《控制工程基础》第四章习题解题过程和参考答案
控制工程基础第四章习题答案
3-18 N(s)=0时2222220()(11/)*(1/(1))/(11/(1)*1/)()[1()]*()[(1(1))/((1)1)]*()/(1)*()lim ()lim */(1)*(1/1/)0ssr s s s s s s s E s s R s s s s s s R s s s s R s e sE s s s s s s s ϕϕ→→=++++=-=++-+++=++==+++=R(S)=0时 /不受扰动的影响。
扰动作用的完全补偿 4-2⑴ G(s)=10k/(s(s+2)(s+5))=Kg/(s(s+2)(s+5)) 见例4-12 ⑵ 2()(820)KgG s s s s =++①根轨迹有三支,起点分别为0,-4±2j,终点为无穷远处 ②实轴上根轨迹区间为(-∞,0)③渐近线:180(21)/360,180k θ=±+=±042428/33a j jσ+-++-=-=-⑤与虚轴的交点 328200s s s Kg +++= 3s 1 201[11/*]*1()011/*1/(1)s s s C s s s -+==++2s 8 Kg S 20-Kg/8 0s Kg2s 的辅助方程 280s Kgp += 1.2s j j == ⑥出射角、入射角180(21)90157.48180263.563.5a k k θ=+--=--=-⑶G(s)=(1)(2)(5)Kgs s s s +++①根轨迹有4支,起点为0,-1,-2,-5,终点均在无穷远处 ②实轴上区间[-1 0].[-5 -2]③渐近线:180(21)/445,135k θ=±+=±±521024a δ+++-=-=-④分离点,会合点()N s =1, ()()()()D s s s 1s 2s 5=+++=43281710s s s +++s '()N s =0, 32'()4243410D s s s s =+++()'()'()()0N s D s N s D s -= 424243410s s s +++=0牛顿系数定理求:Kg=- ()()()s s 1s 2s 5+++dKg /ds = -(324243410s s s +++)记为P(s) 初选 s1=-0.5,-3.5,s-s1=s+0.5,s+3.5 用s+0.5,s+2.5去除p(s),Q(S)得12120.38R s s R =-=-同理2' 4.54s =- ⑤与虚轴的交点432817100s s s s Kg ++++=4s 1 17 Kg 3s 8 102s 17-5/4 Kg 10*0.5060Kg -= 19.75Kgp = S 10-0.506Kg 00s Kg辅助方程 215.80s Kgp += 1.2 1.12s j =± ⑷ ()(5)G s (1)(3)Kg s s s +=++根轨迹有2支,起点为-1,-3,终点为负无穷远处 实轴区间[-3 -1],[ -∞ -5]平面上的轨迹是圆,圆心为(-5,j0)处,圆半径为2.83 4-3 a 开环传递函数为21010(2)10(2)()*10(2)(2)10*(210)1**(2)k s s s s s s s G s s s s s k s k s k s s s ++===+++++++210()(210)10s s s k s ϕ=+++特征方程为2(210)10s s k s +++=0 用2210s s ++除特征方程得210*1210S sK s s =-++b 21010(1)(2)()(1)10210(1)1(1)(2)s s s s s s s s s s s τϕτττ++=+=++++++ 特征方程为 2210(1)s s s τ+++=0 210*1210ss s τ=-++根轨迹有2支,起点 1.22132s i -±==-±处,终点一支在零点0处,一支无限远处区间为[-∞0];分离点和会合点 ()10N s s= 2()210D s s s =++ '()10N s = '()22D s s =+210*(22)10(210)0s s s s +-++=得 1.2 3.16s ==±(3.16舍去)4-4 零点 -5 极点 0,-2 ±2ja 点(-1,j0) b(-1.5,j2) c(-6,j0) d(-4,j3) e(-1,j2.37) f(1,j1.5) a 点0(6565180)180s zi s pi ∠+-∠+=--+=-∑∑满足1544Kg ==b 点 30(012783)180-++=-满足0.5*4*2.11.103.8Kg ==C 点 180(180135135)0-+-=不满足条件 4-5 解:绘出g k 从0到无穷的根轨迹,如图所示:根轨迹有3支,起点为0,-4,-6,终点为无限远处 渐近线180(21)/360,180k θ=±+=±0461033a σ++-=-=- 分离点和会合点 32()1024D s s s s =++2'()32024D s s s =++ ()1N s = '()0N s = 由()*'()'()*()0D s N s D s N s -=得 1.2 1.57s =- -5.1(舍去)与虚轴的交点 用劳斯判据得 240g k p = 1.2s =%18%σ≤的要求,阻尼角60β≤ ,作P 60= 的径向直线交点为A,B 作为满足性能指标要求的闭环主导极点,1,2 1.2 2.1s j =-±(计算方法此点满足特征方程)|0|*||*||44g k A CA DA == /4*6 1.83g K k =≈44g k ≤ 1.83K ≤另一闭环极点为- 3(46 2.4)7.6s =-+-=-不影响系统的超调量,取 1.83K =即满足要求 4-6 (2)()(1)(4)k Kg s G s s s s +=++解:三支根轨迹:起点在0,-1,-4处,终点-2,与两支无限远处 实轴上区间[-1 0][-4 -2]处分离点和会合点()2N s s =+, 32()(1)(4)54D s s s s s s s =++=++ '()1N s = 2'()3104D s s s =++232(2)*(3104)(54)0s s s s s s +++-++=得10.6s =- 渐近线 01421.531σ++--=-=--180(21)/290,270k θ=+=与虚轴的交点 特征方程 3254(2)0g s s s k s ++++=3s 1 4+g k 2s 