,01=-≠== ,,,,,,is rjij ij rsb b b b i r i m j nb 变换式称为旋转变换rs b 称为旋转元,r称为旋转行称为旋转列,s s x 称为入基变量,称为出基变量,r j x {,}r s定理3.5.1,01== ,,,rj rj rsb b j n b ,,0,01=-≠== ,,,,,is rj ij ij rsb b b b i r i m j n b 在变换之下,将基12(,,,,,)= r m j j j j B p p p p 的单纯形表变为基12(,,,,,)= m j s j j B p p p p 的单纯形表第6节单纯形法基本思路是:线性规划(通常是求最小值的形式)若有最优解,其必定在可行域(在相应几何空间中是一个凸多面体)的顶点达到,故从某一个顶点出发,沿着凸多面体的棱向另一顶点迭代,使得目标函数的值增加,经过有限次迭代,将达到最优解点.1.入基变量及出基变量的确定入基变量的确定由上面可知,目标函数用非基变量表示的形式为01n j jj m z z x σ=+=-∑若某检验数0j σ<则j x 的系数大于零,将j x 由零变为非零,目标函数值增大.所以,为了使的取值目标函数值增加,可以将某检验数0j σ<对应的非基变量j x 中的某个变为基变量.{}min 0j s j σ=<则s x 可选作为入基变量.即:在负检验数中,列标最小的检验数对应的非基变量入基.2.出基变量的确定在确定出基变量时应满足两个原则:(1)目标函数值不减;(2)保证新的基本解为基本可行解.0min 0,0i is is b b i m b θ⎧⎫=>≤≤⎨⎬⎩⎭min ,00i is is b r i b i m b θ⎧⎫==>≤≤⎨⎬⎩⎭,2 单纯形法设已知一个初始可行基及B T()B 基变量指标集合为{}1,,B m J j j = 非基变量的指标集合为{}1,2,,\N BJ n J =单纯形法若所有()00j N b j J ≥∈,则停止,最优解为0,1,,0,ij i j N x b i m x j J **⎧==⎪⎨=∈⎪⎩否则转(2).(1)最优性检验(2)选入基变量{}0min 0,j N s j b j J =<∈若()01~is b i m ≤=,则停止,(LP)无最优解,否则转(3)(3)选出基变量0min 0,0i is is b b i m b θ⎧⎫=>≤≤⎨⎬⎩⎭0min ,00i is is b r i b i m b θ⎧⎫==>≤≤⎨⎬⎩⎭,(4)作{},r s 旋转运算,01rj rj rsb b j n b == ,,,,,01,01is rj ij ij rsb b b b i r i m j n b =-≠== ,,,,,,得B 的单纯形表()()ijT B b =,以ij b 代替ij b ,转(1)例1 求线性规划问题的解解标准型为:121231425max 2328416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥12121212max 2328416.412,0z x x x x x s t x x x =++≤⎧⎪≤⎪⎨≤⎪⎪≥⎩12123142512345max 2328416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥⎩-20-381612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢0T()B =0345[,,]B p p p =00T()T c B bA ⎡⎤-=⎢⎥⎣⎦-20-381612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣0T()B =8/116/408-3441202101001/400400135z x x 12345x x x x x 01/20⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢1/4-41x08-3441202101001/400400135z x x 12345x x x x x 01/20⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/4-1x 4/212/40140244011/201001/40002-15z x 12345x x x x x 3/21/80⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/8-1x 32x 1/2例2求线性规划问题的解解标准型为:121231425max 228416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥12121212max 228416.412,0z x x x x x s t x x x =++≤⎧⎪≤⎪⎨≤⎪⎪≥⎩12123142512345max 