精馏塔计算方法

合集下载

塔精馏塔的计算1

塔精馏塔的计算1

一、塔精1.全的物料衡算由于水的沸点为100℃,正丁醇的沸点为117.7℃故水作为轻组分,正丁醇作为重组分,产品正丁醇从塔底出来。

%74.9874/05.018/95.018/95.0F =+=xM F =74⨯(1-0.9874)+0.9874⨯18=18.71kmol kg / F =20⨯1000/18.71=1069.03/kmol h总物料衡算 F=D+W=252 (1) 采用填料塔连续精馏由正丁醇-水平衡数据作图,画出正丁醇—水溶液y-x 图,求得mi n R 取min 5.1R R =过点(0.9994,0.9994)作平衡线的切线,则求出此线与y 轴的交点截距为0.5192,故求得最小回流比为0.9248,所以操作状态的回流比为1.387 数直角梯级即为理论塔板数:T N (包括再沸器)=9块其中精馏段1N =4块,提留段(包括再沸器)=5块,第五块为进料板。

实际塔板数求取:由平衡线得塔顶:9994.01==x y D ,在图中求得x 1=0.9946%892.574/985.018/015.018/015.0=+=W x由平衡线方程1(1)xy xαα=+-得顶α=8.99塔底:x x w m ==0.05892,y m =0.2234 同理得底α=4.56ααα==6.4塔顶温度100℃,塔底温度117.7℃ 定性温度为85.10827.117100=+℃查附录得s Pa ⋅=m 390.0μ1μ正丁醇=2.948求得()smPa m ⋅=⨯-+⨯=422.0948.29874.019874.0390.0μ⋅αmμ=6.4×0.422=2.70查得0E =55.1% 校正后为55.1%×1.1=60.61% 实际塔板:%1000⨯=PT N N E8110=-=+E N N T P ,取8块(包括再沸器)精馏段取4块 提馏段取4块 第5块进料板 3.塔高的计算有效高度:Z=øP ×Nt=0.67×(8-1)=4.67mZ=4×60.61%=2.42m(精馏段) Z=4.67-2.42=2.25m(提留段)实际填料高度:2.42×(1+0.2)=2.9m(精馏段) 2.25×(1+0.2)=2.7m(提留段) 设裙座为1m总塔高;H=2.9+2.7+1=6.6m4.泛点气速的计算影响泛点气速的因素很多,其中包括填料的特性、流体的物理性质以及液气比等。

精馏塔的计算

精馏塔的计算
则F = D + W
FxF= DxD+ WxW
175 = D + WD=76.6kmol/h
175×0.44=0.974D+0.0235WW=98.4kmol/ h
例:将含24%(摩尔分率,以下同)易挥发组分的某混合液送入连续操作的精馏塔。要求馏出液中含95%的易挥发组分,残液中含3%易挥发组分。塔顶每小时送入全凝器850kmol蒸汽,而每小时从冷凝器流入精馏塔的回流量为670kmol。试求每小时能抽出多少kmol残液量。回流比为多少?
Y =nA/nB=yA/yB=yA/(1-yA)kmolA / kmolB
Y =pA/pB=pA/(P - pA)
在吸收操作中,通常A组分:指吸收质
B组分:液相xB指吸收剂,气相yB指惰气
四.吸收推动力:实际浓度与平衡浓度之差。即ΔY=Y–Y*(以气相浓度表示)
ΔX=X*- X(以液相浓度表示)
脱收推动力:ΔY=Y*- Y(以气相浓度表示)
气膜、液膜越厚,传质阻力越大,传质速率就越小,而膜越薄,自然越有利传质。
(三)提高吸收速率:流体力学指出,流速越大,边界膜越薄。因此按照双膜理论,在其它条件不变时,增大流速,就可以减小双膜阻力,从而提高吸收速率。
七.吸收速率
1.吸收速率:是指单位传质面积上,单位时间内吸收的溶质量。
在稳定操作的吸收设备中吸收设备内的任一部位上,相界面两侧的对流传质速率是相等的(否则会在界面处有溶质积累)。因此其中任何一侧有效膜中的传质速率都能代表该处的吸收速率。
阻力阻力
双膜理论模型
通过假设,把整个相际传质的复杂过程简化为吸收质只是经气、液两层的分子扩散过程。因此两膜层就成为吸收过程的两个基本阻力。
(二)在两相主体浓度一定的情况下,两膜层的阻力便决定了传质速率的大小。双膜理论也称双阻力理论。

塔的计算

塔的计算

1. 塔板的工艺设计1.1精馏塔全塔物料衡算X :原料液流量(kmol/s ) F X :原料组成(摩尔分数,下同) D :塔顶产品流量(kmol/s ) D X :塔顶组成W :塔底残液流量(kmol/s ) D X :塔底组成原料乙醇组成:1154.018/%25146/%2546/%25/)1(M / W /F =-+=-+=)(水乙醇乙醇M W M W X F F F塔顶组成:9037.018/%)961(46/%9646/%96/)1(//=-+=-+=水乙醇乙醇M W M W M W X D D D D塔底组成:00078.018/%)2.01(46/%2.046/%2.0/)1(//w w w w =-+=-+=水乙醇乙醇M W M W M W X根据已知数据可计算:molg m m mM molg m m mM D F /27.31182.04696.0/23.211875.04625.0=⨯+⨯==⨯+⨯=h Kmol M F/42.130872001000200000=⨯⨯=物料衡算式:WD F X W X D X F WD F +=+=联立代入求解:kmol/h 1142.38 D =, /h 166.04kmol W =1.2 常压下乙醇水气液平衡组成(摩尔)与温度关系表3-11 乙醇-水气液平衡组成(摩尔)与温度关系(1)温度利用表中数据由拉格朗日插值可求得tF 、tD 、tW ①66.9-54.117.86-t 38.12-66.93.85-7.86t FF =:,85.73 t F =℃②43.8937.9015.7872.7443.8941.7815.78t D --=--D t :,78.13 t D =℃③0078.01001.9-095.5-100 t W --=W t :,99.82t W =℃④精馏段平均温度:93.812.137873.852t t t D F 1=+=+=℃ ⑤提馏段平均温度:05.89282.9982.782t t t W F 2=+=+=℃ (2) 相对挥发度①精馏段挥发度:由5740.0y 2916.0x A A==,得4260.07083.0x B ==B y ,所以27.34260.02916.07083.05740.0x y x y A B B A =⨯⨯==α②提馏段挥发度:由3874.0y 0717.0x A A ='=',得6126.09283.0x B ='='B y ,19.82616.07170.00.92838743.0x y x y A B B A =⨯⨯=''''='α (3) 气液相体积流量计算74.1R min =-=-EE ED X Y Y X 取 2.6174.15.1Rmin 5.1R =⨯==①精馏段:h kmol RD /61.298138.114261.2L =⨯==()()h kmol D R V /38.412338.1142161.21=⨯+=+=②提馏段:因本设计为饱和液体进料,所以1=qh kmol /99.710438.4123161.2981qF L L =⨯+=+=' h kmol F q V V /38.4123)1(=-+='1.3 理论塔板的计算理论板:指离开这种板的气液两相互成平衡,而且塔板上液相组成均匀。