5 2g kS2035gk +0s 2S 行等于0 g k 是负值,无解,与虚轴不交 开环放大系数 K=g k *2/4=3 幅值条件1g k = 6g k = 3v k =设半径为r ,32(cos60sin60)5(cos60sin60)(4)(cos60sin60)20g g r r j r r j k r r j k -++-+++-++={r=2, g k =6,60β= 0.5ς= 16%δ=2wn =1.81p t s == 33.43*s t wnς==4-7 求分离点 ()1N s s =+ 232()()D s s s a s as =+=+ '()1N s = 2'()32D s s a s =+得s=0,1,2s =a>1时,若2(3)160a a +-> a>9时有2个分离点,a=9时有1个分离点且为-3,a<9无分离点a<1 无分离点4-8解:起点0,32j -±渐近线180(21)/360,180k θ=±+=±330222213a j j σ+++-=-=-与虚轴交点 用劳斯判据得 1,23s j =±027g k <<时系统稳定出射角180(21)(90125.3)35.3a k θ=+-+=-4-9 解 ⑴三支 起点为0,-2,终点为无穷远处 渐近线180(21)/360,180k θ=±+=±23a σ-=-系统不稳定⑵三支 起点为0,-2,终点一支为-3,两支为无穷远处 渐近线180(21)/290k θ=±+=±231312a σ--=-=- 系统仍不稳定⑶三支 起点为0,-2,终点一支为-1,两支为无穷远处 渐近线180(21)/290k θ=±+=±211312a σ--=-=-- 求分离点和会合点()1N s s =+ 232()(2)2D s s s s s =+=+'()1N s = 2'()34D s s s =+由()*'()'()*()0D s N s D s N s -=得10,,22s s s ==-=-无分离点 系统稳定 20c z -<-<时,系统稳定4-10内环特征方程为:2200Ts s ++= 2*120s T s =-+作根轨迹,两个零点为原点,极点一个为无穷远处,一个为-20。
国开2024年秋机电控制工程基础形考任务4答案
国开2024年秋《机电控制工程基础》形考4答案1.某环节的传递函数为3s,则它的幅频特性的数学表达式结果是A(ω)=3ω。
判断题 (1 分)A.正确B.错误2.负反馈结构的系统,其前向通道上的传递函数为G(s),反馈通道的传递函数为H(s),则该系统的开环传递函数为G(s)H(s)。
判断题 (1 分)A.正确B.错误3.负反馈结构的系统,其前向通道上的传递函数为G(s),反馈通道的传递函数为H(s),则该系统的闭环传递函数为Image。
判断题 (1 分)A.正确B.错误4.函数f(t)=3t的拉氏变换为。
判断题 (1 分)A.正确B.错误5.单位负反馈结构的系统,其开环传递函数为Image则该系统为2型系统。
判断题 (1 分)A.正确B.错误6.线性系统的稳态误差只取决于系统的外输入。
判断题 (1 分)A.正确B.错误7.线性系统的稳态误差只取决于系统自身结构与参数。
判断题 (1 分)A.正确B.错误8.系统闭环特征方程为Image,根据劳斯稳定判据得,闭环系统稳定下K的取值范围是K<0.1.判断题 (1 分)A.正确B.错误9.对于一般的控制系统,当给定量或扰动量突然增加时,输出量的暂态过程一定是衰减振荡。
判断题 (1 分)A.正确B.错误10.对于一般的控制系统,当给定量或扰动量突然增加某一给定值时,输出量的暂态过程一定是单调过程。
判断题 (1 分)A.正确B.错误11.被控制对象可以是要求实现自动控制的机器、设备或生产过程。
判断题 (1 分)A.正确B.错误12.用时域分析法分析控制系统性能时,常用的的典型输入信号是阶跃函数。
判断题 (1 分)A.正确B.错误13.用频域法分析控制系统时,使用的典型输入信号是正弦函数。
判断题 (1 分)A.正确B.错误14.衡量二阶系统动态性能优劣两个重要指标是超调量和调节时间。
判断题 (1 分)A.正确B.错误15.分析稳态误差时,将系统分为0型系统、I型系统、II型系统…,这是按开环传递函数的微分环节数来分类的。
控制工程基础 燕山大学 孔祥东 答案与解答4
-0.67 -1 0
σ
其中:渐近线相角: a
n
180 2q 1 180 2q 1 180 q 1 nm 3 60 q 0
m i j
渐近线交点: a
p z
i 1 j 1
nm
02 2 0.67 。 3 3
批注 [x6]: 如果将其代入增益函数内,则易出现由于计算 误差而发生 K1 有虚部而被判定不在根轨迹上。
s s 5 s 9 3.12 3.12 3.12 180 arctan arctan arctan 1.5 5 1.5 9 1.5 180
σ 0 0
σ 0
σ 0
jω
jω
jω
jω
σ 0 0
σ 0
σ 0
σ
4-3.已知单位反馈系统的开环传递函数如下,试绘制当增益 K1 变化时系统的根轨迹图。 (1).
Gs
K1 ss 2s 5
K1 s 2 s 2 2s 10
(2). 解:
G2 s
(1). 开环极点为 p1 0, p2 2, p3 5
分离点在原点处,分离角为:
180 2q 1 90 。 2
可见系统除在 K1=0 时处于临界稳定之外,系统均处于不稳定状态。 (2) 增加一个零点 z=-1 后的根轨迹如图蓝线所示。 其中:渐近线相角: a
n
180 2q 1 180 2q 1 90 nm 2
无有限开环零点。示如图 jω j3.16
批注 [x2]: 根轨迹图应按正式作图进行,一般根轨迹应表示出和虚轴 的交点(如果有的话) 应根据根轨迹的八条规则逐条进行计算分析
机械工程控制基础 第4章习题解答
1 0.01 P( ) , Q( ) 4 2 1 10 1 104 2
Im
0 0.5
0
1 Re
1 2) G ( s ) s (1 0.1s )
1 0.1 1 G( j ) j 2 j (1 j 0.1 ) 1 0.01 (1 0.01 2 )
试求系统的幅频特性和相频特性。
解:由题意, X i ( s) 1
s
X o ( s) L 1 1.8e 4t
0.8e 9t
1 1.8 0.8 s s4 s9
36 s( s 4)(s 9)
因此,系统传递函数为:
X o ( s) 36 G ( s) X i ( s) ( s 4)(s 9)
5 25 2 2 5
