差动放大电路(

合集下载

第13讲--差动放大电路课件

第13讲--差动放大电路课件

+ T1 RC1 uBE1
- iE1
RS2 -
+ uod -
+
+
uo1
uo2


RE iE
iC2
iB2 T2
RC2
+
uBE2 -
iE2
❖ 由三极管e极电流与e极电压指数关系,电流方程:
iC1
iE1=I ES
exp( u BE1 UT
)
iE iE1 iE2 iC1 iC2
iC 2
iE2=I ES
2024/10/10
电子电路基础
第十三讲 差动放大电路 (1)
1
主要内容
7.1 基本电路及特征分析 7.2 双端输入、单端输出差动放大电路旳特征 7.3 单端输入、双端输出差动放大电路旳特征 7.4 单端输入、单端输出差动放大电路旳特征 7.5 有源偏置差动放大电路
2
零点漂移
❖ 放大电路无输入时,还有缓慢变化旳电压 输出旳现象为零点漂移
(2)先求rbe,再用前述公式
rbe
rbb
UT ICQ
134 100 26 1.1
2.5(k)
ASD
RC1 //( RL / 2)
RS1 rbe1
100 5 // 5 71
1 2.5
VCC
iC1
iC2
RC1
RL
RC2
Ri 2(RS1 rbe1)
2 (1 2.5) 7(k)
❖ 增大发射极电阻RE旳阻值,线性范围增大
uo1, uo2
uo2
uodm
uo1
RE 小
RE 大
uid
0
电压传输特性

差动放大电路

差动放大电路

设ui1>0,
则ui2<0
IC2<0, VC2>0
IC1>0, VC1<0; uo=VC1VC2 设VC!=-1V,
VC2=1V
则uo=-2V
(3)比较输入
ui1与ui2是任意
则设ui1为给定信号,ui2为反馈信号 uo=Au(ui1-ui2)
为了便于分析与处理,可以将这种即非共模、又 非差模的信号,分解为共模分量和差模分量。 ui1 uod1
RB
uod2
ui
ui1
RE
T2 T2
RB
ui2
-EE
当T1管输入信号电压ui且极性如图所示,T1的集电流 增大,其增大量为IC(正值),流过RE的电流也增大,因 而发射极电位升高,使T2基—射极电压减小UBE2,T2的 集电极电流也就减小,其减小量为IC2(负值)。IC1和 IC2的相对大小,取决于RE的大小,RE大,T1的输入信号 耦合(传送)到T2管的作用也强。
VE=RE(IC1+IC2)
是一有限值
当RE足够大时, IC1+IC20对信号讲,RE电路可 认为是开路的,如图所示。 rbe rbe RB R
B
ui
ui11/2ui
ui2-1/2ui
在单端输入的差动放大电路中,只要共模反馈电阻RE 足够大时,两管所取得的信号就可以认为是一对差模 从这一点来看,单端输入和双端输入是一样的 信号。

EE 2 R
E
U CE U CC R C I C U CC
EER C 2R E
3. 动态分析: 1) 双端输入——双端输出
RC
RB
T1
uo
T2 RE

差动放大电路

差动放大电路

差动放大电路有两个输入端:若信号从两个输入端加入,称为双端输入;若信 号仅从一个输入端加入,则称为单端输入。
差动放大电路有两个输出端:集电极C1 和 C2。若信号从C1 和 C2 同时输出, 则称为双端输出;若信号仅从集电极 C1 或C2 对地输出,则称为单端输出。
按照信号的输入输出方式,差动放大电路有四种接法。 除了前面介绍的双端输入/双端输出方式外,差动放大电路还有另外三种接 线方式,即双端输入/单端输出、单端输入/双端输出和单端输入/单端输出。 在四种不同的输入输出方式中,双端输入/双端输出方式为浮地形式的输入 输出方式。在要求对地输入的场合,就只能采用单端对地的输入方式;而要求 对地输出时,则只能采用单端对地输出的方式。 单端输出电路的差模电压放大倍数为双端输出电路的一半,即
1)对称性:理想情况下,电路左右两 部分完全对称,RB1 RB2 RB ,RC1 RC2 RC, 而且 管子与 管子的特性完全相
同,1 2 ,rbe1 rbe2 rbe。 2)长尾特点:由于电路采用双电源供
电, RE上所需的电压由负电源 VEE 提供, 就像拖着一个长长的尾巴,因此把这种电 路称为“长尾式差动放大电路”。
uoc是在 uic作用下的输出电压。根据定义有
Ac
uoc uic
差动放大电路加共模信号
由于差动放大电路是对称的,在共模信号作用下,两管集电极电位的变化 相同,即 uc1 uc2 ,因此,双端共模输出电压为
uoc uc1 uc2 0
即 Ac 0 。但是,由于实际上两半电路不可能做到完全对称,所以电路仍可能 有微弱的共模输出信号。一般情况下,| Ac|<<1。
直接耦合放大电路的零点漂移
引起零点漂移的原因很多,如温度变化、直流电源波动、元器件老化等。 其中,温度变化影响最大,故零点漂移常被称为温度漂移,简称温漂。温度变 化引起各级工作点变化,尽管这种变化是缓慢的,但由于是直接耦合,因此漂 移会被逐级放大,尤其是第一级,其漂移影响最大。在输出级,漂移信号(虚 假信号)与有用信号相混合,使有效信号的辨识更加困难。

