本科毕业设计外文文献及翻译
本科毕业论文外文翻译【范本模板】
本科毕业论文外文翻译外文译文题目:不确定条件下生产线平衡:鲁棒优化模型和最优解解法学院:机械自动化专业:工业工程学号: 201003166045学生姓名: 宋倩指导教师:潘莉日期: 二○一四年五月Assembly line balancing under uncertainty: Robust optimization modelsand exact solution methodÖncü Hazır , Alexandre DolguiComputers &Industrial Engineering,2013,65:261–267不确定条件下生产线平衡:鲁棒优化模型和最优解解法安库·汉泽,亚历山大·多桂计算机与工业工程,2013,65:261–267摘要这项研究涉及在不确定条件下的生产线平衡,并提出两个鲁棒优化模型。
假设了不确定性区间运行的时间。
该方法提出了生成线设计方法,使其免受混乱的破坏。
基于分解的算法开发出来并与增强策略结合起来解决大规模优化实例.该算法的效率已被测试,实验结果也已经发表。
本文的理论贡献在于文中提出的模型和基于分解的精确算法的开发.另外,基于我们的算法设计出的基于不确定性整合的生产线的产出率会更高,因此也更具有实际意义。
此外,这是一个在装配线平衡问题上的开创性工作,并应该作为一个决策支持系统的基础。
关键字:装配线平衡;不确定性; 鲁棒优化;组合优化;精确算法1.简介装配线就是包括一系列在车间中进行连续操作的生产系统。
零部件依次向下移动直到完工。
它们通常被使用在高效地生产大量地标准件的工业行业之中。
在这方面,建模和解决生产线平衡问题也鉴于工业对于效率的追求变得日益重要。
生产线平衡处理的是分配作业到工作站来优化一些预定义的目标函数。
那些定义操作顺序的优先关系都是要被考虑的,同时也要对能力或基于成本的目标函数进行优化。
就生产(绍尔,1999)产品型号的数量来说,装配线可分为三类:单一模型(SALBP),混合模型(MALBP)和多模式(MMALBP)。
毕业论文(设计)外文文献翻译及原文
金融体制、融资约束与投资——来自OECD的实证分析R.SemenovDepartment of Economics,University of Nijmegen,Nijmegen(荷兰内梅亨大学,经济学院)这篇论文考查了OECD的11个国家中现金流量对企业投资的影响.我们发现不同国家之间投资对企业内部可获取资金的敏感性具有显著差异,并且银企之间具有明显的紧密关系的国家的敏感性比银企之间具有公平关系的国家的低.同时,我们发现融资约束与整体金融发展指标不存在关系.我们的结论与资本市场信息和激励问题对企业投资具有重要作用这种观点一致,并且紧密的银企关系会减少这些问题从而增加企业获取外部融资的渠道。
一、引言各个国家的企业在显著不同的金融体制下运行。
金融发展水平的差别(例如,相对GDP的信用额度和相对GDP的相应股票市场的资本化程度),在所有者和管理者关系、企业和债权人的模式中,企业控制的市场活动水平可以很好地被记录.在完美资本市场,对于具有正的净现值投资机会的企业将一直获得资金。
然而,经济理论表明市场摩擦,诸如信息不对称和激励问题会使获得外部资本更加昂贵,并且具有盈利投资机会的企业不一定能够获取所需资本.这表明融资要素,例如内部产生资金数量、新债务和权益的可得性,共同决定了企业的投资决策.现今已经有大量考查外部资金可得性对投资决策的影响的实证资料(可参考,例如Fazzari(1998)、 Hoshi(1991)、 Chapman(1996)、Samuel(1998)).大多数研究结果表明金融变量例如现金流量有助于解释企业的投资水平。
这项研究结果解释表明企业投资受限于外部资金的可得性。
很多模型强调运行正常的金融中介和金融市场有助于改善信息不对称和交易成本,减缓不对称问题,从而促使储蓄资金投着长期和高回报的项目,并且提高资源的有效配置(参看Levine(1997)的评论文章)。
因而我们预期用于更加发达的金融体制的国家的企业将更容易获得外部融资.几位学者已经指出建立企业和金融中介机构可进一步缓解金融市场摩擦。
浙江大学本科毕业论文外文文献翻译
核准通过,归档资料。
未经允许,请勿外传!浙江大学本科毕业论文外文文献翻译The influence of political connections on the firm value of small and medium-sized enterprises in China政治关联在中国对中小型企业价值的影响1摘要中小型企业的价值受很多因素的影响,比如股东、现金流以及政治关联等.这篇文章调查的正是在中国政治关联对中小型企业价值的影响。
通过实验数据来分析政治关联对企业价值效益的影响.结果表明政府关联是关键的因素并且在中国对中小型企业的价值具有负面影响。
2重要内容翻译2。
1引言在商业界,有越来越多关于政治关联的影响的经济研究。
它们发现政治关联能够帮助企业确保有利的规章条件以及成功获得资源,比如能够最终提高企业价值或是提升绩效的银行贷款,这种政治关联的影响在不同的经济条件下呈现不同的效果。
在高腐败和法律制度薄弱的国家,政治关联对企业价值具有决定性因素1的作用.中国由高度集权的计划经济向市场经济转变,政府对市场具有较强的控制作用,而且有大量的上市企业具有政治关联。
中小型企业发展的很迅速,他们已经在全球经济环境中变得越来越重要。
从90年代起, 政治因素对中国的任何规模的企业来说都变得越来越重要,尤其是中小型企业的价值。
和其他的部门相比较,中小型企业只有较小的现金流,不稳定的现金流且高负债率.一方面,中小型企业改变更加灵活;另一方面,中小型企业在由于企业规模以及对银行来说没有可以抵押的资产,在筹资方面较为困难。
企业如何应对微观经济环境和政策去保证正常的企业活动,并且政治关联如何影响企业价值?这篇论文调查政治关联和企业价值之间的联系,并且试图去研究企业是否可以从政治关联中获利提升企业价值。
2.2定义这些中小型企业之所以叫中小型企业,是和管理规模有关。
对这些小企业来说,雇员很少,营业额较低,资金一般由较少的人提供,因此,通常由这些业主直接管理企业。
毕业设计论文外文文献翻译
毕业设计(论文)外文文献翻译院系:财务与会计学院年级专业:201*级财务管理姓名:学号:132148***附件: 财务风险管理【Abstract】Although financial risk has increased significantly in recent years risk and risk management are not contemporary issues。
The result of increasingly global markets is that risk may originate with events thousands of miles away that have nothing to do with the domestic market。
Information is available instantaneously which means that change and subsequent market reactions occur very quickly。
The economic climate and markets can be affected very quickly by changes in exchange rates interest rates and commodity prices。
Counterparties can rapidly become problematic。
As a result it is important to ensure financial risks are identified and managed appropriately. Preparation is a key component of risk management。
【Key Words】Financial risk,Risk management,YieldsI. Financial risks arising1.1What Is Risk1.1.1The concept of riskRisk provides the basis for opportunity. The terms risk and exposure have subtle differences in their meaning. Risk refers to the probability of loss while exposure is the possibility of loss although they are often used interchangeably。
山东建筑大学本科毕业设计说明书外文文献及翻译格式模版1.doc
山东建筑大学本科毕业设计说明书外文文献及翻译格式模版1附件3:(本科毕业论文)文献、资料题目:院(部)专班姓名:张三学号:指导教师:张九光翻译日期:2005.6.30,the National Institute of Standards and Technology (NIST) has been working to develop a new encryption standard to keep government information secure .The organization is in the final stages of an open process of selecting one or more algorithms ,or data-scrambling formulas ,for the new Advanced Encryption Standard (AES) and plans to make adecision by late summer or early fall .The standard is slated to go into effect next year .AES is intended to be a stronger ,more efficient successor to Triple Data Encryption Standard (3DES),which replaced the aging DES ,which was cracked in less than three days in July 1998.“Until we have the AES ,3DES will still offer protection for years to come .So there is no need to immediately switch over ,”says Edward Roback ,acting chief of the computer security division at NIST and chairman of the AES selection committee .“What AES will offer is a more efficient algorithm .It will be a federal standard ,but it will be widely implemented in the IT community .”According to Roback ,efficiency of the proposed algorithms is measured by how fast they can encrypt and decrypt information ,how fast they can present an encryption key and how much information they can encrypt .The AES review committee is also looking at how much space the algorithm takes up on a chip and how much memory it requires .Roback says the selection of a more efficient AES will also result in cost savings and better use of resources .“DES w as designed for hardware implementations ,and we are now living in a world of much more efficient software ,and we have learned an awful lot about the design of algorithms ,”says Roback .“When you start multiplying this with the billions of implementations done daily ,the saving on overhead on the networks will be enormous .”……山东建筑大学毕业设计(或毕业论文,二选一)外文文献及译文- 1 -以确保政府的信息安全。
本科毕业设计外文文献翻译
(Shear wall st ructural design ofh igh-lev el fr ameworkWu Jiche ngAbstract : In t his pape r the basic c oncepts of man pow er from th e fra me sh ear w all str uc ture, analy sis of the struct ur al des ign of th e c ont ent of t he fr ame she ar wall, in cludi ng the seism ic wa ll she ar spa本科毕业设计外文文献翻译学校代码: 10128学 号:题 目:Shear wall structural design of high-level framework 学生姓名: 学 院:土木工程学院 系 别:建筑工程系 专 业:土木工程专业(建筑工程方向) 班 级:土木08-(5)班 指导教师: (副教授)nratiodesign, and a concretestructure in themost co mmonly usedframe shear wallstructurethedesign of p oints to note.Keywords: concrete; frameshearwall structure;high-risebuildingsThe wall is amodern high-rise buildings is an impo rtant buildingcontent, the size of theframe shear wall must comply with building regulations. The principle is that the largersizebut the thicknessmust besmaller geometric featuresshouldbe presented to the plate,the force is close to cylindrical.The wall shear wa ll structure is a flatcomponent. Itsexposure to the force along the plane level of therole ofshear and moment, must also take intoaccountthe vertical pressure.Operate under thecombined action ofbending moments and axial force andshear forcebythe cantilever deep beam under the action of the force levelto loo kinto the bottom mounted on the basis of. Shearwall isdividedinto a whole walland theassociated shear wall in theactual project,a wholewallfor exampl e, such as generalhousingconstruction in the gableor fish bone structure filmwalls and small openingswall.Coupled Shear walls are connected bythecoupling beam shear wall.Butbecause thegeneralcoupling beamstiffness is less thanthe wall stiffnessof the limbs,so. Walllimb aloneis obvious.The central beam of theinflection pointtopay attentionto thewall pressure than the limits of the limb axis. Will forma shortwide beams,widecolumn wall limbshear wall openings toolarge component atbothen ds with just the domain of variable cross-section ro din the internalforcesunder theactionof many Walllimb inflection point Therefore, the calcula tions and construction shouldAccordingtoapproximate the framestructure to consider.The designof shear walls shouldbe based on the characteristics of avariety ofwall itself,and differentmechanical ch aracteristicsand requirements,wall oftheinternalforcedistribution and failuremodes of specific and comprehensive consideration of the design reinforcement and structural measures. Frame shear wall structure design is to consider the structure of the overall analysis for both directionsofthehorizontal and verticaleffects. Obtain theinternal force is required in accordancewiththe bias or partial pull normal section forcecalculation.The wall structure oftheframe shear wall structural design of the content frame high-rise buildings, in the actual projectintheuse of themost seismic walls have sufficient quantitiesto meet thelimitsof the layer displacement, the location isrelatively flexible. Seismic wall for continuous layout,full-length through.Should bedesigned to avoid the wall mutations in limb length and alignment is notupand down the hole. The sametime.The inside of the hole marginscolumnshould not belessthan300mm inordertoguaranteethelengthof the column as the edgeof the component and constraint edgecomponents.Thebi-direc tional lateral force resisting structural form of vertical andhorizontalwallconnected.Each other as the affinityof the shear wall. For one, two seismic frame she ar walls,even beam highratio should notgreaterthan 5 and a height of not less than400mm.Midline columnand beams,wall midline shouldnotbe greater tha nthe columnwidthof1/4,in order toreduce thetorsional effect of the seismicaction onthecolumn.Otherwisecan be taken tostrengthen thestirrupratio inthe column tomake up.If theshear wall shearspan thanthe big two. Eventhe beamcro ss-height ratiogreaterthan 2.5, then the design pressure of thecut shouldnotmakeabig 0.2. However, if the shearwallshear spanratioof less than two couplingbeams span of less than 2.5, then the shear compres sion ratiois notgreater than 0.15. Theother hand,the bottom ofthe frame shear wallstructure to enhance thedesign should notbe less than200mmand notlessthanstorey 1/16,otherpartsshouldnot be less than 160mm and not less thanstorey 1/20. Aroundthe wall of the frame shear wall structure shouldbe set to the beam or dark beamand the side columntoform a border. Horizontal distributionofshear walls can from the shear effect,this design when building higher longeror framestructure reinforcement should be appropriatelyincreased, especially in the sensitiveparts of the beam position or temperature, stiffnesschange is bestappropriately increased, thenconsideration shouldbe givento the wallverticalreinforcement,because it is mainly from the bending effect, andtake in some multi-storeyshearwall structurereinforcedreinforcement rate -likelessconstrained edgeofthecomponent or components reinforcement of theedge component.References: [1 sad Hayashi,He Yaming. On the shortshear wall high-rise buildingdesign [J].Keyuan, 2008, (O2).高层框架剪力墙结构设计吴继成摘要: 本文从框架剪力墙结构设计的基本概念人手, 分析了框架剪力墙的构造设计内容, 包括抗震墙、剪跨比等的设计, 并出混凝土结构中最常用的框架剪力墙结构设计的注意要点。
毕业设计论文 外文文献翻译
毕业设计(论文)外文参考文献翻译计算机科学与信息工程系系(院)2008 届题目企业即时通Instant Messaging for Enterprises课题类型技术开发课题来源自选学生姓名许帅专业班级 04计算机科学与技术指导老师王占中职称工程师完成日期:2008年4 月 6 日目录I NSTANT M ESSAGING FOR E NTERPRISE (1)1. Tips (1)2. Introduction (1)3. First things first (2)4.The While-Accept loop (4)5. Per-Thread class (6)6. The Client class (7)企业即时通 (9)1.提示 (9)2.简介 (9)3.首先第一件事 (10)4.监听循环 (11)5.单线程类 (13)6.用户端类 (14)Instant Messaging for Enterprise1. TipsIf Java is, in fact, yet another computer programming language, you may question why it is so important and why it is being promoted as a revolutionary step in computer programming. The answer isn’t immediately obvious if you’re coming from a tr aditional programming perspective. Although Java is very useful for solving traditional standalone programming problems, it is also important because it will solve programming problems on the World Wide Web. What is the Web?The Web can seem a bit of a mys tery at first, with all this talk of “surfing,”“presence,” and “home pages.” It’s helpful to step back and see what it really is, but to do this you must understand client/server systems, another aspect of computing that is full of confusing issues. The primary idea of a client/server system is that you have a central repository of information,some kind of data, often in a database。
内部控制外文文献及翻译
中文4500字本科生毕业设计(论文)外文原文及译文所在系管理系学生姓名郭淼专业会计学班级学号指导教师2013年6月外文文献原文及译文Internal ControlEmergence and development of the theory of the evolution of the internal controlInternal control in Western countries have a long history of development, according to the internal control characteristics at different stages of development, the development of internal control can be divided into four stages, namely the internal containment phase, the internal control system phase, the internal control structure phase, overall internal control framework stage.Internal check stages: infancy internal controlBefore the 1940s, people used to use the concept of internal check. This is the embryonic stage of internal control. "Keshi Accounting Dictionary" definition of internal check is "to provide effective organization and mode of operation, business process design errors and prevent illegal activities occur. Whose main characteristic is any individual or department alone can not control any part of one or the right way to conduct business on the division of responsibility for the organization, each business through the normal functioning of other individuals or departments for cross-examination or cross-control. designing effective internal check to ensure that all businesses can complete correctly after a specified handler in the process of these provisions, the internal containment function is always an integral part. "The late 1940s, the internal containment theory become important management methods and concepts. Internal check on a "troubleshooting a variety of measures" for the purpose of separation of duties and account reconciliation as a means to money and accounting matters and accounts as the main control object primary control measures. Its characteristics are account reconciliation and segregation of duties as the main content and thus cross-examination or cross-control. In general, the implementation of internal check function can be roughly divided into the following four categories: physical containment; mechanical containment; institutional containment; bookkeeping contain. The basic idea is to contain the internal "security is the result of checks and balances," which is based on two assumptions: First: two or more persons1西安交通大学城市学院本科毕业设计(论文)or departments making the same mistake unconsciously chance is very small; Second: Two or more the possibility of a person or department consciously partnership possibility of fraud is much lower than a single person or department fraud. Practice has proved that these assumptions are reasonable, internal check mechanism for organizations to control, segregation of duties control is the foundation of the modern theory of internal control.Internal control system phases:generating of internal controlThe late1940s to the early1970s, based on the idea of internal check, resulting in the concept of the internal control system, which is the stage in the modern sense of internal control generated. Industrial Revolution has greatly promoted the major change relations of production, joint-stock company has gradually become the main form of business organization of Western countries, in order to meet the requirements of prevailing socio-economic relations,to protect the economic interests of investors and creditors, the Western countries have legal requirements in the form of strengthen the corporate financial and accounting information as well as internal management of this economic activity.In 1934, the "securities and exchange act" issued by the U.S. government for the first time puts forward the concept of "internal accounting control", the implementation of general and special authorization book records, trading records, and compared different remedial measures such as transaction assets. In 1949, the American institute of certified public accountants (AICPA) belongs to the audit procedures of the committee (CPA) in the essential element of internal control: the system coordination, and its importance to management department and the independence of certified public accountants' report, the first official put forward the definition of internal control: "the design of the internal control includes the