228416.412,,,,0z x x x x x x x s t x x x x x x x =+++=⎧⎪+=⎪⎨+=⎪⎪≥⎩-10-281612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢0T()B =0345[,,]B p p p =00T()T c B bA ⎡⎤-=⎢⎥⎣⎦-10-281612121004001004001345z x x x 12345x x x x x 000⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣0T()B =8/116/404-2441202101001/400400135z x x 12345x x x x x 01/40⎤⎥⎥⎥⎥⎥⎥⎡⎢⎢⎢⎢⎢⎢1/4-41x0-2441202101001/400400135z x x 12345x x x x x 00⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/4-1x 4/212/4080244011/201001/400015z x 12345x x x x x 100⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/8-1x 32x 41/42-1/2080244011/201001/400015z x 12345x x x x x 100⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣1/8-1x 2x 2T 0803280101/410101/2-004-12z 12345x x x x x 00⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣01x 2x 42-1/25x 11212x k x k x =+12120,1,1k k k k ≤≤+=全部最优解为§7 两阶段法第二阶段从初始可行基开始,用单纯形法求解原问题.(LP )max ..(0)0T z c x s t Ax b b x ⎧=⎪=≥⎨⎪≥⎩(ALP )max ..0()T w s t z ⎧=-⎪-=⎪⎨+≥⎪⎪≥⎩00T e y c x A =b b x y x 第一阶段引入人工变量,构造辅助问题,求辅助问题的最优解,得出原问题的初始可行基及对应的基本可行解.(ALP)12112211112211121122222211212312max..0 ,,,,0mn nn nn nm m mn n m mn mw y y ys t z c x c x c xa x a x a x y ba x a x a x y ba x a x a x y bx x x x y y y=----⎧⎪----=⎪⎪++++=⎪++++=⎨⎪⎪++++=⎪⎪≥⎩,,,,,121111211112122122212000000100()010001m m m m i i i in i=1i i i n n n m m m mn b a a a c c c b a a a T B b a a a b a a a ===⎡⎤----⎢⎥⎢⎥---⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦∑∑∑∑。
基于线性规划的生产计划优化模型
基于线性规划的生产计划优化模型生产计划优化是企业管理中极为重要的一项任务。
通过最优化生产计划,企业可以实现资源的最大化利用,降低成本,提高产能和效率,以及满足客户需求等目标。
而线性规划作为数学规划方法之一,被广泛应用于生产计划优化的决策分析中。
基于线性规划的生产计划优化模型可以从多个角度对生产过程进行优化。
以下是一些相关的内容要点:1. 目标函数的设定:在生产计划优化模型中,我们需要明确生产计划的优化目标。
优化目标可以是最小化生产成本、最大化生产效率、最大化利润等。
目标函数的设定应该基于企业的实际需求和目标,同时要考虑资源利用、产能需求和市场需求等因素。
2. 约束条件的建立:约束条件是线性规划模型中的限制条件,用于限制各个变量的取值范围。
在生产计划优化模型中,约束条件可能涉及到资源的供应限制、产能的限制、人力需求等。
建立约束条件时需要充分考虑各种限制因素,并与实际情况相符合。
3. 决策变量的选择:决策变量是生产计划优化模型中的可调整变量,用于优化生产计划。
决策变量可能涉及到产品的产量、生产批次、生产线的调整等。
选择适当的决策变量对于优化生产计划至关重要,可以根据实际情况进行选择,并与目标函数和约束条件相匹配。
4. 整数规划和混合整数规划:在某些情况下,生产计划问题可能涉及到整数类型的决策变量,此时可以使用整数规划或混合整数规划方法进行求解。
整数规划和混合整数规划可以更加准确地描述实际生产计划问题,并给出更加优化的方案。
