人口发展模型matlab实现
人口预测 matlab
数学建模第一次实验报告一.实验目的学习有关人口预测的模型,了解有关混沌的基本理论,建立人口预报模型,并完成人口总量的预报,能够用软件完成数据计算。
二.实验内容1.下表为我国自1949年至2000年的人口数据,请根据人口模型,预测出2010、2015年我国的人口总数,并根据中国统计局的全国人口普查公报的1%调查数据,计2.谈谈你所认识的混沌三. 实验步骤1. 查阅资料选择模型通过查阅资料,发现在考虑算法复杂度以及预测效果等综合因素时,阻滞增长模型(Logistic 模型)要优于其他模型,所以我们选用阻滞增长模型进行本次实验。
2. 建立模型阻滞增长模型(Logistic 模型)是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。
阻滞作用体现在对人口增长率r 的影响上,是的r 随着人口数量x 的增加而下降。
若将r 表示为x 的函数()r x ,则它应是减函数,于是有:()()0,0dxr x x x x dt== (1) 对于()r x 的一个最简单的假设是()r x 为x 的线性函数,即:()(),0,0r x r sx r s =->> (2)设自然资源和环境所能容纳的最大人口数量为m x ,当m x x =时人口不在增长,即增长率()0m r x =,代入(2)式可得mrs x =,所以有: ()(1)mrr x r x =-(3) 将(3)式代入(1)式得:()0(1)0m dxr rx dt x x x⎧=-⎪⎨⎪=⎩(4) 解(4)可得(5)式:()01(1)e mrtm x x t xx -=+- (5)3. 根据模型原理进行编程程序见第五部分。
4. 运行结果采用1949年到2000年的人口调查结果作为数据,计算得到的模型参数()r x 和m x 为:()0.0296r x =,()204.5537m x =千万人。
1949年到2000年的预测结果与人口调查结果对比图如图1所示。
人口问题数据拟合的MATLAB程序
人口问题数据拟合的MATLAB程序拟合%拟合数据人口问题x=[1949 1954 1959 1964 1969 1974 1979 1984 1989 1994];y=[5.4 6.0 6.7 7.0 8.1 9.1 9.8 10.3 11.3 11.8];% 1 线性模型%用一阶多项式b=polyfit(x,y,1)z=b(2)+b(1).*x;plot(x,y,'r*',x,z),xlabel('x')%用矩阵运算A=[ones(size(x))', x'];b=A\y'z=b(1)+b(2).*x;plot(x,y,'r*',x,z),xlabel('x')%用线性回归A=[ones(size(x))', x'];[b,c,r,j,R] =regress(y',A)% b 回归系数 c 回归系数的置信区间r 残差j 拟合数据的置信区间R 相关系数F值、p值z=b(1)+b(2).*x;z1=z+j(:,1)';z2=z+j(:,2)';plot(x,y,'r*',x,z,x,z1,x,z2),xlabel('x')e=sqrt(sum((y-z).^2)/8)zz1=z-1.96*e; zz2=z+1.96*e;plot(x,y,'r*',x,z,x,zz1,x,zz2)% 2 非线性模型y=b(2)exp(b(1)x)%转化为线性函数A=[ones(size(x))', x'];y1=log(y);[b1,r,j,R]=regress(y1',A)b=[exp(b1(1)) b1(2)]z=b(1).*exp(b(2).*x);e=sqrt(sum((y-z).^2)/8)z1=z-1.96*e; z2=z+1.96*eplot(x,y,'r*',x,z,x,z1,x,z2)%用非线性函数拟合(缺点初值不合适,就得不到解)x=[49 54 59 64 69 74 79 84 89 94];y=[5.4 6.0 6.7 7.0 8.1 9.1 9.8 10.3 11.3 11.8];fun=inline('b(1).*exp(b(2).*x)','b','x');b0=[2 0.01];[b,r,j]=nlinfit(x,y,fun,b0)z=b(1).*exp(b(2).*x);plot(x,y,'r*',x,z)nlintool(x,y,fun,b0) %拟合曲线图。
基于matlab的中国人口预测(修改版)
目录摘要 (1)关键词 (1)引言 (1)1引言 (1)1.1 论文研究的背景 (2)1.2论文研究的意义 (2)2人口预测模型 (4)2.1 MALTHUS模型 (4)2.2 LOGISTIC模型 (5)3 MATLAB仿真计算 (6)3.1人口预测模型及参数的选定 (6)3.2计算人口环境容纳量 (7)4. 结论 (15)参考文献:.......................................... 错误!未定义书签。
Abstract (1)Key words (1)基于MATLAB的中国人口预测信息与计算科学专业张良指导教师:卢月莉[摘要]以MATLAB为人口预测的仿真计算平台,采用MALTHUS和LOGISTIC模型对中国人口进行了预测和比较,分析了人口增长率的变化率、远期人口预测的相对误差及LOGISTIC 模型的人口发展趋势,给出了合理的人口环境容纳量,修正了预测模型的相对误差,提高了人口预测的准确度。
[关键词]MATLAB仿真;人口预测;误差; MALTHUS模型; LOGISTIC模型;环境容纳量1引言1.1 论文研究的背景人口问题是长期以来制约中国社会发展的最为关键的因素之一。
从新中国成立至今,中国人口己经由5.4亿增至13.3亿,人口总量增加了近8亿。
在中国人口的各发展阶段过程中,人口数据受限于人口基数而表现了结构的变化,自建国初期到70年代,是中国人口由原来的高出生率、高死亡率进入到高出生率、低死亡率的人口增长时期。
特别是受多年的人口结构积累的影响,近年来的中国人口发展出现了老龄化进程加速的态势,预计未来还将进一步地延伸该态势,对中国社会还将持续发生较大的影响作用。
