7除法中的巧算(含答案)-
三年级下册数学 试题 乘除法巧算培优练习(含答案)北师大版
(12)3003÷7÷11÷13
(13)125×(16÷10)
(14)348348÷3÷11÷13÷7
(15)111×5÷6×2÷74×2
3
关键词:除法分配律 4、 计算: (1)3÷10+17÷10
(3)291÷50-41÷50
(5)(540-63+99)÷9
(2)(81+72)÷9 (4)(240+42)÷6 (6)12÷90+113÷90+55÷90
⑸999000;
⑹333000(提示:原式=333×3×222﹢333×334);
6
⑺原式=78×2+78×1994+22×1996 =78×1996+22×1996 =100×1996 =199600
⑻原式=7×11×13+255×999+255×2 =1001+255×1001 =1001×256 =(1000+1)×256 =256000+256 =256256
3、 计算:
(1)195÷13÷5
(2)297÷11÷3
(3)2460÷5÷2
(4)5400÷25÷4
(5)2012000÷125÷8
(6)3672÷4÷34÷9
(7)8×35÷7
(8)29×15÷5
(9)54×63÷9
(10)1071÷17÷9
(11)(2×3×5×8×9×11)÷(22×27×10)
3、⑴11500; ⑵400;
⑶12177(提示:99 变成 100-1,利用乘法分配律);
⑷66933(提示:999 变成 1000-1,利用乘法分配律);
⑸3663(提示:11 变成 10+1,利用乘法分配律或两头一拉中间相加);
⑹946; ⑺6565(提示:101 变成 100+1,利用乘法分配律);
三年级 奥数 小学奥数除法中的巧算(含答案)
除法中的巧算(一)学习方法指导我们利用“商不变的性质”进行除法中的巧算,因为“商不变性质”,是被除数、除数同时乘以或同时除以一个数(零除外),它们的商不变。
一般有这样的公式:()()a b a n b n ÷=⨯÷⨯或 ()()()=÷÷÷≠a n b n n 0如:()()123122322464÷=⨯÷⨯=÷=或 ()()12612262632÷=÷÷÷=÷=例1. 用简便方法计算下列各题。
(1)82525÷(2)47700900÷ 分析:(1)(2)可以利用“商不变的性质”去计算。
(1)82525÷ ()()=⨯÷⨯=÷=8254254330010033想办法使其中一个数扩大、或缩小后成为整十、整百、整千,如25扩大4倍得100。
(2)47700900÷()()=÷÷÷=÷=47700100900100477953看到被除数,与除数末尾都有00,这样让它们同时缩小100倍。
在除法运算中,还有两个数的和,(或差)除以一个数,可以用这个数分别去除这两个数(在都能整除的情况下),再求两个商的和或差。
一般公式:()a b c a c b c +÷=÷+÷()a b c a c b c -÷=÷-÷如:()126212262639+÷=÷+÷=+=()126212262633-÷=÷-÷=-=这个性质可以推广到多个数的和除以一个数的情况。
例2. 用简便方法计算。
(1)()2501655+÷(2)()7022134143--÷分析:这两题都可以运用以上性质去解答,就是“两个数的和(差)除以一个数”的除法运算性质。
7上 有理数的除法(知识讲解)-七年级上(教师版)
专题2.25 有理数的除法(知识讲解)【学习目标】1. 理解乘法与除法的逆运算关系,会进行有理数除法运算;2. 巩固倒数的概念,能进行简单有理数的加、减、乘、除混合运算;3. 培养观察、分析、归纳及运算能力.【要点梳理】 知识要点一、乘积是1的两个数互为倒数.特别说明: 11535-(1)“互为倒数”的两个数是互相依存的,如3的倒数是;的倒数是-; (2) 0和任何数相乘都不等于1,因此0没有倒数;(3) 倒数的结果必须化成最简形式,使分母中不含小数和分数;(4).互为倒数的两个数必定同号(同为正数或同为负数).知识要点二、 有理数除法法则:法则一:除以一个不等于0的数,等于乘这个数的倒数,即. 法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.特别说明:(1)一般在不能整除的情况下应用法则一,在能整除时应用法则二方便些.(2)因为0没有倒数,所以0不能当除数.(3)法则二与有理数乘法法则相似,两数相除时先确定商的符号,再确定商的绝对值. 知识要点三、有理数的乘除混合运算由于乘除是同一级运算,应按从左往右的顺序计算,一般先将除法化成乘法,然后确定积的符号,最后算出结果.要点四、有理数的加减乘除混合运算有理数的加减乘除混合运算,如无括号,则按照“先乘除,后加减”的顺序进行,如有括号,则先算括号里面的.【典型例题】类型一、有理数的除法运算 1(0)a b a b b÷=≠1.计算:(1)(36)9-÷; (2)123255⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭. 【答案】(1)﹣4; (2)45. 【分析】根据有理数除法法则,除以一个数等于乘上这个数的倒数,转化成有理数的乘法进行运算,即可得到答案.解:(1)(36)9(369)4-÷=-÷=-;(2)12312542552535⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【点拨】本题考查了有理数的除法运算,熟练掌握有理数的除法运算是解决本题的关键.举一反三:【变式1】 计算:(1)()186-÷; (2)()()637-÷-; (3)()19÷-;(4)()08÷-; (5)()6.50.13-÷; (6)6255⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭. 【答案】(1)3-;(2)9;(3)19-;(4)0;(5)50-;(6)3. 【分析】原式利用除法法则计算即可得到结果,除以一个数等于乘以这个数的倒数,两数相除,同号为正,异号为负,并把绝对值相除.解:(1)()1863-÷=-; (2)()()9637-÷-=;(3)()1199÷-=-; (4)()080÷-=; (5)()6.50.1350-÷=-; (6)62355⎛⎫⎛⎫-÷-= ⎪ ⎪⎝⎭⎝⎭【点拨】本题考查了有理数的除法运算,熟练掌握除法运算法则是解本题的关键.【变式2】(1)51()217÷-; (2)()()1 1.5-÷-; (3)21(3)()()54-÷-÷-; (4)21(3)()()54⎡⎤-÷-÷-⎢⎥⎣⎦ 【答案】(1)53-;(2)23;(3)30-;(4)158- 【分析】(1)(2)(3)利用有理数的除法法则计算即可;(4)先计算括号内的除法,再利用有理数的除法法则计算即可.解:(1)5155()7217132÷-=-⨯=-; (2)()()11223.513=⨯-=÷-; (3)215(3)()()3430542-÷-÷-=-⨯⨯=-; (4)21(3)()()54⎡⎤-÷-÷-⎢⎥⎣⎦ 2(3)(4)5=-÷⨯ 538=-⨯ 158=-. 【点拨】本题考查了有理数的除法,熟练掌握运算法则是解本题的关键.注意:除以一个数等于乘以这个数的倒数.【变式3】 计算:(1)212339⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (2)110.758⎛⎫-÷ ⎪⎝⎭; (3)3125164⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (4)0(7.4)÷-. 【答案】(1)67;(2)32-;(3)512;(4)0 【分析】根据除以一个数等于乘以这个数的相反数进行计算即可.解:(1)218288962339393287⎛⎫⎛⎫-÷-=÷=⨯= ⎪ ⎪⎝⎭⎝⎭; (2)19394310.75884832⎛⎫⎛⎫-÷=-÷=-⨯=- ⎪ ⎪⎝⎭⎝⎭; (3)313521354525164164162112⎛⎫⎛⎫-÷-=÷=⨯= ⎪ ⎪⎝⎭⎝⎭; (4)0(7.4)0÷-=.【点拨】本题考查了有理数的除法,熟知有理数的除法运算法则是解题的关键. 类型二、有理数加减乘除混合运算2.