5 29
() G ( j) arctan
xo (t ) 0.93sin(2t 21.8)
3)
5 G B ( s) s 11
121 2 2 () G ( j) arctan 11 5 x o (t ) sin(2t 10.3) 5
2 3
4-22
(t ) Cxo (t ) Kx o (t ) f (t ) mxo
B
xo(t)
传递函数:
X o ( s) 1 1 G ( s) F ( s) ms 2 Cs K s 2 Cs K 1 A() G( j) ( K 2 ) 2 2C 2 C () G ( j) arctg K 2
10 G B ( s) 0.05 s 3 0.15 s 2 s 10
10 G B ( j) 0.05( j) 3 0.15( j) 2 j 10 10 (10 0.15 2 ) j ( 0.05 3 )
《控制工程基础》课程作业习题(含解答)
第一章概论本章要求学生了解控制系统的基本概念、研究对象及任务,了解系统的信息传递、反馈和反馈控制的概念及控制系统的分类,开环控制与闭环控制的区别;闭环控制系统的基本原理和组成环节。
学会将简单系统原理图抽象成职能方块图。
例1 例图1-1a 为晶体管直流稳压电源电路图。
试画出其系统方块图。
例图1-1a 晶体管稳压电源电路图解:在抽象出闭环系统方块图时,首先要抓住比较点,搞清比较的是什么量;对于恒值系统,要明确基准是什么量;还应当清楚输入和输出量是什么。
对于本题,可画出方块图如例图1-1b。
例图1-1b 晶体管稳压电源方块图本题直流稳压电源的基准是稳压管的电压,输出电压通过R和4R分压后与稳压管的电3压U比较,如果输出电压偏高,则经3R和4R分压后电压也偏高,使与之相连的晶体管基极w电流增大,集电极电流随之增大,降在R两端的电压也相应增加,于是输出电压相应减小。
c反之,如果输出电压偏低,则通过类似的过程使输出电压增大,以达到稳压的作用。
例2 例图1-2a为一种简单液压系统工作原理图。
其中,X为输入位移,Y为输出位移,试画出该系统的职能方块图。
解:该系统是一种阀控液压油缸。
当阀向左移动时,高压油从左端进入动力油缸,推动动力活塞向右移动;当阀向右移动时,高压油则从右端进入动力油缸,推动动力活塞向左移动;当阀的位置居中时,动力活塞也就停止移动。
因此,阀的位移,即B点的位移是该系统的比较点。
当X向左时,B点亦向左,而高压油使Y向右,将B点拉回到原来的中点,堵住了高压油,Y的运动也随之停下;当X向右时,其运动完全类似,只是运动方向相反。
由此可画出如例图1-2b的职能方块图。
例图1-2a 简单液压系统例图1-2b 职能方块图1.在给出的几种答案里,选择出正确的答案。
(1)以同等精度元件组成的开环系统和闭环系统,其精度比较为_______ (A )开环高; (B )闭环高; (C )相差不多; (D )一样高。
(2)系统的输出信号对控制作用的影响 (A )开环有; (B )闭环有; (C )都没有; (D )都有。
现代控制工程基础第四章习题解答
jω
0
σ
jω
0
σ
6
4.3 设单位负反馈开环传递函数如下,试概略绘出响 应的闭环根轨迹
(2) 解:
G ( s ) = K ( s + 1) s (2 s + 1)
G(s) = K *(s +1) , K * = 0.5K s(s + 0.5)
开环零点: z1 = −1, m = 1
开环极点: p1
= 0,
+1)π
θpx =19.48D
10
jω
19.48o
σ
0
11
4.6 设系统开环传递函数如下,试画出b从零到无穷变 化时的根轨迹。
(1)
G(s) =
20
(s + 4)(s + b)
解: 闭环系统特征方程: D(s) = s2 + 4s + 20 + b(s + 4) = 0
等效单位负反馈开环传递函数:G* (s)
K −1.1ω2 + ⎣⎡ω − 0.1ω3 ⎦⎤ j = 0
令实部、虚部等于零,可得:
⎧ω = 0
⎨⎩K = 0 ,
⎧⎪ω = ± 10
⎨ ⎪⎩K
=
11
显然产生开环虚根的开环增益K=11. 9
4.5 设试绘制下列多项式方程的根轨迹。
(1) s 3 + 2 s 2 + 3 s + K s + 2 K = 0
=
b(s + 4) s2 + 4s + 20
jω
开环零点:z1 = −4, m = 1
开环极点:p1,2 = −2 ± 4 j, n = 2
控制工程基础习题答案
控制工程基础习题解答第一章1-5.图1-10为张力控制系统。
当送料速度在短时间内突然变化时,试说明该控制系统的作用情况。
画出该控制系统的框图。
由图可知,通过张紧轮将张力转为角位移,通过测量角位移即可获得当前张力的大小。
当送料速度发生变化时,使系统张力发生改变,角位移相应变化,通过测量元件获得当前实际的角位移,和标准张力时角位移的给定值进行比较,得到它们的偏差。
根据偏差的大小调节电动机的转速,使偏差减小达到张力控制的目的。
框图如图所示。
1-8.图1-13为自动防空火力随动控制系统示意图及原理图。
试说明该控制系统的作用情况。
题1-5 框图电动机给定值角位移误差张力-转速位移张紧轮滚轮输送带转速测量轮测量元件角位移角位移(电压等)放大电压测量 元件>电动机角位移给定值电动机图1-10 题1-5图该系统由两个自动控制系统串联而成:跟踪控制系统和瞄准控制系统,由跟踪控制系统获得目标的方位角和仰角,经过计算机进行弹道计算后给出火炮瞄准命令作为瞄准系统的给定值,瞄准系统控制火炮的水平旋转和垂直旋转实现瞄准。
跟踪控制系统根据敏感元件的输出获得对目标的跟踪误差,由此调整视线方向,保持敏感元件的最大输出,使视线始终对准目标,实现自动跟踪的功能。
瞄准系统分别由仰角伺服控制系统和方向角伺服控制系统并联组成,根据计算机给出的火炮瞄准命令,和仰角测量装置或水平方向角测量装置获得的火炮实际方位角比较,获得瞄准误差,通过定位伺服机构调整火炮瞄准的角度,实现火炮自动瞄准的功能。
控制工程基础习题解答第二章2-2.试求下列函数的拉氏变换,假定当t<0时,f(t)=0。
(3). ()t et f t10cos 5.0-=解:()[][]()1005.05.010cos 25.0+++==-s s t e L t f L t(5). ()⎪⎭⎫⎝⎛+=35sin πt t f 图1-13 题1-8图敏感 元件定位伺服机构 (方位和仰角)计算机指挥仪目标 方向跟踪环路跟踪 误差瞄准环路火炮方向火炮瞄准命令--视线瞄准 误差伺服机构(控制绕垂直轴转动)伺服机构(控制仰角)视线敏感元件计算机指挥仪解:()[]()252355cos 235sin 2135sin 2++=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=s s t t L t L t f L π2-6.试求下列函数的拉氏反变换。