5. 线性规划模型的求解:线性规划模型可以使用各种数学规划软件进行求解。
通过输入目标函数、约束条件和决策变量的数学表达式,数学规划软件可以自动求解出最优解。
求解结果反映了生产计划的优化方案和最优取值。
6. 灵活性与鲁棒性:生产计划优化模型应具备一定的灵活性和鲁棒性。
灵活性包括对于模型输入数据的变化能够做出相应调整,以适应内外部环境的变化。
鲁棒性则意味着模型在面对不确定性时,能够提供有效的决策支持。
线性规划模型
线性规划模型线性规划(Linear Programming,LP)是一种用于求解线性优化问题的数学建模方法。
线性规划模型是在一组线性约束条件下,通过线性目标函数来寻找最优解的数学模型。
其基本形式如下:最大化或最小化:Z = c₁x₁ + c₂x₂ + … + cₙxₙ(目标函数)约束条件为:a₁₁x₁ + a₁₂x₂ + … + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + … + a₂ₙxₙ ≤ b₂…aₙ₁x₁ + aₙ₂x₂ + … + aₙₙxₙ ≤ bₙx₁, x₂, …, xₙ ≥ 0其中,c₁, c₂, …, cₙ为目标函数中各项的系数;a₁₁,a₁₂, …, aₙₙ为约束条件中各项的系数;b₁, b₂, …, bₙ为约束条件中的常数项;x₁, x₂, …, xₙ为决策变量。
线性规划模型的求解过程分为以下几个步骤:1. 建立数学模型:根据问题的描述,确定决策变量,确定最优化目标,建立目标函数和约束条件。
2. 确定可行解区域:根据约束条件,画出约束条件所确定的可行解区域。
3. 求解最优解:在可行解区域内寻找目标函数最大化或最小化的解。
常用的求解方法有单纯形法和对偶单纯形法。
4. 解释结果:根据最优解,给出对决策变量和目标函数的解释,进一步分析结果的意义。
线性规划模型适用于许多实际问题的求解,如生产计划、资源分配、物流调度等。
通过构建适当的数学模型,可以帮助管理者做出理性决策,最大化或最小化目标函数。
然而,线性规划模型也有其局限性。
首先,线性规划只能处理线性约束条件和线性目标函数,对于非线性问题无法求解。
其次,线性规划假设决策变量是连续的,对于离散的决策问题,线性规划无法适用。
此外,线性规划模型还需要求解算法的支持,对于复杂问题需要较高的计算资源。
总之,线性规划模型是一种常用的数学建模方法,通过线性约束条件和线性目标函数,求解最优解,帮助解决实际问题。
但线性规划模型也有其适用范围和局限性,需要根据具体问题来选择合适的求解方法。
最优化方法-线性规划
可行解
基本可行解
基本解
m 基本解数量 C n
是否在基本可行解中一定存在最优解?
退化: 非 零 分 量 个 数 小 于的 基 本 解 为 退 化 的 基 解 ; 称 m 本
否 则 称 非 退 化 的 基 本 。 如 果 LP)的 所 有 基 本 解 都 是 解 ( 非 退 化 的 , 称LP)是 非 退 化 的 。 (
(1) 一组决策变量; (2) 一个线性目标函数; (3) 一组线性的约束条件。
线性规划模型 )的一般形式: (LP
min (max)
c x
i i 1
n
i
a11 x1 a12 x 2 a1n x n ( , )b1 a x a x a x ( , )b 22 2 2n n 2 21 1 s.t . a x a x a x ( , )b m2 2 mn n m m1 1 x i ( , )0 , i 1 , 2 ,, n
二. 标准型
1. 标准型
m in
c x
i 1 i
பைடு நூலகம்
n
i
a11 x1 a12 x 2 a1n x n b1 a x a x a x b 22 2 2n n 2 21 1 s.t . a x a x a x b m2 2 mn n m m1 1 x i 0 , i 1 , 2 , , n
A
B
x1 x1 2 x2 4
极大值点为 顶点B。
o
C
2 x1 x2 5
例 3 将例2中的目标函数改为 x1 2 x2 。 z x2 解:分析同例2。 等值线:1 2 x2 z。 x
最优化理论和方法-第二章 线性规划基本理论和算法
其中 向量表示:
给定,变量是
定义标准形 有必要吗?
其中
给定,变量是
标准形的特征:极小化、等式约束、变量非负
第 2 章 线性规划: 基本理论与方法
数学规划基础
LHY-SMSS-BUAA
例4. 化成标准形
等 价 于
最优化问题的等价表述指 两个问题的最优值相等、差一个常数、或者互为相反数, 由其中一个问题的最优解可以得到另一个的最优解。
cT
( x* )T
( 1, 1)
( 0, 0)
( 0, 1) (x1, 0), x1 ≥ 0 ( 1, 0) (0, x2), x2∈[0,1] (-1, -1) 没有 有限 解
解的几何特征
惟一的顶点 一条边 一条边 无(下)界
第 2 章 线性规划: 基本理论与方法
数学规划基础
LHY-SMSS-BUAA
只要有 m 个单位列 e1 , e2 , … , em 即可,次序可以打乱!
