(新)高一数学必修3第二章统计复习题和答案

合集下载

高一数学人教A版必修三练习:第二章统计2.2.1含解析

高一数学人教A版必修三练习:第二章统计2.2.1含解析

(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.对于样本频率分布折线图与总体密度曲线的关系,下列说法中正确的是()A.频率分布折线图与总体密度曲线无关B.频率分布折线图就是总体密度曲线C.样本容量很大的频率分布折线图就是总体密度曲线D.如果样本容量无限增大、分组的组距无限减小,那么频率分布折线图就会无限接近总体密度曲线解析:总体密度曲线通常是用样本频率分布估计出来的.而频率分布折线图在样本容量无限增大,分组的组距无限减小的情况下会无限接近于一条光滑曲线,这条光滑曲线就是总体密度曲线.答案: D2.下面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知()A.甲运动员的成绩好于乙运动员B.乙运动员的成绩好于甲运动员C.甲、乙两名运动员的成绩没有明显的差异D.甲运动员的最低得分为0分解析:从茎叶图可以看出,甲运动员的成绩集中在大茎上的叶多,故成绩好.故选A.答案: A3.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )A .45B .50C .55D .60解析: 设该班人数为n ,则20×(0.005+0.01)n =15,n =50,故选B. 答案: B4.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在[2 700,3 000)内的频率为( )A .0.001B .0.1C .0.2D .0.3解析: 由频率分布直方图的意义可知,各小长方形的面积=组距×频率组距=频率,即各小长方形的面积等于相应各组的频率.在区间[2 700,3 000)内频率的取值为(3 000-2 700)×0.001=0.3.故选D.答案: D二、填空题(每小题5分,共15分)5.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000)(元)月收入段应抽出________人.解析:由题意得在[2500,3000)(元)月收入段应抽出的人数为0.0005×500×100=25.答案:256.某省选拔运动员参加2015年的全运会,测得7名选手的身高(单位:cm)分布茎叶图如图所示,记录的平均身高为177 cm,其中有一名候选人的身高记录不清,其末位数为x,那么x的值为________.解析:依题意得180×2+1+170×5+3+x+8+9=177×7,x=8.答案:87.下面是某中学期末考试各分数段的考生人数分布表:则分数在[700,800)的人数为________人.解析:由于在分数段[400,500)内的频数是90,频率是0.075,则该中学共有考生900.075=1 200,则在分数段[600,700)内的频数是1 200×0.425=510,则分数在[700,800)内的频数,即人数为1 200-(5+90+499+510+8)=88.答案:88三、解答题(每小题10分,共20分)8.下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位:cm).(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134 cm的人数占总人数的百分比.解析:(1)样本频率分布表如下:(2)其频率分布直方图如下:(3)由样本频率分布表可知身高小于134 cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm 的人数占总人数的19%.9.为了调查甲、乙两个交通站的车流量,随机选取了14天,统计每天上午8:00~12:00间各自的车流量(单位:百辆),得如图所示的统计图,试求:(1)甲、乙两个交通站的车流量的极差分别是多少? (2)甲交通站的车流量在[10,40]间的频率是多少? (3)甲、乙两个交通站哪个站更繁忙?并说明理由.解析: (1)甲交通站的车流量的极差为73-8=65(百辆),乙交通站的车流量的极差为71-5=66(百辆).(2)甲交通站的车流量在[10,40]间的频率为414=27.(3)甲交通站的车流量集中在茎叶图的下方,而乙交通站的车流量集中在茎叶图的上方,从数据的分布情况来看,甲交通站更繁忙.。

高中数学必修3第二章:统计2.3变量间的相关关系

高中数学必修3第二章:统计2.3变量间的相关关系
答案 (3,2.5)
Y 研考点·知规律
探究悟道 点拨技法
题型一 相关关系的判断 【例 1】 河北国欣农研会的科研人员在 7 块并排、形状大小 相同的试验田上对某棉花新品种进行施化肥量 x 对产量 y 影响的 试验,得到如下表所示的一组数据(单位:kg): 施化肥量 x 15 20 25 30 35 40 45 棉花产量 y 330 345 365 405 445 450 455
D 读教材·抓基础
回扣教材 扫除盲点
课本导读
1.两个变量的线性相关 (1)在散点图中,点散布在从 左下角 到 右上角的区域,对于 两个变量的这种相关关系,我们将它称为正相关. (2)在散点图中,点散布在从 左上角 到 右下角的区域,两个 变量的这种相关关系称为负相关. (3)如果散点图中点的分布在整体上看大致在一条直线附近 , 就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.
() (A)她儿子10岁时的身高一定是145.83 cm (B)她儿子10岁时的身高在145.83 cm以上 (C)她儿子10岁时的身高在145.83 cm左右 (D)她儿子10岁时的身高在145.83 cm以下
2.经调查知,某品牌汽车的销售量y(辆)与广告费用x(万元)之 间的回归直线方程为 yˆ =250+4x,当广告费用为50万元时,预计 汽车销售量约为 ______辆.
2.回归方程 (1)最小二乘法:使得样本数据的点到回归直线的 距离的平方
和最小的方法叫最小二乘法.
(2)回归方程:两个具有线性相关关系的变量的一组数据:(x1,
^^ ^
y1)、(x2,y2),…,(xn,yn).其回归方程为y=bx+a,则
n
n
xi- x yi- y xiyi-n x y