基于现实来看,现代中国处于全面建设小康社会的快速转型期,人口的发展将使中国从总体资源丰富的大国步入人均资源占有量不足的境地,势必抑制国民整体生活水平的快速增长。
诸如此类因素,都将影响中国的未来,因而,有效的分析与科学预测中国人口的发展与变化显得既紧迫又重要。
用根据泰安市前五年实际人口预测年人口用三次多项式拟合
用matlab根据泰安市前五年实际人口预测2024年人口(用三次多项式拟合)
在实际应用中,人口预测往往是一项复杂的工作,需要考虑多种因素,包括但不限于生育率、死亡率、
1 移民率、经济发展等。因此,多项式拟合的方法可能不足以提供精确的预测。但是,这种方法可以作
为一种基本的、简单的预测方法,为更复杂的预测模型提供基础
用matlab根据泰安市前五年实际人口预测2024年人口(用三次多项式拟合)
在上面的代码中,polyfit函数用于获取拟合多项式的系数。polyval函数用于评估这个多 项式在给定年份上的值。请注意,我们假设人口数据以年份为索引
请注意,这只是一个基本的示例。在实际应用中,您可能需要考虑更多的因素,例如趋势 、季节性、其他影响因素等。此外,拟合多项式的阶数(在此示例中为3)也可能需要根据
用matlab根据泰安市前五 年实际人口预测2024年人 口(用三次多项式拟合)
用matlab根据泰安市前五年实际人口预测2024年人口(用三次多项式拟合)
目录
用matlab根据泰安市前五年实际人口预测2024年人口(用三次多项式拟合)
在这个示例中,我们将使用三次多项式进行拟合,以预测泰安市2024年的人口。为了 实现这一目标,我们需要首先获取泰安市过去五年的历史人口数据。假设我们已经有 了这些数据,存储在一个名为population_data的数组中,它包含五个元素,每个元 素代表一个年份(例如,2015,2016,2017,2018,2019) 接下来,我们将创建一个三次多项式函数来拟合这些数据。然后,我们将使用这个函数来 预测2024年的人口
4 需要对数据进行适当的清洗和处理,以确保其准确性和可靠性。此外,你还需要对数据进行适当的预
7.2.2-Logistic人口增长模型
Logistic人口增长模型实验目的●熟悉MATLAB解微分方程数值解的函数ode23的使用方法●了解Logistic人口增长模型比利时数学家Verhulst 在1844-1845年研究人口增长时指出:受自然资源,环境条件等因素限制,人口数量在初始阶段接近指数增长,当逐渐变得饱和时增速变缓,最终达到稳定后增长停止。
()r d N dt N N =r(N)表示人口数量为N 时的增长率(1)m d r N N N d N t =-N m 表示环境能供养的人口总量的上界,r 为常数变化率。
Logistic 方程:Logistic 人口增长模型微分方程表示:r(N)是减函数比较Malthus 模型:dN N dt r r 为常数增长率Logistic 模型中,r(N)是N 的线性减函数。
应用:Logistic 方程广泛应用于化学,统计学,经济学和神经网络等。
某国2000年总人口为12.674亿,假设受环境限制人口上限为20亿,人口变化率为0.0173。
根据Logistic 人口增长模型,总人口数满足微分方程:(1)(2000)12.670.0174320dN N N dt N ⎧=-⎪⎨⎪=⎩程序文件求解:plot(t,N)function logistic [t, N]=ode23(@fun,[2000,2050],12.674);function vfun=fun(t,N)vfun=0.0173*(1-N/20).*N;(1)md r N N N d N t =-Logistic 方程:示例:图1Logistic人口增长模型图2Malthus模型和Logistic人口增长模型题目中有关Logistic 人口增长模型的参数都是给定的。
如果已有一组人口数据,能否根据这些数据估计r 和N m ?思考:(1)m d r N N N d N t =-。
数据建模常规方法的Matlab实现(实例)
MATLAB(liti21)
3)运算结果为: f =0.0043 0.0051 0.0056 0.0059
0.0062 0.0062 0.0063 0.0063 x = 0.0063 -0.0034 0.2542
0.0061 0.0063
4)结论:a=0.0063, b=-0.0034, k=0.2542
的。
1. lsqcurvefit
已知数据点: xdata=(xdata1,xdata2,…,xdatan),
ydata=(ydata1,ydata2,…,ydatan) lsqcurvefit用以求含参量x(向量)的向量值函数
F(x,xdata)=(F(x,xdata1),…,F(x,xdatan))T 中的参变量x(向量),使得
6 0.28 15
-0.02
解:(1)画出散点图: x=[0;0.4;1.2;2;2.8;3.6;4.4;5.2;6;7.2;8;9.2;10.4;11.6;12.4;13.6; 14.4;15]; y=[1;0.85;0.29;-0.27;-0.53;-0.4;-0.12;0.17;0.28;0.15;-0.03;0.15;-0.071;0.059;0.08;0.032;-0.015;-0.02]; plot(x,y,'r*')
MATLAB人口数量预测
MATLAB人口数量预测实验报告一,实验目的:1.、学会用matlab软件进行数据拟合;2、了解利用最小二乘法进行数据拟合的基本思想,掌握用数据拟合法寻找最佳拟合曲线的方法;3、了解多元函数的机制在数据拟合法中的应用;4、通过对实际问题进行分析研究,初步掌握建立数据拟合数学模型的方法。
二.问题分析及建立模型1.多项式拟合对于已知数据点,如果选用拟合基函数为幂函数类1,x,x2,x3….xm,则拟合函数为一个m次多项式函数。