机械控制工程基础第四章习题解答
题目:线性定常系统对正弦信号(谐波输入)的__________________ 称为频率响应。
答案:稳态响应题目:频率响应是系统对_________________ 的稳态响应;频率特性G(j 3 )与传递函数G(s)的关系为_______________ 。
答案:正弦输入、s= j题目:以下关于频率特性、传递函数和单位脉冲响应函数的说法错误的是【】A•G(j ) G(s) s j B•G(s) F (t)C. G(s) L (t)D. G(j ) F (t)分析与提示:令传递函数中s j即得频率特性;单位脉冲响应函数的拉氏变换即得传递函数;单位脉冲响应函数的傅立叶变换即为频率特性。
答案:B题目:以下说法正确的有【】A .时间响应只能分析系统瞬态特性B. 系统的频率特性包括幅频特性和相频特性,它们都是频率3的函数C. 时间响应和频率特性都能揭示系统动态特性D •频率特性没有量纲E.频率特性反映系统或环节对不同频率正弦输入信号的放大倍数和相移分析与提示:时间响应可分析系统瞬态特性和稳态性能;频率特性有量纲也可以没有量纲,其量纲为输出信号和输入信号量纲之比。
答案:B、C、E题目:通常将_______________ 和 ____________ 统称为频率特性。
答案:幅频特性、相频特性题目:系统的频率特性是系统_______________ 响应函数的____________ 变换。
答案:脉冲、傅氏题目:频率响应是系统对_________________ 的稳态响应;频率特性G(j 3 )与传递函数G(s)的关系为_______________ 。
答案:正弦输入、s= j题目:已知系统的单位阶跃响应为x o t 1 1.8e 4t 0.8e 9t, t 0,试求系统的幅频特性和相频特性。
分析与提示:首先由系统的输入输出得到系统传递函数;令s= j即可得到频率特性,进而得到幅频特性和相频特性。
答案:由已知条件有1s ,s 1 1 1 -1.8 0.8 — s s 4 s 9X i X o s传递函数为G s X o s36 X i s s 4 s 9则系统的频率特性为G j36j 4 j 9其中,幅频特性为 ______ 36 16 2 .81相频特性为 题目:系统的传递函数为 arctg 才 arctg § arctg arctg — 3 ,则其频率特性是【0.2 (s) A • G(j 3 s 0.2 G(j 3 0.2 C . G(j _3 ____ 20.04G(j 3— (0.2 j0.04 2 答案:D G(s),在输入 X j (t) 4cos(t30 )作用下的稳态输出是【 】A . X °(t) 4 cos(t 15 )B . X o (t)C . X o (t) 2 2 cos(t 15 )D .Xo(t) 分析与提示: 系统的传递函数为 G(j)- 为A 1.1 2 , j输入信号频率为 题目:一阶系统的传递函数为 1的单频信号, 2 2 cos(t 15 )4 cos(t 15 ) ,幅频特性,相频特性分别1arctg 其稳态输出为同频率的单频信号,输出信号幅值 A 1 1 1 30o arctg 1 15o 答案 题目 答案 题目 答案 题目 答案题目B 频率特性表示了系统对不同频率的正弦信号的 复现能力 频率特性实质上是系统的___________________ 单位脉冲响应函数 频率特性随频率而变化,是因为系统含有 储能元件时间响应分析主要用于分析线性系统过渡过程, 以获得系统的动态特性, 而频率 ,以获得系统的动态特性。
控制工程基础第二版(徐立)课后习题答案整理版
二到四章答案2-1试建立题2-1图所示各系统的微分方程[其中外力的),位移x(f)和电压为输入量;位移y⑺和电压顽)为输出量;k(弹性系数),"(阻尼系数),R(电阻),C(电容)和m(质量)均为常数]。
////////m/(O M(a)题2-1图系统原理图解:2-l(a)取质量m为受力对象,如图,取向下为力和位移的正方向。
作用在质量块m上的力有外力f(t),重力mg,这两个力向下,为正。
有弹簧恢复力4X0+Jo]和阻尼力〃也也,这两个力向上,为负。
其中,光为at扣)=0、物体处于静平衡位置时弹簧的预伸长量。
A A dtmv v7(0哗根据牛顿第二定理£F=ma,有f(t)+mg一灯yQ)+为]—#«')=/花』,?)其中:mg=ky0代入上式得f(t)-ky(f)-r顿')=m"半)at dt整理成标准式:d2y(t)dyit)...…..m-—以—ky(t)=/(0dt dt或也可写成:H顷)~dT m at m m它是一个二阶线性定常微分方程。
2-l(b)如图,取A点为辅助质点,设该点位移为x A(t),方向如图。
再取B点也为辅助质点,则该点位移即为输出量X0,方向如图A 点力平衡方程:4M 。
一%“)] = //[竺史一¥]at atB 点力平衡方程:k 2y(t}= 〃[也也—也£1]dt dt由①和②:^[%(z)-x A (O] = k 2y(t}得:xA (t) = x(t)-^y(t)二边微分,办a ") _办⑺ *2 ©(,)dt将③代入②:①dt 、 dt整理成标准式:k 、+ k 2 dy(t) * k 2 y(Q _ dx(t)k 、 dt 〃 dt或也可写成:dy(t)工 k x k 2+ ,,仰)=灯如)dt /u(k\ + 幻) k x +k 2 dt它是一个一阶线性定常微分方程。
王积伟《控制工程基础》习题解答修改后
3s 2 2s 8 8)G(s) s(s 2)(s 2 2s 4)
s 3 5s 2 9s 7 17) G( s) ( s 1)(s 2)
常见函数L变换——记住
2.2 数学工具
节目录
第2章 习题解答
sc G(s)中包含有重极点 解: 3)G(s) ( s a)(s b) 2 bt ca 1 c b 1 ac 1 te 1 2 2 2 s b 2 s a a b ( a b ) ( s b ) ( a b ) (s b)
2Hale Waihona Puke 第2章 习题解答X ( s) 1 1 1 s 2 2 2 s 1 s 1 s 1 s 4