(完整版)高一数学必修3第二章统计复习题和答案

(完整版)高一数学必修3第二章统计复习题和答案

高一数学必修 3 第二章统计复习题一、选择题1.某机构进行一项市场检查,规定在某商场门口随机抽一个人进行咨询检查,直到检查到预先规定的检查人数为止,这类抽样方式是A .系统抽样B.分层抽样C.简单随机抽样D.非以上三种抽样方法2.一个年级有 12 个班,每个班的同学从 1 至 50 排学号,为了沟通学习经验,要求每班学号为14 的同学留下进行沟通,这里运用的是A. 分层抽样B. 抽签抽样C.随机抽样D. 系统抽样3. 某单位有员工750 人,此中青年员工350 人,中年员工250 人,老年员工150 人,为了认识该单位员工的健康状况,用分层抽样的方法从中抽取样本,若样本的青年员工为7 人,则样本容量为A .7B.15C. 25D. 354.为认识 1200 名学生对学校教改试验的建议,打算从中抽取一个容量为30的样本,考虑采纳系统抽样,则分段的间隔k 为A. 40B. 30C. 20D. 125.在某项体育竞赛中,七位裁判为一选手打出的分数以下:90899095939493去掉一个最高分和一个最低分后,所剩数据的均匀值和方差分别为A . 92,2B. 92, 2.8C. 93, 2 D . 93, 2.86.变量 y 与 x 之间的回归方程A .表示 y 与 x 之间的函数关系B .表示 y 和 x 之间的不确立关系C.反应 y 与 x 之间的真切关系达到最大限度的符合 D .反应 y 和 x 之间真切关系的形式7. 线性回归方程?y bx a 必过点A . (0,0)B. ( x, 0)C. (0,y )D. ( x,y )8.在以下各图中,每个图的两个变量拥有有关关系的图是( 1)( 2)(3)(4)A .( 1)( 2)B.( 1)( 3)C.( 2)( 4)D.( 2)( 3)9.一个容量为 40 的样本数据分组后组数与频数以下:[25, 25.3), 6;[ 25.3, 25.6),4;[ 25.6,25.9), 10;[ 25.9, 26.2), 8;[ 26.2, 26.5), 8;[ 26.5, 26.8), 4;则样本在[25,25.9)上的频次为31C.1D.1A .B .20102410.容量为100的样本数据,按从小到大的次序分为8组,以下表:组号12345678数 10 13x14 1513129第三 的 数和 率分 是()A 14 和 0.14B0.14 和 14C1和 0.14D1 和 114 3 1411. 已知数据 a 1, a 2 ,..., a n 的均匀数 a ,方差 S 2 , 数据 2a 1 ,2a 2 ,..., 2a n 的均匀数和方差 ( )A . a, S 2B . 2a, S 2C . 2a, 2S 2D . 2a, 4S 212、在抽 品尺寸的 程中,将其尺寸分红若干 ,[a ,b ]是此中的一 ,抽 出的个体在 上的 率m , 上的直方 的高h , | a b | ()A .mB . hmC .hD . h mhm二、填空13. 一个 体的60 个个体的 号0,1,2,⋯ ,59, 要从中抽取一个容量 10 的 本,依据 号按被6 除余 3 的方法,取足 本, 抽取的 本号 是.14. 甲、乙两人在 10 天中每日加工部件的个数用茎叶 表示(以下 ),中 一列的数字表示部件个数的十位数,两 的数字表示部件个数的个位数. 10 天甲、乙两人日加工部件的均匀数分和.甲乙9 8 1 9 7 10 1 3 2 0 21 42 41 1 5 3 0 215. 已知 本 9,10,11, x, y 的均匀数是 10 , 准差是2 , xy.16. 假如数据 x 1 , x 2 , ⋯ , x n 的均匀数 4, 方差 0.7, 3x 1 + 5 , 3x 2 + 5 ,⋯, 3x n + 5 的平均数是,方差是.17. 某市居民 2005 ~2009 年家庭年均匀收入 x ( 位: 万元) 与年均匀支出 Y ( 位: 万元)的 料以下表所示:年份 2005 2006 2007 2008 2009 收入 x 11.5 12.1 13 13.3 15支出 Y6.88.89.81012依据 料,居民家庭年均匀收入的中位数是,家庭年均匀收入与年均匀支出有性有关关系.18.从某小学随机抽取 100 名同学,将他 身高( 位:厘米)数据 制成 率散布直方 (如 ).由 中数据0.035可知 a =.a频次组距若要从身高在 [ 120,130 , [ 130, 140 , [ 140, 150 0.020三 内的学生中,用分 抽 的方法 取18 人参加一 0.0100.005活 , 从身高在 [ 140, 150] 内的学生中 取的人数O100 110 120 130 140 150身高.三、解答19.在 2007 全运会上两名射运甲、乙在比中打出以下成:甲: 9.4, 8.7,7.5, 8.4,10.1, 10.5, 10.7, 7.2, 7.8, 10.8;乙: 9.1, 8.7,7.1, 9.8,9.7, 8.5, 10.1,9.2, 10.1, 9.1;( 1)用茎叶表示甲,乙两个成;并依据茎叶剖析甲、乙两人成;( 2)分算两个本的均匀数x 和准差 s ,并依据算果估哪位运的成比定.甲乙频次组距20.“你低碳了?” 是某市倡建型社会而布的公益广告里的一句.活者了认识广告的宣成效,随机抽取了120 名年在0.025 0.020[10 , 20) , [20 , 30) ,⋯, [50 ,60)的市民行0.015卷,由此获得的本的率散布直方如所示.0.005(1)依据直方填写右边率散布表;0102030405060年纪(2)依据直方,估受市民年的中位数(保存整数);分组频数频次(3)按分抽的方法在受市民中抽取n 名市民作本次[10,20)18活的者,若在 [10, 20)的年中随机抽取了 6 人,0.15的 n 多少?[20,30)30[30,40)[40,50)0.2[50,60)60.0521.以下是某地收集到的新房子的销售价钱y 和房子的面积x的数据:房子面积( m2)11511080135105销售价钱(万元)24.821.618.429.222(1)画出数据对应的散点图;(2)求线性回归方程;(3)据( 2)的结果预计当房子面积为150m2时的销售价钱 .(此题建议使用计算器)销售价钱(万元)3530252015105房子面积 (m 2) 70809010011012013014022.为了认识初三学生女生身高状况,某中学对初三女生身高进行了一次丈量,所得数据整理后列出了频次散布表以下:组别频数频次[145.5 ,149.5)10.02[149.5 ,153.5)40.08[153.5 ,157.5)200.40[157.5 ,161.5)150.30[161.5 ,165.5)80.16[165.5 ,169.5)m n合计M N ( 1)求出表中m, n, M , N所表示的数;频次( 2)画出频次散布直方图;组距0.10.090.080.070.060.050.040.030.020.01O145.5 149.5 153.5 157.5 161.5 165.5 169.5身高高一数学必修 3 第二章统计复习题答案一、选择题DDBAB CDDCA DA二、填空题13.3, 9, 15, 21, 27, 33, 39, 45, 51, 5714.24 , 2315.9616.17 , 6.317.13 ,正18.0.0303三、解答题19.( 1)以下图,茎表示成绩的整数环数,叶表示小数点后的数字.甲乙8257147875491872187511011由上图知,甲中位数是 9.05 ,乙中位数是 9.15,乙的成绩大概对称,能够看出乙发挥稳固性好,甲颠簸性大.( 2)解:甲1) =9.11. =′( 9.4+8.7+7.5+8.4+10.1+10.5+10.7+7.2+7.8+10.810s甲=1[(9.49.11) 2(8.7 9.11) 2... (10.89.11) 2 ] =1.3.10x乙=1? (9.1+8.7+7.1+9.8+9.7+8.5+10.1+9.2+10.1+9.1)= 9.14.10s乙 =1(22(2= 0.9.)())[ 9.1-9.14 + 8.7 - 9.14 + 鬃?9.1- 9.1410由 s甲 > s乙,这说了然甲运动员的颠簸大于乙运动员的颠簸,因此我们预计,乙运动员比较稳固.分组 频数 频次[10,20) 18 0.1520.解:( 1)[20,30) 30 0.25[30,40) 42 0.35[40,50) 24 0.2[50,60)60.05( 2)由已知得受访市民年纪的中位数为()0.1= 30+100? 33 (岁);30 + 0.5 - 0.015? 100.025? 10 = 30 +0.035 0.03535(3) 由6=n,解得 n = 40 .18 12021.解:( 1)数据对应的散点图以下图:销售价钱(万元) 3530251 5520 ( 2) xx i 109 , l xx( x i x) 2 1570 ,155 i 1i 11055y 23.2,l xy( x i x)( y i y)308i房子面积 (m 2)170 80 90 100 110 120 130 140设所求回归直线方程为$l xy308 0.1962 ;y = bx + a ,则 b1570lxxa y bx 23.21093081.81661570故所求回归直线方程为 y 0.1962 x 1.8166( 3)据(2),当 x150m 2 时,销售价钱的预计值为:y 0.1962 150 1.816631.2466 (万元)1 50, m 50 (1 4 20 15 8) 222.解:( 1) M0.022频次 N 1,n0.04组距500.1 ( 2)如右图0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01O145.5 149.5 153.5 157.5 161.5 165.5 169.5 身高。

高一数学人教A版必修三练习第二章 统计2.1.1 Word版含解析

高一数学人教A版必修三练习第二章 统计2.1.1 Word版含解析

(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题分,共分).下面的抽样方法是简单随机抽样的是( ).在某年明信片销售活动中,规定每万张为一个开奖组,通过随机抽取的方式确定号码的后四位为的为三等奖.某车间包装一种产品,在自动包装的传送带上,每隔分钟抽一包产品,检验其质量是否合格.某学校分别从行政人员、教师、后勤人员中抽取人、人、人了解学校机构改革的意见.用抽签法从件产品中选取件进行质量检验解析:对每个选项逐条落实简单随机抽样的特点、不是简单随机抽样,因为抽取的个体间的间隔是固定的;不是简单随机抽样,因为总体的个体有明显的层次;是简单随机抽样.答案:.已知总体容量为,若用随机数表法抽取一个容量为的样本,下面对总体的编号正确的是( ),,…,,,…,,,…,,,…,解析:用随机数表法抽取样本时,样本的编号位数要一致,故选.答案:.从总数为的一批零件中抽取一个容量为的样本,若每个零件被抽取的可能性为,则为( )解析:∵每个个体被抽到机会相等,都是=,∴=.答案:.用简单随机抽样方法从含有个个体的总体中,抽取一个容量为的样本,其中某一个体“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( ),,,,解析:简单随机抽样中每个个体被抽取的机会均等,都为.答案:二、填空题(每小题分,共分).(·苏州高一期中)某中学高一年级有人,高二年级有人,高三年级有人,以每人被抽取的机会为,从该中学学生中用简单随机抽样的方法抽取一个样本,则样本容量为W.解析:=(++)×=.答案:.关于简单随机抽样,有下列说法:①它要求被抽取样本的总体的个数有限;②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④它是一种等可能性抽样,每次从总体中抽取一个个体时,不仅各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.其中正确的有(请把你认为正确的所有序号都写上).解析:由随机抽样的特征可判断.答案:①②③④.假设要考察某公司生产的克袋装牛奶的质量是否达标,现从袋牛奶中抽取袋进行检验,利用随机数表抽取样本时,先将袋牛奶按,,…,进行编号,如果从随机数表第行第列的数开始向右读,请你依次写出最先检测的袋牛奶的编号W.(下面摘取了随机数表第行至第行)解析:找到第行第列的数开始向右读,第一个符合条件的是,第二个数大于,要舍去,第三个数也要舍去,第四个数符合题意,这样依次读出结果.答案:,,,,。