差动放大电路

差动放大电路

uic = (ui1+ ui2 ) / 2
ui1 = 1.01 = 1.00 + 0.01 (V) ui2 = 0.99 = 1.00 – 0.01 (V) = 1.01 – 0.99 = 0.02 (V) u = u + 1 u
i1 = ic + 2 id
3 差动放大电路的计算
RC RC
uo ui1
例1
RC
(1)求差模输入电压 uid 、共模输入电压 uic ) +VCC (2) 若 Aud = – 50、 Auc = – 0.05 ) 、
RC
uo 求输出电压 uo,及 KCMR 1.01 V uC2 0.99 V uC1 [解](1) 可将任意输入信号分解为 ui2 ) ui1 V V2 1 共模信号和差模信号之和 共模信号 差模信号 R
(1)求静态工作点; )求静态工作点; +V RC +6CC V 7.5 k ui2 V2 IREF
Hale Waihona Puke K CMRAud = Auc
实际中还常用对数的形式表示共模抑制比, 实际中还常用对数的形式表示共模抑制比,即 常用对数的形式表示共模抑制比
Aud K CMR (dB ) = 20 lg Auc
值越大, 若Auc=0,则KCMR→∞,这是理想情况。这个值越大,表 , ,这是理想情况。这个值越大 示电路对共模信号的抑制能力越好 抑制能力越好。 示电路对共模信号的抑制能力越好。一般差动放大电路的 KCMR约为 约为60dB,较好的可达 ,较好的可达120dB。 。
EE
VEE
uid = u i1 – u i2
= 1 (V) ui2 = uic 1 uid 2 uod = Auduid = – 50 × 0.02 = – 1 (V) (2) ) uoc = Aucuic = – 0.05 × 1 = – 0.05 (V) uo = Auduid + Aucuic = –1.05 (V) 50 Aud = 20 lg K CMR (dB ) = 20 lg = 60 (dB) 0.05 Auc

差动放大电路工作原理

差动放大电路工作原理

差动放大电路工作原理差动放大电路是一种常见的电路,它常常被用于放大微小信号。

本文将介绍差动放大电路的工作原理、应用场景以及常见问题解决方法。

一、差动放大电路的工作原理差动放大电路由两个输入端和一个输出端组成。

当两个输入端的电压不同时,输出端就会输出一个差分电压。

差分电压的大小与两个输入端的电压差有关,电压差越大,则差分电压也越大。

差动放大电路的主要作用是将微小信号放大到可以被其他电路处理的程度。

差动放大电路通常由两个晶体管组成。

其中,一个晶体管的发射极连接到一个恒流源,另一个晶体管的发射极连接到另一个恒流源。

两个晶体管的集电极通过一个电阻连接在一起,形成一个共射放大电路。

两个输入端的信号分别连接到两个晶体管的基极上,输出端连接到两个晶体管的集电极上。

差动放大电路的工作原理可以用以下公式表示:Vout = (V1-V2) * (Rc / Re)其中,V1和V2分别是两个输入端的电压,Vout是输出端的电压,Rc是两个晶体管的集电极电阻,Re是两个晶体管的发射极电阻。