计算: (1)()110.53 2.75742⎛⎫-+-+-+ ⎪⎝⎭; (2)411812944⎛⎫⎛⎫⎛⎫⨯-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)()()14812849⎛⎫-÷⨯-÷- ⎪⎝⎭; (4)()215412346⎛⎫+--⨯- ⎪⎝⎭.【答案】(1)1 (2)-27 (3)-2 (4)9【分析】(1)把小数化分数,同分母相加,再计算减法即可;(2)先确定积的符号,把带分数化为假分数,计算乘法,再加法即可;(3)先确定积的符号,把带分数互为假分数,然后化除为乘,最后计算乘法即可; (4)利用乘法分配律简算,再计算乘法,最后加法即可.(1)解:()110.53 2.75742⎛⎫-+-+-+ ⎪⎝⎭, =11113272442⎛⎫⎛⎫-+-+-+ ⎪ ⎪⎝⎭⎝⎭, =76-,=1;(2)解:411812944⎛⎫⎛⎫⎛⎫⨯-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, =4981494-⨯+⨯, =-36+9,=-27;(3)解:()()14812849⎛⎫-÷⨯-÷- ⎪⎝⎭, =9481849-÷⨯÷, =-44181998-⨯⨯⨯, =-2;(4)解:()215412346⎛⎫+--⨯- ⎪⎝⎭, =()()()2154121212346+⨯--⨯--⨯-, =48310-++,=9.【点拨】本题考查有理数加减乘除混合运算,掌握有理数加减乘除混合运算法则,先乘除,再加减,注意括号的运用是解题关键.举一反三:【变式1】计算:(1)()()()()541119-+--+--; (2)()3138.5424⎛⎫⎛⎫⎛⎫---++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)()()7872187-÷⨯⨯-; (4)3777148168⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭. 【答案】(1)-1;(2)9;(3)192;(4)12- 【分析】(1)把减法变加法,然后从左向右依次计算即可.(2)根据加法交换律、加法结合律计算即可.(3)根据乘法结合律计算即可.(4)根据乘法分配律计算即可.解:(1)()()()()541119-+--+--91119=--+1=-.(2)()3138.5424⎛⎫⎛⎫⎛⎫---++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()3318.5442⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+++--++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦09=+9=.(3)()()7872187-÷⨯⨯- ()()7872187⎡⎤⎡⎤=-÷⨯⨯-⎢⎥⎢⎥⎣⎦⎣⎦()()824=-⨯-192=.(4)3777148168⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭ 3778148167⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭ 38787814787167⎛⎫⎛⎫⎛⎫=⨯--⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 1212=-++ 12=-.【点拨】本题考查有理数的混合运算,熟练掌握有理数四则运算的运算方法、运算律及混合运算的运算顺序是解题关键.【变式2】计算(1)2531(1)1(7)768-÷-⨯⨯-;(2)115(1)363912-++⨯.【答案】(1)274-;(2)29-【分析】(1)先将带分数化为假分数,再利用有理数的乘除法法则计算即可;(2)利用乘法分配律计算即可.解:(1)2531(1)1(7)768-÷-⨯⨯-91111()(7) 768=-÷-⨯⨯-9611()(7) 7118=-⨯-⨯⨯-274=-;(2)1151363912⎛⎫-++⨯⎪⎝⎭415363636 3912=-⨯+⨯+⨯48415=-++29=-.【点拨】本题考查有理数的混合计算,掌握有理数乘除法的法则以及乘法分配律是解题的关键.【变式3】计算:(1)1131()(3)(2)(5)2442---++-+.(2)94(81)(16)49-÷⨯÷-.【答案】(1)0;(2)1.【分析】(1)根据有理数的加减混合运算法则计算即可;(2)根据有理数的乘除混合运算法则计算即可求解.解:(1)原式1131111660 2442=-++-=-=;(2)原式44181()19916=-⨯⨯⨯-=.【点拨】本题考查了有理数的加减混合运算、乘除混合运算,在进行有理数的加减混合运算时,先把减法转化为加法,再运用加法运算律计算可以简化运算;在进行有理数的乘除混合运算时,先将除法转化为乘法运算,再运用乘法运算律计算可以简化运算.类型三、用简便方法运算2.简便运算:(1)3531103825656⎛⎫⎛⎫⎛⎫-----+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)75322412643⎛⎫-⨯-+-⎪⎝⎭(3)4377143⎛⎫⎛⎫⎛⎫-÷-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(4)2222228126777⎛⎫⎛⎫⎛⎫-⨯-+⨯-+⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】(1)13-(2)4(3)569-(4)2207-【分析】(1)先去括号,然后根据有理数加法的交换律求解即可;(2)根据有理数乘法的分配律求解即可;(3)根据有理数乘法的交换律求解即可;(4)根据有理数乘法的结合律求解即可.(1)解:3531 10382 5656⎛⎫⎛⎫⎛⎫-----+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3531103825656=-++-3351108325566⎛⎫⎛⎫=-++-⎪ ⎪⎝⎭⎝⎭2213=-+13=-;(2)解:75322412643⎛⎫-⨯-+-⎪⎝⎭7532 2424242412643=-⨯+⨯-⨯+⨯14201816=-+-+4=;(3)解:4377143⎛⎫⎛⎫⎛⎫-÷-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭4147733⎛⎫⎛⎫=-⨯-⨯-⎪ ⎪⎝⎭⎝⎭4714733⎡⎤⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 41433⎛⎫=⨯- ⎪⎝⎭ 569=-; (4)解:2222228126777⎛⎫⎛⎫⎛⎫-⨯-+⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()2281267⎛⎫=-++⨯- ⎪⎝⎭ 22107⎛⎫=⨯- ⎪⎝⎭ 2207=-. 【点拨】本题主要考查了有理数的简便计算,熟知相关计算法则是解题的关键. 举一反三:【变式1】用简便方法计算:(1)391994020-÷; (2)2215130.34(13)0.343737-⨯-⨯+⨯--⨯. 【答案】(1)119992-; (2)13.34- 解:(1)391994020-÷ 11002040⎛⎫=-+⨯ ⎪⎝⎭ 120002=-+ 119992=- (2)2215130.34(13)0.343737-⨯-⨯+⨯--⨯ 2125130.343377⎛⎫⎛⎫=-⨯+-⨯+ ⎪ ⎪⎝⎭⎝⎭130.34=--13.34=-【点拨】本题考查了有理数的混合运算,利用乘法分配律进行简便运算,掌握乘法分配律是解题的关键.【变式2】 能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦ 【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数,然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数,然后根据分数的混合计算法则进行求解即可.