高中数学必修3(人教B版)第二章统计2.3知识点总结含同步练习题及答案

高中数学必修3(人教B版)第二章统计2.3知识点总结含同步练习题及答案

描述:例题:高中数学必修3(人教B版)知识点总结含同步练习题及答案第二章 统计 2.3 变量的相关性一、学习任务1. 能通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.2. 了解线性回归的方法,了解用最小二乘法研究两个变量的线性相关问题的思想方法,会根据给出的线性回归方程系数公式建立线性回归方程(不要求记忆系数公式).二、知识清单变量间的相关关系相关关系 线性相关三、知识讲解1.变量间的相关关系2.相关关系变量与变量之间的关系一类是确定性的函数关系,像正方形的边长 和面积 的关系 .另一类是变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的.例如,人的身高不能确定体重,但一般说来“身高者,体也重”.我们说身高与体重这两个变量具有相关关系.函数关系与相关关系的异同点相同点:是两者均是指两个变量的关系;不同点:①函数关系是一种确定性的关系,相关关系是一种非确定性的关系.②函数关系式一种因果关系,而相关关系不一定是因果关系,其也可能是伴随关系.a S 给出下列关系:①正方形的边长与面积之间的关系;②水稻产量与施肥量之间的关系;③降雪量与交通事故的发生率之间的关系.其中具有相关关系的是______.解:②③两个变量之间的关系有两种:函数关系与相关关系.①正方形的边长和面积之间的关系是函数关系.②水稻产量与施肥量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.③降雪量与交通事故的发生率具有相关关系.下图中的两个变量是相关关系的是( )描述:3.线性相关两个变量的线性关系对具有相关关系的两个变量进行统计分析的方法叫回归分析.将样本中的个数据点(,,,)描在平面直角坐标系中,就得到了散点图.如果两个变量的散点图中的点散步在左下角到右上角的区域,即一个变量的值由小变大时,另一个变量的值也由小变大,我们将这种相关称为正相关.如果两个变量的散点图中的点散步的位置是从左上角到右下角的区域,即一个变量的值由小变大是,另一个变量的值由大变小,我们将这种相关称为负相关.如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量具有线性相关关系.回归直线方程“最贴近”已知的数据点的直线方程称之为回归直线方程,简称回归方程,方程为,叫做回归系数.刻画了实际观察值与回归直线上相应点纵坐标之间的偏离程度,个离差构成的总离差越小越好,总离差通常是用离差的平方和来表示,即作为总离差,并使之达到最小.回归直线就是所有直线中取最小的那一条.由于平方又叫二乘方,所以这种使“离差平方和最小”的方法,叫做最小二乘法.A.①② B.①③ C.②④ D.②③解:D①属于函数关系,因为每个 值对应一个 值,这是确定性的关系;②中散点图中各点分布的区域大致为从左下角到右上角,没有确定的函数关系,但是具有相关关系;③中散点图分布的区域大致在一条曲线附近,对于每个 ,其对应的 呈现出一定的规律性,因此这两个变量具有相关关系;④ 中各点的分布比较均匀,但对于每个 , 的分布没有规律,因此不属于相关关系.x y x y x y n (,)x i y i i =12⋯n =a +bx y ^b −y i y ^i y i n Q =(−a −b ∑i =1ny i x i )2Q(),得散点图2.由这两个散点图可以判断( )(,)u i v i i =12⋯10高考不提分,赔付1万元,关注快乐学了解详情。

(完整版)人教版高一数学必修三第二章统计全部教案和测试题

(完整版)人教版高一数学必修三第二章统计全部教案和测试题

人教版高一数学必修三第二章统计目录简单随机抽样(新讲课)系统抽样(新讲课)分层抽样(新讲课)2用样本的频次散布预计整体散布(2 课时 ) (新讲课)用样本的数字特色预计整体的数字特色(2 课时 ) (新讲课)变量之间的有关关系(新讲课)两个变量的线性有关(第一课时)(新讲课)两个变量的线性有关(第二课时)(新讲课)生活中线性有关实例(第三课时)(新讲课)第二章统计单元检测题(一)第二章统计单元检测题(一)参照答案第二章统计单元检测题(二)第二章统计单元检测题(二)参照答案第二章统计单元检测题(三)第二章统计单元检测题(三)参照答案第二章统计一、课程目标:本章主要介绍最基本的获得样本数据的方法,以及集中从样本数据中提守信息的统计方法,此中包含用样本预计整体散布、数字特色和线性回归等内容。