二、差动放大电路的应用场景差动放大电路广泛应用于音频放大器、电视机、电脑等电子产品中。

它可以将微弱的音频信号放大到可以被扬声器播放的程度。

此外,差动放大电路还可以用于测量仪器中,例如电压表、电流表等。

三、差动放大电路的常见问题解决方法1. 电路失真:差动放大电路有时会出现电路失真的情况,这可能是由于电容电压过高或者晶体管的工作状态不稳定造成的。

要解决这个问题,可以适当减小电容电压或者更换晶体管。

2. 电源噪声:电源噪声对差动放大电路的影响非常大,会导致输出信号的失真。

为了解决这个问题,可以采用滤波器来滤除电源噪声。

3. 温度漂移:温度漂移是指电路在不同温度下输出信号的变化。

要解决这个问题,可以采用温度补偿电路来进行调整。

总之,差动放大电路是一种常见的电路,它可以将微弱的信号放大到可以被其他电路处理的程度。

通过了解差动放大电路的工作原理和应用场景,我们可以更好地理解它的作用和意义。

差动放大电路和差分放大电路

差动放大电路和差分放大电路

差动放大电路和差分放大电路
差动放大电路和差分放大电路都是常见的放大电路类型,它们在信号处理、仪器测量等领域得到广泛应用。

差动放大电路是一种针对微小信号放大的电路,通过对两个输入信号的差值进行放大,可以有效抑制共模干扰,提高信号质量,常用于音频放大、信号测量等方面。

而差分放大电路则是一种针对大信号放大的电路,通过对两个输入信号的和差进行放大,可以实现高增益放大,常用于射频信号放大、功率放大等方面。

差动放大电路和差分放大电路的实现方式也有一些不同,差动放大电路通常采用差动放大器作为核心部件,而差分放大电路则常常采用差分对作为核心部件。

在实际应用中,差动放大电路和差分放大电路都需要根据具体需求来选择电路设计方案,以实现最佳的信号放大效果。

同时,在电路的设计和实现过程中,还需要考虑如何降低噪声、提高稳定性等问题,以确保电路的可靠性和性能。

- 1 -。

差动放大电路的原理

差动放大电路的原理

差动放大电路的原理
差动放大器的原理是利用两个对称输入信号进行放大,输出信号为两个输入信号的差值。

差动放大电路一般由一个差动放大器和一个负反馈电路组成。

差动放大器由两个输入端,分别接收两个对称的输入信号。

这两个输入信号经过放大器的放大作用后,输出两个放大的信号。

差动放大器的输出取决于两个输入信号的差异大小。

负反馈电路将差动放大器的输出信号与输入信号进行比较,并将差异信号放大器的输入端,实现对输出信号的修正。

通过不断修正差动放大器的输出,使得输入和输出之间的差异趋近于零,实现对输入信号的放大。

差动放大电路的原理可以简单概括为:通过抑制两个输入端之间的差异信号,只放大两个输入信号之间的差异部分,从而实现对差异信号的放大。

这样可以有效抑制共模干扰,提高信号的抗干扰能力,提高放大器的稳定性。

差动放大电路广泛应用于各种信号放大和处理电路中。

差动放大电路

差动放大电路

当电源电压或温度变化时,两管的集电极电流和电位同时发生变化,输
出电压Uo=UCE1-UCE2=0。因此,尽管各管的零点漂移仍存在,但输出电 压为零,整个放大电路的零点漂移得到抑制。


放差
大 电 路
动 放 大 电




1.2
第5页
2 动态分析
当有信号输入时,对称差动放大电路可以分为差模输入和共模输入两种 情况进行分析。其中,放大器两端分别输入大小相等、极性相反的信号(即 ui1=-ui2)时称为差模输入;放大器两端分别输入大小相等、极性相同的信 号(即ui1=ui2)时称为共模输入。
Aud
Aud1
RC
rbe
两输入端之间的差模输入电阻为:
rid 2(RS rbe )
两输出端之间的差模输出电阻为:
rod 2RC


放差
大 电 路
动 放 大 电




1.2
第8页
2 动态分析
2)共模输入
在共模输入信号的作用下,对于完全对称的差动放大电路来说,两管的 集电极电位变化相同,因而输出电压等于零,所以,差动放大电路对共模信 号没有放大能力,即放大倍数Auc为零。
电 工 电 子 技 术
过渡页
第2页
差动放大电路
• 1.1 概述 • 1.2 差动放大电路的分析
差 动 放 大 电 路
概 述
1.1
第3页
差动放大电路是由对称的两个基本放大电路,通过射极公共电阻耦合构 成的,如图10-16所示。对称的含义是两个晶体管的特性一致,电路参数对应)和两个输出端(晶体 管的集电极)。若信号同时从两个输入 端加入,称为双端输入;若信号仅从一 个输入端加入,称为单端输入。若信号 同时从两个输出端输出称为双端输出; 若信号仅从一个输出端输出称为单端输 出。