y=f(x)=a m*x m+a m-1*x m-1+…a1*x+a0根据最小二乘法你和思想,问题归结为求m+1元函数Q(a0,a1,…a m)=∑(a m*x i m a m-1*x i m-1+…+a1*x+a0)2的最小值问题,同样的,利用多元可微函数求得极值的必要条件得到法方程组∂Q(a0,a1,…a m)/∂a k=0; k=0,1,2,3…m;此时,矩阵G为一范德蒙矩阵,解此方程可以求的多项式系数a=[a m,a m-1,a0]T模型假设美国的人口满足函数关系x=f(t), f(t)=e a+bt,a,b为待定常数,根据最小二乘拟合的原理,a,b是函数∑=-=niiix tfbaE12))((),(的最小值点。
其中x i是t i时刻美国的人口数。
这是第一种模型。
3.Logistic模型上述模型可以在短时间内较好地拟合实际人口数量,但也存在问题。
即人口是呈指数规律无止境地增长,此时人口的自然增长率随人口的增长而增长,这不可能。
一般说来,当人口较少时增长得越来越快,即增长率在变大;人口增长到一定数量以后,增长就会慢下来,即增长率变小。
这是因为自然资源环境条件等因素不允许人口无限制地增长,它们对人口的增长起着阻滞作用,而且随着人口的增加,阻滞作用越来越大。
而且人口最终会饱和,趋于某一个常数x,假设人口的静增长率为r(1-x(t)/x ),即人口的静增长率随着人口的增长而不断减小,当t 时,静增长率趋于零。
数学建模-人口增长模型
人口增长模型数学089班王敬华丘创权黄建其摘要本文根据某个地区的人口从1800年到2000年间的人口数据,利用matlab7.0数据拟合,建立线性增长模型和二次函数增长模型,并对2010年的人口数进行预测。
在本文中,二次函数增长模型拟合的效果明显比线性增长模型差,用线性函数增长模型预测出2010年该地区的人口总数为260.2百万,用二次函数增长模型预测出2010年该地区的人口总数为293.33百万。
关键字人口预测 matlab 7.0问题重述根据以下某个地区的人口从1800年到2000年间的人口数据(如下表),建立人口增长模型(比如线性增长模型或者二次函数增长模型),并确定其中的待定参数,估计出该地区2010年的人口,同时画出拟合效果的图形。
6模型分析根据所给的人口数据,我们借助MATLAB首先作出散点图进行观察分析:(如下图)18001820184018601880190019201940196019802000从散点图中,我们可以看出,人口是逐年增长的,于是我们想到了线性的增长和二次涵数的增长,但由于这两个模型并没有考虑到人口增长不可能是无限的,它受到此地区很多因数的影响,如:资源,环境,医疗,国家政策,战争,疾病,生育观念……。
现在我们忽略这些影响,对这两个模型的预测进行比较。
模型建立模型一:线性增长模型。
(即为y=ax+b模型)1、模型假设:忽略环境对人口的影响,假设人口无限增长,人口增长率是恒变量。
2、模型变量和函数定义:A 人口增长率;xB 初始时刻的人口数量,即:(0)3、模型建立:依照上面的假设和定义,我们可以构造如下模型:Y=Ax+B我们借助MATLAB进行拟合。
如下图:18001820184018601880190019201940196019802000利用MATLAB 求得系数a=1.0e+003 *0.0015;b=1.0e+003*(-2.7548)即a=1.5 ;b=-2754.8; 因此模型为:8.27545.1-=x y4、模型结果分析:线性增长型模型虽然在一定程度上可以表明人口是在不断的增长,但由于没有考虑到自然因数,人为因素和环境因数的影响,因此我们建立了模型二。
基于MATLAB的人口预测模型
基于 MATLAB 的人口预测模型摘要本文以 1980-2014 年中国年终总人口数据资料为依据,分别使用了一次拟合、灰色预测模型和时间序列模型进行拟合,最终得出时间序列模型的效果最优,得到了中国人口数量逐年增长,但同时增长速度逐渐放缓的结论,为政府制定人口、经济政策提供了一定的依据。
关键词:人口数量;一次拟合;灰色预测;时间序列前言世界人口的迅猛增长引起了许多问题。
特别是一些经济不发达国家的人口过度增长,影响了整个国家的经济发展、社会安定和人民生活水平的提高,给人类生活带来许多问题。
为了解决人口增长过快的问题,人类必须控制自己,做到有计划地生育,使人口的增长与社会、经济的发展相适应,与环境、资源相协调。
我国是世界上人口最多的发展中国家。
人口数量多、增长快、可耕地少、国家底子薄,这是我国的基本国情。
人口增长过快,严重制约着我国经济和社会发展的进程,影响着人民生活的改善和民族素质的提高。
从而造成社会再生产投入不足,严重影响国民经济的可持续发展。
认真分析我国目前的人口现状和特点,采取切实可行的措施控制人口的高速增长,提高人口的整体素质,已成为我国目前经济发展中需要解决的首要问题。
本文以中国近 35 年的人口数据尝试建立模型,分别建立了一次模型、灰色预测 GM(1,1)模型和时间序列 AR 模型,最终选取了拟合效果最好的时间序列模型,用于说明我国人口问题以及预测短期内人口数量变化,以及为我国即将面临的人口问题提供一些建议。
概念与引理定义 1[1]:人口问题,是由于人口在数量、结构、分布等方面快速变化,造成人口与经济、社会以及资源、环境之间的矛盾冲突。
人口数量问题,主要由非均衡生育(多子化和少子化)以及人口迁移造成,只有通过均衡生育(发达国家 2.17 胎,发展中国家 2.3 胎)和调控迁移来解决。
人口结构问题,主要包括年龄、性别、收入、人种、民族、宗教、教育程度、职业、家庭人数等人口结构问题;其中最为突出的是年龄(多子化、少子高龄化)、性别(男女比例失调)和收入(基尼系数高、中产塌陷)结构问题。
MATLAB中的差分方程建模与求解方法
MATLAB中的差分方程建模与求解方法引言差分方程是数学中常见的一种方程类型,是一种离散形式的微分方程。
在实际问题中,差分方程能够提供对系统的离散描述,对于动态模型的建立和求解具有重要作用。
MATLAB作为一种功能强大的数值计算软件,其内置了丰富的工具箱和函数,为差分方程的建模和求解提供了便利。
一、差分方程的建模差分方程的建模是将实际问题转化为数学方程的过程。
在MATLAB中,差分方程的建模可以通过定义离散系统的状态和状态转移方程来实现。
下面以一个简单的例子说明差分方程的建模过程。