本章经过实质问题,进一步介绍随机抽样、样本预计整体、线性回归的基本方法。

二、学习目标:1、随机抽样(1)能从现实生活或其余学科中提出拥有一订价值的统计问题。

(2)联合详细的实质问题情境,理解随机抽样的必需性和重要性。

(3)在参加解决统计问题的过程中,学会用简单随机抽样从整体中抽取样本;经过对实例的剖析,认识分层抽样和系统抽样方法。

(4)经过试验、查阅资料、设计检盘问卷等方法采集数据。

2、用样本预计整体(1)经过实例领会散布的意义和作用,在表示样本数据的过程中,学会列频次散布彪、花频次散布直方图、频次折线图、茎叶土,领会它们各自的特色。

(2)经过实例理解样本数据标准差的意义和作用,学会计算数据样本差。

(3)能依据实质问题的需求合理地选用样本,从样本数据中提取基本的数字特色,并做出合理的解说。

(4)进一步领会用样本预计整体的思想。

(5)会用随机抽样的基本方法和样本预计整体的思想,解决一些简单的实质问题。

(6)形成对数据办理过程进行初步评论的意识。

3、变量的有关性(1)经过采集现实问题中两个有关系变量的数据作出散点图,并利用散点图直观认识变量间的有关关系。

(完整版)高一数学必修3第二章统计复习题和答案

(完整版)高一数学必修3第二章统计复习题和答案

(完整版)高一数学必修3第二章统计复习题和答案高一数学必修 3 第二章统计复习题一、选择题1.某机构进行一项市场调查,规定在某商场门口随机抽一个人进行询问调查,直到调查到事先规定的调查人数为止,这种抽样方式是A .系统抽样 B.分层抽样 C.简单随机抽样D.非以上三种抽样方法一个年级有 12 个班,每个班的同学从 1 至 50 排学号,为了交流学习经验,要求每班学号为 14 的同学留下进行交流,这里运用的是A.分层抽样B.抽签抽样C.随机抽样D.系统抽样3. 某单位有职工750 人,其中青年职工350 人,中年职工250 人,老年职工150 人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本的青年职工为7 人,则样本容量为A .7B.15C. 25D. 354.为了解 120名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k 为A.40B.30C.20D.125.在某项体育比赛中,七位裁判为一选手打出的分数如下:90899095939493去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为A . 92,2B. 92, 2.8C. 93, 2D . 93, 2.8变量 y 与之间的回归方程A .表示 y 与之间的函数关系B .表示 y 和之间的不确定关系C.反映 y 与之间的真实关系达到最大限度的吻合 D .反映 y 和之间真实关系的形式7. 线性回归方程y b a 必过点A . (0,0)B. ( , 0)C. (0, y )D. ( , y )8.在下列各图中,每个图的两个变量具有相关关系的图是( 1)( 2)(3)(4)A .( 1)( 2)B.( 1)( 3)C.( 2)( 4)D.( 2)( 3)9.一个容量为 40 的样本数据分组后组数与频数如下:[25, 25.3), 6;[ 25.3, 25.6),4;[ 25.6,25.9), 10;[ 25.9, 26.2), 8;[ 26.2, 26.5), 8;[ 26.5,26.8), 4;则样本在[25,25.9)上的频率为31C. 1D. 1A .B .20102410.容量为 100的样本数据,按从小到大的顺序分为8 组,如下表:组号12345678第1页共6页频数1013141513129第三组的频数和频率分别是(A 14 和 0.14B0.14 和 14C1 和 0.14D1 和 114314已知数据 a1, a2 ,, an 的平均数为 a ,方差为 S2 ,则数据 2a1 ,2a2 ,, 2an 的平均数和方差为()A . a, S2 B. 2a, S2 C. 2a, 2S2 D . 2a, 4S212、在抽查产品尺寸的过程中,将其尺寸分成若干组,[a,b]是其中的一组,抽查出的个体在该组上的频率为 m ,该组上的直方图的高为h ,则 | a b |()A . m B. hm C. h D . h mh m二、填空题13.一个总体的60 个个体的编号为 0,1,2,,59,现要从中抽取一个容量为10 的样本,请根据编号按被 6 除余 3 的方法,取足样本,则抽取的样本号码是.甲、乙两人在 10 天中每天加工零件的个数用茎叶图表示(如下图),中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数.则这10 天甲、乙两人日加。

最新第二章统计测试题及答案 新课标人教版高一必修3(共2套)

最新第二章统计测试题及答案 新课标人教版高一必修3(共2套)

第二章统计测试题(A组)一、选择题 (每小题5分,共50分)1.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法正确的是﹙﹚A.1000名学生是总体B.每个学生是个体C.100名学生的成绩是一个个体D.样本的容量是1002. 对总数为N的一批零件抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N为﹙﹚A. 150B.200C.100D.1203.某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员每隔3分钟从传送带上是特定位置取一件产品进行检测,这种抽样方法是( )A.简单随机抽样B.系统抽样C.分层抽样D.其它抽样方法4.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①、②这两项调查宜采用的抽样方法依次是 ( )A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法5.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为A.45,75,15B. 45,45,45C.30,90,15D. 45,60,30 ( )6.频率分布直方图中,小长方形的面积等于 ( )A.相应各组的频数B.相应各组的频率C.组数D.组距7.从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8人,其累计频率为0.4,则这样的样本容量是 ( )A. 20人B. 40人C. 70人D. 80人8.某农科所种植的甲、乙两种水稻,连续六年在面积相等的两块稻田中作对比试验,试验得出平均产量是x甲=x乙=415㎏,方差是2s甲=794,2s乙=958,那么这两个水稻品种中产量比较稳定的是 ( )A.甲B.乙C.甲、乙一样稳定D.无法确定9.下面现象间的关系属于线性相关关系的是( ).A.圆的周长和它的半径之间的关系B.价格不变条件下,商品销售额与销售量之间的关系C.家庭收入愈多,其消费支出也有增长的趋势D.正方形面积和它的边长之间的关系10.有关线性回归的说法中,下列不正确的是( )A.相关关系的两个变量不是因果关系B.散点图能直观地反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系D.任一组数据都有回归方程二、填空题 (每小题5分,共20分)11.从含有500个个体的总体中一次性地抽取25个个体,假定其中每个个体被抽到的概率相等,那么总体中的每个个体被抽取的概率等于_________.12.一个容量为n 的样本,分成若干组,已知某组的频数和频率分别是40,0.125,则n=___.13.在抽查产品尺寸的过程中,将其尺寸分成若干组. [),a b 是其中的一组,抽查出的个体在该组上的频率为m,该组上的直方图的高为h,则||a b -=_________.14.管理人员从一池塘内捞出30条鱼,做上标记后放回池塘.10天后,又从池塘内捞出50条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内共有______________条鱼.三、解答题 (每小题10分,共30分)15.一个单位的职工有500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人.为了了解该单位职工年龄与身体状况的有关指标,从中抽取100名职工作为样本,应该怎样抽取?16.若1x ,2x ,…n x ,和1y ,2y ,…n y 的平均数分别是x 和y ,那么下各组的平均数各为多少。

高一数学新课标人教版必修3第二章 统计练习题含答案解析 双基限时练12

高一数学新课标人教版必修3第二章 统计练习题含答案解析  双基限时练12

双基限时练(十二)1.问题:①有1000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.简单随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.其中问题与方法能配对的是()A.①Ⅰ,②ⅡB.①Ⅲ,②ⅠC.①Ⅱ,②ⅢD.①Ⅲ,②Ⅱ解析读题知①用分层抽样法,②用简单随机抽样法.答案B2.一个单位有职工160人,其中有业务员104人,管理人员32人,后勤服务人员24人,要从中抽取一个容量为20的样本,用分层抽样方法抽出样本,则在20人的样本中管理人员人数为() A.3 B.4C.12 D.7解析由题意可得20160×32=4.答案B3.某地区为了解居民家庭生活状况,先把居民按所在行业分为几类,然后每个行业抽1100的居民家庭进行调查,这种抽样是() A.简单随机抽样B.系统抽样C.分层抽样D.分类抽样答案C4.一个总体分为A,B两层,其个体数之比为41,用分层抽样方法从总体中抽取一个容量为10的样本,则A层中抽取的样本个数为( )A .8B .6C .4D .2答案 A5.某大学数学系共有本科生5000人,其中一、二、三、四年级的学生数之比为4:3:2:1.要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽三年级的学生( )A .80人B .40人C .60人D .20人 解析 分层抽样应按比例抽取,所以应抽取三年级的学生人数为200×210=40.答案 B6.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工________人.解析 依题意得,抽取超过45岁的职工人数为25200×80=10.答案 107.某工厂生产A ,B ,C 三种不同型号的产品,产品数量之比依次为23 5.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件,那么此样本的容量n =________.解析 由题意得n =16×102=80.答案 808.课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4,12,8.若用分层抽样抽取6个城市,则丙组中应抽取的城市数为________.答案 29.某企业有三个车间,第一车间有x 人,第二车间有300人,第三车间有y 人,采用分层抽样的方法抽取一个容量为45人的样本,第一车间被抽取20人,第三车间被抽取10人,问:这个企业第一车间、第三车间各有多少人?解 x =20×30045-20-10=400(人),y =10×30045-20-10=200(人).10.某单位有工程师6 人,技术员12 人,技工18 人,要从这些人中抽取一个容量为n 的样本.如果采用系统抽样和分层抽样方法抽取,都不用剔除个体;如果样本容量增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n .解 解法1:总体容量为6+12+18=36(人).当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n 36,抽取工程师人数为n 36×6=n 6人,技术人员人数为n 36×12=n 3人,技工人数为n 36×18=n 2人,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n +1)时,总体容量是35 人,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6,即样本容量n =6. 解法2:总体容量为6+12+18=36(人).当抽取n 个个体时,不论是系统抽样还是分层抽样,都不用剔除个体,所以n 应为6,12,18的公约数,∴n 可取2,3,6.当n=2时,n+1=3,用系统抽样不需要剔除个体;当n=3时,n+1=4,用系统抽样也不需要剔除个体;当n=6时,n+1=7,用系统抽样需要剔除一个个体.所以n=6.。