x(t ) et et 2 sin t cos2t, t 0
x(0) 0, x(0) 0 3 2 3)s X ( s) 2sX ( s) 5 X ( s) s 2 s X (s) sx(0) x(0) 1 3 1 s2 X ( s) 2 0.6 0.6 s s 2s 5 s ( s 1) 2 4 1 s 1 2 0.6 0.6 0 . 3 s ( s 1) 2 4 ( s 1) 2 4 (t ) 2 x(t ) 5 x(t ) 3, x
水箱
实际 液位
浮子
a)
给定 液位 开关 电磁阀 浮子 水箱
实际 液位
b)
第2章 习题解答 2-1 试建立图示各系统的动态微分方程,并说明 这些动态方程之间有什么特点。
xi xo
C
ui
a)
R
uo
B b) K
第2章 习题解答
R1
xi
K1
控制工程基础第1-5章客观题复习题与答案(复习材料)
第1~2章 控制系统的基本概念;数学模型一、填空题1.对控制系统的基本要求为稳定性、( 准确性 )、快速性。
2.闭环系统是指系统的( 输入量 )对系统有控制作用,或者说,系统中存在( 反馈元件 )的回路。
3.线性系统的所有极点都分布在S 平面的左半部,则系统的稳定性为( 稳定 )。
4.传递函数通过( 输入量 )与( 输出量 )之间信息的传递关系,来描述系统本身的动态特征。
5.系统在外加激励作用下,其( 输出量或输出信号 )随( 时间 )变化的函数关系称为系统的时间响应。
二、单项选择题1.开环控制系统是指( B )对系统没有控制作用。
A.系统输入量 B.系统输出量C.系统的传递函数 D.系统的干扰2.传递函数可以描述( C )。
A.线性的、多输入多输出系统 B.非线性的、单输入单输出系统C.线性的、单输入单输出系统 D.非线性的、多输入多输出系统3.设单位反馈系统开环传递函数为,函数)(s G )(1)(s G s F +=,则与)( A )。
)(s G (s F A.极点相同; B.零点相同;C.零极点都相同; D.零极点都不同。
4.已知单位负反馈控制系统的开环传递函数为)5)(1()1(10)(+−+=s s s s s G ,该系统闭环系统是( A )。
A.稳定的 B.无法判断C.临界稳定的 D.不稳定的 5.某系统的传递函数为)5)(6()2()(+++=s s s s G ,其零、极点是( C )。
A.零点;极点,6−=s 2−=s 5−=s B.零点2=s ;极点6−=s ,5−=s C.零点;极点,2−=s 6−=s 5−=s D.零点2=s ;极点6=s ,5=s 6.一个线性系统的稳定性取决于( D )。
A.系统的输入 B.外界干扰C.系统的初始状态 D.系统本身的结构和参数7.对于定常控制系统来说,( A )。
A.表达系统的微分方程各项系数不随时间改变 B.微分方程的各阶微分项的幂为1C.不能用微分方程表示 D.系统总是稳定的8.线性系统与非线性系统的根本区别在于( C )A.线性系统微分方程的系数为常数,而非线性系统微分方程的系数为时变函数;B.线性系统只有一个外加输入,而非线性系统有多个外加输入;C.线性系统满足迭加原理,非线性系统不满足迭加原理;D.线性系统在实际系统中普遍存在,而非线性系统在实际中存在较少。
武汉理工控制工程第四章习题解答.
习题解答:4-1 负反馈系统的开环传递函数()()()()21++=s s s K s F s G G,试绘制闭环系统的根轨迹。
解:根轨迹有3个分支,分别起始于0,-1,-2,终止于无穷远。
1-=a σ,︒±︒=60,180a φ。
实轴上的根轨迹是(-∞,-2]及[-1,0]。
0)23(23=++dss s s d 可得,422.01-=s ,578.12-=s ;422.01-=s 是分离点。
根轨迹见图4-28。
图4-284-2系统的开环传递函数为()()()()()421+++=s s s K s F s G G,试证明点311j s +-=在根轨迹上,并求出相应的根轨迹增益G K 和开环增益K 。
解:若点1s 在根轨迹上,则点1s 应满足相角条件π)12()()(+±=∠k s H s G ,如图4-29所示。
图4-29对于311j s +-=,由相角条件=∠)()(11s H s G )431()231()131(0++-∠-++-∠-++-∠-j j jππππ-=---=632满足相角条件,因此311j s +-=在根轨迹上。
将1s 代入幅值条件:1431231131)()(11=++-⋅++-⋅++-=j j j K s H s G G所以,12=G K , 238==G K K4-3 已知开环零点z ,极点p ,试概略画出相应的闭环根轨迹图。
(1)2-=z ,6-,0=p ,3-; (2)0=p ,2-,442,1j z ±-=; (3)11-=p ,123,2j p ±-=; (4)0=p ,1-,5-,4-=z ,6-; 解:图4-30(1) 图4-30(2)图4-30(3) 图4-30(4)4-4 设单位反馈控制系统开环传递函数为()()()()()23235.31j s j s s s s K s G G-+++++=试概略绘出其闭环根轨迹图(要求确定根轨迹的分离点,起始角和与虚轴的交点)。
《控制工程基础》第四章习题解题过程和参考答案
4-1 设单位反馈系统的开环传递函数为:10()1G s s =+。
当系统作用有下列输入信号时:()sin(30)r t t =+︒,试求系统的稳态输出。
解:系统的闭环传递函数为:10()()11()()1()111C s G s s R s G s Φ===++这是一个一阶系统。
系统增益为:1011K =,时间常数为:111T =其幅频特性为:()A ω=其相频特性为:()arctan T ϕωω=-当输入为()sin(30)r t t =+︒,即信号幅值为:1A =,信号频率为:1ω=,初始相角为:030ϕ=︒。
代入幅频特性和相频特性,有:1(1)A ====11(1)arctan arctan5.1911T ωϕω==-=-=-︒ 所以,系统的稳态输出为:[]()(1)sin 30(1)24.81)c t A A t t ϕ=⋅⋅+︒+=+︒4-2 已知系统的单位阶跃响应为:49()1 1.80.8(0)t t c t e e t --=-+≥。
试求系统的幅频特性和相频特性。