organization and enterprise to take all of the methods and measures to coordinate with each other. All of these methods and measures used to protect the property of the enterprise, to check the accuracy of accounting information, improve the efficiency of management, promote enterprise stick to established management guidelines." The definition from the formulation and perfecting the inner control of the organization, plan, method and measures such as rules and regulations to implement internal control, break through the limitation of control related to the financial and accounting department directly, the four objectives of internal control, namely the enterprise in commercial2外文文献原文及译文activities to protect assets, check the veracity and reliability of financial data, improve the work efficiency, and promote to management regulations. The definition of positive significance is to help management authorities to strengthen its management, but the scope of limitation is too broad. In 1958, the commission issued no. 29 audit procedures bulletin "independent auditors evaluate the scope of internal control", according to the requirements of the audit responsibility, internal control can be divided into two aspects, namely, the internal accounting control and internal management control. The former is mainly related to the first two of the internal control goal, the latter mainly relates to the internal control after two goals. This is the origin of the internal control system of "dichotomy". Because the concept of management control is vague and fuzzy, in the actual business line between internal control and internal accounting control is difficult to draw. In order to clear the relations between the two, in 1972 the American institute of certified public accountants in the auditing standards announcement no. 1, this paper expounds the internal management control and internal accounting control: the definition of "internal management control including, but not limited to organization plan, and the administrative department of the authorized approval of economic business decision-making steps on the relevant procedures and records. This authorization of items approved activities is the responsibility of management, it is directly related to the management department to perform the organization's business objectives, is the starting point of the economic business accounting control." At the same time, the important content of internal accounting control degree and protect assets, to ensure that the financial records credibility related institutions plans, procedures and records. After a series of changes and redefine the meaning of the internal control is more clear than before and the specification, increasingly broad scope, and introduces the concept of internal audit, has received recognition around the world and references, the internal control system is made.The internal control structure stage: development of the internal controlTheory of internal control structure formed in the 90 s to the 1980 s, this phase of western accounting audit of internal control research focus gradually from the general meaning to specific content to deepen. During this period, the system management theory has become the new management idea, it says: no physical objects in the world are composed of elements of3西安交通大学城市学院本科毕业设计(论文)system, due to the factors, there exists a complicated nonlinear relationship between system must have elements do not have new features, therefore, should be based on the whole the relationship between elements. System management theory will enterprise as a organic system composed of subsystems on management, pay attention to the coordination between the subsystems and the interaction with the environment. In the modern company system and system management theory, under the concept of early already cannot satisfy the need of internal control systems. In 1988, the American institute of certified public accountants issued "auditing standards announcement no. 55", in the announcement, for the first time with the word "internal control structure" to replace the original "internal control", and points out that: "the enterprise's internal control structure including provide for specific target reasonable assurance of the company set up all kinds of policies and procedures". The announcement that the internal control structure consists of control environment, accounting system (accounting system), the control program "three components, the internal control as a organic whole composed of these three elements, raised to the attention of the internal control environment.The control environment, reflecting the board of directors, managers, owners, and other personnel to control the attitude and behavior. Specific include: management philosophy and operating style, organizational structure, the function of the board of directors and the audit committee, personnel policies and procedures, the way to determine the authority and responsibility, managers control method used in the monitoring and inspection work, including business planning, budgeting, forecasting, profit plans, responsibility accounting and internal audit, etc.Accounting systems, regulations of various economic business confirmation, the collection, classification, analysis, registration and preparing method. An effective accounting system includes the following content: identification and registration of all legitimate economic business; Classifying the various economic business appropriate, as the basis of preparation of statements; Measuring the value of economic business to make its currency's value can be recorded in the financial statements; Determine the economic business events, to ensure that it recorded in the proper accounting period; Describe properly in the financial statements of4外文文献原文及译文economic business and related content.The control program, refers to the management policies and procedures, to ensure to achieve certain purpose. It includes economic business and activity approval; Clear division of the responsibility of each employee; Adequate vouchers and bills setting and records; The contact of assets and records control; The business of independent audit, etc. Internal structure of control system management theory as the main control thought, attaches great importance to the environmental factors as an important part of internal control, the control environment, accounting system and control program three elements into the category of internal control; No longer distinguish between accounting control and management control, and uniform in elements describe the internal control, think the two are inseparable and contact each other.Overall internal control framework stages: stage of internal controlAfter entering the 1990 s, the study of internal control into a new stage. With the improvement of the corporate governance institutions, the development of electronic information technology, in order to adapt to the new economic and organizational form, using the new management thinking, "internal control structure" for the development of "internal control to control the overall framework". In 1992, the famous research institutions internal control "by organization committee" (COSO) issued a landmark project - "internal control - the whole framework", also known as the COSO report, made the unification of the internal control system framework. In 1994, the report on the supplement, the international community and various professional bodies widely acknowledged, has wide applicability. The COSO report is a historical breakthrough in the research of internal control theory, it will first put forward the concept of internal control system of the internal control by the original planar structure for the development of space frame model, represents the highest level of the studies on the internal control in the world.The COSO report defines internal control as: "designed by enterprise management, to achieve the effect and efficiency of the business, reliable financial reporting and legal compliance goals to provide reasonable assurance, by the board of directors, managers and other staff to5西安交通大学城市学院本科毕业设计(论文)implement a process." By defining it can be seen that the COSO report that internal control is a process, will be affected by different personnel; At the same time, the internal control is a in order to achieve business objectives the group provides reasonable guarantee the design and implementation of the program. The COSO report put forward three goals and the five elements of internal control. The three major target is a target business objectives, information and compliance. Among them, the management goal is to ensure business efficiency and effectiveness of the internal control; Information goal is refers to the internal control to ensure the reliability of the enterprise financial report; Compliance goal refers to the internal controls should abide by corresponding laws and regulations and the rules and regulations of the enterprise.COSO report that internal control consists of five elements contact each other and form an integral system, which is composed of five elements: control environment, risk assessment, control activities, information and communication, monitoring and review.Control Environment: It refers to the control staff to fulfill its obligation to carry out business activities in which the atmosphere. Including staff of honesty and ethics, staff competence, board of directors or audit committee, management philosophy and management style, organizational structure, rights and responsibilities granted to the way human resources policies and implementation.Risk assessment: It refers to the management to identify and take appropriate action to manage operations, financial reporting, internal or external risks affecting compliance objectives, including risk identification and risk analysis. Risk identification including external factors (such as technological development, competition, changes in the economy) and internal factors (such as the quality of the staff, the company nature of activities, information systems handling characteristics) to be checked. Risk analysis involves a significant degree of risk estimates to assess the likelihood of the risk occurring, consider how to manage risk.Control activities: it refers to companies to develop and implement policies and procedures, and 6外文文献原文及译文to take the necessary measures against the risks identified in order to ensure the unit's objectives are achieved. In practice, control activities in various forms, usually following categories: performance evaluation, information processing, physical controls, segregation of duties.Information and communication: it refers to enable staff to perform their duties, to provide staff with the exchange and dissemination of information as well as information required in the implementation, management and control operations process, companies must identify, capture, exchange of external and internal information. External information, including market share, regulatory requirements and customer complaints and other information. The method of internal information including accounting system that records created by the regulatory authorities and reporting of business and economic matters, maintenance of assets, liabilities and owners' equity and recorded. Communication is so that employees understand their responsibilities to maintain control over financial reporting. There are ways to communicate policy manuals, financial reporting manuals, reference books, as well as examples such as verbal communication or management.Monitoring: It refers to the evaluation of internal controls operation of the quality of the process, namely the reform of internal control, operation and improvement activities evaluated. Including internal and external audits, external exchanges.Five elements of internal control system is actually wide-ranging, interrelated influence each other. Control environment is the basis for the implementation of other control elements; control activities must be based on the risks faced by companies may have a detailed understanding and assessment basis; while risk assessment and control activities within the enterprise must use effective communication of information; Finally, effective monitoring the implementation of internal control is a means to protect the quality. Three goals and five elements for the formation and development of the internal control system theory laid the foundation, which fully reflects the guiding ideology of the modern enterprise management idea that security is the result of systems management. COSO report emphasizes the integration framework and internal control system composed of five elements, the framework for the7西安交通大学城市学院本科毕业设计(论文)establishment of an internal control system, operation and maintenance of the foundation.In summary,because of social, economic and environmental change management, internal control functions along with the changes, in order to guide the evolution of the internal control theory. As can be seen from the history of the development of internal control theory, often derived from the internal control organizational change management requirements, from an agricultural economy to an industrial economy, innovation management methods and tools for the development of the power to bring internal controls.From the internal containment center,controlled by the internal organization of the mutual relations between the internal control of various subsystems and went to COSO as the representative to the prevention and management loopholes to prevent the goal, through the organization of control and information systems,to achieve the overall system optimization of modern internal sense of control theory, from Admiral time, corresponding to the two economic revolution.Therefore, in the analysis of foreign internal control theory and Its Evolution, requires a combination of prevailing socio-economic environment and business organization and management requirements, so as to understand the nature of a deeper internal control theory of development.8外文文献原文及译文译文:内部控制Ge.McVay一、内部控制理论的产生与发展演进内部控制在西方国家已经有比较长的发展历史,根据内部控制在不同发展阶段的特征,可以将内部控制的发展分为四个阶段,即内部牵制阶段、内部控制制度阶段、内部控制结构阶段、内部控制整体框架阶段。
毕设外文文献+翻译1