高一数学新课标人教版必修3第二章 统计练习题含答案解析 双基限时练14

高一数学新课标人教版必修3第二章 统计练习题含答案解析  双基限时练14

双基限时练(十四)1.已知一组数据为20,30,40,50,50,60,70,80,其中平均数、中位数和众数的大小关系是( )A .平均数>中位数>众数B .平均数<中位数<众数C .中位数<众数<平均数D .众数=中位数=平均数解析 由所给数据知,众数为50,中位数为50,平均数为50,∴众数=中位数=平均数.答案 D2.已知一组数据按从小到大的顺序排列为-1,0,4,x,6,15,且这组数据中位数为5,那么数据中的众数为( )A .5B .6C .4D .5.5解析 由中位数是5,得4+x =5×2,∴x =6.此时,这列数为-1,0,4,6,6,15,∴众数为6.答案 B3.一组数据的标准差为s ,将这组数据中每一个数据都扩大到原来的2倍,所得到的一组数据的方差是( )A.s 22 B .4s 2 C .2s 2D .s 2解析 标准差是s ,则方差为s 2.当这组数据都扩大到原来的2倍时,平均数也扩大到原来的2倍,因此方差扩大到原来4倍,故方差为4s 2.答案 B4.在样本方差的计算公式s 2=110[(x 1-20)2+(x 2-20)2+…+(x 10-20)2]中,数字10和20分别表示样本的( )A .容量、方差B .平均数、容量C .容量、平均数D .标准差、平均数解析 由方差s 2的定义知,10为样本的容量,20为样本的平均数.答案 C5.某人5次上班途中所花时间(单位:分钟)分别为x ,y,10,11,9,已知这组数据的平均数为10,方差为2,则|x -y |的值是( )A .1B .2 B .3D .4解析 由题意可得⎩⎪⎨⎪⎧x +y +10+11+95=10,15[(x -10)2+(y -10)2+(10-10)2+(11-10)2+(9-10)2]=2,化简得⎩⎪⎨⎪⎧x +y =20,(x -10)2+(y -10)2=8, 解得⎩⎪⎨⎪⎧ x =12,y =8,或⎩⎪⎨⎪⎧x =8,y =12.从而|x -y |=4. 答案 D6.某高校有甲、乙两个数学兴趣班,其中甲班40人,乙班50人,现分析两个班的一次考试成绩,算得甲班的平均成绩为90分,乙班的平均成绩为81分,则该校数学兴趣班的平均成绩是________分.解析 平均成绩为(90×40+81×50)×190=85. 答案 857.若40个数据的平方和是56,平均数是22,则这组数据的方差是________,标准差是________.解析 设这40个数据为x 1,x 2,…,x 40,则s 2=140⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 1-222+⎝ ⎛⎭⎪⎫x 2-222+…+⎝⎛⎭⎪⎫x 40-222 =140⎣⎢⎡(x 21+x 22+…+x 240)+40×⎝ ⎛⎭⎪⎫222-2×22(x 1+x 2+…+x 40) ]=140×⎝ ⎛⎭⎪⎫56+20-2×22×40=3640=910,∴s =31010. 答案 910 310108.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:解析 由题中表格数据,得 甲班:x -甲=7,s 2甲=15×(12+02+02+12+02)=25;乙班:x-乙=7,s2乙=15×(12+02+12+02+22)=65.∵s2甲<s2乙,∴两组数据中方差较小的为s2甲=2 5.答案2 59.对一个做直线运动的质点的运动过程观测了8次,得到如下表所示的数据.观测序号i12345678观测数据a i4041434344464748在上述统计数据的分析中,一部分计算见如图所示的算法流程图(其中a-是这8个数据的平均数),则输出的S的值是________.解析a-=(40+41+43+43+44+46+47+48)÷8=44,该程序框图是求这8个数据的方差,经计算得S=7.答案710.高一(2)班有男生27名,女生21名,在一次物理测试中,男生的平均分82分,中位数是75分,女生的平均分是80分,中位数是80分.(1)求这次测试全班平均分(精确到0.01);(2)估计全班成绩在80分以下(含80分)的学生至少有多少?(3)分析男生的平均分与中位数相差较大的主要原因是什么?解(1)由平均数公式得x-=148×(82×27+80×21)≈81.13(分).(2)∵男生的中位数是75,∴至少有14人得分不超过75分.又∵女生的中位数是80,∴至少有11人得分不超过80分.∴全班至少有25人得分低于80分.(3)男生的平均分与中位数的差别较大,说明男生中两极分化现象严重,得分高的和低的相差较大.11.甲、乙两名战士在相同条件下各射靶10次,每次命中的环数分别是:甲:8,6,7,8,6,5,9,10,4,7;乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算以上两组数据的平均数;(2)分别求出两组数据的方差;(3)根据计算结果,估计一下两名战士的射击情况.解(1)x甲=110×(8+6+7+8+6+5+9+10+4+7)=7(环),x 乙=110×(6+7+7+8+6+7+8+7+9+5)=7(环).(2)解法1:由方差公式s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],得s 2甲=3.0(环2),s 2乙=1.2(环2).解法2:由方差公式s 2=1n [(x ′21+x ′22+…+x ′2n )-n x ′2]计算s 2甲,s 2乙,由于两组数据都在7左右,所以选取a =7.∴s 2甲=110[(x ′21甲+x ′22甲+…+x ′210甲)-10x ′2甲] =110×(1+1+0+1+1+4+4+9+9+0-10×0) =110×30=3.0(环2).同理s 2乙=1.2(环2).(3)x 甲=x 乙,说明甲、乙两战士的平均水平相当.又s 2甲>s 2乙,说明甲战士射击情况波动大.因此乙战士比甲战士射击情况稳定.12.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.(1)请填写下表:平均数方差中位数命中9环及9环以上的次数甲乙①从平均数和方差相结合看(谁的成绩更稳定);②从平均数和中位数相结合看(谁的成绩好些);③从平均数和命中9环及9环以上的次数相结合看(谁的成绩好些);④从折线图上两人射击命中环数的走势看(谁更有潜力).解(1)由图可知,甲打靶的成绩为9,5,7,8,7,6,8,6,7,7,乙打靶的成绩为2,4,6,8,7,7,8,9,9,10.甲的平均数为7,方差为1.2,中位数是7,命中9环及9环以上的次数为1;乙的平均数为7,方差为5.4,中位数是7.5,命中9环及以上次数为3.如下表:②甲、乙的平均数相同,乙的中位数较大,所以乙的成绩好些.③甲、乙的平均数相同,乙命中9环及9环以上的次数比甲多,所以乙的成绩较好.④从折线图上看,在后半部分,乙呈上升趋势,而甲呈下降趋势,故乙更有潜力.。

高中数学必修3(人教B版)第二章统计2.2知识点总结含同步练习题及答案

高中数学必修3(人教B版)第二章统计2.2知识点总结含同步练习题及答案

4. 某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方 图,其中产品净重的范围是 [96, 106] ,样本数据分组为 [96, 98) , [98, 100) , [100, 102) ,
[102, 104) , [104, 106] ,已知样本中产品净重小于 100 克的个数是 36 ,则样本中净重大于或等于 98 克
并且小于 104 克的产品的个数是 (
).
A.90
答案: A 解析: 产品净重小于
B.75
C.60
D.45
100 克的概率为 (0.050 + 0.100) × 2 = 0.300 , 已知样本中产品净重小于 100 克的个数是 36 ,设样本容量为 n , 36 则 ,所以 n = 120 ,净重大于或等于 98 克并且小于 n 104 克的产品的概率为 (0.100 + 0.150 + 0.125) × 2 = 0.75 ,所以样本 中净重大于或等于 98 克并且小于 104 克的产品的个数是 120 × 0.75 = 90 .
).
A.2, 5
答案: C
B.5, 5
C.5, 8
D.8, 8
3. 样本中共有五个个体,其值分别为 a, 0, 1, 2, 3 ,若该样本的平均值为 1 ,则样本方差为 (
− − 6 A.√ 5
答案: D 解析:
)
B.
6 5
C.√2
D.2
a+0+1+2+3 = 1 ,得 a = −1 . 5 1 所以 s2 = [(−1 − 1)2 + (0 − 1)2 + (1 − 1)2 + (2 − 1)2 + (3 − 1)2 ] = 2 . 5