◎ 规范形的系数的一种解释
yj B1aj aj y1ja1 y2 ja2 ymjam
规范形第 j 列的系数是用当前基表示 aj 时的系数!
第 2 章 线性规划: 基本理论与方法
数学规划基础
LHY-SMSS-BUAA
第 2 章 线性规划: 基本理论与方法
数学规划基础
LHY-SMSS-BUAA
线性规划问题解的几种情况
提示: 学习单纯形法之前,请务必学习并理解书上 p.19, 例2.2.1.
第 2 章 线性规划: 基本理论与方法
数学规划基础
LHY-SMSS-BUAA
2.2 单纯形法
• 适用形式:标准形(基本可行解等价于极点) • 理论基础:线性规划的基本定理! • 基本思想:从约束集的某个极点/BFS开始,依次
优化模型
MIN 66.8x11+75.6x12+87x13+58.6x14 +… … +67.4x51+71 x52+83.8x53+62.4x54 SUBJECT TO x11+x12+x13+x14 <=1 …… x41+x42+x43+x44 <=1 x11+x21+x31+x41+x51 =1 …… x14+x24+x34+x44+x54 =1 END INT 20
最优化模型
主讲人
张兴永
1
最优化模型
在数学建模竞赛中,经常会遇到有关最优化问题, 下面介绍几个简单的最优化模型。 最优化模型是在解决实际问题中应用最广泛的模 型之一,它涉及面广、内容丰富,且随着计算机的发 展,解决问题的范围越来越宽。一般地,人们做的任 何一件事情,小的如日常生活、学习工作等,大的如 工农业生产,国防建设及科学研究等,为了达到预先 设想的目的,都要做计划,选择好的方案,进行优化 处理。最优化模型主要有线性规划模型、整数规划模 型、非线性规划模型、动态规划模型等。
这样把多目标规划变成一个目标的线性规划,下 面给出三个单目标优化模型:
24
1、在实际投资中,投资者承受风险的程度不一样, 若给定风险一个界限a,使最大的一个风险qixi/M≤a, 可找到相应的投资方案。 模型1 固定风险水平,优化收益 目标函数:Q=max (ri pi ) xi i 0 约束条件: q x ≤a
9
问题二 混合泳接力队的选拔
5名候选人的百米成绩
蝶泳 仰泳 蛙泳 自由泳 甲 1’06”8 1’15”6 1’27” 58”6 乙 57”2 1’06” 1’06”4 53” 丙 1’18” 1’07”8 1’24”6 59”4 丁 1’10” 1’14”2 1’09”6 57”2 戊 1’07”4 1’11” 1’23”8 1’02”4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.2.3 二维变量的线性规划模型 2. 问题分析
原料 M1 的日可用量限制为 6x1 4x2 24 ; 原料 M2 的日可用量限制为 x1 2x2 6 ; 根据市场调查,内墙涂料的日需求量不超过外墙 涂料的日需求量加上 1 吨,即 x2 x1 1 ; 同时,内墙涂料的最大日需求量是 2 吨,即 x2 2 ; 题目隐含决策变量的非负限制,即 x1 0, x2 0 .
第7章 最优化模型
7.2节 线性规划
7.2.1 线性规划简介
1. 基本概念
线性规划(linear programming,LP)就是对满 足有限多个线性的等式或不等式约束条件的决策变 量的一个线性目标函数求最大值或最小值的最优化 问题. 线性规划模型的一般表达式可写成
max (或 min) z c1x1 c2 x2 cn xn s.t. a11x1 a12 x2 a1n xn (或 , )b1
7
6
5
4
x2
3
2
E
D
C
1F
可行域
0A
B
0
1
2
3
4
5
6
7
x1
图7.3 例7.2.1的线性规划模型的可行域
x2
4 3.5
3 2.5
2 1.5
1 0.5
0 -0.5
-1 -1
z=18
z=13
E
D
z=4
F
z=5x1+4x2 z 增加的方向
C 最优解 x1=3, x2=1.5 z=21
A z=0
B z=20
7.2.1 线性规划简介
2. 线性规划的算法
科学家希望能设计出求解线性规划问题的多项 式时间算法,特别是希望能从初始可行解出发,穿越 可行域的内部到达最优解.