化工单元操作:精馏塔计算

化工单元操作:精馏塔计算
(三)塔釜为间接加热 塔釜间壁式换热器,物料与加热蒸汽不混合。
(四)单股进料,无侧线出料 塔体上只有一个进料口,除塔顶馏出液和塔底残液,没有其他出料口。
二、全塔物料衡算(质量守恒)
1、物料衡算公式:
F = D + W FzF = DxD + WxW 2、采出率、易挥发组分回收率、难挥发组分回收率的概念和计算
2、提馏段操作线方程
L′ =V ′ + W
L′xm = V ′ym+1 + WxW
y m +1
=
L′ L′ −W
xm

WxW L′ −W
或者
y m +1
=
L′ V′
xm
− Wxw V′
它表达了在一定的操作条件下,提馏段内相邻两层塔板的下一层塔板上升蒸汽浓度 ym+1 与上 一层塔板下降液体浓度 xm 的关系。
3)进料线方程 y = q x − xF 进料线的意义:精馏段与提馏段两段操作线的交点轨迹。 q −1 q −1
二、操作线的绘制 步骤:
1、精馏段操作线 2、进料线,并与精馏段操作线有一交点 3、提馏段操作线
精馏塔计算
一、精馏塔塔板层数的确定
1、理论塔板的概念 汽液两相在塔板上充分接触,使离开塔板的两相温度相同,且两相组成互为平衡,则称
D = z F − xW F xD − xW
W = xD − zF =1− D
F xD − xW
F
ηD
=
Dx D Fz F
× 100%
ηW
= W (1 − xW ) ×100% F (1 − z F )
三、精馏操作线方程
1、精馏段操作线方程

塔效率计算公式

塔效率计算公式

塔效率计算公式塔效率是化工原理中一个非常重要的概念,咱们今天就来好好聊聊塔效率的计算公式。

在化工生产中,塔设备是经常会用到的,比如精馏塔、吸收塔等等。

要想知道这些塔设备工作得好不好,就得靠塔效率这个指标来衡量。

塔效率的计算公式其实有好几种,咱先来说说总板效率。

总板效率ET 可以用实际所需的理论板数 NT 和实际板数 NP 来计算,公式就是ET = NT / NP 。

比如说有一个精馏塔,要分离两种混合物,经过计算发现,理论上需要 10 块板才能达到理想的分离效果,但实际上这个塔有 20 块板。

那通过公式一算,总板效率就是 0.5 。

这就意味着这个塔的效率还有很大的提升空间。

再来讲讲默弗里板效率。

默弗里板效率又分为单板效率和全塔效率。

单板效率有气相单板效率和液相单板效率。

气相单板效率 Emv 等于(yn - yn+1)/(yn* - yn+1),液相单板效率 EmL 等于(xn - xn-1)/(xn - xn-1*)。

这里的 yn 、yn+1 、xn 、xn-1 是塔内不同位置的气液相组成,yn* 、xn-1* 是与 yn+1 、xn 成平衡的气液相组成。

我给您举个例子吧。

有一次我去工厂实习,就碰到了一个关于塔效率计算的实际问题。

那是一个吸收塔,用来吸收废气中的有害物质。

工程师们正在为塔的效率不高而发愁,我跟着他们一起研究。

我们测量了塔内不同位置的气液相组成,然后按照默弗里板效率的公式进行计算。

发现有几块板的单板效率特别低,经过仔细排查,原来是塔板上的开孔不均匀,导致气液接触不充分。

找到问题所在后,进行了改进,塔的效率果然提高了不少。

全塔效率呢,则是各单板效率的某种平均值。

在实际应用中,选择哪种塔效率计算公式,得根据具体的情况来定。

而且,计算塔效率可不仅仅是为了得到一个数字,更重要的是通过这个数字来分析塔的运行状况,找出问题,进行优化改进,提高生产效率,降低成本。

总之,塔效率的计算公式虽然看起来有点复杂,但只要咱们掌握了基本原理,多结合实际情况去分析,就能够轻松应对啦。

精馏塔和塔板的主要工艺尺寸的计算

精馏塔和塔板的主要工艺尺寸的计算

塔和塔板的主要工艺尺寸的计算(一)塔径 D 参考下表 初选板间距H T =0.40m,取板上液层高度H L =0.07m 故: ①精馏段:H T -h L =0.40-0.07=0.311220.00231394.3()()()()0.04251.04 3.78s L s V L V ρρ== 查图表 20C =0.078;依公式0.20.22026.06()0.078()0.0733C C σ===;max0.078 1.496/u m s ===,则:u=0.7⨯u =0.7⨯2.14=1.047m/s 故: 1.265D m ===; 按标准,塔径圆整为1.4m,则空塔气速为2244 1.040.78/1.3s V u m s D ππ⨯===⨯ 塔的横截面积2221.40.63644T A D m ππ===②提馏段:11''22''0.002771574.8()()()()0.05070.956 5.14s L s V L V ρρ==;查图20C0.20.222.09()0.0680.069420C C σ⎛⎫==⨯= ⎪⎝⎭; max 1.213/u m s===,'0.70.7 1.2130.849/u u m s =⨯=⨯=;' 1.20D m ===; 为了使得整体的美观及加工工艺的简单易化,在提馏段与精馏段的塔径相差不大的情况下选择相同的尺寸; 故:D '取1.4m塔的横截面积:''2221.4 1.32744T A D m ππ===空塔气速为22440.956'0.720/1.3s V u m s D ππ⨯===⨯ 板间距取0.4m 合适(二)溢流装置采用单溢流、弓形降液管、平形受液盘及平形溢流堰,不设进流堰。

各计算如下: ①精馏段:1、溢流堰长 w l 为0.7D ,即:0.7 1.40.91w l m =⨯=;2、出口堰高 h w h w =h L -h ow 由l w /D=0.91/1.4=0.7, 2.5 2.58.2810.480.91h w L l m ==查手册知:E 为1.03 依下式得堰上液高度:22332.84 2.848.281.030.013100010000.91h ow w L h E m l ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭ 故:L ow h -h 0.070.0130.057w h m ==-=3、 降液管宽度d W 与降液管面积f A有/w l D =0.7查手册得/0.14,/0.08d fT W D A A ==故:d W =0.14D=0.14 ⨯1.3=0.182m2220.080.08 1.30.106244f A D m ππ==⨯⨯=()0.10620.418.55,0.0023f T s A H s s L τ⨯===>符合要求4、降液管底隙高度0h取液体通过降液管底隙的流速0u =0.1m/s 依式计算降液管底隙高度0h , 即:000.00230.0250.910.1s w L h m l u ===⨯ ②提馏段:1、 溢流堰长'w l 为0.7'D ,即:'0.7 1.40.91w l m =⨯=;2、出口堰高'w h ''w L ow h =h -h ;由 '/D=0.91/1.4=0.7w l ,'2.5 2.59.9812.630.91h w L l m ==查手册知 E 为1.04依下式得堰上液高度:2233''2.84 2.849.981.040.0146100010000.91h oww L h E ml ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭0.070.01460.0554w h m =-=。