差动放大电路

差动放大电路

大电容和电感不易制造。几十Pf Pf以下的小电 3)大电容和电感不易制造。几十Pf以下的小电 容用PN结的结电容构成、大电容要外接。 PN结的结电容构成 容用PN结的结电容构成、大电容要外接。电 感只限极小(微亨以下)的数值,一般尽量 感只限极小(微亨以下)的数值, 避免使用。 避免使用。 二极管一般用三极管的发射结代替。 4)二极管一般用三极管的发射结代替。
集成电路成品(组件)外形 集成电路成品(组件)
圆壳式 双列直插式
1.集成电路的优点 . 工作稳定、使用方便、体积小、重量轻、 工作稳定、使用方便、体积小、重量轻、 功耗小。 功耗小。
2.集成内部电路的特点
单个元件精度不高,受温度影响也较大, 1)单个元件精度不高,受温度影响也较大, 但所有元器件由同一工艺做成, 但所有元器件由同一工艺做成,性能参数 一致性、对称性好,温度均一性好, 一致性、对称性好,温度均一性好,适于 组成差动电路。 组成差动电路。 电阻元件由硅半导体构成, 2)电阻元件由硅半导体构成,范围在几十到 30千欧 精度低。 千欧, 30千欧,精度低。高值电阻用三极管有源 元件代替或外接。 元件代替或外接。
三.差动放大电路的输入输出方式
四种: 四种: 端输入双 双端输入双端输出 端输入单 双端输入单端输出 端输入双 单端输入双端输出 端输入单 单端输入单端输出 差模电压放大倍数
RC Out1 In1
RB
RC +UCC
Out2 In2
RB IC3 -UEE
双端输出: 双端输出: d = Ad1 A
1A A 单端输出: 单端输出: d = 2 d1
u- u+


A

旧符号(Old Symbol) 旧符号(Old uo

差动放大电路

差动放大电路

图5-4
为了保证各级都有合适的动态范围,就必须 采取有效措施,既保证各级工作点合理,又保 证直流信号能有效的传递。通常采用的措施是 提高后级的发射级电位,见图5-5所示。a图采 用稳压二极管,b图采用电阻。容易理解a图的 办法较好,因为稳压管的动态电阻很小,对放 大器的放大倍数影响小。
图5-5
2.零点漂移问题
实验研究发现,直接耦合放大器即使将输入 端短路,输出电压并不为零。而且这个不为零 的电压会随时间作缓慢的、无规则的、持续的 变动,这种现象称为零点漂移,简称零漂。产 生这种现象的原因在于直接耦合,当外界因素 (如温度、电源电压、晶体管内部的杂散参数 等)变化时输出电压随之变化。其中温度的影 响最大,所以有时把零漂也叫温漂。第一级的 零漂经第二级放大,再传给第三级,依次传递 的结果使外界参数的微小变化,在输出端产生
差模输入电压
U od U c1 U c2 2U c1 2U c 2
差模电压放大倍数
Aud U od 2U c1 Au1 Au 2 U id 2U i1
即差动式放大电路的差模电压放大倍 数等于单管共射极电路的电压放大倍数。
Aud Au1 RC rbe RS
2.动态分析
(1)差模输入
(2)共模输入 (3)抑制零点漂移的原理
(1)差模输入
放大器的两个输入端分别输入大小 相等极性相反的信号(即Ui1=-Ui2), 这种输入方式称为差模输入。
U id U i1 U i 2 2U i1 2U i 2
U i1 1 U id 2
1 U i 2 U id 2
图5-9
共模电压放大倍数为
Ac=-

RC RS rbe 2( 1 )RE

差动放大电路

差动放大电路

差动放大电路差动放大电路是一种常用的电子电路,用于放大和增强信号。

它由多个放大器组成,每个放大器都有一个输入端和一个输出端,通过适当的连接方式,可以实现信号的差分放大。

差动放大电路常用于音频放大、信号处理等领域,下面我们来详细介绍一下它的原理和应用。

差动放大电路的基本原理是利用两个相互耦合的放大器同时对输入信号进行放大,然后将它们的输出信号相减得到差分信号。

其优点是可以抑制共模信号,提高系统的抗干扰能力,减小噪声的影响。

差动放大电路可以分为单端输入差动放大电路和双端输入差动放大电路两种。

单端输入差动放大电路一般由一个差动放大器和一个普通放大器组成,其基本结构如下:(此处省略图片描述)图中的OA1和OA2为两个放大器,VIN+和VIN-为差动输入信号,VOUT为输出信号。

而双端输入差动放大电路一般由两个差动放大器组成,其基本结构如下:(此处省略图片描述)图中的OA1和OA2为两个放大器,VIN1+和VIN1-为一个差动输入信号,VIN2+和VIN2-为另一个差动输入信号,VOUT为输出信号。