假设有一个人口增长模型,人口数在每年增加10%,则差分方程可以表示为:P(n+1) = P(n) + 0.1 * P(n),其中P(n)表示第n年的人口数,P(n+1)表示第n+1年的人口数。
在MATLAB中,可以通过定义一个函数来描述差分方程的状态转移方程,代码如下:```matlabfunction Pn = population_growth(Pn_minus_1)growth_rate = 0.1;Pn = Pn_minus_1 + growth_rate * Pn_minus_1;end```上述代码定义了一个名为"population_growth"的函数,该函数的输入参数为上一年的人口数"Pn_minus_1",输出为当前年的人口数"Pn"。
其中,growth_rate表示人口增长率,根据差分方程的定义,将上一年的人口数乘以增长率再加上本身,即可得到当前年的人口数。
二、差分方程的求解方法在MATLAB中,差分方程的求解可以通过多种方法实现。
下面介绍两种常用的差分方程求解方法:欧拉法和四阶龙格-库塔法。
1. 欧拉法(Euler's method)欧拉法是差分方程求解中最简单直观的一种方法。
其基本思想是通过离散化的方式逐步逼近连续函数的解。
具体步骤如下:1) 将时间段分割成若干个小区间;2) 根据差分方程的状态转移方程,在每个小区间内进行计算;3) 迭代计算直到达到指定的时间点。
基于MATLAB的人口预测研究
基于MATLAB的人口预测研究一、本文概述1、人口预测的背景和意义在当今社会,人口预测已经成为一个至关重要的研究领域。
随着全球化的推进和科技的飞速发展,各国政府、企业和研究机构越来越意识到人口数据对未来战略规划的重要性。
人口预测不仅仅是关于数量的预测,更是对人口结构、年龄分布、性别比例、迁移趋势等多维度的综合分析。
背景上,全球人口正在经历前所未有的变化。
一些国家面临人口老龄化的严峻挑战,而另一些国家则正在经历人口爆炸式增长。
这些变化对经济发展、社会福利、环境保护等诸多方面产生深远影响。
因此,准确预测人口变化,为政策制定者提供科学依据,已成为现代社会不可或缺的任务。
在意义方面,人口预测对于国家和地区的发展至关重要。
通过人口预测,政府可以合理规划教育资源、医疗资源和社会保障资源,确保人民的基本生活需求得到满足。
人口预测对于经济发展也具有重要意义。
例如,预测劳动力市场的变化可以帮助企业调整人力资源策略,应对潜在的人才短缺或过剩问题。
人口预测还有助于环境保护和城市规划。
通过预测人口分布和迁移趋势,政府可以制定更加合理的环境保护政策和城市规划方案,实现可持续发展。
因此,基于MATLAB的人口预测研究具有重要的理论价值和现实意义。
MATLAB作为一种强大的数学计算软件,具有强大的数据处理能力和丰富的算法库,为人口预测提供了有力的工具。
通过MATLAB,研究人员可以更加准确、高效地分析人口数据,为政府决策和企业战略提供有力支持。
2、MATLAB在人口预测中的应用及优势MATLAB作为一种功能强大的科学计算与数据分析软件,其在人口预测研究中的应用越来越广泛。
MATLAB提供了丰富的数据处理和算法实现工具,使得人口预测模型的构建、参数估计、结果分析和可视化展示等过程变得高效且直观。
MATLAB在数据处理方面具有显著优势。
人口预测研究通常涉及大量的历史人口数据,这些数据往往需要进行清洗、整合和变换。
MATLAB 提供了强大的数据处理功能,包括数据导入、数据清洗、数据转换等,使得研究者能够迅速完成数据预处理工作,为后续的人口预测模型建立提供可靠的数据基础。
人口预测模型
一、问题重述人口的数量和结构是影响经济社会发展的重要因素。
从20世纪70年代后期以来,我国实行计划生育政策,有效地控制了我国人口的过快增长,对经济发展和人民生活的改善做出了积极的贡献。
但该政策实施30多年来,其负面影响也开始显现。
如临近超低生育率水平、人口老龄化、出生性别比失调等问题,这些对经济社会健康、可持续发展将产生一系列影响,引起了中央和社会各界的重视。
党的十八届三中全会提出了开放单独二孩,今年以来许多省、市、自治区相继出台了具体的政策。
政策出台前后各方面人士对开放“单独二孩”的效应进行了大量的研究和评论。
党的十八届三中全会《决定》提出,启动实施单独两孩政策。
这是新时期我国生育政策的重大调整完善,备受社会关注。
请解决以下问题:(1)针对国家卫生计生委副主任王培安单独二孩不会导致人口大增的人口预测,根据每十年一次的全国人口普查数据,建立模型,对单独二孩会不会导致人口大增进行分析,并发表自己的独立见解。
(2)建立数学模型,针对深圳市讨论计划生育新政策(可综合考虑城镇化、延迟退休年龄、养老金统筹等政策因素,但只须选择某一方面作重点讨论)对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。
二、问题分析问题1、启动实施单独二胎政策,是经过充分的论证和评估的。
对于我国目前为什么要放开二胎政策这个问题,以及为什么单独二孩不会导致人口大增是有以下情况决定的。
进入本世纪以来,我国人口形势发生了重大变化。
一是生育水平稳中趋降,我国目前总和生育率为1.5-1.6,如果不实行单独二胎新政策,总和生育率将继续下降。
二是人口结构性问题,劳动年龄人口开始减少,人口老龄化速度加快,出生人口性别比长期偏高。
三是家庭规模持续缩减。
四是城乡居民生育意愿发生很大变化,少生优生、优育优教的生育观念正在形成。
通过建立动态差分方程模型预测老龄化的人口数、劳动人口数以及总人口数。
根据预测的数据画出老龄化程度的趋势图和人口红利的趋势图,最终通过分析老龄化程度、生育率高低、出生性别比例和人口红利变化来验证单独二孩政策的必要性以及单独二孩不会导致人口大增的预测。
MATLAB计算方法与实现
(1):恢复窗口:在Desktop 中下拉式菜单中的Desktop Layout,选择Default 来恢复。
(2):在同一坐标系中,画出函数y=x^3-x-1和y=abs(x)*sin5x 的图像。