精馏塔计算

精馏塔计算

逐板计算非泡点进料时精馏塔的加料板位置扬州化工学校徐忠娟申丽1.前言精馏塔的理论板层数的求取,通常采用两种方法:逐板计算法和图解法。

比较两种方法各有利弊:图解法简捷、方便但是准确性差;用逐板计算法得到的理论塔板数准确,不足的是计算过程复杂繁琐。

随着计算机知识的普及,学生掌握编程语言后,利用计算机瞬间即可完成繁琐的迭代运算,因而逐板计算法的应用也就越来越多。

无论是逐板计算法还是图解法,求取理论板层数,都需要确定加料板的位置。

2.加料板位置确定的原则图1 适宜的加料位置在图解法中适宜的加料板位置是以跨过两操作线交点的梯级来确定的。

如图(1)所示,当工艺条件和分离要求相同时,对于同一个塔,确定的加料位置不同,所需的理论塔板数不相同。

在图(1)的(a)中梯级已跨过精馏段操作线和提馏段操作线的交点d而仍在精馏段操作线和平衡线间作梯级,由于交点d以后精馏段操作线和平衡线间垂直距离较提馏段操作线和平衡线间的垂直距离小,作出的理论塔板数会增加。

反之若如图(1)中的(b)所示,在梯级尚未跨过两操作线的交点时就过早地更换操作线也同样会使理论塔板数增加。

只有当梯级刚跨过操作线交点就更换操作线作梯级如图(1)中(c)的所示,所得的理论板层数最少。

可见过迟或过早的更换操作线,都将导致理论板层数的增加。

同理逐板计算法中也存在该问题,在一般的化工原理教材中,介绍逐板计算法求理论板层数时,均以泡点进料为例,指出当计算到x N,≤x F 时(x F 为原料液的易挥发组分的摩尔分率),说明第N 层是加料板,那么对于非泡点进料状况又该如何确定,几乎不提。

许多学生碰到非泡点进料时,也用x N,≤x F 来确定加料板位置,结果是加料位置不适宜,导致理论板层数增多。

根据图解法中跨过两段操作线交点的梯级为适宜加料板位置的原则,结合多年的教学实践,我们总结出了最适宜的加料位置是该板的液相组成等于或略低于x q 。

其中x q 为精馏段操作线方程式和提馏段操作线方程式所联立的方程组解的x 值(相当于图解法中两操线交点的横坐标),当然,对于饱和液体进料,就有x q =x F 。

精馏塔严格计算模块 radfrac 公式

精馏塔严格计算模块 radfrac 公式

精馏塔严格计算模块 radfrac 公式(最新版)目录一、精馏塔的严格计算模块 RadFrac 概述二、精馏塔的计算方法和公式三、精馏塔的适用范围和示例四、结论正文一、精馏塔的严格计算模块 RadFrac 概述精馏塔是一种常用的分离技术,广泛应用于化工、石油、医药等领域。

在精馏过程中,需要对塔内流体进行严格的计算,以确保分离效果达到预期。

RadFrac 是精馏塔严格计算模块的一种,可以对两相体系、三相体系、窄沸点和宽沸点物系以及液相表现为强非理想性的物系进行精确计算。

二、精馏塔的计算方法和公式精馏塔的计算方法主要包括物性数据库和计算模块两部分。

物性数据库包含了流体的热力学性质、相图和状态方程等数据,用于提供流体的基本特性。

计算模块则根据这些数据,运用精馏原理和数学模型进行计算。

精馏塔的计算公式主要包括以下几个方面:1.物料平衡:计算塔内各组分的摩尔流量和摩尔浓度。

2.热量平衡:计算塔内各组分的热量流入和流出,以及塔内热量分布。

3.动力学平衡:计算塔内各组分的速度和压力分布,以及液相和气相的流速。

4.相平衡:计算塔内各组分的相态变化,以及相图和状态方程。

三、精馏塔的适用范围和示例RadFrac 模块适用于各种精馏过程,包括普通精馏、吸收、汽提、萃取精馏、共沸精馏、反应精馏(包括平衡反应精馏、速率控制反应精馏、固定转化率反应精馏和电解质反应精馏)、三相(汽液液)精馏等。

下面以乙苯苯乙烯精馏塔为例,介绍 RadFrac 模块的应用。

进料条件:乙苯和苯乙烯的混合物,进料组成为乙苯 80%,苯乙烯 20%。

冷凝器形式:壳管式冷凝器。

冷凝器压力:0.1MPa。

再沸器压力:0.2MPa。

产品纯度要求:产品中乙苯纯度大于 99.5%。

根据以上条件,使用 RadFrac 模块进行严格计算,得到塔顶压力为0.05MPa,塔底压力为 0.01MPa。

通过调整塔内操作参数,可以实现乙苯和苯乙烯的分离。

四、结论精馏塔严格计算模块 RadFrac 是一种强大的工具,可以对各种精馏过程进行精确计算,为工程实践提供重要依据。

精馏塔的工艺计算

精馏塔的工艺计算

精馏塔的计算对于要完成多组分分离设备的最终设计,必须使用严格算法,但是近似算法可以为严格计算提供合适的迭代变量初值,因此本设计中采用两种方法相结合,并以计算机进行数值求解的方式来确定各级上的温度、压力、流率、气液组成和理论板数。

计算过程描述如下:第一步确定关键组分塔Ⅰ重关键组分(HK):四氯化硅(SiCl4)轻关键组分(LK):三氯氢硅(SiHCl3) 轻组分(LNK):二氯硅烷(SiH2Cl2)塔Ⅱ重关键组分(HK):三氯化硅(SiHCl3)轻关键组分(LK):二氯硅烷(SiH2Cl2) 重组分(HNK):四氯化硅(SiCl4)塔Ⅰ塔顶42℃SiH2Cl2 1.167397 1.916284 馏出液中SiHCl3质量含量>=93.946釜液中SiCl4质量含量>=94.000SiHCl315.3096 25.13082塔釜78℃SiCl444.44285 72.95299塔Ⅱ塔顶35℃SiH2ClⅠ塔塔顶出料流量Ⅰ塔塔顶出料组成馏出液中SiH2Cl2质量含量>=99.600釜液中SiHCl3质量含量>=99.500SiHCl3塔釜65℃SiCl4第三步用FUG简捷计算法求出MESH计算的初始理论板数组分塔Ⅰ塔Ⅱ进塔组成/% 塔顶组成/% 塔釜组成/% 进塔组成/% 塔顶组成/% 塔釜组成/% SiH2Cl2 1.916284 7.221959 0 7.221959 99.67945 0.374527 SiHCl325.13072 92.62967 0.751706 92.62967 0.320551 99.46612 SiCl472.95299 0.148369 99.24829 0.148369 0 0.159357 Σ100.00 100.00 100.00 100.00 100.00 100.002.由Fenske公式计算mNlg lg LK HKLK HKd d w w Nm a-轾骣骣犏琪琪琪琪犏桫桫臌=3.由恩特伍德公式计算最小回流比,,1()i i Fim i i D m m i x q R x R a a q a a q üï=-ï-ï?ýï=ï-ïþåå4.由芬斯克公式计算非清晰分割的物料组成()1i i Nm HK i HK HK f w d w a -=骣琪+琪桫 ,()()1NmHK i i HK HK i NmHK i HKHK d f w d d w a a--骣琪琪桫=骣琪+琪桫5.由Kirkbride 经验式确定进料位置0.2062,,,,HK F LK WR S LK F HK D z x N W N z x D 轾骣骣骣犏琪琪琪=琪犏琪琪桫犏桫桫臌6.由吉利兰关系式计算理论板数即0.56680.750.75Y X=-式中1m R R X R -=+ ,1mN N Y N -=+ 第四步 由MESH 方程计算理论板数 1. 用FUG 简捷计算法得到的理论板数N 和进料位置M 作为初始值,初始化汽液流量j V 和j L 。