解:(1)131226232525⨯+⨯ 132=263255⎛⎫⨯+ ⎪⎝⎭ 1=2102⨯ =25;(2)44444999999999955555++++ ()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ 1633=977⎡⎤÷+⎢⎥⎣⎦ 1696=77÷ 167=796⨯ 1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦ 1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭ 61825=5512⎛⎫+⨯ ⎪⎝⎭ 2425=512⨯ =10.【点拨】本题主要考查了分数与小数的混合计算,分数的混合计算,解题的关键在于能够熟练掌握相关计算法则.类型四、巧用乘除“转化思想”解题4、数学老师布置了一道思考题“计算:1151236⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭”.小明仔细思考了一番,用下列方法解答了这个问题.小明的解答:原式的倒数为15115(12)4106361236⎛⎫⎛⎫⎛⎫-÷-=-⨯-=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以115112366⎛⎫⎛⎫-÷-= ⎪ ⎪⎝⎭⎝⎭. (1)请你判断小明的解答是否正确,若正确,请你运用小明的解法解答下面的问题;若不正确,请说明理由.(2)计算:111324368⎛⎫⎛⎫-÷-+ ⎪ ⎪⎝⎭⎝⎭. 【答案】(1)正确,理由为:一个数的倒数的倒数等于原数;(2)﹣113【分析】(1)正确,利用倒数的定义判断即可;(2)求出原式的倒数,即可确定出原式的值.(1)解:正确,理由为:一个数的倒数的倒数等于原数; (2)解:111324368⎛⎫⎛⎫-÷-+ ⎪ ⎪⎝⎭⎝⎭的倒数为1131()()36824-+÷-, 1131()()36824-+÷- =113()(24)368-+⨯- =113(24)+()(24)(24)368⨯--⨯-+⨯- =﹣8+4﹣9=﹣13, 则111324368⎛⎫⎛⎫-÷-+ ⎪ ⎪⎝⎭⎝⎭=﹣113 【点拨】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.举一反三:【变式1】请你认真阅读下列材料: 计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭解法一:因为原式的倒数=211213106530⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ 2112(30)31065⎛⎫=-+-⨯- ⎪⎝⎭203512=-+-+10=-. 所以原式110=-, 解法二:原式121111123033010306305⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-÷--÷+-÷--÷ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 111112035126=-+-+=. (1)上述得出的结果不同,肯定有错误解法,你认为哪种解法是错误的?为什么?(2)根据你对所提供材料的理解,计算下面的题目:113224261437⎛⎫⎛⎫-÷+-- ⎪ ⎪⎝⎭⎝⎭. 【答案】(1)解法二错误,因为除法没有分配律;(2)124【分析】(1)根据除法没有分配律即可识别解法二错误; (2)先求原数的倒数,再利用乘法分配律简算求出结果,然后求出其倒数求出原数即可.解:(1)解法二错误,因为除法没有分配律,他利用了除法分配率进行计算肯定出现错误.(2)因为原式的倒数为132216143742⎛⎫⎛⎫+--÷- ⎪ ⎪⎝⎭⎝⎭, 1322(42)61437⎛⎫=+--⨯- ⎪⎝⎭,1322(42)(42)(42)(42)61437=⨯-+⨯--⨯--⨯-, 792812=--++,24=, 所以原式124=. 【点拨】本题考查除法的巧算,倒数,乘法分配律等知识,熟练掌握上述知识,灵活运用所学知识解决问题是关键.【变式2】数学老师布置了一道思考题“计算1151236⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭”.小明仔细思考了一番,用了一种不同的方法解决了这个问题:原式的倒数为()15115124106361236⎛⎫⎛⎫⎛⎫-÷-=-⨯-=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以115112366⎛⎫⎛⎫-÷-= ⎪ ⎪⎝⎭⎝⎭. (1)请你通过计算验证小明的解法的正确性;(2)由此可以得到结论:一个非零数的倒数的倒数等于______;(3)请你运用小明的解法计算:7377184812⎛⎫⎛⎫-÷-- ⎪ ⎪⎝⎭⎝⎭. 【答案】(1)见分析;(2)这个数本身;(3)-3【分析】(1)按小明的解法计算,检查结果是否正确即可;(2)根据题意得出结论即可;(3)仿照已知的方法计算即可.解:(1)()115111121236122126⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-÷-=-⨯-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∴小明的解法的正确(2)一个非零数的倒数的倒数等于这个数本身(3)3777777821121481284812733⎛⎫⎛⎫⎛⎫⎛⎫--÷-=--⨯-=-++=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∴73771384812⎛⎫⎛⎫-÷--=- ⎪ ⎪⎝⎭⎝⎭【点拨】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.【变式3】阅读下列材料:计算:50÷(1113412-+). 解法一:原式=1115050503412÷-÷+÷=50×3﹣50×4+50×12=550解法二:原式=50÷(431121212-+)=50÷212=50×6=300 上述得出的结果不同,肯定有错误的解法,你认为 解法是错误的,在学习正确的解法后,请你解答下列问题:(1)计算:(﹣112)÷(132261337-+-); (2)在材料中,原式的倒数为(1113412-+)÷50,你能仿照这个做法求出(﹣112)÷(132261337-+-)的解吗?请写出具体解题过程. 【答案】一;(1)91346-;(2)91346-,见详解. 【分析】(1)由题意根据有理数的运算顺序,先算括号里面的,再算有理数的除法,可得答案; (2)由题意根据有理数的除法,可转化成有理数的乘法,可得答案,注意最后要还原成倒数.解:因为没有除法分配律,故解法一错误;故答案为:一;(1)(﹣112)÷(132261337-+-) 191126364156()()12546546546546=-÷-+- 1173()12546=-÷ 1546()12173=-⨯ 91346=-; (2)213226133711⎛⎫⎛⎫÷- ⎪ ⎪+-⎝⎭-⎝⎭ ()21322613371⎛⎫=⨯- ⎪⎝⎭-+- ()()()()12121212132261337=⨯-+⨯--⨯--⨯- 362428137=-+-+ 9105649191=-+ 34691=-故(﹣112)÷(132261337-+-)=91346-.【点拨】本题考查有理数的除法,注意掌握有理数的除法应先算括号里面的,再算有理数的除法,同时注意没有除法分配律.类型五、有理数除法的应用5、一次体育课上,全班男生进行了百米测验,规定的达标成绩为17秒.下面是第一组6名男生的成绩记录:(正数表示超过17秒的秒数,负数表示低于17秒的秒数)(1)这个小组男生的达标率为______%;(2)求这个小组男生的平均成绩为多少秒?【说明:若不能进行整除,请保留一位小数】【答案】(1)50%(2)16.9秒【分析】(1)根据题意得:达标的有3人,然后用3除以6乘以100%,即可求解;(2)表格中的数据的和除以6,再加上17,即可求解.解:(1)根据题意得:达标的有3人,所以这个小组男生的达标率为3100%50% 6⨯=(2)这个小组男生的平均成绩为()117 1.50.801 1.20.36+-++-+-⨯16.9≈(秒).