高中数学 人教A版 必修3 第二章 统计 高考复习习题(选择题101-200)含答案解析

高中数学 人教A版 必修3 第二章 统计 高考复习习题(选择题101-200)含答案解析

高中数学 人教A 版 必修3 第二章 统计 高考复习习题(选择题101-200)含答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题1.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A .B .C .D . 2.如果n 个数123,,,,n x x x x 的平均数为1,则12321,21,21,,21n x x x x ++++的平均数为( ).A . 3B . 4C . 5D . 6 3.下列有关命题的说法中错误的是A . 在频率分布直方图中,中位数左边和右边的直方图的面积相等 .B . 总和等于60.C . 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越差.D . 对于命题:p x R ∃∈使得21x x ++<0,则:p x R ⌝∀∈,使210x x ++≥.4. 是一组已知统计数据,其中 , 令, 当 ( )时, 取到最小值A .B .C .D .5.2014年5月,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如图2的不完整的条形统计图.根据以上统计图来判断以下说法错误的是()A.2013年农民工人均月收入的增长率是.B.2011年农民工人均月收入是元.C.小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了”.D.2009年到2013年这五年中2013年农民工人均月收入最高.6.如图的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为()A.B.C.D.7.下列说法:①残差可用来判断模型拟合的效果;②设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;③线性回归方程必过;④在一个2×2列联表中,由计算得=13.079,则有99%的把握确认这两个变量间有关系(其中);其中错误的个数是()A.0B.1C.2D.3.8.从甲、乙两个城市分别随机抽取台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为甲,乙,中位数分别为甲,乙,则().A.甲乙,甲乙B.甲乙,甲乙C.甲乙,甲乙D.甲乙,甲乙9.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,图2是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是()①1月至8月空气合格天数超过20天的月份有5个②第二季度与第一季度相比,空气达标天数的比重下降了③8月是空气质量最好的一个月④6月份的空气质量最差A.①②③B.①②④C.①③④D.②③④10.已知回归直线斜率的估计值为1.23,样本点的中心为点,,当时,估计的值为()A.6.46B.7.46C.2.54D.1.3911.如图是某班50名学生身高的频率分布直方图,那么该班身高在(170,190]区间内的学生人数为()A . 20B . 25C . 30D . 4512.已知回归方程 ,而试验得到一组数据是 , , ,则残差平方和是( )A . 0.01B . 0.02C . 0.03D . 0.0413.已知某产品的投入资产 与销售收入 的统计数据如下表:根据上表可得回归方程 中的 ,则当投入资产为120万元时,销售收入约为A . 142万元B . 152 万元C . 154 万元D . 156 万元14.某工厂生产,,A B C 三咱不同型号的产品,产品数量之比依次为:3:5x ,现用分层抽样的方法抽出一个容量为n 的样本,样本中A 型号产品有16件, C 型号产品有40件,则( )A . 2,24x n ==B . 16,24x n ==C . 2,80x n ==D . 16,80x n == 15.某产品的广告费用x 于销售额y 的统计数据如下表:根据上表可得线性回归方程ˆybx a =+中的b 为9.4,据此模型预报广告费用为6万元时销售额为( )A . 63.6万元B . 65.5万元C . 67.7万元D . 72.0万元16.某校为了解本校高三学生学习的心理状态,采用系统抽样方法从 人中抽取 人参加某种测试,为此将他们随机编号为 ,分组后在第一组采用简单随机抽样的方法抽到的号码为 ,抽到的 人中,编号落在区间 的人做试卷 ,编号落在 的人做试卷 ,其余的人做试卷 ,则做试卷 的人数为( ) A . B . C . D .17.将参加夏令营的600名学生编号为:001,002,…,600. 采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003. 这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从495到600在第Ⅲ营区,三个营区被抽中的人数依次为( )A.26,16,8B.25,17,8C.25,16,9D.24,17,918.供电部门对某社区1000位居民2017年12月份人均用电情况进行统计后,按人均0,10,10,20,20,30,30,40,40,50五组,整理得到如下的频率分布用电量分为[)[)[)[)[]直方图,则下列说法错误的是()A.12月份人均用电量人数最多的一组有400人B.12月份人均用电量不低于20度的有500人C.12月份人均用电量为25度30,40—组的概率D.在这1000位居民中任选1位协助收费,选到的居民用电量在[)19.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是()A.甲的极差是29B.甲的中位数是24C.甲罚球命中率比乙高D.乙的众数是2120.某家庭连续五年收入与支出如下表,已知与线性相关,回归方程为:,其中,据此预计该家庭2017年收入15万元,则支出为()A.11.4万元B.11.8万元C.12.0万元D.12.2万元21.某单位有若干名员工,现抽取人去体检,若老、中、青人数之比为2:1:2,已知抽到10位中年人,则样本为 ( )A.40B.100C.80D.5022.某企业有职工450人,其中高级职工45人,中级职工135人,一般职工270人,现抽30人进行分层抽样,则各职称人数分别为()A.5,10,15B.5,9,16C.3,10,17D.3,9,1823.某校高一(1)班共有54人,如图是该班期中考试数学成绩的频率分布直方图,则100,120内的学生人数为成绩在[]A.36B.27C.22D.1124.某中学有高一学生400人,高二学生300人,高三学生500人,现用分层抽样的方法在这三个年级中抽取120人进行体能测试,则从高三抽取的人数应为( )A.40B.48C.80D.5025.已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( )A . 92,94B . 92,86C . 99,86D . 95,91 26.下列四个命题中错误的是( )A . 在一次试卷分析中,从每个考室中抽取第5号考生的成绩进行统计,不是简单随机抽样B . 对一个样本容量为100的数据分组,各组的频数如下:估计小于29的数据大约占总体的58%C . 设产品产量与产品质量之间的线性相关系数为0.91-,这说明二者存在着高度相关D . 通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如表列联表.则有99%以上的把握认为“选择过马路方式与性别有关”27.为了了解某校高三400名学生的数学学业水平测试成绩,制成样本频率分布直方图如图,规定不低于60分为及格,不低于80分为优秀,则及格率与优秀人数分别是( )A.60%,60B.60%,80C.80%,80D.80%,6028.大双和小双两兄弟同时参加驾考,在进行科目一考试前,两兄弟在网上同时进行了5次模拟测试,他们每一次的成绩统计如下表:,分别表示大双和小双两兄弟模拟测试成绩的平均数,s12,s22分别表示大双和小双两兄弟模拟测试成绩的方差,则有A.= , s12﹥ s22B.=, s12﹥s22C.﹥ , s12 = s22D.﹥, s12﹥s2229.在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积的和的,且样本容量为160,则中间一组有频数为()A.32B.0.2C.40D.0.2530.某初级中学有学生300人,其中一年级120人,二,三年级各90人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一,二,三年级依次统一编号为1,2,…3 ;使用系统抽样时,将学生统一编号为1,2,…3 ,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:① ,37,67,97,127,157,187,217,247,277;② ,9,100,107,121,180,195,221,265,299;③11,41,71,101,131,161,191,221,251,281;④31,61,91,121,151,181,211,241,271,300关于上述样本的下列结论中,正确的是()A . ②③都不能为系统抽样B . ②④都不能为分层抽样C . ①④都可能为系统抽样D . ①③都可能为分层抽样31.佳木斯一中从高二年级甲、乙两个班中各选出7名学生参加2017年全国高中数学联赛(黑龙江初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a 、b 满足a , G , b 成等差数列且x , G , y 成等比数列,则a b)A .4 B . 2 C . 9D . 8 32.下列说法:①将一组数据中的每个数据都乘以同一个非零常数a 后,标准差也变为原来的a 倍; ②设有一个回归方程35y x =-,变量x 增加1个单位时, y 平均减少5个单位; ③线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱;④在某项测量中,测量结果ξ服从正态分布()()21,0N σσ>,若ξ位于区域()0,1的概率为0.4,则ξ位于区域()1,+∞内的概率为0.6⑤利用统计量2χ来判断“两个事件,X Y 的关系”时,算出的2χ值越大,判断“X 与Y 有关”的把握就越大其中正确的个数是A . 