x=-1:0.1:2;y1=x.^3-x-1; y2=abs(x).*sin(5*x); plot(x,y1,'k',x,y2,':ro')legend('y1=x.^3-x-1','y2=abs(x).*sin(5*x)'),xlabel('x'),ylabel('y'),title('y1,y2画在同一坐标系中')-1-0.500.51 1.52xyy1,y2画在同一坐标系中(3):根据数据建立一个人口增长模型。
(百万)的函数并绘制出这一函数图形。
根据数学相关理论,用3,4阶多项式拟合这一函数,拟合时不计2000年的数据对,而是将这对数据用来检验并确定模型。
最后用确定的模型预测2010年美国人口。
在Command window 中输入: t=1850:10:1990;p=[23.2,31.4,38.6,50.2,62.9,75.995,91.972,105.711,123.203,131.699,150.697,179.323,203.212,226.505,249.633]; %读取数据plot(t,p,’o ’);axis([1850 2020 0 400]); title(‘Population of the U.s.1850-1990’);ylabel(‘Millions ’);%绘制出数据的函数图形并加以修饰f1=polyfit(t,p,3);f2=polyfit(t,p,4);%对数据做3,4阶多项式拟合,结果分别为f1和f2 v=[polyval(f1,2000),polyval(f2,2000)];%计算当t=2000时多项式f1,f2的值 abs(v-251.422) %计算两个模型与2000年人口数的绝对误差。
MATLAB实验-9 (2) 河南省人口预测模型 马尔萨斯人口模型
结果
functionf=fun6(x,t);
f=7285*x(1)./((x(1)-7285)*exp(-x(2)*(t-1980))+7285);
t=[1980:2010];
y=[7285 7397 7519 7632 7737 7847 7985 8148 8317 8491 8649 8763 8861 8946 9027 9100 9172 9243 9315 9387 9488 9555 9613 9667 9717 9768 9820 9869 9918 9967 10437];
由图可以看出,拟合图与真实值有较大的误差,可以推测出人口增长率不是一个固定数,人口增长与已有人口数有关,由生物学角度来说,当一种生物数量达到环境的最大容纳量时,就不会再增加了,所以我们就认为随着人口数量的增加,增长率在减小,设最大人口容纳量为Nm,则增长率为r*(1-N/Nm),就有微分方dN/dt=r*(1-N/Nm)*N,得到方程N=Nm*N0/((Nm-N0)*exp(-r*t)+N0)
x0=[1000000,0.001];
x=lsqcurvefit('fun6',x0,t,y)
f=fun6(x,t);
y0=fun6(x,2013)
plot(t,y,'*',t,f,2013,y0,'r+')
x = 1.0e+005 *
9.9993 0.0000y0 = 1.0966e+004
三、实验小结
新乡学院
数学与信息科学系实验报告
实验名称河南省人口预测模型
所属课程数学软件与实验
人口发展模型matlab实现
实验二:人口发展模型实验目的:理解马尔萨斯模型和Logistic模型,利用中国人口数据,进行参数估计,并比较模型的优劣。
实验题目:据统计,建国以来我国人口增长情况如表1:更适合人口的长期预测?并预测2006年至2015年各年人口总数。
马尔萨斯模型假设单位时间内人口增长量与当前时刻人口数成正比,即有,其中,代表增长率,为时刻人口总量,易得,这表明人口按指数变化规律增长。
Logistic模型假设人口增长率是当时人口数量的线性递减函数。
表示按自然资源和环境条件的最大人口容量;表示固有增长率,即人口很少时的增长率;当时,;当时,。
由此建立Logistic模型,求解模型得.实验程序及注释%马尔萨斯模型T=1954:2005;N=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80. 7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104. 357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85, 121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.98 8,130.756];y=log(N); %计算对数值p=polyfit(T,y,1); %线性拟合Malthus=exp(polyval(p,T)); %求线性函数值plot(T,N,'o',T,Malthus) %对原始数据和拟合后的值作图RM=sum((N-Malthus).^2) %求残差平方和%Logistic模型b0=[ 241.9598, 0.02985]; %初始参数值fun=inline('b(1)./(1+(b(1)/60.2-1).*exp(-b(2).*(t-1954)))','b','t');b1=nlinfit(T,N,fun,b0);Logistic=b1(1)./(1+( b1(1)/60.2-1).*exp( -b1(2).*(T-1954))); %非线性拟合的方程plot(T,N,'*',T,Logistic) %对原始数据与曲线拟合后的值作图RL=sum((N-Logistic).^2) %求残差平方和实验数据结果及分析马尔萨斯模型Logistic模型图1 实验结果由上图可以看出,Logistic模型对人口的拟合更加确切,其误差130.8740较马尔萨斯模型的误差757.4464更小。
MATLAB软件在人口预测中的应用——以广西为例
MATLAB软件在人口猜测中的应用——以广西为例随着人口的快速增长与城市化进程的不息推行,人口猜测成为了许多国家和地区政府的平时工作之一。
人口猜测的准确性对于制定社会经济进步规划、资源分配以及公共服务设施建设至关重要。
传统的人口猜测方法主要依靠统计学的回归模型,然而这些方法往往无法同时思量到各种影响人口增长的因素,且存在计算复杂度高和数据处理困难的问题。