【点拨】本题主要考查了有理数混合运算的应用,明确题意,准确得到数量关系是解题的关键.举一反三:【变式1】大商超市对顾客实行优惠购物,优惠规定如下:A如果一次性购物在500元以内,按标价给予九折优惠;B如果一次性购物超过500元,其中500元部分给予九折优惠,超过500元部分给予八折优惠.(1)李叔叔在该超市购买了一台标价为780元的洗衣机,他应付多少元钱?(2)王阿姨先后两次去该超市购物,分别付款198元和554元,如果王阿姨一次性购买,只需要付款多少元?能节省多少元?【答案】(1)他应付钱674元;(2)王阿姨一次性购买,只需要付款730元,能节省22元.【分析】(1)根据780元>500元,分两部分计算500元九折+超过部分八折计算即可;(2)先求出两次构买物品的标价,将两次物品标价求和,再按一次性购物计算500元九折+超过部分八折,再计算王阿姨两次购物付款总和-一次性付款即可.解:(1)∴李叔叔在该超市购买了一台标价为780元的洗衣机,780元>500元,∴他应付钱为:500×0.9+(780-500)×0.8=450+224=674元;(2)王阿姨第一次去该超市购物付款198元,该物品标价为198÷0.9=220元,第二次去该超市购物付款554元,554-450=104,450÷0.9+104÷0.8=500+130=630元,两次购物标价为220+630=850元,∴王阿姨应付钱为:500×0.9+(850-500)×0.8=450+280=730元,198+554-730=22元,王阿姨一次性购买,只需要付款730元,能节省22元.【点拨】本题考查商品打折问题,掌握分类计算标准和计算方法是解题关键.【变式2】某公司去年1~3月份平均每月盈利2万元,4~6月份平均每月亏损1.6万元,7~10月份平均每月亏损1.4万元,11~12月份平均每月盈利3.4万元(假设盈利为正,亏损为负).(1)该公司去年一年是盈利还是亏损?(2)该公司去年平均每月盈利(或亏损)多少万元?【答案】(1)该公司去年一年是盈利的.(2)该公司去年平均每月盈利0.2万元.【分析】(1)把一年盈利与亏损的相加,由和为正数或是负数可得结论;(2)把一年的总盈利或总亏损除以12即可得到结论.解:(1)根据题意,得2×3+()1.6-×3+()1.4-×4+3.4×2=2.4(万元).答:该公司去年一年是盈利的.(2)2.412=0.2÷(万元).答:该公司去年平均每月盈利0.2万元.【点拨】本题考查的是正负数的实际应用,有理数的加减运算,乘法运算,除法运算的实际应用,理解题意列出正确的运算式是解题的关键.。
人教版数学四年级下册第一单元《四则运算》单元测试卷(有答案)
人教版数学四年级下册第一单元《四则运算》单元测试卷一、选择题1. (380−65×2)÷5的正确运算顺序是()。
A.乘法、减法、除法B.乘法、除法、减法C.除法、乘法、减法2. 不改变计算结果,下面各算式中的小括号可以去掉的是()A.680+(5×4)B.790−(120−75)C.(305−101)÷43. 下面运算顺序一样的一组算式是().A.58−27+3638÷2×7B.72−56÷8(72−12)÷6C.40÷5×840−5×84. 根据500−260=240,240÷5=48,48+12=60列成一个综合算式是()。
A.(500−260÷5)+12B.500−260÷5+12C.(500−260)÷5+125. 650减去50的差,乘35加上18的和,积是多少?正确列式是()。
A.(650−50)×(35+18)B.650−50×(35+18)C.(650−50×35)+186. 下面说法不正确的是().A.除法是乘法的逆运算B.乘法是若干个相同数字相加的简运算C.在除法描述中,除和除以意思相同7. 小军在计算60÷(4+2)时,把算式抄成60÷4+2,这样两题的计算结果相差()A.8B.7C.58. 被减数、减数和差相加得2076,差是减数的一半.如果被减数不变,差增加42,减数应变为()A.1038B.692C.519D.6509. 小亮有5元和20元的人民币各6张,如果要购买一个60元的篮球,有()种恰好付给A.1B.2C.3D.4二、判断题在减法算式中,被减数、减数、差的和是被减数的2倍。
(________)进行混合运算时,一定要先计算乘除法,后计算加减法。
(________)在一个只有乘除法的算式里要先算乘法,后算除法.(________)被减数等于减数,差一定是0。
小学奥数---乘除法巧算专项练习46题(有答案)
速算与巧算(乘除法)专项练习46题(有答案)1.888×999= _________ .2.251×4+(753﹣251)×2= _________ .3.先观察前面三个算式,从中找出规律,并根据找出的规律,直接在_________ 内填上适当的数.(1)123456789×9=1111111101,(2)123456789×18=2222222202,(3)123456789×27=3333333303,(4)123456789×72= _________ ,(5)123456789×63= _________ ,(6)6666666606÷54= _________ ,(7)9999999909÷81= _________ ,(8)5555555505÷123456789= _________ .4.111111×999999= _________ .5. 1326÷396. 520×1257. 248×68﹣17×248+248×488. 999×99×9.10.125×24.11.907×99+907.12.巧算两位数与101相乘.①101×43,②101×89.13.巧算三位数与11相乘.432×11=4752.14. 372÷162×5415. 132×288÷(24×11)16. 616÷36×18÷2217. 14×44×10418. 8100÷5÷90×1519. 7777×3333÷111120. (4+7+…+25+28)﹣(2+5+…+23+26)22. 97×9623. 95×9324. 98×9725. 99×9226. 88×8927. 95×85.28.93×84速算为.29.90000÷125÷2÷8÷5.30.巧算三位数与1001相乘.1001×132 1001×436.31.巧算两位数与11相乘.32. 8÷(8÷7)÷(7÷6)÷(6÷5)÷(5÷4)÷(4÷3)÷(3÷2)33.(574×275×87)÷(82×25×29)34. 11×2235. 12×3336. 14×5537. 15×66.38.3600000÷125÷32÷25.39. 99×99+99=40.巧算一个数与99相乘.41.1÷(2÷3)÷(3÷4)÷(4÷5)÷…÷(2002÷2003)÷(2003÷2004)42.3600000÷125÷32÷2543. 1.25×6.78+25×3.47+125×0.038244. 20042005×20052004﹣20042004×20052005.45.巧算一个数乘以10,100,1000…46.33×44+44×55+55×66﹣66×77.参考答案:1.888×999=888×(1000-1)= 887112 .2.251×4+(753﹣251)×2=251×4+502×2=251×4+(251×2)×2=251×4+251×(2×2)=251×4+251×4, =251×(4+4)=251×8=2008;故答案为:20083.根据观察前面三个算式知,第一个因数为:123456789,第二个因数分别为9的倍数,结果以0为分界,0的左边用第二个因数中9的个数乘以8,0的右边用第二个因数中9的个数乘以1,可知(4)、(5)两题答案为:8888888808, 7777777707;根据除法各部分之间的关系可知(6)、(7)、(8)三道题的答案为:123456789,123456789,45;故答案为:8888888808,7777777707,123456789,123456789,454.111111×999999=111111×(1000000﹣1)=1000000×111111﹣111111=111111000000﹣111111=111110888889.故答案为:1111108888895.1326÷39=1326÷(13×3)=1326÷13÷3=102÷3=34;这题我们将3(9分)解为39=13×3,然后按性质去做.6. 