1B . 2C . 3D . 433.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为12,,,n x x x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( ) A . 12,,,n x x x 的平均数 B . 12,,,n x x x 的标准差 C . 12,,,n x x x 的最大值 D . 12,,,n x x x 的中位数34.某中学高一年级从甲、乙两个班各选出7名学生参加国防知识竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则x y 的值为( )A . 8B . 168C . 9D . 16935.在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,并制作成如图所示的人体脂肪含量与年龄关系的散点图.根据该图,下列结论中正确的是( )A . 人体脂肪含量与年龄正相关,且脂肪含量的中位数等于20%B . 人体脂肪含量与年龄正相关,且脂肪含量的中位数小于20%C . 人体脂肪含量与年龄负相关,且脂肪含量的中位数等于20%D . 人体脂肪含量与年龄负相关,且脂肪含量的中位数小于20%36.长郡中学将参加摸底测试的1200名学生编号为1,2,3,…,1200,从中抽取一个容量为50的样本进行学习情况调查,按系统抽样的方法分为50组,如果第一组中抽出的学生编号为20,则第四组中抽取的学生编号为 A . 68 B . 92 C . 82 D . 17037.中国诗词大会节目是央视首档全民参与的诗词节目,节目以“赏中华诗词、寻文化基因、品生活之美”为基本宗旨,力求通过对诗词知识的比拼及赏析,带动全民重温那些曾经学过的古诗词,分享诗词之美,感受诗词之趣,从古人的智慧和情怀中汲取营养,涵养心灵.如图是2016年中国诗词大会中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为1a , 2a ,则一定有( )A . 12a a >B . 21a a >C . 12a a =D . 1a , 2a 的大小与m 的值有关38.下列命题中正确命题的个数是( )(1)对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∀∈,均有210x x ++>;(2)命题“已知,x y R ∈,若3x y +≠,则2x ≠或1y ≠”是真命题; (3)回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为 1.230.08y x ∧=+;(4)3m =是直线()320m x my ++-=与直线650mx y -+=互相垂直的充要条件.A . 1B . 2C . 3D . 439.近日,一种牛奶被查出含有致癌物质,国家质监局调查了这种牛奶的100个相关数据,绘制成如图所示的频率分布直方图,再对落在[6,11),[21,26]两组内的数据按分层抽样方法抽取8个数据,然后从这8个数据中抽取2个,则最后得到的2个数据分别来自两组的取法种数是( )A . 10B . 13C . 15D . 1840.某校举行演讲比赛,9位评委给选手 打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的 )无法看清,若统计员计算无误,则数字 应该是( )A . 5B . 4C . 3D . 241.从N 个编号中要抽取n 个号码入样,若采用系统抽样方法抽取,则分段间隔应为) ( )A .B . nC .D . 42.某公司某件产品的定价 与销量 之间的统计数据表如下,根据数据,用最小二乘法得出 与 的线性回归直线方程为,则表格中 的值为( )A . 25B . 30C . 40D . 45 43.已知样本12,,,n x x x 的平均数为x ;样本12,,,n y y y 的平均数为y (x y ≠),若样本12,,,n x x x , 12,,,n y y y 的平均数为()1z ax a y =+-则()*,,n m n m N ∈的大小关系为( )A .n m < B . n m > C . n m = D . 不能确定44.某工厂甲,乙,丙三个车间生产了同一种产品,数量分别为600件,400件,300件,用分层抽样方法抽取容量为n 的样本,若从丙车间抽取6件,则n 的值为( ) A . 18 B . 20 C . 24 D . 2645.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是( )A . 5,10,15,20,25B . 2,4,8,16,32C . 1,2,3,4,5D . 7,17,27,37,4746.甲、乙、丙三人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示.则甲、乙、丙三人训练成绩方差 甲 , 乙 , 丙的大小关系是( )A . 丙 乙 甲B . 丙 甲 乙C . 乙 丙 甲D . 乙 甲 丙47.从某项综合能力测试中抽取100人的成绩,统计如下,则这100个成绩的平均数为( )A . 3B . 2.5C . 3.5D . 2.7548.某班级统计一次数学测试后的成绩,并制成了如下的频率分布表,根据该表估计该班级的数学测试平均分为( )A . 80B . 81C . 82D . 8349.甲、乙、丙三名运动员在某次比赛中各射击20次,三人成绩如下表用分别表示甲、乙、丙三人这次射击成绩的标准差,则下列关系正确的是()A.B.C.D.50.在班级40名学生中,依次抽取学号为5,10,15,20,25,30,35,40的学生进行作业检查,这种抽样方法最有可能是A.简单随机抽样B.系统抽样C.分层抽样D.以上答案都不对51.对变量,有观测数据,得散点图;对变量,有观测数据,得散点图.由这两个散点图可以判断().A.变量与正相关,与正相关B.变量与正相关,与负相关C.变量与负相关,与正相关D.变量与负相关,与负相关52.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程,其中=0.76,.据此估计,该社区一户年收入为15万元家庭的年支出为( )A.11.4万元B.11.8万元C.12.0万元D.12.2万元53.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为k:5:3,现用分层抽样方法抽出一个容量为120的样本,已知A种型号产品共抽取了24件,则C种型号产品抽取的件数为()A.24B.30C.36D.4054.某公司现有职员160人,中级管理人员30人,高级管理人员10人,要从其中抽取20个人进行身体健康检查,如果采用分层抽样的方法,则职员、中级管理人员和高级管理人员各应该抽取( )人 A . 8,15,7 B . 16,2,2 C . 16,3,1 D . 12,3,555.样本1a , 2a , ⋅⋅⋅, 5a 的平均数为样本1b , 2b , ⋅⋅⋅, 10b 的平均数为则样本1a , 2a , ⋅⋅⋅, 5a , 1b , 2b , ⋅⋅⋅, 10b 的平均数为( )A .B .C .D . 56.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变; ②设有一个回归方程,变量 增加一个单位时, 平均增加 个单位; ③线性回归方程必过 );④在一个 列联表中,由计算得 ,则有 以上的把握认为这两个变量间有关系.其中错误..的个数是( ) A . B . C . D .57.已知,x y 的取值如右表所示:如果y 与x 呈线性相关,且线性回归方程为ˆy13bx =+,则b =( )A . 12-B . 12C . 110- D . 110 58.58.58.下表是某小卖部统计出的五天中卖出热茶的杯数与当天气温的对比表:若卖出热茶的杯数y 与气温x 近似地满足线性关系,则其关系式最接近的是( )A . 6y x =+B . 42y x =-+C . 260y x =-+D . 378y x =-+59.已知一组数据 的平均数是2,方差是,那么另一组数据 的平均数和方差分别为( ) A . 2,B . 2,1C . 4,D . 4,360.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论正确的是( )A . 月接待游客逐月增加B . 年接待游客量逐年减少C . 各年的月接待游客量高峰期大致在6、7月D . 各年1月至6月的月接待游客量相对于7月至12月,波动性较小,变化比较稳定 61.为了了解高一、高二、高三的身体状况,现用分层抽样的方法抽出一个容量为的样本,三个年级学生数之比依次为,已知高一年级共抽取了人,则高三年级抽取的人数为( ) A .B .C .D .62.设某大学的女生体重 (单位: )与身高 (单位: )具有线性相关关系,根据一组样本数据 ,用最小二乘法建立的回归方程为 ,则下列结论中不正确...的是( ) A . 与 具有正的线性相关关系 B . 回归直线过样本点的中心C . 若该大学某女生身高增加 ,则其体重约增加D . 若该大学某女生身高为 ,则可断定其体重必为63.某校食堂的原料费支出与销售额(单位:万元)之间有如下数据,22555根据表中提供的数据,用最小二乘法得出对的回归直线方程为8.5.5ˆ7yx =+,则表中m 的值为 ( ) A . 60 B . 50 C . 55 D . 6564.2014年5月12日,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如图2的不完整的条形统计图.图1 图2 根据以上统计图来判断以下说法错误的是 A . 2013年农民工人均月收入的增长率是 B . 2011年农民工人均月收入是 元C . 小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了”D . 2009年到2013年这五年中2013年农民工人均月收入最高65.如果在一次试验中,测得(x ,y )的四组数值分别是A (1,3),B (2,3.8),C (3,5.2),D (4,6),则与 之间的回归直线方程是 ( ) A .= +1.9 B . =1.04 +1.9 C .