精馏塔全塔效率计算公式

精馏塔全塔效率计算公式

精馏塔全塔效率计算公式精馏塔是化工生产中非常重要的设备,用于分离混合物中的不同组分。

而全塔效率则是衡量精馏塔性能的一个关键指标。

要了解精馏塔全塔效率的计算公式,咱们得先弄明白全塔效率到底是个啥。

简单来说,全塔效率就是实际塔板数与理论塔板数的比值。

全塔效率的计算公式通常可以表示为:$E_T = \frac{N_{实际}}{N_{理论}}$ 。

这里的 $E_T$ 就是全塔效率啦。

那怎么去确定实际塔板数和理论塔板数呢?实际塔板数呢,就是咱们在设计或者实际运行中实实在在数出来的塔板数量。

理论塔板数就有点复杂啦,得通过一些复杂的热力学计算和相平衡关系来确定。

我记得有一次在化工厂实习的时候,就碰到了关于精馏塔效率计算的问题。

当时我们小组负责优化一个精馏塔的工艺参数,以提高产品的纯度和产量。

为了计算全塔效率,我们可真是费了好大的劲儿。

我们先收集了各种数据,像温度、压力、流量等等,然后根据混合物的性质和分离要求,运用复杂的公式和图表进行理论塔板数的计算。

这个过程中,数据稍微有点偏差,计算结果就相差很大。

比如说,在测量温度的时候,因为温度计的精度问题,导致温度数据有了一点小误差,结果算出来的理论塔板数就不太准确。

后来我们反复检查、校准仪器,重新测量数据,才得到了比较可靠的结果。

在确定了实际塔板数和理论塔板数之后,代入全塔效率的计算公式,就能得出全塔效率啦。

通过计算全塔效率,我们可以评估精馏塔的性能,找出可能存在的问题,比如塔板结构不合理、操作条件不合适等等。

总之,精馏塔全塔效率的计算公式虽然看起来简单,但是要准确计算和应用,还需要我们对精馏过程有深入的理解,对数据的收集和处理要非常严谨。

只有这样,才能真正发挥全塔效率这个指标的作用,让精馏塔更好地为化工生产服务。

希望通过我的讲解,能让您对精馏塔全塔效率的计算公式有更清楚的认识。

要是在实际应用中遇到问题,别着急,多思考、多尝试,总会找到解决办法的!。

精馏塔指标计算

精馏塔指标计算

2.精馏塔工艺计算2.1塔的物料衡算2.1.1料液及塔顶,塔底产品含乙醇的摩尔分率F:原料液流量(kmol/s) xF:原料组成(摩尔分率,下同)D:塔顶产品流量(kmol/s) xD:塔顶组成W:塔底残液流量(kmol/s) xW:塔底组成2.1.2进料2.1.3物料衡算2.2有关的工艺计算2.2.1原料液的平均摩尔质量:Mf =xfMOHCHCH23+(1-xf)MOH2=0.1934⨯46+(1-0.1934)⨯18=23.4kg/kmol 同理可求得:MD =42.6972kg/kmol MW=18.5544kg/kmol45 C下,原料液中ρOH2=971.1kg/m3,ρOHCHCH23=735kg/m3由此可查得原料液,塔顶和塔底混合物的沸点,以上计算结果见表6。

表6 原料液`馏出液与釜残夜的流量与温度2.3 最小回流比及操作回流比的确定如图所示的乙醇-水物系的平衡曲线,具有下凹的部分,当操作线与q线的交点尚未落到平衡线上之前,操作线已与平衡线相切,如图中点g所示。

点g附近已出现恒浓区,相应的回流比便是最小回流比。

对于这种情况下的Rmin的求法只能是通过作图定出平衡线的切线之后,再由切线的截距或斜率求之。

如图1-63所示,可用下式算出:1min min +R R =1934.08814.037.08814.0-- ⇒ R min =2.889可取操作回流比R=1.5⨯2.889=4.3342.4 全凝器冷凝介质的消耗量塔顶全凝器的热负荷:Q C =(R+1)D(I VD -I LD ) 可以查得I VD =1266kJ/kg I LD =253.9kJ/kg,所以 Q C =(1.612+1)⨯2.0330⨯(1266-253.9)=5317.45kJ/h取水为冷凝介质,其进出冷凝器的温度分别为25 C 和35 C 则 平均温度下的比热c pc =4.174kJ/kg C,于是冷凝水用量可求 W C =)(c Q 12pc C t t -=)2535(174.445.5317-⨯=127.4kg/h4.精馏塔主体尺寸计算4.3提留段塔径的计算1t 2DF t t +=705.91258.9983.83=+=℃查t-x-y 图在91.705℃下:0552.0=x A, A y 3273.0= 9448.0=xB, B y 6727.0=KmolKg xM xM MBAL/5456.199448.0180552.04621=⨯+⨯=+=M g =M 1y A +M 2y B =46⨯0.3273+18⨯0.6727=27.1644 kg/kmol 汽塔气相平均密度 v ρ=RTPM g=)705.91273(314.81644.27325.101+⨯⨯=0.9077 kg/m 3x AW =LA Mx M 1=5456.190552.046⨯=0.1299x BW =1-x AW =0.8701 汽塔的液相平均密度 在91.705℃下查表得:A ρ=729.5 kg/m 3B ρ=964.3 kg/m 3Lρ1=AAWx ρ+BBWx ρ=7295.01299.0+9643.08701.0=1.0804 L ρ=925.6 kg/m 3V=(R+1)D=(4.334+1)⨯8.057=42.976 kmol/h v B =vg 3600 vM ρ⨯ =9077.036001644.27976.42⨯⨯=0.3573 m/sL '=L+qF=8.811+1⨯10.09=18.901 kmol/h L 3=LLML ρ⨯3600'=6.92536005456.19901.18⨯⨯=0.1109⨯103-m 3/s查化工数据手册求取:A σ=16.1 mN/mB σ=60.05 mN/m5.塔高的确定:Z=(TT E N -1)H T =(7968.015-1)⨯0.45=8.02 m塔板结构尺寸的确定: ● 溢流装置● 由于塔径小于800mm,所以采用单溢流弓形降液管,平行受液盘及平行溢流堰, 取堰长L w =0.66D,即L w =0.66⨯0.3=0.198m 出口堰高HW=H1-HOW,66.0=DLw,则H ow =m 003.0)0198.02412.0(1100084.232=⨯⨯H w =H l - H OW =0.06-0.003=0.057m 降液管的宽度W d 与降液管的面积A f 由66.0=Dlw,125.0Dw d ,=tf A A 0.0700W d =0.125⨯0.3=0.0375mA f =0.07⨯3202.04m D=π停留时间(03.25100899.045.0005.03s LsHtAf =⨯⨯=⋅=- 〉5S 符合要求)降液管底隙高度Ho h o =h w -0.006=0.051m 取边缘宽度取边缘宽度为W C =0.03m 安定区宽度安定区宽度为W S =0.050m 开孔区面积A a X=(2-D W d +W S )=)050.00375.0(23.0+-=0.0625mR=-2D W C =0.15-0.03=0.12mA a =2[x 222180R xR π+-sin 1-Rx =0.068m 2。