520×125=520×(1000÷8)=520×1000÷8=520÷8×1000=65×1000=65000;7. 248×68﹣17×248+248×48=248×(68﹣17+48)=248×99=248×(100﹣1)=248×100﹣248=24552;8. 999×99×9=(1000﹣1)×99×9=(99000﹣99)×9=98901×(10﹣1)=989010﹣98901=890109 9.99999×26+33333×22=33333×3×26+33333×22=33333×(3×26+22)=33333×100=333330010.125×24=125×8×3=1000×3=300011.907×99+907=907×(99+1)=907×100=9070012. 101×43=(100+1)×43=100×43+43=4300+43=4343;101×89=(100+1)×89=100×89+89=8900+89=8989;观察发现“4343、8989”,可得两位数与101相乘,积是把这个两位数连续写两遍.13.432×11=432×(10+1)=4320+432=4752;根据结果,最高位与最低位的数就是432的最高位与最低位上的数,中间的两位数是432相邻的数字相加的和,例如:867×11=9537,308×11=3388,所以三位数与11相乘的速算方法可以概括为“两边拉,中间加”,注意中间是相邻位相加14. 372÷162×54=372÷(162÷54)=372÷3=124;15. 132×288÷(24×11)=132×288÷24÷11=132÷11×288÷24=(132÷11)×(288÷24)=12×12=144;16. 616÷36×18÷22=616×18÷36÷22=14;17. 14×44×104=2×7×4×11×8×13=(7×11×13)×(2×4×8)=1001×64=64064;18. 8100÷5÷90×15=8100×15÷5÷90=(8100×15)÷(5×90)=121500÷450=270;19. 7777×3333÷1111=1111×7×1111×3÷1111=7×3×1111×1111÷1111=(7×3)×1111×(1111÷1111) =21×1111×1=23331;20. (4+7+…+25+28)﹣(2+5+…+23+26)=4+7+…+25+28﹣2﹣5﹣…﹣23﹣26,=(4﹣2)+(7﹣5)+…+(25﹣23)+(28﹣26)=2+2+…2+2=2×9=18;21. 100﹣96=4,<1>差 100﹣98=2,<2>差96﹣2=94, 98﹣4=94,4×2=8,所以96×98=940822. 100﹣97=3<1>差, 100﹣96=4<2>差,97﹣4=93,3×4=12,所以:97×96=9312;23. 100﹣95=5<1>差, 100﹣93=7<2>差, 95﹣7=88, 5×7=35,所以:95×93=8835;24. 100﹣98=2<1>差, 100﹣97=3<2>差, 98﹣3=95,2×3=6,所以:98×97=9506;25. 100﹣99=1<1>差,100﹣92=8<2>差, 99﹣8=91,1×8=8,所以:99×92=9108;26. 100﹣88=12<1>差,100﹣89=11<2>差, 88﹣11=77,11×12=132,所以:88×89=7832;27. 100﹣95=5<1>差, 100﹣85=15<2>差, 95﹣15=80, 15×5=75,所以:98×85=807528. 100﹣93=7<1>差,100﹣84=16<2>差,93﹣16=77,16×7=112,所以:93×84=7812(注意百位上的1要向前进位)29.90000÷125÷2÷8÷5=90000÷[(125×8)×(2×5)]=90000÷10000=930.1001×132=(1000+1)×132=1000×132+132=132000+132=1321321001×436=(1000+1)×436=1000×436+436=436000+436=436436通过观察可知:三位数与1001相乘,积是把这个三位数连续写两遍.31.12×11=132,34×11=374,53×11=583,49×11=539,发现两位数与11相乘,只要把这个两位数打开,个位数字做积的个位,十位数字做积的百位,个位数字与十位数字相加做积的十位,如果满十,就向百位进1.即方法是:两边一拉,中间相加,满十进1.如:49×11=539竖式验算:所以,两位数乘11的巧算方法是:两边一拉,中间相加,满十进132. 8÷(8÷7)÷(7÷6)÷(6÷5)÷(5÷4)÷(4÷3)÷(3÷2)=8÷8×7÷7×6÷6×5÷5×4÷4×3÷3×2,=(8÷8)×(7÷7)×(6÷6)×(5÷5)×(4÷4)×(3÷3)×2=1×2=2;33.(574×275×87)÷(82×25×29)=(574÷82)×(275÷25)×(87÷29)=7×11×3=23134. 11×22,=(10+1)×22=10×22+1×22=220+22=242;35. 12×33=33×(10+2)=33×10+33×2=330+66=396;36. 14×15=15×(10+4)=15×10+15×4=150+60=210;37. 15×66=66×(10+5)=10×66+5×66=660+330=99038、 3600000÷125÷32÷25=3600000÷(125×32×25)=3600000÷(125×4×8×25)=3600000÷[(125×8)×(25×4)]=3600000÷[1000×100]=3600000÷100000=3639. 99×99+99=99×(99+1)=99×100=9900;40.例如:99×1=99=(100﹣1),99×2=198=(200﹣2),99×5=495=500﹣5,99×8=792=800﹣8,99×13=1287=1300﹣13,…一个数与99相乘的规律:一个数与99相乘,先在这个数后添2个0,再减去此数就是积41.1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)…÷(2002÷2003)÷(2003÷2004)=1÷2×3÷3×4÷4×5÷5×6…÷2002×2003÷2003×2004=1÷2×2004=100242. 3600000÷125÷32÷25=3600000÷(125×32×25)=3600000÷[(125×8)×(4×25)],=3600000÷[1000×100]=3600000÷100000=36;43. 1.25×6.78+25×3.47+125×0.0382=1.25×6.78+1.25×20×3.47+1.25×3.82,=1.25×(6.78+69.4+3.82)=1.25×80=100;44. 20042005×20052004﹣20042004×20052005=20042005×(20052005﹣1)﹣20042004×20052005,=20042005×20052005﹣20042005﹣20042004×20052005=20052005×(20042005﹣20042004)﹣20042005, =20052005﹣20042005=1000045. ①一个数乘以10,就是在这个数后添一个0;②当一个数乘以100时,就是在这个数后添两个0;③当一个数乘以1000时,就是在这个数后添三个0.46.33×44+44×55+55×66﹣66×77=3×11×4×11+4×11×5×11+5×11×6×11+6×11×7×11,=11×11×(3×4+4×5+5×6﹣6×7)=121×20=2420.。
各种速算巧算技巧总结经典
各种速算巧算技巧总结经典一、加法速算巧算技巧1.去十法:将两位数相加,个位数保持不变,十位数去掉十位数的数再加1、例如:23+36=592.补数法:将两位数相加,若个位数相加等于10,则结果的十位数等于两个原数的十位数之和加1,个位数等于0。
例如:47+63=110。
3.同进法:将两个相同两位的数相加,在结果的十位数加1、例如:56+56=1124.十进法:将两个相邻的两位数相加,减10得到个位数,结果的十位数不变。