差动放大电路的输出电压可以用以下公式来表示:VOUT = (V1 - V2) * A其中,V1和V2分别为输入信号的电压,A为放大器的放大倍数。

差动放大电路的应用非常广泛。

例如,在音频放大领域,差动放大电路常用于放大麦克风、音乐设备等音频信号,并提供高质量的声音。

此外,它还常被应用于仪器仪表、通信设备、测量系统等领域,用于放大小信号、增强信号的稳定性和精确性。

总结一下,差动放大电路是一种用于放大和增强信号的电子电路。

它能够通过差分放大的方式来抑制共模信号,提高系统的抗干扰能力。

差动放大电路的结构和工作原理相对简单,应用范围广泛。

无论是音频放大、信号处理还是其他领域,差动放大电路都发挥着重要作用。

希望通过本文的介绍,您对差动放大电路有了更深入的了解。

差动放大电路实验原理

差动放大电路实验原理

差动放大电路实验原理差动放大电路是一种常见的电子电路,主要用于放大微弱信号,并在放大过程中实现信号的抑制和抵消。

差动放大电路的实验原理可以通过以下几个方面进行阐述。

一、差动放大电路的基本原理差动放大电路由两个输入端和一个输出端组成。

其中,两个输入端分别连接信号源和参考源,输出端连接负载。

差动放大电路的工作原理是通过对两个输入端的信号进行差分放大,从而实现对输入信号的放大和抑制。

二、差动放大器的工作模式差动放大电路有两种工作模式:共模模式和差模模式。

在共模模式下,两个输入信号相同且同相,此时差动放大电路对共模信号进行抑制,只放大差模信号。

在差模模式下,两个输入信号有差异,此时差动放大电路对差模信号进行放大。

三、差动放大电路的特点1. 高增益:差动放大电路可以实现高增益放大,对微弱信号具有很好的放大效果。

2. 抗干扰能力强:差动放大电路可以通过对输入信号的差分放大来抵消共模信号的干扰,提高系统的抗干扰能力。

3. 信号抑制效果好:差动放大电路可以实现对共模信号的抑制,减少对输出信号的影响。

4. 输入阻抗高:差动放大电路的输入阻抗较高,对输入信号源的影响较小。

5. 输出阻抗低:差动放大电路的输出阻抗较低,可以驱动负载。

四、差动放大电路的应用领域差动放大电路广泛应用于各种电子设备中,如功放、音频放大器、差分信号传输等。

在这些应用中,差动放大电路能够提供高品质的音频放大效果,并保持信号的稳定和纯净。

五、差动放大电路的实验过程1. 搭建电路:按照实验要求搭建差动放大电路的原型板,连接好信号源、参考源和负载。

2. 调节电路参数:根据实验需要,调节差动放大电路的电阻、电容等参数,使其符合实验要求。

3. 输入信号:给差动放大电路的输入端接入信号源,通过调节信号源的电平和频率,观察输出端的信号变化。

4. 测量输出信号:使用示波器等测试设备,测量差动放大电路输出端的信号,记录输出信号的幅值和频率。

5. 分析实验结果:根据实验测量数据,分析差动放大电路的放大倍数、频率响应等性能指标,评估差动放大电路的实验效果。

实验5差动放大电路

实验5差动放大电路

2023/10/10
静态分析 当输入信号为零时:
理论计算
因为没有输入信号,所以:
VB1=VB2=0V; VE1=VE2=0-0.7=-0.7V; VC3=VE1-0.5*IC3*0.5RP=-0.7-0.5*1.15*0.5*330=-0.79V 因为IC3 ≈ IE3, IE1 =IE2 = 0.5 IE3,所以: IE1=IE2=0.5IE3=0.577mA; VC1=VC2=VCC-IE1*RC=12-0.577*10*1000=6.23V
测量。
连接电路
试验操作
3.测量共模放大倍数: ① 将两输入端短路接到直流信号源;连接图(见下页); ② 用万用表测量输出端电压:
测量值
输入信号
VC1 VC2 Vo 双
Vi1= Vi2= 0.1V
计算值
AVC AVC AVC
1
2

共模克制 比
KCMR
Vi1= Vi2= 0.1V
注: AVC1=(VO1-VO1Q)/Vi1;VO1Q为V1集电极静态电压;
输出阻抗: Ro 2Rc
动态分析 4.单端输入、单端输出
理论计算
差模电压增益: AVD
vo vid
vo1 vo2 vi1 vi2
2vo1 vid
R' L
Rid
RL
RC
//
RL 2
A vv r R R 共模电压增益:
oc1
C
C
vc1 ic
be
1
2ro
2ro
K A A 共模克制比:
电子技术试验
差动放大电路
试验原理
克制温度漂移旳措施: ① 在电路中引入直流负反馈; ② 采用温度补偿旳措施; ③ 采用特征相同旳三极管,使它们旳温漂相互抵消,构成