外文翻译外文原文CHANGING ROLES OF THE CLIENTS、ARCHITECTSAND CONTRACTORS THROUGH BIMAbstract:Purpose –This paper aims to present a general review of the practical implications of building information modelling (BIM) based on literature and case studies. It seeks to address the necessity for applying BIM and re-organising the processes and roles in hospital building projects. This type of project is complex due to complicated functional and technical requirements, decision making involving a large number of stakeholders, and long-term development processes.Design/methodology/approach–Through desk research and referring to the ongoing European research project InPro, the framework for integrated collaboration and the use of BIM are analysed.Findings –One of the main findings is the identification of the main factors for a successful collaboration using BIM, which can be recognised as “POWER”: product information sharing (P),organisational roles synergy (O), work processes coordination (W), environment for teamwork (E), and reference data consolidation (R).Originality/value –This paper contributes to the actual discussion in science and practice on the changing roles and processes that are required to develop and operate sustainable buildings with the support of integrated ICT frameworks and tools. It presents the state-of-the-art of European research projects and some of the first real cases of BIM application in hospital building projects.Keywords:Europe, Hospitals, The Netherlands, Construction works, Response flexibility, Project planningPaper type :General review1. IntroductionHospital building projects, are of key importance, and involve significant investment, and usually take a long-term development period. Hospital building projects are also very complex due to the complicated requirements regarding hygiene, safety, special equipments, and handling of a large amount of data. The building process is very dynamic and comprises iterative phases and intermediate changes. Many actors with shifting agendas, roles and responsibilities are actively involved, such as: the healthcare institutions, national and local governments, project developers, financial institutions, architects, contractors, advisors, facility managers, and equipment manufacturers and suppliers. Such building projects are very much influenced, by the healthcare policy, which changes rapidly in response to the medical, societal and technological developments, and varies greatly between countries (World Health Organization, 2000). In The Netherlands, for example, the way a building project in the healthcare sector is organised is undergoing a major reform due to a fundamental change in the Dutch health policy that was introduced in 2008.The rapidly changing context posts a need for a building with flexibility over its lifecycle. In order to incorporate life-cycle considerations in the building design, construction technique, and facility management strategy, a multidisciplinary collaboration is required. Despite the attempt for establishing integrated collaboration, healthcare building projects still faces serious problems in practice, such as: budget overrun, delay, and sub-optimal quality in terms of flexibility, end-user’s dissatisfaction, and energy inefficiency. It is evident that the lack of communication and coordination between the actors involved in the different phases of a building project is among the most important reasons behind these problems. The communication between different stakeholders becomes critical, as each stakeholder possesses different setof skills. As a result, the processes for extraction, interpretation, and communication of complex design information from drawings and documents are often time-consuming and difficult. Advanced visualisation technologies, like 4D planning have tremendous potential to increase the communication efficiency and interpretation ability of the project team members. However, their use as an effective communication tool is still limited and not fully explored. There are also other barriers in the information transfer and integration, for instance: many existing ICT systems do not support the openness of the data and structure that is prerequisite for an effective collaboration between different building actors or disciplines.Building information modelling (BIM) offers an integrated solution to the previously mentioned problems. Therefore, BIM is increasingly used as an ICT support in complex building projects. An effective multidisciplinary collaboration supported by an optimal use of BIM require changing roles of the clients, architects, and contractors; new contractual relationships; and re-organised collaborative processes. Unfortunately, there are still gaps in the practical knowledge on how to manage the building actors to collaborate effectively in their changing roles, and to develop and utilise BIM as an optimal ICT support of the collaboration.This paper presents a general review of the practical implications of building information modelling (BIM) based on literature review and case studies. In the next sections, based on literature and recent findings from European research project InPro, the framework for integrated collaboration and the use of BIM are analysed. Subsequently, through the observation of two ongoing pilot projects in The Netherlands, the changing roles of clients, architects, and contractors through BIM application are investigated. In conclusion, the critical success factors as well as the main barriers of a successful integrated collaboration using BIM are identified.2. Changing roles through integrated collaboration and life-cycle design approachesA hospital building project involves various actors, roles, and knowledge domains. In The Netherlands, the changing roles of clients, architects, and contractors in hospital building projects are inevitable due the new healthcare policy. Previously under the Healthcare Institutions Act (WTZi), healthcare institutions were required to obtain both a license and a building permit for new construction projects and major renovations. The permit was issued by the Dutch Ministry of Health. The healthcare institutions were then eligible to receive financial support from the government. Since 2008, new legislation on the management of hospital building projects and real estate has come into force. In this new legislation, a permit for hospital building project under the WTZi is no longer obligatory, nor obtainable (Dutch Ministry of Health, Welfare and Sport, 2008). This change allows more freedom from the state-directed policy, and respectively, allocates more responsibilities to the healthcare organisations to deal with the financing and management of their real estate. The new policy implies that the healthcare institutions are fully responsible to man age and finance their building projects and real estate. The government’s support for the costs of healthcare facilities will no longer be given separately, but will be included in the fee for healthcare services. This means that healthcare institutions must earn back their investment on real estate through their services. This new policy intends to stimulate sustainable innovations in the design, procurement and management of healthcare buildings, which will contribute to effective and efficient primary healthcare services.The new strategy for building projects and real estate management endorses an integrated collaboration approach. In order to assure the sustainability during construction, use, and maintenance, the end-users, facility managers, contractors and specialist contractors need to be involved in the planning and design processes. The implications of the new strategy are reflected in the changing roles of the building actors and in the new procurement method.In the traditional procurement method, the design, and its details, are developed by the architect, and design engineers. Then, the client (the healthcare institution) sends an application to the Ministry of Healthto obtain an approval on the building permit and the financial support from the government. Following this, a contractor is selected through a tender process that emphasises the search for the lowest-price bidder. During the construction period, changes often take place due to constructability problems of the design and new requirements from the client. Because of the high level of technical complexity, and moreover, decision-making complexities, the whole process from initiation until delivery of a hospital building project can take up to ten years time. After the delivery, the healthcare institution is fully in charge of the operation of the facilities. Redesigns and changes also take place in the use phase to cope with new functions and developments in the medical world.The integrated procurement pictures a new contractual relationship between the parties involved in a building project. Instead of a relationship between the client and architect for design, and the client and contractor for construction, in an integrated procurement the client only holds a contractual relationship with the main party that is responsible for both design and construction. The traditional borders between tasks and occupational groups become blurred since architects, consulting firms, contractors, subcontractors, and suppliers all stand on the supply side in the building process while the client on the demand side. Such configuration puts the architect, engineer and contractor in a very different position that influences not only their roles, but also their responsibilities, tasks and communication with the client, the users, the team and other stakeholders.The transition from traditional to integrated procurement method requires a shift of mindset of the parties on both the demand and supply sides. It is essential for the client and contractor to have a fair and open collaboration in which both can optimally use their competencies. The effectiveness of integrated collaboration is also determined by the client’s capacity and strategy to organize innovative tendering procedures.A new challenge emerges in case of positioning an architect in a partnership with the contractor instead of with the client. In case of the architect enters a partnership with the contractor, an important issues is how to ensure the realisation of the architectural values as well as innovative engineering through an efficient construction process. In another case, the architect can stand at the client’s side in a strategic advisory role instead of being the designer. In this case, the architect’s responsibility is translating client’s requirements and wishes into the architectural values to be included in the design specification, and evaluating the contractor’s proposal against this. In any of this new role, the architect holds the responsibilities as stakeholder interest facilitator, custodian of customer value and custodian of design models.The transition from traditional to integrated procurement method also brings consequences in the payment schemes. In the traditional building process, the honorarium for the architect is usually based on a percentage of the project costs; this may simply mean that the more expensive the building is, the higher the honorarium will be. The engineer receives the honorarium based on the complexity of the design and the intensity of the assignment. A highly complex building, which takes a number of redesigns, is usually favourable for the engineers in terms of honorarium. A traditional contractor usually receives the commission based on the tender to construct the building at the lowest price by meeting the minimum specifications given by the client. Extra work due to modifications is charged separately to the client. After the delivery, the contractor is no longer responsible for the long-term use of the building. In the traditional procurement method, all risks are placed with the client.In integrated procurement method, the payment is based on the achieved building performance; thus, the payment is non-adversarial. Since the architect, engineer and contractor have a wider responsibility on the quality of the design and the building, the payment is linked to a measurement system of the functional and technical performance of the building over a certain period of time. The honorarium becomes an incentive to achieve the optimal quality. If the building actors succeed to deliver a higher added-value thatexceed the minimum client’s requirements, they will receive a bonus in accordance to the client’s extra gain. The level of transparency is also improved. Open book accounting is an excellent instrument provided that the stakeholders agree on the information to be shared and to its level of detail (InPro, 2009).Next to the adoption of integrated procurement method, the new real estate strategy for hospital building projects addresses an innovative product development and life-cycle design approaches. A sustainable business case for the investment and exploitation of hospital buildings relies on dynamic life-cycle management that includes considerations and analysis of the market development over time next to the building life-cycle costs (investment/initial cost, operational cost, and logistic cost). Compared to the conventional life-cycle costing method, the dynamic life-cycle management encompasses a shift from focusing only on minimizing the costs to focusing on maximizing the total benefit that can be gained. One of the determining factors for a successful implementation of dynamic life-cycle management is the sustainable design of the building and building components, which means that the design carries sufficient flexibility to accommodate possible changes in the long term (Prins, 1992).Designing based on the principles of life-cycle management affects the role of the architect, as he needs to be well informed about the usage scenarios and related financial arrangements, the changing social and physical environments, and new technologies. Design needs to integrate people activities and business strategies over time. In this context, the architect is required to align the design strategies with the organisational, local and global policies on finance, business operations, health and safety, environment, etc.The combination of process and product innovation, and the changing roles of the building actors can be accommodated by integrated project delivery or IPD (AIA California Council, 2007). IPD is an approach that integrates people, systems, business structures and practices into a process that collaboratively harnesses the talents and insights of all participants to reduce waste and optimize efficiency through all phases of design, fabrication and construction. IPD principles can be applied to a variety of contractual arrangements. IPD teams will usually include members well beyond the basic triad of client, architect, and contractor. At a minimum, though, an Integrated Project should include a tight collaboration between the client, the architect, and the main contractor ultimately responsible for construction of the project, from the early design until the project handover. The key to a successful IPD is assembling a team that is committed to collaborative processes and is capable of working together effectively. IPD is built on collaboration. As a result, it can only be successful if the participants share and apply common values and goals.3. Changing roles through BIM applicationBuilding information model (BIM) comprises ICT frameworks and tools that can support the integrated collaboration based on life-cycle design approach. BIM is a digital representation of physical and functional characteristics of a facility. As such it serves as a shared knowledge resource for information about a facility forming a reliable basis for decisions during its lifecycle from inception onward (National Institute of Building Sciences NIBS, 2007). BIM facilitates time and place independent collaborative working. A basic premise of BIM is collaboration by different stakeholders at different phases of the life cycle of a facility to insert, extract, update or modify information in the BIM to support and reflect the roles of that stakeholder. BIM in its ultimate form, as a shared digital representation founded on open standards for interoperability, can become a virtual information model to be handed from the design team to the contractor and subcontractors and then to the client.BIM is not the same as the earlier known computer aided design (CAD). BIM goes further than an application to generate digital (2D or 3D) drawings. BIM is an integrated model in which all process and product information is combined, stored, elaborated, and interactively distributed to all relevant building actors. As a central model for all involved actors throughout the project lifecycle, BIM develops andevolves as the project progresses. Using BIM, the proposed design and engineering solutions can be measured against the client’s requirements and expected building performance. The functionalities of BIM to support the design process extend to multidimensional (nD), including: three-dimensional visualisation and detailing, clash detection, material schedule, planning, cost estimate, production and logistic information, and as-built documents. During the construction process, BIM can support the communication between the building site, the factory and the design office– which is crucial for an effective and efficient prefabrication and assembly processes as well as to prevent or solve problems related to unforeseen errors or modifications. When the building is in use, BIM can be used in combination with the intelligent building systems to provide and maintain up-to-date information of the building performance, including the life-cycle cost.To unleash the full potential of more efficient information exchange in the AEC/FM industry in collaborative working using BIM, both high quality open international standards and high quality implementations of these standards must be in place. The IFC open standard is generally agreed to be of high quality and is widely implemented in software. Unfortunately, the certification process allows poor quality implementations to be certified and essentially renders the certified software useless for any practical usage with IFC. IFC compliant BIM is actually used less than manual drafting for architects and contractors, and show about the same usage for engineers. A recent survey shows that CAD (as a closed-system) is still the major form of technique used in design work (over 60 per cent) while BIM is used in around 20 percent of projects for architects and in around 10 per cent of projects for engineers and contractors.The application of BIM to support an optimal cross-disciplinary and cross-phase collaboration opens a new dimension in the roles and relationships between the building actors. Several most relevant issues are: the new role of a model manager; the agreement on the access right and Intellectual Property Right (IPR); the liability and payment arrangement according to the type of contract and in relation to the integrated procurement; and the use of open international standards.Collaborative working using BIM demands a new expert role of a model manager who possesses ICT as well as construction process know-how (InPro, 2009). The model manager deals with the system as well as with the actors. He provides and maintains technological solutions required for BIM functionalities, manages the information flow, and improves the ICT skills of the stakeholders. The model manager does not take decisions on design and engineering solutions, nor the organisational processes, but his roles in the chain of decision making are focused on:the development of BIM, the definition of the structure and detail level of the model, and the deployment of relevant BIM tools, such as for models checking, merging, and clash detections;the contribution to collaboration methods, especially decision making and communication protocols, task planning, and risk management;and the management of information, in terms of data flow and storage, identification of communication errors, and decision or process (re-)tracking.Regarding the legal and organisational issues, one of the actual questions is: “In what way does the intellectual property right (IPR) in collaborative working using BIM differ from the IPR in a traditional teamwork?”