1984 年,美国贝尔实验室的 N. K. Karmarkar 提出“投影尺度算法”,通过切割可行域内部求得线 性规划问题的最优解,并且是多项式时间算法. Karmarkar 的成果激起了内点算法的研究热潮,迄今 已经发展出多种内点算法. 对于大规模线性规划问 题,内点算法比单纯形算法具有更高的计算效率.
7.2.2 线性规划的MATLAB实现
函数 linprog 的语法格式: (1)[x,z]=linprog(c,A,b,Aeq,beq,lb,ub) 输入项 c、A、b、Aeq、beq、lb 和 ub 分别是(7.2.2) 式当中的向量或矩阵 c、A、b、Aeq、beq、lb 和 ub; 输出项 x 和 z 分别是最优解和最优值. 注 7.2.2 linprog 所求解的线性规划问题(7.2.2) 的上下界约束 lb x ub 即 l j x j u j , j 1, 2,, n , 其 中 lb (l1, l2 ,, ln )T , ub (u1, u2,, un )T . 如 果 决 策 变量都非负约束,则 lb=zeros(n,1),ub=[](或缺省).
7.2.1 线性规划简介
1. 基本概念
没有可行解的线性规划模型称为不可行 (infeasible). 不可行的线性规划模型没有最优解.
如果最大(小)化线性规划模型的目标函数可以 在可行域取得任意大(小)的值,则称为无界 (unbounded). 无界的线性规划模型也没有最优解.
由于严格不等式约束有可能导致线性规划模型 虽然具有非空的可行域,但是目标函数却不存在最大 (小)值(例如 max z=x, s.t. x<1),所以不考虑严格 不等式约束.
0
1
2
3
4
5
x1
图7.4 例7.2.1的线性规划模型的最优解
7.2.3 二维变量的线性规划模型 3. 图解法 2)价值系数的灵敏度分析
将线性规划模型(7.2.3)的目标函数改写成 max z c1x1 c2 x2
根据问题的实际意义,价值系数 c1 和 c2 都是正数. c1 和 c2 能够在一定范围内变化而不引起最优解的改变.
如图 7.5 所示, c1 和 c2 的变化将改变目标函数直 线的斜率,想象目标函数直线以点 C 为轴向顺时针或 逆时针方向旋转,只要它位于直线 6x1 4x2 24 和 x1 2x2 6 之间,最优解就保持在点 C(但是最优值 会有所改变).
7
6 6x1+4x2=24
5 5x1+4x2=21
7.2.1 线性规划简介
2. 线性规划的算法
在代数上,线性规划的最优值可以在可行域的基 可行解(对应于凸多面体的顶点)处取得,单纯形法 从一个基可行解出发,求出使目标函数有所改进的相 邻的基可行解,迭代下去,直至求得最优的基可行解.
虽然在实际应用中单纯形算法可以很好的解决 大规模线性规划问题,但是在理论上单纯形算法的计 算复杂性还不够理想,它是指数时间算法,即找到最 优解的迭代次数是 O(2n ) ,其中 n 为决策变量的个数.
7.2.1 线性规划简介
1. 基本概念
决策变量的上下界约束是线性规划模型的一类 特殊的线性不等式约束条件,在实践中,一般 x j 0 , 但有时 xj 0 或 x j 无符号限制. 在理论上和计算上, 决策变量的上下界约束一般要单列.
满足约束条件的决策变量就是可行解(feasible solution),可行解的集合称为可行域(feasible region). 使目标函数达到最大值(或最小值)的可行解称为最 优解(optimal solution),相应的目标函数值就是最 优值(optimal value).