精馏塔计算方法

精馏塔计算方法

目录1 设计任务书 (1)1.1 设计题目………………………………………………………………………………………………………………………………………………………………………1.2 已知条件………………………………………………………………………………………………………………………………………………………………………1.3设计要求…………………………………………………………………………………………………………………………………………………………………………2 精馏设计方案选定 (1)2.1 精馏方式选择…………………………………………………………………………………………………………………………………………………………………2.2 操作压力的选择…………………………………………………………………………………………………………………………………………………………………2.4 加料方式和加热状态的选择……………………………………………………………………………………………………………………………………………………2.3 塔板形式的选择…………………………………………………………………………………………………………………………………………………………………2.5 再沸器、冷凝器等附属设备的安排……………………………………………………………………………………………………………………………………………2.6 精馏流程示意图…………………………………………………………………………………………………………………………………………………………………3 精馏塔工艺计算 (2)3.1 物料衡算…………………………………………………………………………………………………………………………………………………………………………3.2 精馏工艺条件计算………………………………………………………………………………………………………………………………………………………………3.3热量衡算…………………………………………………………………………………………………………………………………………………………………………4 塔板工艺尺寸设计 (4)4.1 设计板参数………………………………………………………………………………………………………………………………………………………………………4.2 塔径………………………………………………………………………………………………………………………………………………………………………………4.3溢流装置…………………………………………………………………………………………………………………………………………………………………………4.4 塔板布置及浮阀数目与排列……………………………………………………………………………………………………………………………………………………5 流体力学验算 (6)5.1 气相通过塔板的压降……………………………………………………………………………………………………………………………………………………………5.2 淹塔………………………………………………………………………………………………………………………………………………………………………………5.3 雾沫夹带…………………………………………………………………………………………………………………………………………………………………………6 塔板负荷性能图 (7)6.1 雾沫夹带线………………………………………………………………………………………………………………………………………………………………………6.2 液泛线…………………………………………………………………………………………………………………………………………………………………………6.3 液相负荷上限线…………………………………………………………………………………………………………………………………………………………………6.4 漏液线…………………………………………………………………………………………………………………………………………………………………………6.5 液相负荷下限线…………………………………………………………………………………………………………………………………………………………………6.6 负荷性能图………………………………………………………………………………………………………………………………………………………………………7 塔的工艺尺寸设计 (8)8釜温校核 (9)9热量衡算 (9)10接管尺寸设计 (10)符号说明 (10)参考文献 (13)结束语 (13)1.设计任务1.1设计题目:年产8000吨乙醇板式精馏塔工艺设计1.2已知条件:1原料组成:含35%(w/w)乙醇的30度液体,其余为水。

精馏耗电计算公式

精馏耗电计算公式

精馏耗电计算公式在化工生产中,精馏是一种常见的分离技术,它通过利用物质的不同沸点来实现对混合物的分离。

精馏过程需要大量的能量供给,其中耗电量是一个重要的考量因素。

为了准确计算精馏过程的耗电量,我们需要了解精馏耗电计算公式。

精馏耗电量的计算公式如下:E = Q (h1-h2) η。

其中,E表示精馏过程的耗电量,单位为千瓦时(kWh);Q表示精馏塔的进料流量,单位为吨/小时;h1表示进料的焓值,单位为千焦耳/千克;h2表示产品的焓值,单位为千焦耳/千克;η表示精馏塔的热效率。

在这个公式中,进料的焓值和产品的焓值是两个重要的参数。

焓值是描述物质内部能量状态的物理量,它与物质的温度、压力和化学成分有关。

在精馏过程中,进料的焓值通常比产品的焓值要高,因为进料需要加热到达沸点才能进行分馏。

因此,h1-h2表示了进料和产品之间的焓差,它反映了精馏过程中的能量转化情况。

另一个重要的参数是精馏塔的热效率η。

热效率是指精馏塔在能量转化过程中的能量损失情况。

通常情况下,精馏塔的热效率在80%到90%之间,这意味着有一部分能量会在精馏过程中被损耗掉,无法完全转化为产品的焓值。

因此,热效率是影响精馏耗电量的关键因素之一。

通过这个公式,我们可以看到精馏耗电量与进料流量、焓差和热效率都有关。

因此,在实际生产中,我们需要对这些参数进行准确的测量和计算,以确保精馏过程的能耗控制在合理的范围内。

除了上述公式外,精馏耗电量还受到其他因素的影响。

例如,精馏塔的结构和材料、操作条件的控制等都会对精馏耗电量产生影响。

因此,在实际生产中,我们还需要根据具体情况对公式进行修正和调整,以得到更准确的精馏耗电量计算结果。

在化工生产中,能源消耗一直是一个重要的问题。

精馏作为一种常见的分离技术,其能耗情况直接影响到生产成本和资源利用效率。

因此,精馏耗电量的准确计算和控制对于化工企业来说至关重要。

通过深入研究精馏耗电计算公式,我们可以更好地理解精馏过程中能量转化的规律,从而为实际生产提供科学的指导和支持。

精馏塔的计算

精馏塔的计算
kmol吸收质/kmol惰性气V,Y1L,X1
X1、X2—分别为出塔和进塔液体的组成,
(1)分子扩散的阻力和速率主要决定于扩散物质和流体的温度以及某些物理性质。
(2)分子扩散速率与其在扩散方向上的浓度梯度成正比。
分子扩散系数是物质的物理性质之一。扩散系数大,表示分子扩散快。
(3)分子在液体中扩散速率比在气体中要慢的多。因为液体的密度比气体的密度大得多,其分子间距小。
2.涡流扩散:通过流体质点的湍动和旋涡而传递物质的现象。主要发生在湍流流体中。
所以气体的摩尔分率为yA=pA/P=vA/V;xD
yB=PB/P= vB/V或yB=1-yAF,xF
三.物料衡算(双组分)
对总物料衡算F =D+W
对易挥发组分衡算FxF=DxD+ WxW
式中:W
F——原料液、塔顶产品(馏出液)、塔底产品(釜残液)流量,kmol/hxW
xF、xD、xW——分别为原料液、馏出液、釜残液中易挥发组分的摩尔分率
二.吸收分类
组分数目:单组分吸收,多组分吸收。
化学反应:物理吸收,化学吸收。
热效应:等温吸收,非等温吸收。
三.相组成表示
1.比质量分率XW(YW):混合物中两组分的质量之比。
XW(YW)= GA/GB=αA/αBkgA / kgB
2.比摩尔分率X(Y):混合物中两组分的摩尔数之比。
X =nA/nB=xA/xB=xA/(1-xA)kmolA / kmolB
3.对流扩散:湍流主体与相界面间的涡流扩散与分子扩散两种传质作用的总称。
它与传热过程的对流传热类似。
六.吸收机理
(一)吸收机理(双膜理论要点)
1.相互接触的汽液两流体间存在着稳定的相界面,界面两侧各存在着一个很薄的有效层流膜层。吸收质以分子扩散方式通过两膜层。