. In terms of combined work, the IPR of each element is at tached to its creator. Although it seems to be a fully integrated design, BIM actually resulted from a combination of works/elements; for instance: the outline of the building design, is created by the architect, the design for the electrical system, is created by the electrical contractor, etc. Thus, in case of BIM as a combined work, the IPR is similar to traditional teamwork. Working with BIM with authorship registration functionalities may actually make it easier to keep track of the IPR.How does collaborative working, using BIM, effect the contractual relationship? On the one hand,collaborative working using BIM does not necessarily change the liability position in the contract nor does it obligate an alliance contract. The General Principles of BIM A ddendum confirms: ‘This does not effectuate or require a restructuring of contractual relationships or shifting of risks between or among the Project Participants other than as specifically required per the Protocol Addendum and its Attachments’ (ConsensusDOCS, 2008). On the other hand, changes in terms of payment schemes can be anticipated. Collaborative processes using BIM will lead to the shifting of activities from to the early design phase. Much, if not all, activities in the detailed engineering and specification phase will be done in the earlier phases. It means that significant payment for the engineering phase, which may count up to 40 per cent of the design cost, can no longer be expected. As engineering work is done concurrently with the design, a new proportion of the payment in the early design phase is necessary.4. Review of ongoing hospital building projects using BIMIn The Netherlands, the changing roles in hospital building projects are part of the strategy, which aims at achieving a sustainable real estate in response to the changing healthcare policy. Referring to literature and previous research, the main factors that influence the success of the changing roles can be concluded as: the implementation of an integrated procurement method and a life-cycle design approach for a sustainable collaborative process; the agreement on the BIM structure and the intellectual rights; and the integration of the role of a model manager. The preceding sections have discussed the conceptual thinking on how to deal with these factors effectively. This current section observes two actual projects and compares the actual practice with the conceptual view respectively.The main issues, which are observed in the case studies, are:the selected procurement method and the roles of the involved parties within this method;the implementation of the life-cycle design approach;the type, structure, and functionalities of BIM used in the project;the openness in data sharing and transfer of the model, and the intended use of BIM in the future; and the roles and tasks of the model manager.The pilot experience of hospital building projects using BIM in the Netherlands can be observed at University Medical Centre St Radboud (further referred as UMC) and Maxima Medical Centre (further referred as MMC). At UMC, the new building project for the Faculty of Dentistry in the city of Nijmegen has been dedicated as a BIM pilot project. At MMC, BIM is used in designing new buildings for Medical Simulation and Mother-and-Child Centre in the city of Veldhoven.The first case is a project at the University Medical Centre (UMC) St Radboud. UMC is more than just a hospital. UMC combines medical services, education and research. More than 8500 staff and 3000 students work at UMC. As a part of the innovative real estate strategy, UMC has considered to use BIM for its building projects. The new development of the Faculty of Dentistry and the surrounding buildings on the Kapittelweg in Nijmegen has been chosen as a pilot project to gather practical knowledge and experience on collaborative processes with BIM support.The main ambition to be achieved through the use of BIM in the building projects at UMC can be summarised as follows:using 3D visualisation to enhance the coordination and communication among the building actors, and the user participation in design;integrating the architectural design with structural analysis, energy analysis, cost estimation, and planning;interactively evaluating the design solutions against the programme of requirements and specifications;reducing redesign/remake costs through clash detection during the design process; andoptimising the management of the facility through the registration of medical installations andequipments, fixed and flexible furniture, product and output specifications, and operational data.The second case is a project at the Maxima Medical Centre (MMC). MMC is a large hospital resulted from a merger between the Diaconessenhuis in Eindhoven and St Joseph Hospital in Veldhoven. Annually the 3,400 staff of MMC provides medical services to more than 450,000 visitors and patients. A large-scaled extension project of the hospital in Veldhoven is a part of its real estate strategy. A medical simulation centre and a women-and-children medical centre are among the most important new facilities within this extension project. The design has been developed using 3D modelling with several functionalities of BIM.The findings from both cases and the analysis are as follows. Both UMC and MMC opted for a traditional procurement method in which the client directly contracted an architect, a structural engineer, and a mechanical, electrical and plumbing (MEP) consultant in the design team. Once the design and detailed specifications are finished, a tender procedure will follow to select a contractor. Despite the choice for this traditional method, many attempts have been made for a closer and more effective multidisciplinary collaboration. UMC dedicated a relatively long preparation phase with the architect, structural engineer and MEP consultant before the design commenced. This preparation phase was aimed at creating a common vision on the optimal way for collaboration using BIM as an ICT support. Some results of this preparation phase are: a document that defines the common ambition for the project and the collaborative working process and a semi-formal agreement that states the commitment of the building actors for collaboration. Other than UMC, MMC selected an architecture firm with an in-house engineering department. Thus, the collaboration between the architect and structural engineer can take place within the same firm using the same software application.Regarding the life-cycle design approach, the main attention is given on life-cycle costs, maintenance needs, and facility management. Using BIM, both hospitals intend to get a much better insight in these aspects over the life-cycle period. The life-cycle sustainability criteria are included in the assignments for the design teams. Multidisciplinary designers and engineers are asked to collaborate more closely and to interact with the end-users to address life-cycle requirements. However, ensuring the building actors to engage in an integrated collaboration to generate sustainable design solutions that meet the life-cycle performance expectations is still difficult. These actors are contracted through a traditional procurement method. Their tasks are specific, their involvement is rather short-term in a certain project phase, their responsibilities and liabilities are limited, and there is no tangible incentive for integrated collaboration.From the current progress of both projects, it can be observed that the type and structure of BIM relies heavily on the choice for BIM software applications. Revit Architecture and Revit Structure by Autodesk are selected based on the argument that it has been widely used internationally and it is compatible with AutoCAD, a widely known product of the same software manufacturer. The compatibility with AutoCAD is a key consideration at MMC since the drawings of the existing buildings were created with this application. These 2D drawings were then used as the basis to generate a 3D model with the BIM software application. The architectural model generated with Revit Architecture and the structural model generated by Revit Structure can be linked directly. In case of a change in the architectural model, a message will be sent to the structural engineer. He can then adjust the structural model, or propose a change in return to the architect, so that the structural model is always consistent with the architectural one.Despite the attempt of the design team to agree on using the same software application, the MEP consultant is still not capable to use Revit; and therefore, a conversion of the model from and to Revit is still required. Another weakness of this “closed approach”, which is dependent to the use of the same software applications, may appear in the near future when the project further progresses into the construction phase. If the contractor uses another software application, considerable extra work will be needed to make the model creted during the design phase to be compatible for use in the construction phase.。
毕业论文文献外文翻译----危机管理:预防,诊断和干预文献翻译-中英文文献对照翻译
第1页 共19页中文3572字毕业论文(设计)外文翻译标题:危机管理-预防,诊断和干预一、外文原文标题:标题:Crisis management: prevention, diagnosis and Crisis management: prevention, diagnosis andintervention 原文:原文:The Thepremise of this paper is that crises can be managed much more effectively if the company prepares for them. Therefore, the paper shall review some recent crises, theway they were dealt with, and what can be learned from them. Later, we shall deal with the anatomy of a crisis by looking at some symptoms, and lastly discuss the stages of a crisis andrecommend methods for prevention and intervention. Crisis acknowledgmentAlthough many business leaders will acknowledge thatcrises are a given for virtually every business firm, many of these firms do not take productive steps to address crisis situations. As one survey of Chief Executive officers of Fortune 500 companies discovered, 85 percent said that a crisisin business is inevitable, but only 50 percent of these had taken any productive action in preparing a crisis plan(Augustine, 1995). Companies generally go to great lengths to plan their financial growth and success. But when it comes to crisis management, they often fail to think and prepare for those eventualities that may lead to a company’s total failure.Safety violations, plants in need of repairs, union contracts, management succession, and choosing a brand name, etc. can become crises for which many companies fail to be prepared untilit is too late.The tendency, in general, is to look at the company as a perpetual entity that requires plans for growth. Ignoring the probabilities of disaster is not going to eliminate or delay their occurrences. Strategic planning without inclusion ofcrisis management is like sustaining life without guaranteeinglife. One reason so many companies fail to take steps to proactively plan for crisis events, is that they fail to acknowledge the possibility of a disaster occurring. Like an ostrich with its head in the sand, they simply choose to ignorethe situation, with the hope that by not talking about it, it will not come to pass. Hal Walker, a management consultant, points out “that decisions will be more rational and better received, and the crisis will be of shorter duration, forcompanies who prepare a proactive crisis plan” (Maynard, 1993) .It is said that “there are two kinds of crises: those that thatyou manage, and those that manage you” (Augustine, 1995). Proactive planning helps managers to control and resolve a crisis. Ignoring the possibility of a crisis, on the other hand,could lead to the crisis taking a life of its own. In 1979, theThree-Mile Island nuclear power plant experienced a crisis whenwarning signals indicated nuclear reactors were at risk of a meltdown. The system was equipped with a hundred or more different alarms and they all went off. But for those who shouldhave taken the necessary steps to resolve the situation, therewere no planned instructions as to what should be done first. Hence, the crisis was not acknowledged in the beginning and itbecame a chronic event.In June 1997, Nike faced a crisis for which they had no existi existing frame of reference. A new design on the company’s ng frame of reference. A new design on the company’s Summer Hoop line of basketball shoes - with the word air writtenin flaming letters - had sparked a protest by Muslims, who complained the logo resembled the Arabic word for Allah, or God.The council of American-Islamic Relations threatened aa globalNike boycott. Nike apologized, recalled 38,000 pairs of shoes,and discontinued the line (Brindley, 1997). To create the brand,Nike had spent a considerable amount of time and money, but hadnever put together a general framework or policy to deal with such controversies. To their dismay, and financial loss, Nike officials had no choice but to react to the crisis. This incident has definitely signaled to the company that spending a little more time would have prevented the crisis. Nonetheless,it has taught the company a lesson in strategic crisis management planning.In a business organization, symptoms or signals can alert the strategic planners or executives of an eminent crisis. Slipping market share, losing strategic synergy anddiminishing productivity per man hour, as well as trends, issues and developments in the socio-economic, political and competitive environments, can signal crises, the effects of which can be very detrimental. After all, business failures and bankruptcies are not intended. They do not usually happen overnight. They occur more because of the lack of attention to symptoms than any other factor.Stages of a crisisMost crises do not occur suddenly. The signals can usuallybe picked up and the symptoms checked as they emerge. A company determined to address these issues realizes that the real challenge is not just to recognize crises, but to recognize themin a timely fashion (Darling et al., 1996). A crisis can consistof four different and distinct stages (Fink, 1986). The phasesare: prodromal crisis stage, acute crisis stage, chronic crisisstage and crisis resolution stage.Modern organizations are often called “organic” due tothe fact that they are not immune from the elements of their surrounding environments. Very much like a living organism, organizations can be affected by environmental factors both positively and negatively. But today’s successfulorganizations are characterized by the ability to adapt by recognizing important environmental factors, analyzing them, evaluating the impacts and reacting to them. The art of strategic planning (as it relates to crisis management)involves all of the above activities. The right strategy, in general, provides for preventive measures, and treatment or resolution efforts both proactively and reactively. It wouldbe quite appropriate to examine the first three stages of acrisis before taking up the treatment, resolution or intervention stage.Prodromal crisis stageIn the field of medicine, a prodrome is a symptom of the onset of a disease. It gives a warning signal. In business organizations, the warning lights are always blinking. No matter how successful the organization, a number of issues andtrends may concern the business if proper and timely attentionis paid to them. For example, in 1995, Baring Bank, a UK financial institution which had been in existence since 1763,ample opportunitysuddenly and unexpectedly failed. There wasfor the bank to catch the signals that something bad was on thehorizon, but the company’s efforts to detect that were thwarted by an internal structure that allowed a single employee both to conduct and to oversee his own investment trades, and the breakdown of management oversight and internalcontrol systems (Mitroff et al., 1996). Likewise, looking in retrospect, McDonald’s fast food chain was given the prodromalsymptoms before the elderly lady sued them for the spilling ofa very hot cup of coffee on her lap - an event that resulted in a substantial financial loss and tarnished image of thecompany. Numerous consumers had complained about thetemperature of the coffee. The warning light was on, but the company did not pay attention. It would have been much simplerto pick up the signal, or to check the symptom, than facing the consequences.In another case, Jack in the Box, a fast food chain, had several customers suffer intestinal distress after eating at their restaurants. The prodromal symptom was there, but the company took evasive action. Their initial approach was to lookaround for someone to blame. The lack of attention, the evasiveness and the carelessness angered all the constituent groups, including their customers. The unfortunate deaths thatptoms,occurred as a result of the company’s ignoring thesymand the financial losses that followed, caused the company to realize that it would have been easier to manage the crisis directly in the prodromal stage rather than trying to shift theblame.Acute crisis stageA prodromal stage may be oblique and hard to detect. The examples given above, are obvious prodromal, but no action wasWebster’s New Collegiate Dictionary, an acute stage occursacutewhen a symptom “demands urgent attention.” Whether the acutesymptom emerges suddenly or is a transformation of a prodromalstage, an immediate action is required. Diverting funds and other resources to this emerging situation may cause disequilibrium and disturbance in the whole system. It is onlythose organizations that have already prepared a framework forthese crises that can sustain their normal operations. For example, the US public roads and bridges have for a long time reflected a prodromal stage of crisis awareness by showing cracks and occasionally a collapse. It is perhaps in light of the obsessive decision to balance the Federal budget that reacting to the problem has been delayed and ignored. This situation has entered an acute stage and at the time of this writing, it was reported that a bridge in Maryland had just collapsed.The reason why prodromes are so important to catch is thatit is much easier to manage a crisis in this stage. In the caseof most crises, it is much easier and more reliable to take careof the problem before it becomes acute, before it erupts and causes possible complications (Darling et al., 1996). In andamage. However, the losses are incurred. Intel, the largest producer of computer chips in the USA, had to pay an expensiveprice for initially refusing to recall computer chips that proved unreliable o n on certain calculations. The f irmfirm attempted to play the issue down and later learned its lesson. At an acutestage, when accusations were made that the Pentium Chips were not as fast as they claimed, Intel quickly admitted the problem,apologized for it, and set about fixing it (Mitroff et al., 1996). Chronic crisis stageDuring this stage, the symptoms are quite evident and always present. I t isIt is a period of “make or break.” Being the third stage, chronic problems may prompt the company’s management to once and for all do something about the situation. It may be the beginning of recovery for some firms, and a deathknell for others. For example, the Chrysler Corporation was only marginallysuccessful throughout the 1970s. It was not, however, until the company was nearly bankrupt that amanagement shake-out occurred. The drawback at the chronic stage is that, like in a human patient, the company may get used to “quick fixes” and “band “band--aid”approaches. After all, the ailment, the problem and the crisis have become an integral partoverwhelmed by prodromal and acute problems that no time or attention is paid to the chronic problems, or the managers perceive the situation to be tolerable, thus putting the crisison a back burner.Crisis resolutionCrises could be detected at various stages of their development. Since the existing symptoms may be related todifferent problems or crises, there is a great possibility thatthey may be misinterpreted. Therefore, the people in charge maybelieve they have resolved the problem. However, in practicethe symptom is often neglected. In such situations, the symptomwill offer another chance for resolution when it becomes acute,thereby demanding urgent care. Studies indicate that today anincreasing number of companies are issue-oriented and searchfor symptoms. Nevertheless, the lack of experience in resolvinga situation and/or inappropriate handling of a crisis can leadto a chronic stage. Of course, there is this last opportunityto resolve the crisis at the chronic stage. No attempt to resolve the crisis, or improper resolution, can lead to grim consequences that will ultimately plague the organization or even destroy it.It must be noted that an unsolved crisis may not destroy the company. But, its weakening effects can ripple through the organization and create a host of other complications.Preventive effortsThe heart of the resolution of a crisis is in the preventiveefforts the company has initiated. This step, similar to a humanbody, is actually the least expensive, but quite often the mostoverlooked. Preventive measures deal with sensing potential problems (Gonzales-Herrero and Pratt, 1995). Major internalfunctions of a company such as finance, production, procurement, operations, marketing and human resources are sensitive to thesocio-economic, political-legal, competitive, technological, demographic, global and ethical factors of the external environment. What is imminently more sensible and much more manageable, is to identify the processes necessary forassessing and dealing with future crises as they arise (Jacksonand Schantz, 1993). At the core of this process are appropriate information systems, planning procedures, anddecision-making techniques. A soundly-based information system will scan the environment, gather appropriate data, interpret this data into opportunities and challenges, and provide a concretefoundation for strategies that could function as much to avoid crises as to intervene and resolve them.Preventive efforts, as stated before, require preparations before any crisis symptoms set in. Generally strategic forecasting, contingency planning, issues analysis, and scenario analysis help to provide a framework that could be used in avoiding and encountering crises.出处:出处:Toby TobyJ. Kash and John R. Darling . Crisis management: prevention, diagnosis 179-186二、翻译文章标题:危机管理:预防,诊断和干预译文:本文的前提是,如果该公司做好准备得话,危机可以更有效地进行管理。
华南理工大学 毕业设计 外文翻译
华南理工大学本科毕业设计(论文)翻译班级土木工程三班姓名王剑锋学号 200930132042指导教师骆冠勇填表日期 2013年4月21日中文译名一种用于预测拉森钢板桩弯曲强度的数值模型外文原文名 A numerical model for predicting the bending strength of Larssen steel sheetpiles外文原文版出处Journal of Constructional Steel Research 58 (2002) 1361–1374译文:一种用于预测拉森钢板桩弯曲强度的数值模型R.J. Crawford, M.P. Byfield摘要拉森桩为U形横截面并通过可滑动的接头连接在一起组成码头岸壁,围堰,和其他类型的挡土墙。
由于滑动接头位于桩墙的中心线上,相互连接桩的桩间滑移可能导致桩墙70%的弯曲强度折减。
这种桩间滑移可以通过安装成对的带有卷曲的锁头的桩来部分阻止。
然而,像非卷曲桩一样弯曲强度很难被预测,因为这种联锁桩依然存在桩间滑移。
本文提出了一种用于预测联锁拉森桩弯曲应力以及压应力的数值方法。
通过测试1:6比例大小的铝制拉森桩微缩模型的数据与数值模型计算结果进行比较,结果表明数值模型所预测的应力与实际实验结果接近一致。
同时本数值模型也可用于钢板桩的设计生产,以达到使用最少的材料来达到最大的弯曲强度的目的。
C 2002爱思唯尔股份有限公司保留解释权利关键词:行业规范;组合结构;拉森桩;桩结构;挡土墙;钢结构1.介绍钢板桩被广泛运用于全世界。
工程上经常使用的两种钢板桩是U型拉森钢板桩和Z型钢板桩。
两种类型的钢板桩桩都是利用沿着构件长度方向的锁头连接成有缝的连续墙结构。
根据欧洲标准化委员会引入的欧3标准第五部分,U型钢板桩锁头连接部分的下滑位移的影响不能忽视(见图1 步骤1)。
如果钢板桩单肢的相对滑移严重,则钢板桩的弯曲强度会下降到整体强度的70%,我们将其称为钢板桩模量下降。
毕业设计外文文献翻译【范本模板】
毕业设计(论文)外文资料翻译系别:专业:班级:姓名:学号:外文出处:附件: 1. 原文; 2。
译文2013年03月附件一:A Rapidly Deployable Manipulator SystemChristiaan J。
J。
Paredis, H. Benjamin Brown,Pradeep K. KhoslaAbstract:A rapidly deployable manipulator system combines the flexibility of reconfigurable modular hardware with modular programming tools,allowing the user to rapidly create a manipulator which is custom-tailored for a given task. This article describes two main aspects of such a system,namely,the Reconfigurable Modular Manipulator System (RMMS)hardware and the corresponding control software。
1 IntroductionRobot manipulators can be easily reprogrammed to perform different tasks, yet the range of tasks that can be performed by a manipulator is limited by mechanicalstructure。
Forexample,a manipulator well-suited for precise movement across the top of a table would probably no be capable of lifting heavy objects in the vertical direction. Therefore,to perform a given task,one needs to choose a manipulator with an appropriate mechanical structure.We propose the concept of a rapidly deployable manipulator system to address the above mentioned shortcomings of fixed configuration manipulators。
外文文献翻译范例
StatusComplete
Type:Office
Location:Hong Kong
Construction started:18 April 1985
Completed:1990
Opening:17 May 1990
HeightAntenna spire:367.4 m (1,205.4 ft)
2011年6月8日
外文文献翻译(译成中文1000字左右):
【主要阅读文献不少于5篇,译文后附注文献信息,包括:作者、书名(或论文题目)、出 版 社(或刊物名称)、出版时间(或刊号)、页码。提供所译外文资料附件(印刷类含封面、封底、目录、翻译部分的复印件等,网站类的请附网址及原文)
原文网址:/TALLEST_TOWERS/t_sears.htm
译文
建筑师:Bruce Graham, design partner, Skidmore, Owings and Merrill
地点:Chicago
甲方:Sears Roebuck and Company
工程师:Fazlur Khan of Skidmore, Owings and Merrill.项目年份:2008
香港1985年4月18日开工建设1990年完成1990年5月17日开幕高度天线尖顶三百六十七点四米2418英尺屋顶三百一十五点米10335英尺顶层二百八十八点二米九百四十五点五英尺技术细节地上楼层数724层楼建筑面积一十三点五万平方米1450000平方英尺电梯数45由奥的斯电梯公司生产的设计与施工主要承建商香港建设控股有限公司引文需要熊谷组香港贝聿铭建筑师事务所建筑师事务所谢尔曼西贡有限公司sl的托马斯博阿达莱斯利罗伯逊结构工程师协会rllp参考文献对中国塔简称中银大厦银行是中环香港最知名的摩天大楼之一
_毕业设计外文文献及翻译_
_毕业设计外文文献及翻译_Graduation Thesis Foreign Literature Review and Chinese Translation1. Title: "The Impact of Artificial Intelligence on Society"Abstract:人工智能对社会的影响摘要:人工智能技术的快速发展引发了关于其对社会影响的讨论。
本文探讨了人工智能正在重塑不同行业(包括医疗保健、交通运输和教育)的各种方式。
还讨论了AI实施的潜在益处和挑战,以及伦理考量。
总体而言,本文旨在提供对人工智能对社会影响的全面概述。
2. Title: "The Future of Work: Automation and Job Displacement"Abstract:With the rise of automation technologies, there is growing concern about the potential displacement of workers in various industries. This paper examines the trends in automation and its impact on jobs, as well as the implications for workforce development and retraining programs. The ethical and social implications of automation are also discussed, along with potential strategies for mitigating job displacement effects.工作的未来:自动化和失业摘要:随着自动化技术的兴起,人们越来越担心各行业工人可能被替代的问题。
毕业设计论文外文文献翻译
xxxx大学xxx学院毕业设计(论文)外文文献翻译系部xxxx专业xxxx学生姓名xxxx 学号xxxx指导教师xxxx 职称xxxx2013年3 月Introducing the Spring FrameworkThe Spring Framework: a popular open source application framework that addresses many of the issues outlined in this book. This chapter will introduce the basic ideas of Spring and dis-cuss the central “bean factory” lightweight Inversion-of-Control (IoC) container in detail.Spring makes it particularly easy to implement lightweight, yet extensible, J2EE archi-tectures. It provides an out-of-the-box implementation of the fundamental architectural building blocks we recommend. Spring provides a consistent way of structuring your applications, and provides numerous middle tier features that can make J2EE development significantly easier and more flexible than in traditional approaches.The basic motivations for Spring are:To address areas not well served by other frameworks. There are numerous good solutions to specific areas of J2EE infrastructure: web frameworks, persistence solutions, remoting tools, and so on. However, integrating these tools into a comprehensive architecture can involve significant effort, and can become a burden. Spring aims to provide an end-to-end solution, integrating spe-cialized frameworks into a coherent overall infrastructure. Spring also addresses some areas that other frameworks don’t. For example, few frameworks address generic transaction management, data access object implementation, and gluing all those things together into an application, while still allowing for best-of-breed choice in each area. Hence we term Spring an application framework, rather than a web framework, IoC or AOP framework, or even middle tier framework.To allow for easy adoption. A framework should be cleanly layered, allowing the use of indi-vidual features without imposing a whole worldview on the application. Many Spring features, such as the JDBC abstraction layer or Hibernate integration, can be used in a library style or as part of the Spring end-to-end solution.To deliver ease of use. As we’ve noted, J2EE out of the box is relatively hard to use to solve many common problems. A good infrastructure framework should make simple tasks simple to achieve, without forcing tradeoffs for future complex requirements (like distributed transactions) on the application developer. It should allow developers to leverage J2EE services such as JTA where appropriate, but to avoid dependence on them in cases when they are unnecessarily complex.To make it easier to apply best practices. Spring aims to reduce the cost of adhering to best practices such as programming to interfaces, rather than classes, almost to zero. However, it leaves the choice of architectural style to the developer.Non-invasiveness. Application objects should have minimal dependence on the framework. If leveraging a specific Spring feature, an object should depend only on that particular feature, whether by implementing a callback interface or using the framework as a class library. IoC and AOP are the key enabling technologies for avoiding framework dependence.Consistent configuration. A good infrastructure framework should keep application configuration flexible and consistent, avoiding the need for custom singletons and factories. A single style should be applicable to all configuration needs, from the middle tier to web controllers.Ease of testing. Testing either whole applications or individual application classes in unit tests should be as easy as possible. Replacing resources or application objects with mock objects should be straightforward.To allow for extensibility. Because Spring is itself based on interfaces, rather than classes, it is easy to extend or customize it. Many Spring components use strategy interfaces, allowing easy customization.A Layered Application FrameworkChapter 6 introduced the Spring Framework as a lightweight container, competing with IoC containers such as PicoContainer. While the Spring lightweight container for JavaBeans is a core concept, this is just the foundation for a solution for all middleware layers.Basic Building Blockspring is a full-featured application framework that can be leveraged at many levels. It consists of multi-ple sub-frameworks that are fairly independent but still integrate closely into a one-stop shop, if desired. The key areas are:Bean factory. The Spring lightweight IoC container, capable of configuring and wiring up Java-Beans and most plain Java objects, removing the need for custom