解:对输出表达式两边拉氏变换:1 1.80.8361()49(4)(9)(1)(1)49C s s s s s s s s s s =-+==++++++ 由于()()()C s s R s =Φ,且有1()R s s=(单位阶跃)。
所以系统的闭环传递函数为:1()(1)(1)49s s s Φ=++可知,这是由两个一阶环节构成的系统,时间常数分别为:1211,49T T ==系统的幅频特性为二个一阶环节幅频特性之积,相频特性为二个一阶环节相频特性之和:3-212()()()A A A ωωω===1212()()()arctan arctan arctanarctan49T T ωωϕωϕωϕωωω=+=--=--4-3 已知系统开环传递函数如下,试概略绘出奈氏图。
(1)1()10.01G s s=+(2)1()(10.1)G s s s =+(3))1008()1(1000)(2+++=s s s s s G (4)250(0.61)()(41)s G s s s +=+ 解:手工绘制奈氏图,只能做到概略绘制,很难做到精确。
控制工程基础习题解答4
控制工程基础习题解答第四章4-1.试求下列函数的幅频特性A (ω)、相频特性Φ(ω)、实频特性U (ω)和虚频特性V (ω)。
(1). ()13051+=ωωj j G(2).()()11.012+=ωωωj j j G解:(1). ()190015019005221+-+=ωωωωjj G ()190052+=ωωA()()ωωφ30arctan -= ()190052+=ωωU()19001502+-=ωωωV (2). ()()()101.01101.01.0222+-+-=ωωωωj j G ()101.012+=ωωωA()ωωφ1.01arctan= ()()101.01.02+-=ωωU()()101.012+-=ωωωjV4-2.某系统传递函数()125.05+=s j G ω,当输入为() 304cos 5-t 时,试求系统的稳态输出。
解:()⎪⎭⎫⎝⎛+-+=10625.025.010625.01522ωωωωj j G ()225140625.0542=+⨯=A ()() 45425.0arctan 4-=⨯-=φ稳态输出:()()()()754cos 22254304cos 45-=+-t t A φ 4-3.下面的各传递函数能否在图4-30中找到相应的奈氏曲线。
(1). ()()()14.0142.021++=s s s s G (2). ()()()13.015914.0222+++=s s s s s G (3). ()()()111.03++=s s s K s G (4). ()()()()3214+++=s s s Ks G(5).()()()15.015++=s s s Ks Ga)b)c)d)e)f)(6).()()()216++=s s Ks G解:(1). ()()()14.0142.021++=s s s s G ()()()()()()116.072.0116.06.112.0116.06.3116.06.112.02222222221+-++-=⎥⎦⎤⎢⎣⎡++++-=ωωωωωωωωωωωωjj j G()()()116.06.112.02221++-=ωωωωU ()()116.072.021+-=ωωωV起点:+→0ω:()∞=ωj G 1,()1809021-=⨯-=ωφ,()-∞=ω1U ,()-∞=ω1V ;终点:+∞→ω:()01=ωj G ,()()()1809031901-=⨯-=⨯-=n m ωφ;中间变化过程:幅值、实部和虚部的绝对值单调下降;实部和虚部恒小于0,位于第三象限;转角频率从小到大排列:一阶微分、惯性环节,相位先增加后减少; c)相近,但起点虚部和虚部的变化规律不符。
控制工程基础课后习题答案
详细描述
通过调整系统的传递函数,可以改变系统的 频率响应特性。在设计控制系统时,我们需 要根据实际需求,调整传递函数,使得系统 的频率响应满足要求。例如,如果需要提高 系统的动态性能,可以减小传递函数在高频 段的增益。
06 第五章 控制系统的稳定性 分析
习题答案5-
习题答案
• 习题1答案:该题考查了控制系统的基本概念和组成。控制系统的基本组成包 括被控对象、传感器、控制器和执行器等部分。被控对象是实际需要控制的物 理系统或设备;传感器用于检测被控对象的输出状态,并将检测到的信号转换 为可处理的电信号;控制器根据输入的指令信号和传感器的输出信号,按照一 定的控制规律进行运算处理,并输出控制信号给执行器;执行器根据控制信号 对被控对象进行控制操作,使其达到预定的状态或性能要求。
控制工程基础课后习题答案
目 录
• 引言 • 第一章 控制系统概述 • 第二章 控制系统的数学模型 • 第三章 控制系统的时域分析 • 第四章 控制系统的频域分析 • 第五章 控制系统的稳定性分析 • 第六章 控制系统的校正与设计
01 引言
课程简介
01
控制工程基础是自动化和电气工 程学科中的一门重要课程,主要 涉及控制系统的基本原理、分析 和设计方法。
总结词
控制系统校正的概念
详细描述
控制系统校正是指在系统原有基础上,通过加入适当的 装置或元件,改变系统的传递函数或动态特性,以满足 性能指标的要求。常见的校正方法有串联校正、并联校 正和反馈校正等。校正装置通常安装在系统的某一环节 ,以减小对系统其他部分的影响。
习题答案6-
总结词
控制系统设计的一般步骤
习题答案5-
总结词
控制工程基础456章答案
第四章 系统的时间响应分析内容提要一、时间响应的组成任一稳定系统的时间响应都是由瞬态响应和稳态响应两部分组成。
系统的时间响应可从两方面分类,按振动性质可分为自由响应与强迫响应,按振动来源可分为零输入响应与零状态响应。
控制工程所要研究的响应往往是零状态响应。
二、时域性能指标1.延迟时间d t2.上升时间r t21ξωβπωβπ--=-=n d r t 3.峰值时间p t21ξωπωπ-=n d p t =4.调节时间s t一阶系统 ⎩⎨⎧=∆==∆=)05.0 (3)02.0 (4T t T t s s二阶系统 ⎪⎪⎩⎪⎪⎨⎧=∆==∆=)05.0 ( 3)02.0 ( 4n sns t t ξωξω5.最大超调量p M%10021⨯=--ξξπeM p6.稳态误差ss e三、稳定性1.稳定性的概念线性系统稳定的充分必要条件为:系统特征方程的全部根都具有负实部。
又由于系统特征方程的根就是系统的极点,所以系统稳定的充分必要条件就是系统的全部极点都在s 平面的左半平面。