精馏计算公式

精馏计算公式

精馏计算公式精馏是衡量系统的能量平衡和组成的一种凝固分离技术,可以将混合物中的某种成分分离出来。

它的基本原理是通过调整混合物的温度、压力和其他条件,使不同的组分在混合物中的沸点相差比较大的情况下,分别沸腾出来,从而实现分离。

精馏在石油、化学、食品和其他工业中有着广泛的应用。

精馏分离操作中,必须明确计算方程,以实现更精确的分离。

每种精馏计算公式都有其特定的用途,并且都可以用来评估精馏系统的性能。

常用的精馏计算公式包括密度比计算公式、质量传输系数计算公式、质量平衡计算公式、温度平衡计算公式等等。

密度比计算公式是精馏操作中最常用的一种计算公式,它可以计算出不同混合物中的温度和压力下的密度比值,从而来控制混合物的精馏过程。

质量传输系数计算公式是用来估算精馏塔段中质量传输量的,通过计算每个塔段的质量传输系数,来估算每个塔段的精馏比例,有效的控制和改善精馏操作的效果。

质量平衡计算公式可以使用收率和质量系数求出精馏系统中各塔段的质量平衡关系,这对精馏操作的控制和优化有着重要的作用。

温度平衡计算公式可以输入各塔段的熔点和全部精馏塔的负荷温度,以求出各塔段终端液体的温度,实现更加有效的能量利用。

精馏计算公式的应用,不仅能实现精准的分离,而且可以实现能量的有效利用。

通过精准的控制,可以使系统的核心数据尽量接近理想状态,从而大大提高系统的效率和经济性。

然而,精馏操作是一种复杂的技术,需要经过大量的施工和设计,以实现实际操作中最佳的结果。

此外,由于现有的精馏系统参数存在不稳定性,可能会导致精馏过程中的误差,因此,在设计和操作过程中,需要严格控制参数的变化,以保证精馏计算公式的正确性和有效性。

总之,精馏计算公式是操作精馏技术的关键,要正确使用这些公式,必须了解其特定的专业知识和相关技术,以及熟悉参数变化的原理。

只有认真学习,才能更好地实现精馏技术的最佳结果。

精馏塔的简洁计算公式

精馏塔的简洁计算公式

精馏塔的简洁计算公式精馏塔是一种用于分离液体混合物的设备,通过不同组分的沸点差异来实现分离。

在工程设计和操作中,需要对精馏塔进行计算和分析,以确保其正常运行和达到预期的分离效果。

在本文中,我们将介绍精馏塔的简洁计算公式,帮助读者更好地理解和应用这些公式。

1. 精馏塔的传质效率公式。

精馏塔的传质效率是评价其性能的重要指标之一。

传质效率通常用塔板数或高度来表示,其计算公式如下:N = HETP × (n-1)。

其中,N表示塔板数或塔高度,HETP表示每塔板传质高度,n表示理论板数。

2. 精馏塔的塔板压降公式。

塔板压降是精馏塔运行中需要考虑的重要参数之一。

塔板压降的计算公式如下:ΔP = ρ× g × H × (1-ε) + ΔPv。

其中,ΔP表示塔板压降,ρ表示液体密度,g表示重力加速度,H表示塔板高度,ε表示塔板孔隙率,ΔPv表示气体速度压降。

3. 精馏塔的塔顶温度计算公式。

精馏塔的塔顶温度是其操作中需要重点关注的参数之一。

塔顶温度的计算公式如下:T = T0 + ΔT。

其中,T表示塔顶温度,T0表示进料温度,ΔT表示塔顶降温。

4. 精馏塔的塔板液体高度计算公式。

塔板液体高度是精馏塔操作中需要实时监测和控制的参数之一。

塔板液体高度的计算公式如下:H = H0 + ΔH。

其中,H表示塔板液体高度,H0表示初始液位高度,ΔH表示液位变化量。

5. 精馏塔的塔板塔顶气体速度计算公式。

塔板塔顶气体速度是精馏塔操作中需要关注的参数之一。

塔板塔顶气体速度的计算公式如下:V = Q / A。

其中,V表示塔板塔顶气体速度,Q表示气体流量,A表示塔板横截面积。

总结。

精馏塔是一种重要的分离设备,其性能和操作参数需要通过计算和分析来进行评估和控制。

本文介绍了精馏塔的传质效率、塔板压降、塔顶温度、塔板液体高度和塔板塔顶气体速度的计算公式,希望能对读者有所帮助。

当然,精馏塔的计算和分析涉及到更多的参数和复杂的情况,需要结合具体的工程实际情况进行综合分析和计算。

精馏塔塔径与塔高计算

精馏塔塔径与塔高计算

Z
NT HT ET
其中:Z —板式塔有效高度(传质段),m NT —理论塔板数(不包括塔釜) HT —塔板间距(经验值:见P344表8—2) ET —全塔效率(<1,实测)
应掌握:1. 全塔操作线绘制 2. 图解法求NT 3. Rmin(图解法、解析法) 4. Z的计算
附二:理论板 数的求解思路
5)最小回流比的计算 — 操作参数
根据: y R x 1 x n 1 n P R 1 R 1 其中:R= L / P 当系统处于全回流状态时 R=∞。 精馏段操作线为y=x(斜率最大、截距为零) 理论塔板数NT=NTmin。 当系统处于R=Rmin状态(斜率最小、截距 最大)时,精馏段操作线、加料线(q 线)、 相平衡方程线交汇于同一点(x=xq、y=yq ) 理论塔板数NT→∞。即方程满足:
对精馏段第一块板有 y1=xP ①点: 精馏段第一块板上发生的气液 相平衡关系: 气相组成y1 液相组成x1 ②点: 精馏段第一块板下降液与第二 块板上升气的操作组成关系: 气相组成y2 液相组成x1 ③点: 加料板(提馏段第1块板)上发 生的气液相平衡关系: 气相组成y4=y’1 液相组成x4 =x’1 <xq 饱和液进料时:xq=xF ④点: 提馏段第1块板下降液与第2块 板上升气的操作组成关系: 气相组成y’2 液相组成x’1 ⑤点: 提馏段第2块板发生的气液相平 衡关系: 气相组成y’2 液相组成x’2 ⑥ 点: 塔釜(提馏段最后1块板)里发 生的气液相平衡关系: 气相组成y’4=y’釜 液相组成x’4 <x釜
而 实际操作中的回流比: R=(1.1~2) Rmin. R↑:斜率↑、板数↓(分离效率↑) 、设 备造价↓、产品↓。 R↓:则与上述相反
yF
xF 1 ( 1) xF