差动放大电路的主要特点

差动放大电路的主要特点

差动放大电路的主要特点1.抗共模干扰能力强:差动放大电路能够有效抑制共模信号的干扰。

共模信号是同时作用于差动信号两个输入端的信号,如电源噪声、地线干扰等。

差动放大电路能够将共模信号抵消,只放大差分信号,从而减少对输出信号的影响。

2.增益稳定:差动放大电路的增益与电源电压、元器件参数等因素相对不敏感,增益稳定性较好。

这是因为差动放大器内输入差动信号通过差动放大器内部的共模抵消电路抵消完共模信号后,变为纯差动信号,只受内部差动放大器的增益影响。

3.噪声较小:差动放大电路通常具有较低的噪声特性。

差动放大电路的差模增益高,抑制共模干扰强,能够减小噪声的影响。

4.温度漂移小:差动放大电路的输出信号与环境温度关系不大。

这是因为差动放大器的输入和输出是差分信号,与温度变化无关,所以差动放大电路的温度漂移小。

5.输出纹波低:差动放大电路的输出纹波较低。

这是因为差动放大器内部采用差动对称结构,能够抵消不同输入信号引起的波形畸变和谐波。

6.输入电阻高:差动放大电路的输入电阻通常很高。

差动放大器的输入电阻由输入差分端口的两个放大器的输入电阻和两个输入电阻串联而成,通常输出电阻较低。

7.输出电阻低:差动放大电路的输出电阻较低。

差动放大器内部的输出电阻通常由差动对称输出级决定,输出电阻较低,能够驱动负载。

8.适用范围广:差动放大电路适用于各种应用场景,例如音频放大、视频放大、数据传输等领域。

同时,差动放大电路还可以与其他电路组合,形成各种复杂电路,满足不同的应用需求。

总之,差动放大电路由于其抗共模干扰能力强、增益稳定、噪声较小、温度漂移小、输出纹波低、输入电阻高等特点,被广泛应用于各种电子电路中,成为重要的信号放大器。

差动放大电路 实验报告

差动放大电路 实验报告

差动放大电路实验报告差动放大电路实验报告一、引言差动放大电路是电子学中常见的一种电路结构,它可以用于信号放大、滤波、抑制噪声等应用。

本实验旨在通过搭建差动放大电路,了解其基本原理和性能特点,并通过实际测量验证理论分析。

二、实验原理差动放大电路由两个共射放大器组成,其输入端分别连接两个输入信号源,输出端连接负载电阻。

两个放大器的输出信号通过电阻网络相互耦合,形成差分输出。

差动放大电路的原理基于差分放大器的工作原理,即通过差分输入信号的放大,实现对差分输出信号的放大。

三、实验步骤1. 搭建差动放大电路根据实验电路图,依次连接电源、信号源、放大器和负载电阻。

注意正确接线,避免短路或接反。

2. 调节电源电压根据放大器的工作要求,调节电源电压,使其稳定在适当的工作范围。

通常,差动放大电路的电源电压为正负12V。

3. 设置输入信号连接信号源,设置输入信号的频率和幅度。

可以选择不同的频率和幅度进行测试,以观察差动放大电路的响应情况。

4. 测量输出信号连接示波器,测量输出信号的波形和幅度。

可以通过调节输入信号的幅度和频率,观察输出信号的变化情况。

四、实验结果与分析通过实际测量,我们得到了差动放大电路的输出波形和幅度。

根据测量结果,我们可以得出以下几点结论:1. 差动放大电路具有良好的共模抑制比。

在理想情况下,差动放大电路输出信号只包含差分信号,而共模信号被完全抑制。

实际测量中,我们可以观察到输出信号中共模信号的幅度非常小,说明差动放大电路具有较好的共模抑制能力。

2. 差动放大电路的增益与输入信号的差分模式有关。

在差分模式下,差动放大电路的增益较高,可以实现信号的有效放大。

而在共模模式下,差动放大电路的增益较低,对信号的放大效果较差。

因此,在实际应用中,我们需要尽可能提高差动信号的幅度,以获得更好的放大效果。

3. 差动放大电路的频率响应较好。

在实验中,我们可以通过改变输入信号的频率,观察输出信号的变化情况。

实验结果显示,差动放大电路在较宽的频率范围内都能保持较好的放大效果,没有明显的频率衰减。

差动放大电路

差动放大电路

差动放大电路一、概述差动放大电路又叫差分电路,他不仅能有效的放大直流信号,而且能有效的减小由于电源波动和晶体管随温度变化多引起的零点漂移,因而获得广泛的应用。

特别是大量的应用于集成运放电路,他常被用作多级放大器的前置级。

基本差动放大电路由两个完全对称的共发射极单管放大电路组成,该电路的输入端是两个信号的输入,这两个信号的差值,为电路有效输入信号,电路的输出是对这两个输入信号之差的放大。

设想这样一种情景,如果存在干扰信号,会对两个输入信号产生相同的干扰,通过二者之差,干扰信号的有效输入为零,这就达到了抗共模干扰的目的。

二、基本电路图差动放大电路的基本电路图上图为差动放大电路的基本电路图[1]三、差动放大电路的工作原理1、差动放大电路的基本形式对电路的要求是:两个电路的参数完全对称两个管子的温度特性也完全对称。