7.2.2 线性规划的MATLAB实现
MATLAB 优化工具箱函数 linprog 用于求解以下 形式的线性规划模型:
min z cT x,
s.t. A x b
(7.2.2)
Aeq x beq
lb x ub 其中 A 和 Aeq 是矩阵,x、c、b、beq、lb 和 ub 是列 向量(但 MATLAB 允许用行向量).
a21x1 a22x2 a2n xn (或 , )b2
am1x1 am2x2 amn xn (或 , )bm
x j 0, j 1, 2,, n
(7.2.1)
7.2.1 线性规划简介
1. 基本概念
未知数 x j 称为决策变量; 目标函数经常记为 z 或 w,称为目标变量; 目标函数的变量系数 c j 称为价值系数; 约束条件的变量系数 aij 称为工艺系数; 约束条件右端的常数 bi 称为资源限量; 约束条件前的记号“s.t.”是“subject to”的缩写, 意即“受约束于”.
1 2 c1 c2 3 2
(7.2.4)
如果 c1 5 保持不变,则10 3 c2 10 ;
如果 c2 4 保持不变,则 2 c1 6 .
注 7.2.5 当(7.2.4)式的等号成立时,目标函数
直线与直线 6x1 4x2 24 或 x1 2x2 6 重合,此时最
优解有无穷多个,点 C(3,1.5)仍是其中之一.
如图 7.3 所示,线性规划模型(7.2.3)的可行域包 括六边形 ABCDEF 的边界和内部,是一个有界的凸 集,点 A、B、C、D、E 和 F 都是由可行域的两条相 邻边界相交而得的角点,称为极点(extreme point).
如图 7.4 所示,向量(5,4)是目标函数 z 5x1 4x2 的梯度向量,指向 z 增加得最快的方向,并且垂直于 直线族 z 5x1 4x2 的任一条直线;最优解在 C(3,1.5), 相应的目标函数最大值为 z=21;再进一步增加 z 的值, 直线 z 5x1 4x2 的任意点都在可行域之外.
7.2.3 二维变量的线性规划模型 3. 图解法 3)资源限量的灵敏度分析
将线性规划模型(7.2.3)的第一个不等式约束改写 成 6x1 4x2 b1 ,只允许 b1 变化,而模型的其他系数 都保持不变. b1 的变化会引起可行域的变化,从而导 致最优解和最优值的变化,但是 b1 能够在一定范围内 变化而不引起影子价格 z b1 的变化.
7.2.1 线性规划简介
2. 线性规划的算法
1947 年,美国空军数学家 G. D. Dantzig 发明了 求解线性规划问题的单纯形算法(simplex algorithm). 在随后的几十年里,单纯形法经过不断的改进,在实 际应用中取得巨大的成功.
单纯形算法是一种迭代算法. 当可行域非空并且 最优解存在时,在几何上,线性规划的最优值可以在 凸多面体的某个顶点处取得,单纯形法从凸多面体的 某个顶点出发,移动到使目标函数有所改进的相邻顶 点,迭代下去,直至到达最优的顶点.
7.2.3 二维变量的线性规划模型 2. 问题分析
线性规划模型由三个基本部分组成: (1)决策变量;(2)目标函数;(3)约束条件. 本题需要确定内、外墙涂料的日产量,所以决策 变量可定义为 x1 =外墙涂料的日产量, x2 =内墙涂料的日产量 公司打算最大化两种涂料的日总利润,已知每吨 内、外墙涂料的利润为 4 千元和 5 千元,所以两种涂 料的日总利润为 z 5x1 4x2 ,公司的目标为求 z 的最 大值: max z 5x1 4x2 .
7.2.3 二维变量的线性规划模型 1. 问题提出
例 7.2.1 涂料公司用 M1 和 M2 两种原料生产 内、外墙涂料,M1 和 M2 的日最大可用量分别为 24 吨和 6 吨,每吨外墙涂料利润为 5 千元,需要用 6 吨 M1 和 1 吨 M2,每吨内墙涂料利润为 4 千元,需要 用 4 吨 M1 和 2 吨 M2. 根据市场调查,内墙涂料的 日需求量不超过外墙涂料的日需求量加上 1 吨,同时, 内墙涂料的最大日需求量是 2 吨. 公司打算确定最优 的产品组合,使得日总利润达到最大.
7.2.3 二维变量的线性规划模型 2. 问题分析
根据题意,可以建立线性规划模型 max z 5x1 4x2 s.t. 6x1 4x2 24 x1 2x2 6 x1 x2 1 x2 2 x1, x2 0