精馏塔理论塔板数计算

精馏塔理论塔板数计算

精馏塔理论塔板数计算精馏塔是一种常用的分离和纯化混合物的设备。

在精馏过程中,混合物中的组分会根据其挥发性的差异,通过塔板分离为不同纯度的组分。

塔板数是衡量精馏塔分离效果的重要指标之一、本文将介绍精馏塔的理论塔板数计算方法,并简要解析其应用。

精馏塔的理论塔板数是指在无质量和热量传递损失的情况下,实现完全的分离所需的等效塔板数。

其计算可以使用Teope方程进行估算。

Teope方程是一个基于传递单元理论的简化模型,可以用于估算理论塔板数。

Teope方程的基本形式为:Nt=Nf+Nr+Nz其中,Nt为总塔板数,Nf为塔底下部的传质单元数,Nr为塔顶上部的传质单元数,Nz为塔体的塔板数。

传质单元数是通过传递单元量化描述的,可以根据不同的物理现象进行选择。

一般来说,传递单元可以是汽-液平衡单元、传质过程单元或传热过程单元等。

在使用Teope方程计算理论塔板数时,需要根据实际情况选择适当的传递单元。

常用的选择有根据挥发度平均法选择传质单元,或者根据物理性质(如热扩散系数)选择传质过程单元。

对于质量传输控制塔板,传质单元的选择可以通过挥发度平均法来实现。

挥发度是指组分在液相和气相中分配的平衡性质,可以通过实验或计算得到。

根据挥发度平均法,可以将塔板上的传质单元数定义为:Nf = ΔHF / ln(αi)其中,ΔHF为进料组分的化学势差,αi为塔底和塔顶组分浓度的挥发度比。

对于能量传输控制塔板,传热过程单元的选择可以使用传热系数的平均法。

传热系数是描述传热过程的性质,可以根据传热模型或实验来确定。

传热过程单元的计算可以使用下式:Nr=ΔHR/(KlA)其中,ΔHR为进料组分的焓差,Kl为液相传热系数,A为塔板有效面积。

总的塔板数Nt的计算可以通过对Nf、Nr和Nz进行求和得到。

需要注意的是,由于Teope方程是一个估算模型,其计算结果只能作为初步参考,并不能完全准确地预测塔板数。

精馏塔的理论塔板数计算是精馏塔设计的重要一步。

精馏塔进料量计算方法

精馏塔进料量计算方法

精馏塔进料量计算方法1. 哎呀呀,你知道吗,精馏塔进料量的计算方法之一就是根据质量守恒呀!就好比你吃饭,吃进去多少总要有个量吧,这不是很简单嘛!比如说,你要处理一定量的某种物料,那你就得搞清楚进入塔内的质量不能乱呀!2. 嘿哟喂,还可以通过物料衡算来算精馏塔进料量哦!这不就像你数自己口袋里的钱一样嘛,进的和出的总得对得上呀!比如说在某个工艺中,看看产出了多少,不就知道进料该是多少啦!3. 哇塞,其实观察精馏塔的运行状态也能估算进料量呢!这就好像你观察一个人跑步的速度和耐力,就能大概猜到他平时锻炼得怎么样。

比如塔内的温度、压力等有变化,那进料量可能就不一样了哦!4. 天哪,还能通过流量仪表的数据来计算精馏塔进料量呀!这就跟看钟表知道时间一样清晰明白呀!比如说那个流量仪表显示了具体数值,那进料量不就一目了然啦!5. 哎呀呀,根据化学反应式来算也是个办法呢!这就如同解一道数学题,按照规则来嘛。

像要是有特定的反应,就可以根据反应式来推导出进料量呀!6. 嘿,利用物料的密度和体积来算也不错哦!这不就像知道了盒子的大小和装的东西的密度,就能算出有多重一样。

比如知道了物料的这些参数,不就能算出进料量啦!7. 哇哦,参考以往的数据经验也是可以计算精馏塔进料量的呀!就像你借鉴别人的成功经验一样嘛。

如果之前有类似的情况,那照着之前的数据估算一下也八九不离十呀!8. 咦,还可以通过一些计算模型来算呢!这就好像搭积木,有了框架就能往上堆啦。

比如用一个合适的模型,把相关数据输进去,就能得到进料量啦!9. 哈哈,直接测量进料管道的流量不也行吗!这简直太直接了呀,就跟看尺子量长度一样。

比如在管道那里装个测量的仪器,读数不就是进料量嘛!我的观点结论就是:这些方法都各有特点和适用情况,具体用哪种得根据实际情况来决定呀,可不能死板哦!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1 设计任务书 (1)1.1 设计题目………………………………………………………………………………………………………………………………………………………………………1.2 已知条件………………………………………………………………………………………………………………………………………………………………………1.3设计要求…………………………………………………………………………………………………………………………………………………………………………2 精馏设计方案选定 (1)2.1 精馏方式选择…………………………………………………………………………………………………………………………………………………………………2.2 操作压力的选择…………………………………………………………………………………………………………………………………………………………………2.4 加料方式和加热状态的选择……………………………………………………………………………………………………………………………………………………2.3 塔板形式的选择…………………………………………………………………………………………………………………………………………………………………2.5 再沸器、冷凝器等附属设备的安排……………………………………………………………………………………………………………………………………………2.6 精馏流程示意图…………………………………………………………………………………………………………………………………………………………………3 精馏塔工艺计算 (2)3.1 物料衡算…………………………………………………………………………………………………………………………………………………………………………3.2 精馏工艺条件计算………………………………………………………………………………………………………………………………………………………………3.3热量衡算…………………………………………………………………………………………………………………………………………………………………………4 塔板工艺尺寸设计 (4)4.1 设计板参数………………………………………………………………………………………………………………………………………………………………………4.2 塔径………………………………………………………………………………………………………………………………………………………………………………4.3溢流装置…………………………………………………………………………………………………………………………………………………………………………4.4 塔板布置及浮阀数目与排列……………………………………………………………………………………………………………………………………………………5 流体力学验算 (6)5.1 气相通过塔板的压降……………………………………………………………………………………………………………………………………………………………5.2 淹塔………………………………………………………………………………………………………………………………………………………………………………5.3 雾沫夹带…………………………………………………………………………………………………………………………………………………………………………6 塔板负荷性能图 (7)6.1 雾沫夹带线………………………………………………………………………………………………………………………………………………………………………6.2 液泛线…………………………………………………………………………………………………………………………………………………………………………6.3 液相负荷上限线…………………………………………………………………………………………………………………………………………………………………6.4 漏液线…………………………………………………………………………………………………………………………………………………………………………6.5 液相负荷下限线…………………………………………………………………………………………………………………………………………………………………6.6 负荷性能图………………………………………………………………………………………………………………………………………………………………………7 塔的工艺尺寸设计 (8)8釜温校核 (9)9热量衡算 (9)10接管尺寸设计 (10)符号说明 (10)参考文献 (13)结束语 (13)1.设计任务1.1设计题目:年产8000吨乙醇板式精馏塔工艺设计1.2已知条件:1原料组成:含35%(w/w)乙醇的30度液体,其余为水。