例如:56+57=10+56=1135.单位法:将两个相邻的两位数相加,结果的个位数等于个位数之和的个位数,结果的十位数等于个位数之和的十位数加上原来的十位数。
例如:54+67=(4+7)(5+6)=21+5=266.整十法:将个位数之和减去10,结果的个位数不变,结果的十位数加1、例如:56+49=(6+9)(5+4)=15+5=20+1=21二、减法速算巧算技巧1.补数法:相减的两个数差的绝对值等于减数加上被减数的补数,结果的符号取决于减数和被减数之间的关系。
例如:35-18=35+82=1172.同进法:减数的个位数与被减数的个位数相等,十位数大1,结果的个位数等于个位数之差,结果的十位数等于原数的十位数。
例如:57-25=323.进位借位法:被减数的个位数小于减数的个位数,从十位和百位依次向左借位。
例如:45-38=(40-8)(5-3)=74.破折法:将减数加上或减去10的倍数,使减数的个位数和百位数与被减数的个位数和百位数相等,然后计算,得到结果。
例如:147-86=147-80+6=675.近值法:如果两个数的个位数相等,差的绝对值为10的倍数,并且两个数的十位数的差不超过1,那么可以近似地认为差等于个位数之差乘以10。
例如:67-53≈(7-3)×10=40。
三、乘法速算巧算技巧1.移项法:将减数的个位数分别乘以被乘数的十位数和个位数,十位数的结果向左移动一位,个位数保持不变。
除法的巧算技巧
除法的巧算技巧除法是数学中的基本运算之一,在日常生活和学习中经常会遇到。
然而,有时候我们在进行除法计算时可能会遇到一些困难,例如长除法中的繁琐步骤和复杂计算。
为了让大家更好地掌握除法运算,本文将介绍一些巧算技巧,帮助你更快、更准确地完成除法计算。
一、整数的除法1. 尾数法当被除数是整数,而除数较大时,我们可以运用尾数法进行巧算。
尾数法的核心思想是只关注数的尾数部分。
举例说明:计算72除以8。
步骤一:将被除数的个位数2作为结果的个位数。
步骤二:将个位数2乘以除数8,得到16。
步骤三:用被除数减去上一步得到的值16,得到56。
步骤四:重复步骤一到步骤三,直到最后的余数为0。
通过尾数法,我们得到72除以8的商为9。
2. 乘数法乘数法是除法的逆运算,通过找到除数的倍数,将除法问题转化为乘法问题,从而快速求解。
举例说明:计算165除以5。
步骤一:找到一个数,使得该数乘以除数的结果最接近被除数。
在例子中,我们可以发现15乘以5等于75,接近165。
步骤二:计算除数的倍数与被除数的差值。
165减去75等于90。
步骤三:将差值除以除数。
90除以5等于18。
通过乘数法,我们得到165除以5的商为18。
二、小数的除法1. 近似法当我们需要计算除法的小数部分时,可以使用近似法简化计算。
近似法的核心思想是找到尽可能接近被除数的整数,然后计算相应的小数。
举例说明:计算7除以3。
步骤一:找到一个数,使得该数乘以除数的结果最接近被除数。
在例子中,我们可以发现2乘以3等于6,接近7。
步骤二:计算被除数与上一步得到的整数乘积的差值。
7减去6等于1。
步骤三:将差值除以除数。
1除以3等于0.3。
通过近似法,我们得到7除以3的商为2.3。
尽管近似法并不完全精确,但在日常生活中,它可以帮助我们快速估算结果。
2. 除数变换法除数变换法是在小数除法中应用的一种技巧,通过改变除数的形式,简化计算过程。
举例说明:计算1.2除以0.8。
步骤一:将除数和被除数都乘以10,使除数变为整数。
小学数学 奥数思维《计算:加减法中的巧算》专项训练1(含答案)
小学数学 奥数思维《计算:加减法中的巧算》专项训练1(含答案及解释40题)一、单选题1.与156-75-25计算结果相等的算式是( )A .156-(75+25)B .156-75+25C .156-(75-25)二、判断题2.被减数和减数都增加2.6,差就增加5.2。
( )三、填空题3.把2,3,4,5,6分别填入下面的方框中,使等式成立,每个数只用一次,计算结果最大 。
4.97+98+99+100+101+102+103= X 5.计算:1+3+5+7+9+7+5+3+1= 。
6.1−12−14−18−116−132−164−1128= 7.在横线上填上合适的数。
189+188+187+186+185+184+183 = ×8.计算: 1+2−3−4+5+6−7−8+9+⋯+94−95−96+97+98−99−100+101= 。
9.199+298+397+496+595+20= 。
10.计算: 10+19+297+3996= .11.计算 5+7+9+11+13+15+17+19+21+23= . 12.计算.1-2+3-4+5-6+……-96+97-98+99-100+101=四、计算题13.1002-992+982-972+……+42-32+22-1214.计算:(4+7+10+......+40)-(1+4+7+10+ (37)15.求3+33+333+...+33 (3)︸2007个3的末三位数字。
16.脱式计算(1)588÷7÷4(2)246÷3+27(3)32×21+128(4)651+652+653+654+655+656+657+658+659 17.用简便方法计算下列各题:①478-128+122-72②464-545+99+345③537-(543-163)-57④947+(372-447)-57218.直接写出计算结果:①1000-547②100000-85426③11111111110000000000-1111111111④78053000000-7805319.巧算下列各题:①996+599-402②7443+2485+567+245③2000-1347-253+1593④3675-(11+13+15+17+19)20.用简便方法求差:①1870-280-520②4995-(995-480)③4250-294+94④1272-99521.用简便方法求和:(1)536+(541+464)+459(2)588+264+148(3)8996+3458+7546(4)567+558+562+555+56322.脱式计算,能简算的要简算。
小学数学《速算与巧算》练习题(含答案)
小学数学《速算与巧算》练习题(含答案)知识点:一、等差数列.二、定义新运算.三、速算与巧算的方法.等差数列我们仔细观察以下两个数列:可以发现它们有一个共同的特点,后一项减前一项的差都是一个定数,像上面这样一类数列,叫做等差数列,相邻两个数的差叫做公差,通常用字母d表示.如果有一个等差数列其公差是d,那么数列的每一项依次可表示为:例如:求15,25,35,45,55,65,75这一列数的和,利用公式计算就是:(1575)73152s+⨯==利用此求和公式以及通项an =a1+(n一1)d的表达式,将给计算带来很大的方便.【例1】按规律填数.(1)21,25,29,( 33 ),( 37 ),41,45,49,( 53 )(2)3,9,27,( 81 ),( 243 ),729【分析】(1)观察第一列数,这是一个等差数列,它的公差是4,所以括号里要添的数,都应该是前一个数加4.(2)观察第二列数,这是一个等比数列,它的公比是3,所以括号里面要添的数,都应该是前一个数乘3.【分析】根据定义x△y=62x yx y⋅⋅+于是有629829522920⨯⨯∆==+⨯【巩固】设a△b=a×a-2×b,那么,5△6=______,(5△2) △ 3=_____.【分析】(1)5△6=5×5-2×6=13(2)5△2=5×5-2×2=2121△3=21×21-6=435【例6】规定其中a、b表示自然数.(1)求的值;(2)已知,求.【分析】观察新定义的运算,可知表示首项是a,末项是的连续自然数之和,项数是b.所以,(1)(2)即:速算与巧算的方法1、利用凑整法计算.凑整法就是根据题中数据特点、借助数的组合、分解以及有关运算性质,把其凑成整十整百……的数,从而达到计算简便、迅速的一种方法.使用凑整法一般有以下几种情形:一、分组凑数 .二、拆数凑整 . 三、分解凑整.四、借数凑整 .五、性质凑整.凑整法常用到的定律和公式有:①加法交换律:a+b=b+a②加法结合律:(a+b)+c=a+(b+c)③乘法交换律:a×b=b×a④乘法结合律:(a×b)×c=a×(b×c)⑤乘法分配律:(a+b) ×c=a×c+b×c⑥减法的性质:a-b-c=a-(b+c)⑦商不变的性质:a÷b=(a×c)÷(b×c);a÷b=(a÷c)÷(b÷c)⑧除法的性质:a÷(b×c)=a÷b÷c(a+b) ÷c=a÷c+b÷c(a-b) ÷c=a÷c-b÷c⑨和不变的规律:如果一个加数增加另一个加数减少同一个数,它们的和不变.