而MATLAB软件的出现为人口猜测提供了一种全新的思路和工具。
MATLAB是一种广泛应用于科学计算和工程设计的高级计算机语言和环境,它在数据分析和建模方面具有强大的功能。
针对广西地区的人口猜测,我们可以利用MATLAB中的统计学工具箱和人工智能工具箱来进行数据处理和分析。
起首,我们需要得到广西地区的历史人口数据,包括每年的总人口数、男女比例、年龄结构等信息。
然后,我们可以利用MATLAB的数据导入工具对数据进行导入和整理,使其适合后续的分析。
在进行人口猜测之前,我们需要起首进行数据的可视化和探究性分析,以了解数据的特点和趋势。
MATLAB提供了丰富的绘图函数和工具,可以援助我们对数据进行可视化。
例如,我们可以使用MATLAB的plot函数绘制广西地区的总人口数随时间变化的折线图,以观察人口增长的趋势和规律。
同时,我们还可以利用MATLAB的histogram函数绘制各个年龄段人口数量的直方图,以了解广西地区的年龄结构。
针对广西地区的人口猜测,我们可以运用MATLAB中的回归分析方法。
回归分析可以通过对历史数据进行拟合和猜测,来推断将来人口的变化趋势。
MATLAB提供了多种回归分析的函数和工具,例如线性回归、多项式回归等。
我们可以依据广西地区的历史人口数据,选择适当的回归模型进行拟合,并对将来几年的人口进行猜测。
另外,MATLAB还提供了人工智能工具箱,可以用于构建更加复杂和精确的人口猜测模型。
例如,我们可以利用人工神经网络和支持向量机等算法来构建人口猜测模型,并利用历史数据进行训练和优化。
数学建模作业-人口增长模型
论文结构合理,模型建立详细,思想明确,论述清楚程序和拟合是文章的亮点,模型建立完了没有做误差分析,如果补完整是一篇很不错的文章。
摘要•随着科学技术的发展,国内资金积累量在不断增加,但是中国人口近几年还是呈增加的趋势,这样就会影响人均收入。
由于国民收入是资金积累的一部分,国民收入变化可以反映资金积累的变化。
因此研究资金积累、国民收入与人口增长的关系可以转化成研究资金积累与人口增长的关系。
若国民平均收入与按人口平均资金积累成正比,说明仅当资金积累的相对增长率大于人口的相对增长率时,国民平均收入才是增长的。
所以认识资金积累与人口增长的关系,对国民平均收入的增长有重大意义。
本文通过微分方程建立三个模型,即人口Malthus模型、资金积累指数模型、资金积累增长率与人口增长率的二次曲线模型。
通过资金积累与人口增长的关系来分析国民平均收入。
关键词:资金积累人口增长国民平均收入资金积累增长率人口增长率一、问题的重述资金积累、国民收入、与人口增长的关系:(1)若国民平均收入x与按人口平均资金积累y成正比,说明仅当总资金积累的相对增长率k大于人口的相对增长率r时,国民平均收入才是增长的. (2)作出k(x)和r(x)的示意图,分析人口激增会引起什么后果.二、问题分析人均国民收入主要与国家资金总积累量和总人口数有关,若总人口数的增长率大于资金积累增长率,则增长的资金不能使每一位国民增加收入,只能使少量国民收入增加,因此,总体来说,国家人均收入实际上是减少的。
三、模型假设假设总资金增长和人口增长均为指数增长,资金积累增长率和人口增长率为二次曲线模型。
四、符号说明a为国民收入在总资金积累中所占比例;y(t)为总资金积累量;N(t)为总人口数;Nm为人口的峰值;x(t) 为人均国民收入;r 为人口增长率;k 为资金积累增长率。
五、模型的建立与求解(1)人口增长模型曲线如图1所示:图1通过图形,用MATLAB 编程可建立指数增长模型6110)()(⨯+=⨯tet N αα 其中0127.01=α 0058.02=α(2)总资金积累模型曲线如图2所示:图2由曲线可知资金增长是呈指数整长的并通过MATLAB编程得到指数模型:y(t)=(0.001+e x003.0) 106。
数学建模30种经典模型matlab
一、概述数学建模是数学与实际问题相结合的产物,通过建立数学模型来解决现实生活中的复杂问题。
Matlab作为一个强大的数学计算工具,在数学建模中具有重要的应用价值。
本文将介绍30种经典的数学建模模型,以及如何利用Matlab对这些模型进行建模和求解。
二、线性规划模型1. 线性规划是数学建模中常用的一种模型,用于寻找最优化的解决方案。
在Matlab中,可以使用linprog函数对线性规划模型进行建模和求解。
2. 举例:假设有一家工厂生产两种产品,分别为A和B,要求最大化利润。
产品A的利润为$5,产品B的利润为$8,而生产每单位产品A 和B分别需要8个单位的原料X和10个单位的原料Y。
此时,可以建立线性规划模型,使用Matlab求解最大化利润。
三、非线性规划模型3. 非线性规划是一类更加复杂的规划问题,其中目标函数或约束条件存在非线性关系。
在Matlab中,可以使用fmincon函数对非线性规划模型进行建模和求解。
4. 举例:考虑一个有约束条件的目标函数,可以使用fmincon函数在Matlab中进行建模和求解。
四、整数规划模型5. 整数规划是一种特殊的线性规划问题,其中决策变量被限制为整数。
在Matlab中,可以使用intlinprog函数对整数规划模型进行建模和求解。
6. 举例:假设有一家工厂需要决定购物哪种机器设备,以最大化利润。
设备的成本、维护费用和每台设备能生产的产品数量均为已知条件。
可以使用Matlab的intlinprog函数对该整数规划模型进行建模和求解。
五、动态规划模型7. 动态规划是一种数学优化方法,常用于多阶段决策问题。
在Matlab 中,可以使用dynamic programming toolbox对动态规划模型进行建模和求解。
8. 举例:考虑一个多阶段生产问题,在每个阶段都需要做出决策以最大化总利润。
可以使用Matlab的dynamic programming toolbox对该动态规划模型进行建模和求解。
数学建模logistic人口增长模型