它的工作原理是:当输入信号Ui=0时,则两管的电流相等,两管的集点极电位也相等,所以输出电压Uo=UC1-UC2=0。

温度上升时,两管电流均增加,则集电极电位均下降,由于它们处于同一温度环境,因此两管的电流和电压变化量均相等,其输出电压仍然为零。

它的放大作用(输入信号有两种类型)(1)共模信号及共模电压的放大倍数 Auc共模信号---在差动放大管T1和T2的基极接入幅度相等、极性相同的信号。

如图(2)所示共模信号的作用,对两管的作用是同向的,将引起两管电流同量的增加,集电极电位也同量减小,因此两管集电极输出共模电压Uoc为零。

因此:。

于是差动电路对称时,对共模信号的抑制能力强字串3(2)差模信号及差模电压放大倍数 Aud差模信号---在差动放大管T1和T2的基极分别加入幅度相等而极性相反的信号。

如图(3)所示差模信号的作用,由于信号的极性相反,因此T1管集电极电压下降,T2管的集电极电压上升,且二者的变化量的绝对值相等,因此:此时的两管基极的信号为:所以:,由此我们可以看出差动电路的差模电压放大倍数等于单管电压的放大倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§5、1差动放大电路(第三页)这一页我们来学习另一种差动放大电路和差动放大电路的四种接法
一:恒流源差动放大电路
我们知道长尾式差动电路,由于接入Re,提
高了共模信号的抑制能力,且Re越大,抑制能
力越强,但Re增大,使得Re上的直流压降增
大,要使管子能正常工作,必须提高U
EE
的值,
这样做是很不划算的。

因此我们用恒流源代替
Re,它的电路图如右图所示:
恒流源差动放大电路的指标运算,与长尾式完全一样,只需用r
o3
代替Re即可
二:差动放大电路的四种接法
差动放大电路有两个输入端和两个输出端,因此信号的输入、输出方式有四种情况。

(1)双端输入、双端输出
它的电路的接法如图(1)所示:
差模电压的放大倍数为:
共模电压的放大倍数为:
共模抑制比为:CMRR→∞
(2)双端输入、单端输出
它的电路接法如图(2)所示:
差模电压的放大倍数为:
共模电压的放大倍数为:
共模抑制比为:
(3)单端输入、双端输出
它的电路接法如图(3)所示:
这种放大电路忽略共模信号的放
大作用时,它就等效为双端输入的情
况。

双端输入的结论均适用单端输入、
双端输出。

(4)单端输入、双端输出
它的电路的接法如图(4)所示:
它等效于双端输入、单端输出。

这种接法的特点是:它比单管基本放
大电路的抑制零漂的能力强,还可根
据不同的输出端,得到同相或反相关
系。

三:总结
由以上我们可以看出:差动放大电路电压放大倍数仅与输出形式有关,只要是双端输出,它的差模电压放大倍数与单管基本的放大电路相同;如为单端输出,它的差模电压放大倍数是单管基本电压放大倍数的一半,输入电阻都相同。

下一节返回
§5、2集成运算放大器
集成运放是一种高放大倍数、高输入电阻、低输出电阻的直接耦合放大电路
一:集成运放的组成
它有四部分组成:1、偏置电路;
2、输入级:为了抑制零漂,采用差动放
大电路
3、中间级:为了提高放大倍数,一般采用有源负载的共射放大电路。

4、输出级:为了提高电路驱动负载的能力,一般采用互补对称输出级电路
二:集成运放的性能指标(扼要介绍)
1、开环差模电压放大倍数 Aod
它是指集成运放在无外加反馈回路的情况下的差模电压的放大倍数。

2、最大输出电压 Uop-p
它是指一定电压下,集成运放的最大不失真输出电压的峰--峰值。

3、差模输入电阻r
id
它的大小反映了集成运放输入端向差模输入信号源索取电流的大小。

要求它愈大愈好。

4、输出电阻 r
O
它的大小反映了集成运放在小信号输出时的负载能力。

5、共模抑制比 CMRR
它放映了集成运放对共模输入信号的抑制能力,其定义同差动放大电路。

CMRR 越大越好。

下一节返回
§6、2运算电路(第一页)
这一节我们学习对信号进行比例、加、减、乘、除等运算的电路。

此时集成运放工作在线性区。

一:比例运算电路
定义:将输入信号按比例放大的电路,称为比例运算电路。

分类:反向比例电路、同相比例电路、差动比例电路。

(按输入信号加入不同的输入端分)
比例放大电路是集成运算放大电路的三种主要放大形式(1)反向比例电路
输入信号加入反相输入端,电路如图(1)所示:
输出特性:因为:,
所以:
从上式我们可以看出:Uo与Ui 是比例关系,改变比例系数,即可改变Uo 的数值。

负号表示输出电压与输入电压极性相反。

反向比例电路的特点:
(1)反向比例电路由于存在"虚地",因此它的共模输入电压为零.即:它对集成运放的共模抑制比要求低
(2)输入电阻低:r
i =R
1
.因此对输入信号的负载能力有一定的要求.
(2)同相比例电路
输入信号加入同相输入端,电路如图(2)所示:
输出特性:因为:(虚短但不是虚地);