2.劳斯稳定判据劳斯判据指出系统稳定的充分必要条件是:劳斯表中第一列元素全部大于零。
若出现小于零的元素,系统不稳定,且第一列元素符号改变的次数等于系统特征方程具有正实部特征根的个数。
四、稳态偏差1.参考输入作用下系统的稳态偏差0lim ()lim()1()()ss s s ss E s R s G s H s ε→→=⋅=+2.干扰作用下系统的稳态误差)()()()(1)(lim)(lim 21200S N s H s G s G s sG s E s e s s ss N +-=⋅=→→图4-1 参考输入作用下系统方框图图4-2 干扰作用下的反馈系统方框图4-1 什么是时间响应?时间响应由哪两部分组成?各部分的定义是什么?答:系统在外加作用(输入)激励下,其输出量随时间变化的函数关系称之为系统的时间响应,通过对时间响应的分析可揭示系统本身的动态特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4-1 设单位反馈系统的开环传递函数为:10()1G s s =+。
当系统作用有下列输入信号时:()sin(30)r t t =+︒,试求系统的稳态输出。
解:系统的闭环传递函数为:10()()11()()1()111C s G s s s R s G s Φ===++这是一个一阶系统。
系统增益为:1011K =,时间常数为:111T =其幅频特性为:()A ω=其相频特性为:()arctan T ϕωω=-当输入为()sin(30)r t t =+︒,即信号幅值为:1A =,信号频率为:1ω=,初始相角为:030ϕ=︒。
代入幅频特性和相频特性,有:1(1)A ====11(1)arctan arctan5.1911T ωϕω==-=-=-︒ 所以,系统的稳态输出为:[]()(1)sin 30(1)24.81)c t A A t t ϕ=⋅⋅+︒+=+︒4-2 已知系统的单位阶跃响应为:49()1 1.80.8(0)ttc t e e t --=-+≥。
试求系统的幅频特性和相频特性。
解:对输出表达式两边拉氏变换:1 1.80.8361()49(4)(9)(1)(1)49C s s s s s s s s s s =-+==++++++ 由于()()()C s s R s =Φ,且有1()R s s=(单位阶跃)。
所以系统的闭环传递函数为: 1()(1)(1)49s s s Φ=++可知,这是由两个一阶环节构成的系统,时间常数分别为:1211,49T T ==系统的幅频特性为二个一阶环节幅频特性之积,相频特性为二个一阶环节相频特性之和:12()()()A A Aωωω===1212()()()arctan arctan arctan arctan49T Tωωϕωϕωϕωωω=+=--=--4-3 已知系统开环传递函数如下,试概略绘出奈氏图。
(1)1()10.01G ss=+(2)1()(10.1)G ss s=+(3))1008()1(1000)(2+++=sssssG(4)250(0.61)()(41)sG ss s+=+解:手工绘制奈氏图,只能做到概略绘制,很难做到精确。
所谓“概略”,即计算与判断奈氏曲线的起点、终点、曲线与坐标轴的交点、相角变化范围等,这就可以绘制出奈氏曲线的大致形状。
对一些不太复杂的系统,已经可以从曲线中读出系统的部分基本性能指标了。
除做到上述要求外,若再多取若干点(如6-8点),并将各点光滑连线。
这就一定程度上弥补了要求A的精度不足的弱点。
但因为要进行函数计算,例如求出实虚频率特性表格,工作量要大些。
在本题解答中,作如下处理:小题(1):简单的一阶惯性系统,教材中已经研究得比较详细了。
解题中只是简单套用。
小题(2):示范绘制奈氏图的完整过程。
小题(3)、小题(4):示范概略绘制奈氏图方法。
4-3(1)1()10.01G ss=+这是一个一阶惯性(环节)系统,例4-3中已详细示范过(当T=0.5时),奈氏曲线是一个半圆。
而表4-2给出了任意时间常数T下的实虚频率特性数据。
可以套用至本题。
①系统参数:0型,一阶,时间常数0.01T=②起终点奈氏曲线的起点:(1,0),正实轴奈氏曲线的终点:(0,0),原点奈氏曲线的相角变化范围:(0,-90°),第IV象限③求频率特性。
据式(4-29)已知:实频特性:221()1PTωω=+虚频特性:22()1TQTωωω=-+⑤绘图:4-3(2)1()(10.1)G s s s =+示范绘制奈氏图的完整过程。
这是一个由一个积分环节和一个一阶惯性环节组成的二阶系统。
①系统参数:1型系统,n=2, m=0 ②起终点奈氏曲线的起点:查表4-7,1型系统起点为负虚轴无穷远处;奈氏曲线的终点:n-m=2>0,查表4-7知终点为原点,入射角为-180°; 奈氏曲线的相角变化范围:(-90°,-180°),第III 象限 ③求频率特性:21(0.1)()(10.1)(10.01)j G j j j ωωωωωω-+==++实频特性:20.1()10.01P ωω-=+虚频特性:21()(10.01)Q ωωω-=+当0ω=时,实频曲线有渐近线为-0.1。
⑤绘图:4-3(3))1008()1(1000)(2+++=s s s s s G示范概略绘制奈氏图方法。
①系统参数:1型系统,n=3, m=1 ②起终点奈氏曲线的起点:查表4-7,1型系统起点为负虚轴无穷远处; 奈氏曲线的终点:n-m=2>0,查表4-7知终点为原点,入射角为-180°;奈氏曲线的相角变化范围:(-90°,-180°); ③绘图:4-3(4)250(0.61)()(41)s G s s s +=+示范概略绘制奈氏图方法。
①系统参数:2型系统,n=3, m=1 ②起终点奈氏曲线的起点:查表4-7,2型系统起点为负实轴无穷远处;奈氏曲线的终点:n-m=2>0,查表4-7知终点为原点,入射角为-180°;奈氏曲线的相角变化范围:(-180°,-180°);由于惯性环节的时间常数大于一阶微分环节的时间常数,二者相频叠加总是小于零,故图形在第2象限。
③绘图:如要详绘,则先求频率特性:()2224250(0.61)50(0.61)(41)12050170()(41)(41)16(41)j j j j G j j j j j ωωωωωωωωωωωωω++---+===-+-++ 即有实频特性:24212050()16P ωωωω--=+ 虚频特性:42170()16Q ωωωω=+4-4 试画出下列传递函数的波德图。