Logistic人口发展模型一、题目描述建立Logistic人口阻滞增长模型,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与国家人口发展战略研究报告中提供的预测值进行分析比较.二、建立模型阻滞增长模型Logistic 模型阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的.阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降.若将r 表示为x 的函数)(x r .则它应是减函数.于是有:)0(,)(x x x x r dtdx==1对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即)0,0()(>>-=s r sxr x r2设自然资源和环境条件所能容纳的最大人口数量m x ,当m x x =时人口不再增长,即增长率0)(=m x r ,代入2式得m x rs =,于是2式为 )1()(mx x r x r -= 3将3代入方程1得:⎪⎩⎪⎨⎧=-=0)0()1(x x x x rx dtdxm 4解得:rt mme x x x t x --+=)1(1)(05三、模型求解用Matlab求解,程序如下:t=1954:1:2005;x=60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74. 5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97. 5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111. 026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122. 389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129 .988,130.756;x1=60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74 .5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97 .5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111 .026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122 .389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,12 9.988;x2=61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76 .3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98 .705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026, 112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389, 123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988 ,130.756;dx=x2-x1./x2;a=polyfitx2,dx,1;r=a2,xm=-r/a1%求出xm和rx0=61.5;f=inline'xm./1+xm/x0-1exp-rt-1954','t','xm','r','x0';%定义函数plott,ft,xm,r,x0,'-r',t,x,'+b';title'1954-2005年实际人口与理论值的比较'x2010=f2010,xm,r,x0x2020=f2020,xm,r,x0x2033=f2033,xm,r,x0解得:xm= 180.9516千万,r= 0.0327/年,x0=61.5得到1954-2005实际人口与理论值的结果:根据国家人口发展战略研究报告我国人口在未来30年还将净增2亿人左右.过去曾有专家预测按照总和生育率2.0,我国的人口峰值在2045年将达到16亿人.根据本课题专家研究,随着我国经济社会发展和计划生育工作加强,20世纪90年代中后期,总和生育率已降到1.8左右,并稳定至今.实现全面建设小康社会人均GDP达到3000美元的目标,要求把总和生育率继续稳定在1.8左右.按此预测,总人口将于2010年、2020年分别达到13.6亿人和14.5亿人,2033年前后达到峰值15亿人左右见图1.劳动年龄人口规模庞大.我国15-64岁的劳动年龄人口2000年为8.6亿人,2016年将达到高峰10.1亿人,比发达国家劳动年龄人口的总和还要多.在相当长的时期内,中国不会缺少劳动力,但考虑到素质、技能等因素,劳动力结构性短缺还将长期存在.同时,人口与资源、环境的矛盾越来越突出.而据模型求解:2010年人口:x2010= 137.0200千万专家预测13.6亿误差为0.7% 2020年人口:x2020= 146.9839千万专家预测14.5亿误差为1.3% 2033年人口:x2033= 157.2143千万专家预测 15亿误差为4.8% 2045年人口:x2045= 164.6959千万专家预测 16亿误差为4.1%五、预测1. 1954-2005总人口数据建立模型:r=0.0327 xm=180.95162010年人口:x2010= 137.0200千万专家预测13.6亿误差为0.7% 2020年人口:x2020= 146.9839千万专家预测14.5亿误差为1.3% 2033年人口:x2033= 157.2143千万专家预测 15亿误差为4.8% 2045年人口:x2045= 164.6959千万专家预测 16亿误差为4.1% 2. 