singletons and ad hoc configura-tion. Various out-of-the-box implementations include an XML-based bean factory. The lightweight IoC container and its Dependency Injection capabilities will be the main focus of this chapter.Application context. A Spring application context extends the bean factory concept by adding support for message sources and resource loading, and providing hooks into existing environ-ments. Various out-of-the-box implementations include standalone application contexts and an XML-based web application context.AOP framework. The Spring AOP framework provides AOP support for method interception on any class managed by a Spring lightweight container.It supports easy proxying of beans in a bean factory, seamlessly weaving in interceptors and other advice at runtime. Chapter 8 dis-cusses the Spring AOP framework in detail. The main use of the Spring AOP framework is to provide declarative enterprise services for POJOs.Auto-proxying. Spring provides a higher level of abstraction over the AOP framework and low-level services, which offers similar ease-of-use to .NET within a J2EE context. In particular, the provision of declarative enterprise services can be driven by source-level metadata.Transaction management. Spring provides a generic transaction management infrastructure, with pluggable transaction strategies (such as JTA and JDBC) and various means for demarcat-ing transactions in applications. Chapter 9 discusses its rationale and the power and flexibility that it offers.DAO abstraction. Spring defines a set of generic data access exceptions that can be used for cre-ating generic DAO interfaces that throw meaningful exceptions independent of the underlying persistence mechanism. Chapter 10 illustrates the Spring support for DAOs in more detail, examining JDBC, JDO, and Hibernate as implementation strategies.JDBC support. Spring offers two levels of JDBC abstraction that significantly ease the effort of writing JDBC-based DAOs: the org.springframework.jdbc.core package (a template/callback approach) and the org.springframework.jdbc.object package (modeling RDBMS operations as reusable objects). Using the Spring JDBC packages can deliver much greater pro-ductivity and eliminate the potential for common errors such as leaked connections, compared with direct use of JDBC. The Spring JDBC abstraction integrates with the transaction and DAO abstractions.Integration with O/R mapping tools. Spring provides support classesfor O/R Mapping tools like Hibernate, JDO, and iBATIS Database Layer to simplify resource setup, acquisition, and release, and to integrate with the overall transaction and DAO abstractions. These integration packages allow applications to dispense with custom ThreadLocal sessions and native transac-tion handling, regardless of the underlying O/R mapping approach they work with.Web MVC framework. Spring provides a clean implementation of web MVC, consistent with the JavaBean configuration approach. The Spring web framework enables web controllers to be configured within an IoC container, eliminating the need to write any custom code to access business layer services. It provides a generic DispatcherServlet and out-of-the-box controller classes for command and form handling. Request-to-controller mapping, view resolution, locale resolution and other important services are all pluggable, making the framework highly extensi-ble. The web framework is designed to work not only with JSP, but with any view technology, such as Velocity—without the need for additional bridges. Chapter 13 discusses web tier design and the Spring web MVC framework in detail.Remoting support. Spring provides a thin abstraction layer for accessing remote services without hard-coded lookups, and for exposing Spring-managed application beans as remote services. Out-of-the-box support is inc luded for RMI, Caucho’s Hessian and Burlap web service protocols, and WSDL Web Services via JAX-RPC. Chapter 11 discusses lightweight remoting.While Spring addresses areas as diverse as transaction management and web MVC, it uses a consistent approach everywhere. Once you have learned the basic configuration style, you will be able to apply it in many areas. Resources, middle tier objects, and web components are all set up using the same bean configuration mechanism. You can combine your entireconfiguration in one single bean definition file or split it by application modules or layers; the choice is up to you as the application developer. There is no need for diverse configuration files in a variety of formats, spread out across the application.Spring on J2EEAlthough many parts of Spring can be used in any kind of Java environment, it is primarily a J2EE application framework. For example, there are convenience classes for linking JNDI resources into a bean factory, such as JDBC DataSources and EJBs, and integration with JTA for distributed transaction management. In most cases, application objects do not need to work with J2EE APIs directly, improving reusability and meaning that there is no need to write verbose, hard-to-test, JNDI lookups.Thus Spring allows application code to seamlessly integrate into a J2EE environment without being unnecessarily tied to it. You can build upon J2EE services where it makes sense for your application, and choose lighter-weight solutions if there are no complex requirements. For example, you need to use JTA as transaction strategy only if you face distributed transaction requirements. For a single database, there are alternative strategies that do not depend on a J2EE container. Switching between those transac-tion strategies is merely a matter of configuration; Spring’s consistent abstraction avoids any need to change application code.Spring offers support for accessing EJBs. This is an important feature (and relevant even in a book on “J2EE without EJB”) because the u se of dynamic proxies as codeless client-side business delegates means that Spring can make using a local stateless session EJB an implementation-level, rather than a fundamen-tal architectural, choice.Thus if you want to use EJB, you can within a consistent architecture; however, you do not need to make EJB the cornerstone of your architecture. This Spring feature can make devel-oping EJB applications significantly faster, because there is no need to write custom code in service loca-tors or business delegates. Testing EJB client code is also much easier, because it only depends on the EJB’s Business Methods interface (which is not EJB-specific), not on JNDI or the EJB API.Spring also provides support for implementing EJBs, in the form of convenience superclasses for EJB implementation classes, which load a Spring lightweight container based on an environment variable specified in the ejb-jar.xml deployment descriptor. This is a powerful and convenient way of imple-menting SLSBs or MDBs that are facades for fine-grained POJOs: a best practice if you do choose to implement an EJB application. Using this Spring feature does not conflict with EJB in any way—it merely simplifies following good practice.Introducing the Spring FrameworkThe main aim of Spring is to make J2EE easier to use and promote good programming practice. It does not reinvent the wheel; thus you’ll find no logging packages in Spring, no connection pools, no distributed transaction coordinator. All these features are provided by other open source projects—such as Jakarta Commons Logging (which Spring uses for all its log output), Jakarta Commons DBCP (which can be used as local DataSource), and ObjectWeb JOTM (which can be used as transaction manager)—or by your J2EE application server. For the same reason, Spring doesn’t provide an O/R mapping layer: There are good solutions for this problem area, such as Hibernate and JDO.Spring does aim to make existing technologies easier to use. For example, although Spring is not in the business of low-level transactioncoordination, it does provide an abstraction layer over JTA or any other transaction strategy. Spring is also popular as middle tier infrastructure for Hibernate, because it provides solutions to many common issues like SessionFactory setup, ThreadLocal sessions, and exception handling. With the Spring HibernateTemplate class, implementation methods of Hibernate DAOs can be reduced to one-liners while properly participating in transactions.The Spring Framework does not aim to replace J2EE middle tier services as a whole. It is an application framework that makes accessing low-level J2EE container ser-vices easier. Furthermore, it offers lightweight alternatives for certain J2EE services in some scenarios, such as a JDBC-based transaction strategy instead of JTA when just working with a single database. Essentially, Spring enables you to write appli-cations that scale down as well as up.Spring for Web ApplicationsA typical usage of Spring in a J2EE environment is to serve as backbone for the logical middle tier of a J2EE web application. Spring provides a web application context concept, a powerful lightweight IoC container that seamlessly adapts to a web environment: It can be accessed from any kind of web tier, whether Struts, WebWork, Tapestry, JSF, Spring web MVC, or a custom solution.The following code shows a typical example of such a web application context. In a typical Spring web app, an applicationContext.xml file will reside in the WEB-INF directory, containing bean defini-tions according to the “spring-beans” DTD. In such a bean definition XML file, business objects and resources are defined, for example, a “myDataSource” bean, a “myInventoryManager” bean, and a “myProductManager” bean. Spring takes care of their configuration, their wiring up, and their lifecycle.<beans><bean id=”myDataSource” class=”org.springframework.jdbc. datasource.DriverManagerDataSource”><property name=”driverClassName”> <value>com.mysql.jdbc.Driver</value></property> <property name=”url”><value>jdbc:mysql:myds</value></property></bean><bean id=”myInventoryManager” class=”ebusiness.DefaultInventoryManager”> <property name=”dataSource”><ref bean=”myDataSource”/> </property></bean><bean id=”myProductManager” class=”ebusiness.DefaultProductManage r”><property name=”inventoryManager”><ref bean=”myInventoryManager”/> </property><property name=”retrieveCurrentStock”> <value>true</value></property></bean></beans>By default, all such beans have “singleton” scope: one instance per context. The “myInventoryManager” bean will automatically be wired up with the defined DataSource, while “myProductManager” will in turn receive a reference to the “myInventoryManager” bean. Those objects (traditionally called “beans” in Spring terminology) need to expos e only the corresponding bean properties or constructor arguments (as you’ll see later in this chapter); they do not have to perform any custom lookups.A root web application context will be loaded by a ContextLoaderListener that is defined in web.xml as follows:<web-app><listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class></listener>...</web-app>After initialization of the web app, the root web application context will be available as a ServletContext attribute to the whole web application, in the usual manner. It can be retrieved from there easily via fetching the corresponding attribute, or via a convenience method in org.springframework.web. context.support.WebApplicationContextUtils. This means that the application context will be available in any web resource with access to the ServletContext, like a Servlet, Filter, JSP, or Struts Action, as follows:WebApplicationContext wac = WebApplicationContextUtils.getWebApplicationContext(servletContext);The Spring web MVC framework allows web controllers to be defined as JavaBeans in child application contexts, one per dispatcher servlet. Such controllers can express dependencies on beans in the root application context via simple bean references. Therefore, typical Spring web MVC applications never need to perform a manual lookup of an application context or bean factory, or do any other form of lookup.Neither do other client objects that are managed by an application context themselves: They can receive collaborating objects as bean references.The Core Bean FactoryIn the previous section, we have seen a typical usage of the Spring IoC container in a web environment: The provided convenience classes allow for seamless integration without having to worry about low-level container details. Nevertheless, it does help to look at the inner workings to understand how Spring manages the container. Therefore, we will now look at the Spring bean container in more detail, starting at the lowest building block: the bean factory. Later, we’ll continue with resource setup and details on the application context concept.One of the main incentives for a lightweight container is to dispense with the multitude of custom facto-ries and singletons often found in J2EE applications. The Spring bean factory provides one consistent way to set up any number of application objects, whether coarse-grained components or fine-grained busi-ness objects. Applying reflection and Dependency Injection, the bean factory can host components that do not need to be aware of Spring at all. Hence we call Spring a non-invasive application framework.Fundamental InterfacesThe fundamental lightweight container interface is org.springframework.beans.factory.Bean Factory. This is a simple interface, which is easy to implement directly in the unlikely case that none of the implementations provided with Spring suffices. The BeanFactory interface offers two getBean() methods for looking up bean instances by String name, with the option to check for a required type (and throw an exception if there is a type mismatch).public interface BeanFactory {Object getBean(String name) throws BeansException;Object getBean(String name, Class requiredType) throws BeansException;boolean containsBean(String name);boolean isSingleton(String name) throws NoSuchBeanDefinitionException;String[] getAliases(String name) throws NoSuchBeanDefinitionException;}The isSingleton() method allows calling code to check whether the specified name represents a sin-gleton or prototype bean definition. In the case of a singleton bean, all calls to the getBean() method will return the same object instance. In the case of a prototype bean, each call to getBean() returns an inde-pendent object instance, configured identically.The getAliases() method will return alias names defined for the given bean name, if any. This mecha-nism is used to provide more descriptive alternative names for beans than are permitted in certain bean factory storage representations, such as XML id attributes.The methods in most BeanFactory implementations are aware of a hierarchy that the implementation may be part of. If a bean is not foundin the current factory, the parent factory will be asked, up until the root factory. From the point of view of a caller, all factories in such a hierarchy will appear to be merged into one. Bean definitions in ancestor contexts are visible to descendant contexts, but not the reverse.All exceptions thrown by the BeanFactory interface and sub-interfaces extend org.springframework. beans.BeansException, and are unchecked. This reflects the fact that low-level configuration prob-lems are not usually recoverable: Hence, application developers can choose to write code to recover from such failures if they wish to, but should not be forced to write code in the majority of cases where config-uration failure is fatal.Most implementations of the BeanFactory interface do not merely provide a registry of objects by name; they provide rich support for configuring those objects using IoC. For example, they manage dependen-cies between managed objects, as well as simple properties. In the next section, we’ll look at how such configuration can be expressed in a simple and intuitive XML structure.The sub-interface org.springframework.beans.factory.ListableBeanFactory supports listing beans in a factory. It provides methods to retrieve the number of beans defined, the names of all beans, and the names of beans that are instances of a given type:public interface ListableBeanFactory extends BeanFactory {int getBeanDefinitionCount();String[] getBeanDefinitionNames();String[] getBeanDefinitionNames(Class type);boolean containsBeanDefinition(String name);Map getBeansOfType(Class type, boolean includePrototypes,boolean includeFactoryBeans) throws BeansException}The ability to obtain such information about the objects managed by a ListableBeanFactory can be used to implement objects that work with a set of other objects known only at runtime.In contrast to the BeanFactory interface, the methods in ListableBeanFactory apply to the current factory instance and do not take account of a hierarchy that the factory may be part of. The org.spring framework.beans.factory.BeanFactoryUtils class provides analogous methods that traverse an entire factory hierarchy.There are various ways to leverage a Spring bean factory, ranging from simple bean configuration to J2EE resource integration and AOP proxy generation. The bean factory is the central, consistent way of setting up any kind of application objects in Spring, whether DAOs, business objects, or web controllers. Note that application objects seldom need to work with the BeanFactory interface directly, but are usu-ally configured and wired by a factory without the need for any Spring-specific code.For standalone usage, the Spring distribution provides a tiny spring-core.jar file that can be embed-ded in any kind of application. Its only third-party dependency beyond J2SE 1.3 (plus JAXP for XML parsing) is the Jakarta Commons Logging API.The bean factory is the core of Spring and the foundation for many other services that the framework offers. Nevertheless, the bean factory can easily be used stan-dalone if no other Spring services are required.Derivative:networkSpring 框架简介Spring框架:这是一个流行的开源应用框架,它可以解决很多问题。