(1))18)(12(2)()(++=s s s H s G(2)2200()()(1)(101)G s H s s s s =++(3)2250()()(1)(101)G s H s s s s s =+++(4)210(0.2)()()(0.1)s G s H s s s +=+(5)228(0.1)()()(1)(425)s G s H s s s s s s +=++++ 解:绘制波德图要按照教材P134-135中的10步,既规范也不易出错。
4-4(1))18)(12(2)()(++=s s s H s G(1) 开环传递函数已如式(4-41)标准化;(2) 计算开环增益K ,计算)(lg 20dB K ;得系统型别ν,确定低频段斜率;开环增益K =2, 20lg 20lg 26()K dB == 0型系统,低频段斜率为0;(3) 求各转折频率,并从小到大按顺序标为Λ,,,321ωωω,同时还要在转折频率旁注明对应的斜率;①110.1258ω==,惯性环节,斜率-20; ②210.52ω==,惯性环节,斜率-20;(4) 绘制波德图坐标。
横坐标从0.1到10二个十倍频程。
见图; (5) 绘制低频段幅频渐近线,为水平线;(6) 在10.125ω=,斜率变为-20;在20.5ω=,斜率变为-40;标注斜率见图;(7) 幅频渐近线的修正。
在10.125ω=处修正-3dB ,在0.06,0.25ω=处修正-1dB ;在0.5ω=处修正-3dB ,在0.5,1ω=处修正-1dB ;注意在0.5ω=处有两个-1dB 修正量,共修正-2dB ;(8) 绘制两个惯性环节的相频曲线; (9) 环节相频曲线叠加,形成系统相频曲线;(10) 检查幅频渐近线、转折频率、相频起终点的正确性。
4-4(2)2200()()(1)(101)G s H s s s s =++ (1) 开环传递函数已如式(4-41)标准化;(2) 计算开环增益K ,计算)(lg 20dB K ;得系统型别ν,确定低频段斜率;开环增益K =200, 20lg 20lg 20046()K dB == 2型系统,低频段斜率为-40; (3) 求各转折频率:①110.110ω==,惯性环节,斜率-20; ②21ω=,惯性环节,斜率-20;(4) 以下文字略,见绘图;4-4(3)2250()()(1)(101)G s H s s s s s =+++ (1) 开环传递函数标准化:2250()()(20.511)(101)G s H s s s s s =+⨯⨯++(2) 计算开环增益K ,计算)(lg 20dB K ;得系统型别ν,确定低频段斜率;开环增益K =50, 20lg 20lg5034()K dB == 2型系统,低频段斜率为-40; (3) 求各转折频率:①110.110ω==,惯性环节,斜率-20; ②21ω=,二阶振荡环节,阻尼比0.5ζ=,斜率-40;(4) 其它:二阶振荡环节在转折频率处要按实际阻尼比按图4-17修正。
见绘图;4-4(4)210(0.2)()()(0.1)s G s H s s s +=+ (1) 开环传递函数标准化:2220(1)10(0.2)0.2()()(0.1)(1)0.1ss G s H s s s s s ++==++ (2) 计算开环增益K ,计算)(lg 20dB K ;得系统型别ν,确定低频段斜率;开环增益K =20, 20lg 20lg 2026()K dB ==2型系统,低频段斜率为-40; (3) 求各转折频率:①10.1ω=,惯性环节,斜率-20; ②20.2ω=,一阶微分环节,斜率+20; (4) 其它见绘图;4-4(5)228(0.1)()()(1)(425)s G s H s s s s s s +=++++ (1) 开环传递函数标准化:22220.0325(1)0.1()()(20.511)(20.455)sG s H s s s s s s ⨯+=+⨯⨯++⨯⨯+ (2) 计算开环增益K ,计算)(lg 20dB K ;得系统型别ν,确定低频段斜率;开环增益K =0.032, 20lg 20lg0.03230()K dB ==- 1型系统,低频段斜率为-20; (3) 求各转折频率:①10.1ω=,一阶微分环节,斜率+20;②21ω=,二阶振荡环节,阻尼比0.5ζ=,斜率-40; ③35ω=,二阶振荡环节,阻尼比0.4ζ=,斜率-40; (4) 其它见绘图;4-5 根据下列给定的最小相位系统对数幅频特性曲线图写出相应的传递函数。
解:4-5(a)(1)求结构从图中看出,低频段斜率为0,是0型系统,由渐近线的斜率变化: 第1个转折频率处斜率变化20/dB dec -,是一阶惯性环节; 第2个转折频率处斜率变化也是20/dB dec -,也是一阶惯性环节; 因此传递函数结构为12()(1)(1)KG s T s T s =++(2)求参数从图中看出,低频段与零分贝线水平重合,因此1K =对第1个一阶惯性环节,转折频率11ω=,则:1111T ω==对第2个一阶惯性环节,转折频率24ω=,则:22110.254T ω=== 综合得:()(1)(0.251)KG s s s =++解:4-5(b)(1)求结构从图中看出,低频段斜率为20/dB dec -,是1型系统,由渐近线的斜率变化: 第1个转折频率处斜率变化20/dB dec -,是一阶惯性环节; 第2个转折频率处斜率变化也是20/dB dec -,也是一阶惯性环节; 因此传递函数结构为12()(1)(1)KG s s T s T s =++(2)求参数从图中看出,低频段延长线与零分贝线交点频率:0100ω=,因为是1型系统,由式(4-67)100K =对第1个一阶惯性环节,转折频率10.01ω=,则:11111000.01T ω=== 对第2个一阶惯性环节,转折频率2100ω=,则:22110.01100T ω=== 综合得:12100()(1)(1)(1001)(0.011)K G s s T s T s s s s ==++++解:4-5(c)(1)求结构从图中看出,低频段斜率为0,是0型系统,由渐近线的斜率变化: 第1个转折频率处斜率变化20/dB dec -,是一阶惯性环节; 第2个转折频率处斜率变化也是20/dB dec -,也是一阶惯性环节; 第3个转折频率处斜率变化也是20/dB dec -,也是一阶惯性环节; 因此传递函数结构为123()(1)(1)(1)KG s T s T s T s =+++(2)求参数从图中看出,低频段为水平线,幅值为48k L dB =。