1963-2005总人口数据建立模型:r=0.0493 xm=150.52612010年人口:x2010= 134.1612千万专家预测13.6亿误差为1.4% 2020年人口:x2020= 140.0873千万专家预测14.5亿误差为3.4% 2033年人口:x2033= 144.8390千万专家预测 15亿误差为3.4% 2045年人口:x2045= 147.3240千万专家预测 16亿误差为7.6% 3.1980-2005总人口数据建立模型:r=0.0441 xm=156.32972010年人口:x2010= 135.2885千万专家预测13.6亿误差为0.5% 2020年人口:x2020= 142.1083千万专家预测14.5亿误差为2.0%2033年人口:x2033= 147.9815千万专家预测 15亿误差为1.3% 2045年人口:x2045= 151.3011千万专家预测 16亿误差为5.4%总体来看,1980-2005这一组数据拟合出的人口模型比较好,即与已有数据吻合,又与专家预测误差较小.从历史原因来分析:1954年之后的1959-1961年间,有三年自然灾害故而使得实际人口数据与估计有所偏颇.1960年之后为过渡时期.1983年之后开始实施“计划生育政策”,一直至今,所以1980-2005年间的数据与预测分析最好.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二:人口发展模型
实验目的:
理解马尔萨斯模型和Logistic模型,利用中国人口数据,进行参数估计,并比较模型的优劣。
实验题目:
据统计,建国以来我国人口增长情况如表1:
表1各年份中国总人口数(单位:千万)
年
份1954 1955 1956 1957 1958 1959 1960 1961 1962 人
口60.2 61.5 62.8 64.6 66.0 67.2 66.2 65.9 67.3 年
份1963 1964 1965 1966 1967 1968 1969 1970 1971 人
口69.1 70.4 72.5 74.5 76.3 78.5 80.7 83.0 85.2 年
份1972 1973 1974 1975 1976 1977 1978 1979 1980 人
87.1 89.2 90.9 92.4 93.7 95.0 96.259 97.5 98.705 口
年
份1981 1982 1983 1984 1985 1986 1987 1988 1989 人101.65 103.00 104.35 105.85 111.02 112.70 口100.1 4 8 7 1 107.5 109.3 6 4
年
份1990 1991 1992 1993 1994 1995 1996 1997 1998 人114.33 115.82 117.17 118.51 119.85 121.12 122.38 123.62 124.76 口 3 3 1 7 0 1 9 6 1
年
份1999 2000 2001 2002 2003 2004 2005
人125.78 126.74 127.62 128.45 129.22 129.98 130.75
口 6 3 7 3 7 8 6
1数据,
以马尔萨斯模型和Logistic模型来拟合表比较两种模型,哪种模型
更适合人口的长期预测?并预测2006年至2015年各年人口总数。
马尔萨斯模型假设单位时间内人口增长量与当刖时刻人口数成止比,
即有J dT =' 其中r代表增长率,为*时刻人口总量,易得\诃=
『:八-H"',这表明人口按指数变化规律增长。
Logistic 模型 假设人口增长率是当时人口数量 的线性递减函数
巨玉]。
了,表示按自然资源和环境条件的最大人口容量;F 表示固有增长率,即人 口很少时的增长率;当• I 时,—r :-;当」* " 时,^ '1*0由此 建立Logistic 模型丨小 -:
",求解模型得”八
'.
1 ^(0) =
1 + _ i)e-^
实验程序及注释
%马尔萨斯模型 T=1954:2005;
N=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80. 7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104. 357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85, 121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.98 8,130.756];
y=log(N); %计算对数值
p=polyfit(T,y,1);
Malthus=exp(polyval(p,T));
plot(T,N,'o',T,Malthus) RM=sum((N-Malthus).A 2) %Logistic 模
型
b0=[ 241.9598, 0.02985];
fun=inline('b(1)./(1+(b(1)/60.2-1).*exp(-b(2).*(t-1954)))' ,'b','t'); b1= nlinfit(T, N,fun,b0);
Logistic=b1(1)./(1+( b1(1)/60.2-1).*exp( -b1(2).*(T-1954))); %非线性拟合的方 程 plot(T, N,'*' ,T,Logistic) %对原始数据与曲线拟合后的值作图 RL=sum((N-Logistic).A2) % 求残差平方和
图1实验结果
%线性拟合 %求线性函数值 %对原始数据和拟合后的值作图 %求残差平方和
%初始参数值
实验数据结果及分析
由上图可以看出,Logistic模型对人口的拟合更加确切,其误差130.8740较马尔萨斯模型的误差757.4464更小。
利用Logistic模型预测2006年至2015年各
由马尔萨斯模型”八可得,随着时间的推移,人口数量将会无限的
增大,这显然是不合理的,导致这一问题的一个明显原因就是,马尔萨斯原型没有考虑环境的承受能力这一限制。
而Logistic模型则
1 -F (如-l)e~rt 考虑了自然环境对人口数量以及增长率的限制,即随着时间的推移,人口数量会
渐渐增大,但人口的增长率会慢慢减小,直至等于0,此时人口将会达到环境所
能承受的最大值。
实验结论
相比于马尔萨斯模型,Logistic模型更适合长期的人口预测。