2产品要求:含量≥93.4%(w/w)乙醇。

3残液≤0.1%(w/w)乙醇。

4冷却水t入=32度,t出=45度1.3设计要求(1)物料流程图,塔版图,塔体工艺图(2)各接口尺寸(3)加热剂及冷却剂用量。

2.设计方案选定2.1精馏方式:本设计采用连续精馏方式。

原料液连续加入精馏塔中,并连续收集产物和排出残液。

其优点是集成度高,可控性好,产品质量稳定。

由于所涉浓度范围内乙醇和水的挥发度相差较大,因而无须采用特殊精馏。

2.2操作压力:本设计选择常压,常压操作对设备要求低,操作费用低,适用于乙醇和水这类非热敏沸点在常温(工业低温段)物系分离。

2.3塔板形式:根据生产要求,选择结构简单,易于加工,造价低廉的筛板塔,筛板塔处理能力大,塔板效率高,压降教低,在乙醇和水这种黏度不大的分离工艺中有很好表现。

2.4加料方式和加料热状态:加料方式选择加料泵打入。

由于原料温度稳定,为减少操作成本采用30度原料冷液进料。

2.5由于蒸汽质量不易保证,采用间接,蒸汽加热。

2.6再沸器,冷凝器等附属设备的安排:塔底设置再沸器,塔顶蒸汽完全冷凝后再冷却至65度回流入塔。

冷凝冷却器安装在较低的框架上,通过回流比控制期分流后,用回流泵打回塔内,馏出产品进入储罐。

塔釜产品接近纯水,一部分用来补充加热蒸汽,其余储槽备稀释其他工段污水排放。

2.7精馏流程简图3.精馏塔工艺计算3.1物料衡算:年产量8000吨(每年连续生产300天),塔顶产品组成93.4%(w/w)乙醇。

原料35%(w/w)乙醇水溶液,30度。

釜残液含乙醇0.1%(w/w)的水溶液。

分子量M水=18;M乙醇=46分子量:,,。

由方程组,因为解得得物料衡算汇总表3.2精馏工艺条件计算。

(1)确定回流比R图解法确定Rmin 由图知XD/(R+1)=0.93得Rmin=1.89图解Nmin 在图上由点(XD,XD)在平衡线和对角线间向点(XW,XW)作梯级,由梯级个数确定最小理论板层数。

Nmin=10(不包括再沸器)N-R图,已知Rmin 和Nmin,由吉利兰图可确定一系列N-R相关数据,绘出N-R关联图。

适宜回流比,取图上曲线由急剧下降向平缓过渡阶段所对应的R值作为操作回流比,得R=3.6回流液热状况由塔顶产品组成XD =0.8047查得塔顶温度[1]为Ts=78.23度塔顶采用冷液回流,回流液温度为Ts `=65度则T定=(Ts+Ts`)/2=71.62度由参考资料[3]附录查得78.23度下r水=2400kJ/kg,r乙醇=826kJ/kg。

71.62度条件下,C p水=4.17kJ/(kg&S226;K)Cp乙醇=3.08kJ/(kg&S226;K),回流热状态参数参考下式计算,由塔内回流比R=3.6=R`&S226;ql ,塔外回流比R`=3.6/1.045=3.445(2)确定理论板层数。

,结果见图,得理论板层数17(不包括再沸器),精馏段13,提馏段4(不包括再沸器)(3)确定实际板层数。

假设塔釜温度=107度,则塔顶与塔底平均温度度在96.62度下查得x=3.3%,y=26.2%把x,y代入公式4.塔板工艺尺寸设计选择精馏段第一块塔板为设计板。

4.1设计板参数在78.23度下由参考资料[3]查得表面张力计算,由参考资料[4] 由y=0.8470查平衡数据x=0.8371,换算为质量浓度0.9292。

0.9292的乙醇在25度时表面张力为.解得4.2塔径取塔板间距HT =0.5m取板上液层高度hL=0.06m HT-hL=0.5-0.06=0.44m。

查筛板塔泛点关联图因。

需校正,。

取安全系数为0.7,则空塔气速为u=0.7 umax=1.264m/s. ,圆整为1000mm.塔截面积,空塔气速4.3溢流装置选用单液流弓形降液管,不设进口堰(1)堰长lw ,取lw=0.55D=0.55m(2)出口堰高hw,采用平直堰,堰上液层高度,由和lw/D=0.55在液流收缩系数图上查得E=1.05.,圆整为0.047m, =0.0605m.(3)弓形降液管宽度Wd 和面积Af。

lw/D=0.55查参考资料[2]图得=0.085m, =0.0314m(4)验算液体在降液管中滞留时间停留时间>5s故降液管尺寸可用,取降液管处液体流速(5)降液管底隙高度h`=0.07m/s.圆整为h0=0.038m,为便于加工,u选用平型受液盘。

4.4塔板布置(1)破沫区宽度Ws,因D<1.5m,取Ws=0.07m(2)边缘区宽度Wc=0.05m(3)筛孔直径物料无腐蚀性,故可选厚度为3mm的钢板。

取筛孔直径d=4mm。

(4)孔中心距筛孔按三角形排列。

取孔中心距t=3.0d=3.0x4=12mm(5)开孔总数n鼓泡区面积,则个,开孔率即在5-15%范围内,塔板开孔面积(6)气体通过筛孔气速5.流体力学验算5.1气象通过塔板的压降h,t(1)干板压降hd ,查干筛板流量系数图得C=0.77,液柱。

(2)气体通过液层的阻力hl,由,查充气系数关联图得=0.58, hl=0.58(0.047+0.0135)=0.03509m液柱(3)克服液体表面张力而引起的流动阻力值很小,可忽略不计(4)单板压降 ht=0.04910+0.03509=0.08419m液柱,则层塔板数,本设计为常压操作,对板压降无特殊要求。

5.2液泛为防止塔内发生液泛,应使降液管内清液层高度Hd ≤Ф(HT+hw)因物系不起泡,取系数Ф=0.6,Ф(HT +hw)=0.6(0.5+0.047)=0.3282m, Hd=ht+hl+hd液体通过降液管压降hd,,。

因为所以不会发生液泛。

5.3雾沫夹带量板上鼓泡层高度。

在允许范围内。

5.4漏液漏液点气速筛板稳定系数>1.5 不会发生漏液。

5.5液面落差,因板上没有气液接触元件,流动阻力较小,故忽略液面落差影响。

相关文档
最新文档