毕业论文外文文献翻译We-need-strategic-cost-management我们需要战略成本管理
毕业设计(论文)外文文献翻译文献、资料中文题目:我们需要战略成本管理文献、资料英文题目:We need strategic cost management 文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14本科毕业论文(设计)外文翻译原文:We need strategic cost managementWe need strategic cost management? As noted earlier, the global financial crisis continues to wantonly slightly, off-season already unsolicited, but also to a year was bad, but even worse this year, Xi. Improve efficiency, reduce costs, many companies have become one of the ultimate weapon. Consequently, from Europe to the Americas, from global to domestic, sounded a dismissal, caused many large and small vibration. Various enterprises began Wujin their own property, to control expenditure, lowering of standards, so these are all related to the cost of this topic.In fact, the companies cut costs, all costs should not be without identification, "indiscriminate white uniform." If a business manager to every expenditure appears to cut off the excess, it is likely this weakened the competitiveness of enterprises and thus affects the business, results of more harm than good. Therefore, managers should be the perspective of corporate strategy to control costs and avoid damage to the value of those core elements of the decision. Consequently, cost-plus strategy, it leads to strategic cost management topics.He suggested approach for dedicating resources to supplier cost management may seem cost prohibitive. However, the organizations studied unanimously agree that they receive extremely high returns on their investments in supplier cost management efforts. The money spent on supplier cost management efforts. The money spent on supplier should-cost analysis, supplier development, and other tools and approaches pays for itself many times over in terms of reducing costs and bottom-line prices paid to suppliers. for large fortune 500 companies, successful strategic cost management may mean the addition of dedicated personnel to focus on supplier cost management. for smaller organizations which might not have as great an on-going need, or as great an asset base.So, what is strategic cost management? Strategy can be defined as the establishment of their fundamental long-term goals and to achieve the goals to take the necessary action planning and resource allocation, is to guide the overall plans and strategies. The so-called strategic cost management from a strategic perspective to study the formation and control costs. In established under the principle of corporate strategy, in terms of cost management for the strategic choice and design, it will lead to the final delivery of business products and services to lower costs, not every part of Shang Du Zhuiqiu lowest cost. Includes two levels of content: one from a cost perspective, the selection and optimization of business strategy; Second, the implementation of cost control strategies. Strategic cost management thinking on strategic cost management theoretical framework of the general and summary, which determines the strategic cost management theory and methodology to start the basic ideas.In the background of the crisis under the cost-cutting, more Xuyao follow strategic cost management thinking, to have a choice cut, not important link in the conduct of large Ke Yi drastic cuts; and the related core competitive Li's Guanjianyaosu, but not rule out the possibility of expanding into so targeted, there are tight with loose, smart, cost-cutting, a square is not only lower costs, but also without prejudice to the company health and even enhance the core competitiveness of the ideal choice.The basic tools of strategic cost management cost management strategy has three elements: value chain analysis, strategic positioning analysis and cost driver analysis. They also analyzed in the framework of strategic management and cost factors closely related to the three basic analysis tools.(A) of the value chain analysis of each end product from initial raw materials into the hands until it reaches the final consumer, intermediate to go through numerous interrelated operating procedures, these operating procedures is both a product of the production process, but it is also a value formation and value-added process to form the value chain (Value-chain). Value chain analysis can be divided into industry specific value chain analysis, value chain analysis and value chainanalysis of competitors. Through the analysis of the industry value chain, we understand the position of enterprises in industry and trade situation and prospects; through its own analysis of the value chain, eliminate non-value-added factors, we can not affect the decline in cost competitiveness of the premise; by value chain analysis of the competitors, you can know ourselves and insight into the situation, and the resulting business cost management strategies.(B) the strategic positioning analysis. Strategic positioning means of selecting the means of competition, and compete with rivals. Enterprises should first of all the internal and external environment in which their own detailed investigation of; then Queding enterprises are entering the Xing Ye Ying, based on the market by Shige Yijisuoxu Kaifa of products; finally determine to what strategy to ensure that enterprises in the selected industry, market and product stand firm in the defeat, to obtain profits above the industry average. To illustrate, such as cost leadership strategy, which is all a strategy most clearly? Under the guidance in this strategy, Enterprise's goal is to become of its properties to low-cost, Sheng Chan (services) Chang Shang, that is, offerings (or service) features, little quality difference in the conditions, cutting costs gain a competitive edge. If enterprises can create and maintain a comprehensive cost leader. That is as long as the price control in the industry average or close to the average level, we can obtain better than average results of operations. With opponents equal to or lower price, the cost leader in low-cost advantage will translate into higher earnings. The difference between strategic requirements of enterprises leading the extensive attention on some aspects of customers in unique within the industry, or the difference in cost is difficult to further expand the circumstances, the production of more powerful than the competition, better quality, service and better products to show the difference between operating . Of course, this difference should the buyer want or willing to accept. If a leader can be different, you can get the price premium paid, or in a certain price to sell more products, or cyclical, seasonal market access, such as shrinking the buyer loyalty during the corresponding benefits. Requirements between the logic of a leading strategic business choices that are conducive to competition and make theirown unique nature of the business, focusing on innovation. In addition to these, other common gathering strategies targeted strategic positioning, life cycle strategy and integration strategy and so on.(C) Cost Driver Analysis. Cost drivers is the driving force caused by production costs and causes of occurrence. Strategic cost driver is mainly a strategic cost management perspective, research on the company's cost structure and cost behavior of long-term impact of cost drivers. Theory of competitive strategy to create a business management scientist Michael * Porter will be divided into ten areas of these factors, namely economies of scale, learning curve, production capacity, use the form, contact, mutual relations, joint, select the time, independent policy, geography factor in location and form of government. Some scholars further strategic structural cost drivers and cost driver is divided into two types of implementation of cost drivers. The case of structural cost control, such as Southwest Airlines in response to competition, positioning its service route rather than the full route in a particular short-distance flights to avoid engaging in large-scale airport operations, to cancel dinner, reservation and other special services, and the establishment of automatic ticketing system and other measures to reduce costs. The results of many of its daily flights and low issue price attracted a lot of short-range travelers, lead to the establishment of the final cost.Source:Shank. J.K and V. Govindarajan,1993.”We need strategic cost management” . Harvard business review. August.pp.112-135.译文:我们需要战略成本管理我们需要战略成本管理?就像之前提到的,全球的金融危机继续,金融危机的时段过去后,提高效率,降低成本,已成为许多公司的最终武器。
毕业设计外文文献翻译
毕业设计外文文献翻译Graduation Design Foreign Literature Translation (700 words) Title: The Impact of Artificial Intelligence on the Job Market Introduction:Artificial Intelligence (AI) is a rapidly growing field that has the potential to revolutionize various industries and job markets. With advancements in technologies such as machine learning and natural language processing, AI has become capable of performing tasks traditionally done by humans. This has raised concerns about the future of jobs and the impact AI will have on the job market. This literature review aims to explore the implications of AI on employment and job opportunities.AI in the Workplace:AI technologies are increasingly being integrated into the workplace, with the aim of automating routine and repetitive tasks. For example, automated chatbots are being used to handle customer service queries, while machine learning algorithms are being employed to analyze large data sets. This has resulted in increased efficiency and productivity in many industries. However, it has also led to concerns about job displacement and unemployment.Job Displacement:The rise of AI has raised concerns about job displacement, as AI technologies are becoming increasingly capable of performing tasks previously done by humans. For example, automated machines can now perform complex surgeries with greaterprecision than human surgeons. This has led to fears that certain jobs will become obsolete, leading to unemployment for those who were previously employed in these industries.New Job Opportunities:While AI might potentially replace certain jobs, it also creates new job opportunities. As AI technologies continue to evolve, there will be a greater demand for individuals with technical skills in AI development and programming. Additionally, jobs that require human interaction and emotional intelligence, such as social work or counseling, may become even more in demand, as they cannot be easily automated.Job Transformation:Another potential impact of AI on the job market is job transformation. AI technologies can augment human abilities rather than replacing them entirely. For example, AI-powered tools can assist professionals in making decisions, augmenting their expertise and productivity. This may result in changes in job roles and the need for individuals to adapt their skills to work alongside AI technologies.Conclusion:The impact of AI on the job market is still being studied and debated. While AI has the potential to automate certain tasks and potentially lead to job displacement, it also presents opportunities for new jobs and job transformation. It is essential for individuals and organizations to adapt and acquire the necessary skills to navigate these changes in order to stay competitive in the evolvingjob market. Further research is needed to fully understand the implications of AI on employment and job opportunities.。
本科毕业生外文文献翻译
本科毕业生外文文献翻译学生姓名:史衍彬指导教师:荣丽红所在学院:信息技术学院专业:农业电气化与自动化中国·大庆2010年 4 月SCM profileIntroduction of Programmable controllersFrom a simple heritage, these remarkable systems have evolved to not only replace electromechanical devices, but to solve an ever-increasing array of control problems in both process and nonprocess industries。
By all indications, these microprocessor powered giants will continue to break new ground in the automated factory into the 1990s。
HISTORYIn the 1960s, electromechanical devices were the order of the day ass far as control was concerned。
These devices, commonly known as relays, were being used by the thousands to control many sequential—type manufacturing processes and stand-along machines。
Many of these relays were in use in the transportation industry,more specifically,the automotive industry。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二 〇 一 年 月本科毕业设计 外文文献及翻译 英文题目:Testing ZigBee Motes for Monitoring Refrigerated Vegetable Transportation under Real Conditions 中文题目:ZigBee 检测探头在冷藏蔬菜运输现实条件下的测试 学生姓名: 学 院:信息工程学院系 别:电子信息工程专 业:班 级: 指导教师: 教授AbstractQuality control and monitoring of perishable goods during transportation and delivery services is an increasing concern for producers, suppliers, transport decision makers and consumers. The major challenge is to ensure a continuou s …cold chain‟from producer to consumer in order to guaranty prime condition of goods. In this framework, the suitability of ZigBee protocol for monitoring refrigerated transportation has been proposed by several authors. However, up to date there was not any experimental work performed under real conditions. Thus, the main objective of our experiment was to test wireless sensor motes based in the ZigBee/IEEE 802.15.4 protocol during a real shipment. The experiment was conducted in a refrigerated truck traveling through two countries (Spain and France) which means a journey of 1,051 kilometers. The paper illustrates the great potential of this type of motes, providing information about several parameters such as temperature, relative humidity, door openings and truck stops. Psychrometric charts have also been developed for improving the knowledge about water loss and condensation on the product during shipments.1. IntroductionPerishable food products such as vegetables, fruit, meat or fish require refrigerated transportation. For all these products, Temperature (T) is the most important factor for extending shelf life, being essential to ensure that temperatures along the cold chain are adequate. However, local temperature deviations can be present in almost any transport situation. Reports from the literature indicate gradients of 5 °C or more, when deviations of only a few degrees can lead to spoiled goods and thousands of Euros in damages. A recent study shows that refrigerated shipments rise above the optimum temperature in 30% of trips from the supplier to the distribution centre, and in 15% of trips from the distribution centre to the stores. Roy et al. analyzed the supply of fresh tomato in Japan and quantified product losses of 5% during transportation and distribution. Thermal variations during transoceanic shipments have also been studied. The results showed that there was a significant temperature variability both spatially across the width of the