【例12】 (第七届华杯赛复赛试题)计算:19+199+1999+…+.______9919991999=43421Λ个【分析】原式=20+200+2000+…+1999200019991-⨯L 14243个0=11999202221999⨯-43421Λ个 =43421Λ2199********个【例13】 (北京市第六届“迎春杯”决赛试题)1000+999-998-997+996+995-994-993+…+108+107-106-105+104+103-102-101= _____【分析】原式=(1000+999-998-997)+…+(104+103-102-101) =4×900÷4 =900.【例14】 2002年“我爱数学”夏令营计算竞赛试题计算:222222221234979899100-+-++-+-Λ【分析】这个题要利用平方差公式()()b a b a b a -+=-22进行计算比较简单.()()()()()()()()()()()()12123434979897989910099100123497989910012349798991002222222222222222-⨯++-⨯++-⨯++-⨯+=-+-++-+-=-+-++-+-K K K()5050210011001234979899100=÷⨯+=+++++++=K【附1】有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层.问最下面一层有多少根?【分析】将每层圆木根数写出来,依次是:可以看出,这是一个等差数列,它的首项是5,公差是1,项数是28.求的是第28项.我们可以用通项公式直接计算.故最下面的一层有32根.【附2】计算下列每组数的和:【分析】根据等差数列求和公式,必须知道首项、末项和项数,这里首项是105,末项是200,但项数不知道.若利用a n =a 1+据此可先求出项数,再求数列的和.解:数列的项数故数列的和是:【附3】规定:③=2×3×4,④=3×4×5 ⑤=4×5×6,…, ⑩=9×10×11,…如果⨯=-)8(1)8(1)7(1□,那么框内应填的数是_____·【分析】□=11111(8)7891()()(8)11.(7)(8)(8)(7)(8)(7)6782⨯⨯-=-⨯=-=-=⨯⨯ 故框内应填的数是21【附4】(04全国小学奥林匹克)计算:55 555 × 666 667 + 44 445 × 666 666 – 155 555【分析】原式=55 555 × 666 666 + 55 555 +44 445 × 666 666 -155 555=(55 555+44 445)× 666 666-100 000 = 66 666 500 000【附5】求{20073333333...33...3++++个的末三位数字.【分析】原式的末三位和每个数字的末三位有关系,有2007个3,2006个30,2005个300 ,则2007×3+2006×30+2005×300=6021+60180+601500=667701 ,原式末三位数字为701。
几种除法的巧算方法
几种除法的巧算方法1.利用商不变性质的简便运算我们已经学过,如果被除数和除数同时乘以或除以相同的数(这个数不等于零),所得的商不变。
这就是商不变的性质。
根据这个性质,可以使一些除法算式计算简便。
例1 计算:(1)12400÷25(2)374000÷125解:(1)原式=(12400×4)÷(25×4)=49600÷100=496计算熟练后可直接列式为:原式=124×4=496(2)原式=(374000×8)÷(125×8)=2992000÷1000=2992计算熟练后,可直接列式为:原式=374×8=29922.连除式题的巧算我们已经学过乘法交换律。
交换因数的位置积不变。
在连除式题中也同样可以交换除数的位置,商不变。
在连除运算中有这样的性质:一个数除以另一个数所得的商,再除以第三个数,等于第一个数除以第三个数所得的商,再除以第二个数。
用字母表示为:a÷b÷c=a÷c÷b利用这个性质可以使连除运算简便。
例2 45000÷125÷15解:原式=45000÷15÷125=3000÷125=3×8=243.连除运算中利用添括号法则的巧算在连除算式中,一个数除以另一个数所得的商再除以第三个数,等于第一个数除以第二、三两个数的积。
即添上括号后,因为括号前面是除号,所以括号中的运算符号要变为乘号。
用字母表示为:a÷b÷c=a÷(b×c)利用这个法则可以把两个除数相乘。
如果积是整十、整百、整千,可以使计算简便。
例3 计算:(1)4900÷4÷25(2)24024÷4÷6解:(1)原式=4900÷(4×25)=4900÷100=49(2)原式=24024÷(4×6)=24024÷24=10014.利用乘除混合运算性质的巧算在乘除混合运算中,可以把乘数、除数带符号“搬家”。
计算天天练:小数乘除法巧算-数学五年级上册北师大版(含答案)
计算天天练:小数乘除法巧算-数学五年级上册北师大版 1.计算下面各题,能简算的要简算。
32×0.25×12.5 3.6÷[1.5×(3.4-2.6)] 7.56×7.2+2.44×7.22.计算下面各题,怎样简便就怎样计算76÷0.25÷4 2.03×0.4+2.03×9.6 [8.5-(3.6+3.6)]÷2.63.脱式计算。
4.68÷4.5×0.75 8.4×0.26+0.74 3.06÷(21.2-4.2)4.脱式计算。
(能简算的要简算)3.6÷0.4-1.2×5 (8.56-4.6)÷4.45.7×6.9 +4.3×6.95.怎样算简便就怎样算。
17.617.6 2.2-÷ ()0.7 2.050.850.15⨯-÷⎡⎤⎣⎦5.62101 5.62⨯- ()81.4 3.9 2.54-÷÷6.计算下面各题,能简算的要简算。
4.35×99×2+8.7 (1.67+1.67+1.67+1.67)×2.5 8.4÷[0.32×(16.4+33.6)]7.脱式计算(能简算的要简算)。
1.25×3.9×0.8 14.6×5.2-5.2×4.6 5.74÷(10-4×0.45)8.简便方法计算。
0.82×101-0.82 1.27+5.8-1.8+0.73 1.25×6.8×0.89.合理灵活地计算下面各题。
1.25×3.2×0.8 3.74×8.3+1.7×3.74 (34.7-17.5)×(0.54÷0.9)8.5-10.5×0.8 8.4÷0.21÷0.5 7.29×4.6+46×1.27110.计算下面各题,能简便计算的要简算。
除法里的巧算
第六讲简算与巧算(3)除法里的巧算在整数除法中,有许多题目我们可以利用除法的意义及各部分间的关系进行简便运算,提高计算的速度与正确率,这儿给同学们介绍几种常见的速算方法。
一、除变连除。
当除数可以拆成两个因数相乘的形式时,可以变除法为连除,达到口算的目的。
如:560÷35=560÷7÷5=80÷5=161476÷18=1476÷2÷9=738÷9=8213156÷26=13156÷13÷2=1012÷2=506二、带号移动。
没有括号的连除或乘除混合运算,可以通过带符号移动,改变运算顺序,实现速算的目的。
如:7500÷4÷15=7500÷15÷4=500÷4=1252107×12÷7=2107÷7×12=301×12=3612三、添去号变号。
有括号的乘除混合运算,如果括号前面是除号,添、去括号,括号里的符号都要改变,从而达到局部凑整进行速算的目的。
如:4500÷25÷4=4500÷(25×4)=4500÷100=45(添括号)4500÷(9×4)=4500÷9÷4=500÷4=125(去括号)需要说明的是,这种乘除混合运算,如果括号前是乘号,添括号或者去括号都不需要改变运算符号。
如:324×36÷9=324×(36÷9)=324×4=1296(添括号)48×(2700÷12)=48×2700÷12=48÷12×2700=4×2700=10800四、双扩或双缩。