所以:
改变R
f /R
1
即可改变Uo的值,输入、输出电压的极性
相同
同相比例电路的特点:
(1)输入电阻高;(2)由于(电路的共模输入信号高),因此集成运放的共模抑制比要求高
(3)差动比例电路
输入信号分别加之反相输入端和同相输入端,电路图如图
(3)所示:
它的输出电压为:
由此我们可以看出它实际完成的是:对输入两信号的差运算。

下一页返回
§6、2运算电路(第二页)
二:和、差电路
(1)反相求和电路
它的电路图如图(1)所示:(输入端
的个数可根据需要进行调整)其中电
阻R'为:
它的输出电压与输入电压的关系为:
它可以模拟方程:。

它的特点与反相比例电路相同。

它可十分方便的某一电路的输入电阻,来改变电路的比例关系,而不影响其它路的比例关系。

(2)同相求和电路
它的电路图如图(2)所示:(输
入端的个数可根据需要进行调整)
它的输出电压与输入电压的关系为:。

它的调节不如反
相求和电路,而且它的共模输入信号大,因此它的应用不很广泛。

(3)和差电路
它的电路图如图(3)所示:
此电路的功能是对U
i1、U
i2
进行反
相求和,对U
i3、U
i4
进行同相求和,
然后进行的叠加即得和差结果。

它的输入输出电压的关系是:。

由于该电路用一只集成运放,它的电阻计算和电路调整均不方便,因此我们常用二级集成运放组成和差电路。

它的电路图如图(4)所示
它的输入输出电压的关系是:
它的后级对前级没有影响(采用的是
理想的集成运放),它的计算十分方
便。

下一页返回
§6、2运算电路(第三页)
三:积分电路和微分电路
(1)积分电路
它可实现积分运算及产生三角波形等。

积分运算是:输出电压与输入电压呈积分关
系。

它的电路图如图(1)所示:它是利用电容
的充放电来实现积分运算
它的输入、输出电压的关系为:其中:表示电容两端的初始电压值.
如果电路输入的电压波形是方形,则产生三角波形输出。

(2)微分电路
微分是积分的逆运算,它的输出电压与输
入电压呈微分关系。

电路图如图(2)所示:
它的输入、输出电压的关系为:
四:对数和指数运算电路
(1)对数运算电路
对数运算电路就是是输出电压与输入电压
用二极
呈对数函数。

我们把反相比例电路中R
f
管或三级管代替级组成了对数运算电路。

电路
图如图(3)所示:
它的输入、输出电压的关系为:(也可以用三级管代替二极管)(2)指数运算电路
指数运算电路是对数运算的逆运算,将指数运
算电路的二极管(三级管)与电阻R 对换即可。

电路图如(4)所示
它的输入、输出电压的关系为:
利用对数和指数运算以及比例,和差运算电路,可组成乘法或除法运算电路和其它非线性运算电路
下一节这一节我们来学习关于滤波电路和电压比较器的一些知识
一:滤波电路的基础知识
滤波电路的作用:允许规定范围内的信号通过;而使规定范围之外的信号不能通过。

滤波电路的分类:(按工作频率的不同)
低通滤波器:允许低频率的信号通过,将高频信号衰减。

高通滤波器:允许高频信号通过,将低频信号衰减。

带通滤波器:允许一定频带范围内的信号通过,将此频带外的信号衰减。

带阻滤波器:阻止某一频带范围内的信号通过,而允许此频带以外的信号衰减。

我们在电路分析课程中已学习了,利用电阻、电容等无源器件构成的滤波电路,但它有很大的缺陷如:电路增益小;驱动负载能力差等。

为此我们要学习有源滤波电路。

二:有源滤波电路
(1)低通滤波电路
它的电路图如图(1)所示:(我们以无源滤波
网络RC接至集成运放的同相输入端为例)
它的幅频特性如图(2)所示:
它的传输函数为:
其中:Aup 为通带电压放大被数,;通带截止角频率
对于低有源滤波电路,我们可以通过改变电阻Rf和R1的阻值来调节通带电压的放大被数。

(2)高通滤波电路
它的电路图如图(3)所示:(我们以无源滤波
网络接至集成运放的反相输入端为例)
同样我们可以得到它的幅频特定如图(4)所
示:
它的传输函数
为:
其中:(通带电压放大被数);(通带截止角频率)
(3)带通滤波电路和带阻滤波电路
将低通滤波电路和高通滤波电路进行不同组合,即可的获得带通滤波电路和带阻滤波电路,它们的电路图分别为:如图(5)所示带通滤波电路;如图(6)所示带阻滤波电路:
下一页返回。

相关文档
最新文档