container as well as temporally along the trip, and that it was out of the specification more than 30% of the time. In those experiments monitoring was achieved by means of the installation of hundreds of wired sensors in a single container, which makes this system architecture commercially unfeasible.Transport is often done by refrigerated road vehicles and containers equipped with embedded cooling systems. In such environments, temperatures rise very quickly if a reefer unit fails. Commercial systems are presently available for monitoring containers and trucks, but they do not give complete information about the cargo, because they typically measure only temperature and at just one point.Apart from temperature, water loss is one of the main causes of deterioration that reduces the marketability of perishable food products. Transpiration is the loss of moisture from living tissues. Most weight loss of stored fruit is caused by this process. Relative humidity (RH), T of the product, T of the surrounding atmosphere, and air velocity all affect the amount of water lost in food commodities. Free water or condensation is also a problem as it encourages microbial infection and growth, and it can also reduce the strength of packaging materials.Parties involved need better quality assurance methods to satisfy customer demands andto create a competitive point of difference. Successful transport in food logistics calls for automated and efficient monitoring and control of shipments. The challenge is to ensure a continuous …cold chain‟ from producer to consumer in order to guaranty prime condition of goods .The use of wireless sensors in refrigerated vehicles was proposed by Qingshan et al. as a new way of monitoring. Specialized WSN (Wireless Sensor Network) monitoring devices promise to revolutionize the shipping and handling of a wide range of perishable products giving suppliers and distributors continuous and accurate readings throughout the distribution process. In this framework, ZigBee was developed as a very promising WSN protocol due to its low energy consumption and advanced network capabilities. Its potential for monitoring the cold chain has been addressed by several authors but without real experimentation, only theoretical approaches. For this reason, in our work real experimentation with the aim of exploring the limits of this technology was a priority.The main objective of this project is to explore the potential of wireless ZigBee/IEEE 802.15.4 motes for their application in commercial refrigerated shipments by road. A secondary objective was to improve the knowledge about the conditions that affect the perishable food products during transportation, through the study of relevant parameters like temperature, relative humidity, light, shocking and psychrometric properties.2. Materials and Methods2.1. ZigBee MotesFour ZigBee/IEEE 802.15.4 motes (transmitters) and one base station (receiver) were used. All of them were manufactured by Crossbow. The motes consist of a microcontroller board (Micaz) together with an independent transducer board (MTS400) attached by means of a 52 pin connector. The Micaz mote hosts an Atmel ATMEGA103/128L CPU running the Tiny Operating System (TinyOS) that enables it to execute programs developed using the nesC language. The Micaz has a radio device Chipcon CC2420 2.4 GHz 250 Kbps IEEE 802.15.4. Power is supplied by two AA lithium batteries.The transducer board hosts a variety of sensors: T and RH (Sensirion SHT11), T and barometric pressure (Intersema MS5534B), light intensity (TAOS TSL2550D) and a two-axis accelerometer (ADXL202JE). A laptop computer is used as the receiver, and communicates with the nodes through a Micaz mounted on the MIB520 ZigBee/USB gateway board.Each Sensirion SHT11 is individually calibrated in a precision humidity chamber. The calibration coefficients are used internally during measurements to calibrate the signals from the sensors. The accuracies for T and RH are ±0.5 °C (at 25 °C) and ±3.5% respectively.The Intersema MS5534B is a SMD-hybrid device that includes a piezoresistive pressure sensor and an ADC-Interface IC. It provides a 16 bit data word from a pressure and T (−40 to +125°C) dependent voltage. Additionally the module contains six readable coefficients for a highly accurate software calibration of the sensor.The TSL2550 is a digital-output light sensor with a two-wire, SMBus serial interface. It combines two photodiodes and an analog-to digital converter (ADC) on a single CMOS integrated circuit to provide light measurements over a 12-bit dynamic range. The ADXL202E measures accelerations with a full-scale range of ±2 g. The ADXL202E can measure both dynamic acceleration (e.g., vibration) and static acceleration (e.g., gravity).2.2. Experimental Set UpThe experiment was conducted in a refrigerated truck traveling during 23 h 41 m 21 s from Murcia (Spain) to Avignon (France), a distance of 1,051 km. The truck transported approx.14,000 kg of lettuce var. Little Gem in 28 pallets of 1,000 × 1,200 mm . The lettuce was packed in cardboard boxes with openings for air circulation.The length of the semi-trailer was 15 m with a Carrier Vector 1800 refrigeration unit mounted to the front of the semi-trailer. For this shipment the set point was 0 °C.The truck was outfitted with the wireless system, covering different heights and lengths from the cooling equipment, which was at the front of the semi-trailer. Four motes were mounted with the cargo (see Figure 1): mote 1 was at the bottom of the pallets in the front side of the semi-trailer, mote 2 was in the middle of the semi-trailer, mote 3 was in the rear at the top of the pallet, and mote 4 was located as shown in Figure 1, about a third of the distance between the front and the rear of the trailer. Motes 1, 2 and 3 were inside the boxes beside the lettuce. The program installed in the motes collects data from all the sensors at a fixed sample rate (7.2 s), with each transmission referred to as a “packet”. The RF power in the Micaz can be set from −24 dBm to 0 dBm. During the experiment, the RF power was set to the maximum, 0dBm (1mW approximately).2.3. Data AnalysisA specialized MATLAB program has been developed for assessing the percentage of lost packets (%) in transmission, by means of computing the number of multiple sending failures for a given sample rate (SR). A multiple failure of m messages occurs whenever the elapsed time between two messages lies between 1.5 ×m ×SR and 2.5 ×m ×SR. For example, with a sample rate of 11 s, a single failure (m = 1) occurs whenever the time period between consecutives packets is longer than 16.5 s (1.5 × 1 × 11) and shorter than 27.5 s (2.5 × 1 × 11). The total number of lost packets is computed based on the frequency of each failure type. Accordingly, the total percentage of lost packets is calculated as the ratio between the total number of lost packets and the number of sent packets.The standard error (SE) associated to the ratio of lost packets is computed based on a binomial distribution as expressed in Equation 1, where n is the total number of packets sent, and p is the ratio of lost packets in the experiment.2.4. Analysis of VarianceFactorial Analysis of Variance (ANOV A) was performed in order to evaluate the effect of the type of sensor in the registered measurements, including T (by means of Sensirion and Intersema), RH, barometric pressure, light intensity and acceleration module. ANOV A allows partitioning of the observed variance into components due to different explanatory variables. The STATISTICA software (StatSoft, Inc.) was used for this purpose [14]. The Fishers‟s F ratio compares the variance within sample groups (“inherent variance”) with the variance between groups (factors). We use this statistic for knowing which factor has more influence in the variability of the measurements.2.5. Psychrometric DataPsychrometry studies the thermodynamic properties of moist air and the use of these properties to analyze conditions and processes involving moist air. Psychrometric chartsshow a graphical representation of the relationship between T, RH and water vapor pressurein moist air. They can be used for the detection of water loss and condensation over the product.In our study, the ASAE standard D271.2 was used for computing the psychrometric properties of air. Equations 2–5 and Table 1 enable the calculation of all psychrometric data of air whenever two independent psychrometric properties of an air-water vapour mixture are known in addition to the atmospheric pressure:where Ps stands for saturation vapor pressure (Pa), T is the temperature (K), Pv is the vapor pressure (Pa), H the absolute humidity (g/kg dry air), Patm is atmospheric pressure (Pa) and A, B, C, D, E, F, G and R are a series of coefficients used to compute Ps, according to Equation 3.3.Results and Discussion3.1. Reliability of TransmissionSignal propagation through the lettuce lead to absorption of radio signals, resulting in great attenuations in RF signal strength and link quality at the receiver. During the experiment, only motes 3 and 4 were able to transmit to the coordinator. No signals were received from mote number 1, at the bottom of the first pallet, and number 2, in the middle of the pallet. Mote 3 was closer to the coordinator than mote 4, but mote 3 was surrounded by lettuce which blocks the RF signal. However between mote 4 and the coordinator there was free space for transmission. Thus, the maximum ratio of lost packets found was 100% for two of the motes and the minimum 4.5% ± 0.1%, for mote 4.Similar ratios were reported by several authors who performed experiments with WSN under real conditions, like for example in monitoring vineyards. Also, Baggio and Haneveld, after one year of experimentation in a potato field using motes operating at the band of 868/916MHz, reported that 98% of data packets were lost. However, during the second year the total amount of data gathered was 51%, which represents a clear improvement. Ipema et al. monitored cows with Crossbow motes, and found that the base station directly received less than 50% of temperature measurements stored in the mote buffer. Nadimi et al., who also monitored cows with this type of motes, showed packet loss rates of about 25% for wireless sensor data from cows in a pasture even the distance to the receiver (gateway) was less than 12.5 m away.Radio propagation can be influenced by two main factors: the properties of propagation media and the heterogeneous properties of devices. In a commercial shipment, if the motes are embedded within the cargo, a significant portion of the Fresnel zone is obstructed. This is a big challenge in our application. Changing the motes‟ location, for example the one at the bottom of the pallets (mote 1, at the front of the semitrailer) or the one in the middle of the compartment (mote 2), might have yielded in better data reception rates but would have resulted in a loss of spatial information near the floor or at mid-height. The sensors should be as close as possible to the products transported; otherwise the measurements would not give precise information. Thus, one solution, if the same motes are to be used, could be to includeintermediates motes that allow peer to peer communication to the base station. Another solution could be to use lower frequencies; however this is not possible using ZigBee, because the only radio frequency band available for ZigBee worldwide is the 2.4 GHz one. The other ISM (Industrial, Scientific and Medical) bands (868 MHz and 915 MHz) differ from USA to Europe. Other options include developing motes with more RF power that can achieve longer radio ranges. The transmission could also be improved by optimizing antenna orientation, shape and configuration. The standard antenna mounted in the Micaz is a 3 cm long 1/2 wavelength dipole antenna. The communications could be enhanced using ceramic collinear antennas or with use of a simple reflecting screen to supplement a primary antenna, which can provide a 9dB improvement. Link asymmetry and an irregular radio range can be caused by the antenna position. In a real environment, the pattern of radio transmitted at the antenna is neither a circular nor a spherical shape. Radio irregularity affects the motes performance and degrades their ability to maintain connection to other nodes in the network. However, in our experiment Micaz motes were deployed in its best position according to a recent study. Another issue is the received signal strength indicator (RSSI), it should be recorded in further experiments in order to detect network problems and estimate the radio link quality. RSSI is a way for the radio to report the strength of the radio signal that it is receiving from the transmitting unit.Sample rates configured in the motes were very short in order to get the maximum amount of data about the ambient conditions. In practice, a reduction in the sampling frequency of recording and transmission should be configured in order to extend battery life. According to Thiemjarus and Yang this also provides opportunities for data reduction at the mote level. It is expected that future wireless sensor motes will have on-board features to analyze recorded data and detect certain deviations. The level of a deviation determines whether the recording or transmitting frequency should be adapted .One important feature in the motes came from the miniaturized sensors mounted on the motes that allow, in a small space (2.5 ×5 ×5 cm), to provide data not just about temperature, but also RH, acceleration and light, according to the proposal of Wang and Li. Those variables were also measured and analyzed.3.2. Transport ConditionsFor the analysis of T conditions, the average value of the two sensors mounted in each mote is considered. The set-point of the transport trailer‟s cooling system was 0 °C, but the average temperature registered during the shipment was 5.33 °C, with a maximum of 8.52 °C and a minimum of −3.0 °C. On average, 98% of the time the temperature was outside of the industry recommended range (set-point ± 0.5 °C).Figure 2 shows the temperature fluctuations registered during the shipment, where four different markers are used corresponding to two T sensors per mote. There are large differences between the temperatures recorded with each sensor on the same mote even thought individual calibration curves were used. The SHT11 measures consistently higher temperatures than the Intersema. This behaviour could be due to the closer location of the SHT11 to the microcontroller, causing sensor self-heating effects.In other studies, like for example Tanner and Amos, it was observed that the cargo was within the industry recommended T interval for approximately 58% of the shipment duration. Rodriguez-Bermejo et al. compared two different cooling modes in a 20‟ reefer container. For modulated cooling the percentage of time within the recommendation ranged between 44% and 52% of the shipment duration, whereas for off/on control cooling it ranged between 9.6% and 0%. In those experiments, lower percentages of time within industry recommended intervals are found for high T set points.The analysis of variance of the T data shows that the variability in temperature depended both in the type of sensor and on the mote used. The interaction between these two factors also has an impact on the T measurements. The critical value of F at 95% probability level is much lower than the observed values of F, which means that the null hypothesis is false. The mote is the factor that has most influence on the variability of the measurements (highest Fishers‟s F); this fact seems to be due to the location of the node. Mote 4 is closer to the cooling equipment which results in lower temperature measurements.The node is a very significant factor in the measurements registered. In the case of RH, pressure, light and acceleration, the node location has great influence in data variability . However, node location has more impact on the measured RH than on the other variables.Inside the semi-trailer RH ranged from 55 to 95% (see Figure 3). The optimal RH forlettuce is 95%. Humidity was always higher at mote 4 (at the top middle of the semi-trailer; average RH 74.9%) than at mote 3 (located at the rear; average RH 62.1%).摘要生产商、供应商、运输决策者和消费者越来越关心易腐货物在运输和交付服务中对质量的掌握和把控。