也就是利用商不变的性质,当除数是15、25、35、45、125等数时,我们把被除数和除数同时扩大或同时缩小相同的倍数,达到速算的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥数专题——除法中的巧算(一)学习方法指导我们利用“商不变的性质”进行除法中的巧算,因为“商不变性质”,是被除数、除数同时乘以或同时除以一个数(零除外),它们的商不变。
一般有这样的公式:()()a b a n b n ÷=⨯÷⨯或 ()()()=÷÷÷≠a n b n n 0如:()()123122322464÷=⨯÷⨯=÷=或 ()()12612262632÷=÷÷÷=÷=例1. 用简便方法计算下列各题。
(1)82525÷(2)47700900÷ 分析:(1)(2)可以利用“商不变的性质”去计算。
(1)82525÷ ()()=⨯÷⨯=÷=8254254330010033想办法使其中一个数扩大、或缩小后成为整十、整百、整千,如25扩大4倍得100。
(2)47700900÷()()=÷÷÷=÷=47700100900100477953看到被除数,与除数末尾都有00,这样让它们同时缩小100倍。
在除法运算中,还有两个数的和,(或差)除以一个数,可以用这个数分别去除这两个数(在都能整除的情况下),再求两个商的和或差。
一般公式:()a b c a c b c +÷=÷+÷()a b c a c b c -÷=÷-÷如:()126212262639+÷=÷+÷=+=()126212262633-÷=÷-÷=-=这个性质可以推广到多个数的和除以一个数的情况。
例2. 用简便方法计算。
(1)()2501655+÷(2)()7022134143--÷分析:这两题都可以运用以上性质去解答,就是“两个数的和(差)除以一个数”的除法运算性质。
(1)()2501655+÷ (2)()7022134143--÷=÷+÷=+=25051655503383=÷-÷-÷=--=7023213341432347113825除了以上性质外,使计算题简便,同时还有利用乘、除同级运算带着符号“搬家”的性质:(1)两个数的商除以一个数,等于商中的被除数先除以这个数,再除以原来商中的除数。
一般有:a b c a c b ÷÷=÷÷如:12321223÷÷=÷÷(2)两个数的积除以一个数,等于用除数先去除积的任意一个因数,再与另一个因数相乘。
一般有:a b c a c b ⨯÷=÷⨯或=÷⨯b c a如:1262122636⨯÷=÷⨯=或:1262621236⨯÷=÷⨯=例3. 计算下面各题。
(1)52575÷÷(2)12858⨯÷分析:这两题可以运用乘除混合运算带着符号“搬家”的性质。
(1)52575÷÷ (2)12858⨯÷=÷÷=÷=52557105715=÷⨯=⨯=1288516580在运算中经常出现乘除混合运算及括号等,怎么办,仍有一些性质:1. 一个数除以两个数的积,等于这个数依次除以积的两个因数。
一般公式:()a b c a b c ÷⨯=÷÷如:()126212621÷⨯=÷÷=例5. 简便计算下面各题。
(1)()75679÷⨯(2)126079÷÷分析:利用以上公式计算,发现(1)被除数÷两个数的积,可以用下面公式计算:(1)()75679÷⨯ (2)126079÷÷=÷÷=÷=75679108912()=÷⨯=÷=126079126063202. 一个数乘以两个数的商,等于这个数乘以商中的被除数,再除以商中的除数。
一般的有:()a b c a b c ⨯÷=⨯÷如:()12621262⨯÷=⨯÷例6. 简便计算。
(1)720124⨯÷(2)()12582⨯÷分析:以上两题可以利用乘除混合运算“去括号”,或“添括号”的性质进行巧算。
(1)720124⨯÷ (2)()12582⨯÷()=⨯÷=⨯=72012472032160=⨯÷=÷=12582100025003. 一个数除以两个数的商,等于这个数除以商中的被除数,再乘以商中的除数。
一般有:()a b c a b c ÷÷=÷⨯如:()126212624÷÷=÷⨯=例7. 简便计算下面各题。
(1)216246÷⨯(2)()87500010008÷÷分析:这两题即根据小③性质去做,可“添括号”。
(1)216246÷⨯ (2)()87500010008÷÷()=÷÷=÷=216246216454=÷⨯=⨯=8750001000887587000以上6题都是利用乘除混合运算去括号,或添括号的性质解决的。
但要注意:我们在使用以上全部除法的运算性质时,必须具备的条件是商不能有余数。
如果商有余数,在使用这些运算性质时,余数是会发生变化的。
如:()324973246359÷⨯=÷=…… ()324973249736751÷⨯=÷÷=÷=…… 例8. 巧算下面各题。
(1)132639÷(3)248681724824848⨯-⨯+⨯ (2)520125⨯ (4)999999⨯⨯分析:以上4题,有些算式表面看起来不能进行简便运算时,可把已知数适当分解或转化,从而使计算简便。
另外,在计算时无论题目是否要求简算,都应尽量地使用简便方法,有时可反复使用有关的定律和性质。
(1)132639÷()=÷⨯=÷÷=÷=13261331326133102334这题我们将39分解为39133=⨯,然后按性质去做。
(2)520125⨯()=⨯÷=⨯÷=÷⨯=⨯=52010008520100085208100065100065000此题将125转化为10008125÷=(3)248681724824848⨯-⨯+⨯()=⨯-+248681748=⨯24899………………这一步将99转化为()1001-()=⨯-=⨯-=248100124810024824552此题直接利用乘法分配律计算就可以。
(4)999999⨯⨯()=-⨯⨯10001999()=-⨯99000999………………再次转化为()101-()=⨯-=-=9890110198901098901890109对接近100的两位数相乘的速算。
接近100的两位数,用被乘数减去,100减乘数的差,所得的结果作积的前两位;再用100减去被乘数的差与100减乘数的差相乘,所得的结果作积的后两位。
或用乘数减去,100减被乘数的差,所得的结果作积的前两位,再用100减去被乘数的差与100减去乘数的差相乘,所得的结果作积的后两位。
我们用这种方法计算。
例9. 计算:9891⨯分析:因为100982-=……<1>差对98而言100919-=……<2>差对91而言所以98989-= 或91289-=2918⨯= 2918⨯=所以98918918⨯= 98918918⨯=用这种方法,有两种特例需要注意:特例1. 用100分别减去两个因数所得的差相乘之积不足10时,要在这个一位数前添0,否则积变成三位数就错了。
如:9698⨯速算为:10096410098212-=-=<><>…………差差96294428-=⨯= ∴⨯=96989408(注意8前添0)发现:差<1>、差<2>,用第一个因数-差<2>,再用差<2>×差<1>,最后结果是第一个因数×差<2>的结果做为前两位数,差<2>×差<1>的结果做为后两位数。
如果结果为一位数,前面要添0。
特例2. 用100分别减去两个因数所得的差相乘之积大于10时,要将百位作为向前进位的数,否则积变成五位数就错了。
如:9384⨯速算为:100937100841612-=-=<><>……差……差931677167112-=⨯= ∴⨯=93847812(注意百位上的1要向前进位)[答题时间:30分钟]练习:(1)9796⨯(2)9593⨯ (3)9897⨯ (4)9992⨯ (5)8889⨯ (6)9585⨯【试题答案】(1)9796⨯ 10097310096412-=-=<><>……差……差 97493341297969312-=⨯=∴⨯=(2)9593⨯ 10095510093712-=-=<><>……差……差 95788573595938835-=⨯=∴⨯=(3)9897⨯ 10098210097312-=-=<><>……差……差 9839523698979506-=⨯=∴⨯=(4)9992⨯ 10099110092812-=-=<><>……差……差 99891188********-=⨯=∴⨯=(5)8889⨯ 1008812100891112-=-=<><>……差……差 881177111213288897832-=⨯=∴⨯=(6)9585⨯ 100955100851512-=-=<><>……差……差 9515801557598858075-=⨯=∴⨯=。