=1.9 +1.04 D . =1.05 -0.966.下列说法中正确的个数为()①若样本数据 的平均数 ,则样本数据 的平均数为10②将一组数据中的每个数据都减去同一个数后,平均数与方差均没有变化③采用系统抽样法从某班按学号抽取5名同学参加活动,学号为 的同学均被选出,则该班学生人数可能为60 A . 0 B . 1 C . 2 D . 367.已知一组数据m ,4,2,5,3的平均数为n ,且m 、n 是方程2430x x -+=的两根,则这组数据的方差为( )A .B . 2C .D . 1068.68.阅读如下程序框图,如果输出i =4,那么空白的判断框中应填入的条件是( ).A . S <8B . S <9C . S <10D . S <1169.宏伟公司有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该公司职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的中年职工为5人,则样本容量为( ) A . 7 B . 15 C . 25 D . 3570.对四组不同数据进行统计,分别获得以下散点图,如果对它们的相关系数进行比较,下列结论中正确的是( )A . r 2<r 4<0<r 3<r 1B . r 4<r 2<0<r 1<r 3C . r 4<r 2<0<r 3<r 1D . r 2<r 4<0<r 1<r 371.已知,x y 的取值如下表所示从散点图分析y 与x 的线性关系,且0.95ˆyx a =+,则a =( ) A . 2.2 B . 3.36 C . 2.6 D . 1.9572.根据下图给出的2011年至2016年某企业关于某产品的生产销售(单位:万元)的柱形图,以下结论不正确的是( )A . 逐年比较,2014年是销售额最多的一年B . 这几年的利润不是逐年提高(利润为销售额减去总成本)C . 2011年至2012年是销售额增长最快的一年D . 2014年以来的销售额与年份正相关73.从某企业生产的某种产品中随机抽取10件,测量这些产品的一项质量指标值,其频率分布表如下:则可估计这种产品质量指标值的方差为( )A.140B.142C.143D.14474.为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为、、、、,将其按从左到右的顺序分别编号为第一组、第二组、……、第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.1875.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是()A.45 B.50C.55 D.6076.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是()注:(结余=收入-支出)A.收入最高值与收入最低值的比是3:1B.结余最高的月份是7月份C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元77.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为和,样本标准差分别为s A和s B,则( )(A)>,s A >s B (B)<,s A >s B (C)>,s A <s B (D)<,s A <s B78.下列判断错误的是( )A . 若随机变量ξ服从正态分布()()21,,40.79N P σξ≤=,则()20.21P ξ≤-=B . 若n 组数据()()11,,,,n n x y x y 的散点图都在21y x =-+上,则相关系数1r =-C . 若随机变量ξ服从二项分布: ,则1E ξ=D . “22am bm <”是“a b <”的必要不充分条件 79.已知x 与y 之间的一组数据则x 与y 的线性回归方程ˆˆˆybx a =+必过点( ) A . ()2,2 B . ()1.5,4 C . ()1.5,0 D . ()1,280.以下茎叶图记录了甲,乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( ) A . 2,5 B . 5,5 C . 5,8 D . 8,881.某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y(千元)统计调查发现, y 与x 具有相关关系,回归方程为0.66.52ˆ16yx =+.若某城市居民人均消费水平为7.675 (千元),估计该城市人均消费额占人均工资收入的百分比约为( )A .B .C .D . 82.供电部门对某社区1000位居民2016年11月份人均用电情况进行统计后,按人均用电量分为[)010,, [)1020,, [)2030,, [)3040,, []4050,五组,整理得到如下的频率分布直方图,则下列说法错误的是( )A . 11月份人均用电量人数最多的一组有400人B . 11月份人均用电量不低于20度的有500人C . 11月份人均用电量为25度D . 在这1000位居民中任选1位协助收费,选到的居民用电量在[)3040,一组的概率83.某市对在职的91名高中数学教师就支持新的数学教材还是支持旧的数学教材做了调查,结果如表所示:附表:给出相关公式及数据: n a b c d =+++()212232234222784⨯-⨯=, 345746454011660⨯⨯⨯=.参照附表,得到的正确结论是( )A . 在犯错误的概率不超过0.001的前提下,认为“教龄的长短与支持新教材有关”B . 在犯错误的概率不超过0.050的前提下,认为“教龄的长短与支持新教材有关”C . 在犯错误的概率不超过0.010的前提下,认为“教龄的长短与支持新教材有关”D . 我们没有理由认为“教龄的长短与支持新教材有关”84.现用系统抽样方法从已编号(1-60)的60枚新型导弹中,随机抽取6枚进行试验,则所选取的6枚导弹的编号可能是( )A .5,10,15,20,25,30B .2,4,8,16,32,48C .5,15,25,35,45,55D .1,12,34,47,51,6085.设某中学的女生体重y (kg )与身高x (cm )具有线性相关关系,根据一组样本数(),i i x y ()1,2,3,,i n =,用最小二乘法建立的线性回归直线方程为ˆ0.8585.71yx =-,给出下列结论,则错误的是( ) A .y 与x 具有正的线性相关关系B .若该中学某女生身高增加1cm ,则其体重约增加0.85kgC .回归直线至少经过样本数据(),i i x y ()1,2,3,,i n =中的一个D 86.经统计,某地的财政收入x 与支出y 满足的线性回归模型是y bx a e =++ (单位:亿元).10亿元,则今年支出预计不超出( )A . 10亿元B . 11亿元C . 11.5亿元D . 12亿元87.样本点 的样本中心与回归直线的关系是( ) A . 在直线附近 B . 在直线左上方 C . 在直线右下方 D . 在直线上 88.以下四个命题,正确的是( )①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在回归直线方程中,当变量每增加一个单位时,变量一定增加0.2单位;④对于两分类变量与,求出其统计量,越小,我们认为“与有关系”的把握程度越小.A.①④ B.②③ C.①③ D.②④89.随机调查某校50个学生在“六一”儿童节的午餐费,结果如下表:这50个学生“六一”节午餐费的平均值和方差分别是()A. 4.2,0.56B. 4.2,C.4,0.6D.4,90.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名,从这70人中用分层抽样的方法抽取容量为14的样本,则在高二年级学生中应该抽取的人数为()A.6B.8C.10D.1291.为支援西部教育事业,从某校118名教师中随机抽取16名教师组成暑期西部讲师团.若先用简单随机抽样从118名教师中剔除6名,剩下的112名再按系统抽样的方法进行,则每人入选的可能性()A.不全相等 BC.均不相等 D92.某学院有个饲养房,分别养有只白鼠供实验用.某项实验需抽取只白鼠,你认为最合适的抽样方法是()A.在每个饲养房各抽取只B.把所有白鼠都加上编有不同号码的颈圈,用随机抽样法确定只C.从个饲养房分别抽取只D . 先确定这个饲养房应分别抽取只,再由各饲养房自己加号码颈圈,用简单随机抽样的方法确定93.某社区有800户家庭,其中高收入家庭200户,中等收入家庭480户,低收入家庭120户,为了调查社会购买力的某项指标,要从中抽取一个容量为100户的样本,记作①;某学校高一年级有12名音乐特长生,要从中选出3名调查学习训练情况,记作②.那么完成上述两项调查应采用的抽样方法是( )A . ①用简单随机抽样②用系统抽样B . ①用分层抽样②用简单随机抽样C . ①用系统抽样②用分层抽样D . ①用分层抽样②用系统抽样94.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是( )A .成绩B .视力C .智商D .阅读量95.一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{}n a ,若38a =,且137,,a a a 成等比数列,则此样本的平均数和中位数分别是 ( )A . 13,12B . 13,13C . 12,13D . 13,1496.北京市2016年12个月的 平均浓度指数如图所示.由图判断,四个季度中 的。

高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案

高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案

⑤确定样本:从总体中找出与号签上的号码对应的个体,组成样本.
随机数表法是随机数表由数字 0 ,1 ,2,3,⋯,9 这 10 个数字组成,并且每个数字在表中 各个位置上出现的机会都是一样的,通过随机数表,根据实际需要和方便使用的原则,将几个数
组成一组,然后通过随机数表抽取样本.随机数表的优点是简单易行,它很好的解决了当总体中
样.因为 50 名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单 随机抽样中“等可能抽样”的要求.(3)是简单随机抽样.因为总体中的个体数是有限的,并且
是从总体中逐个进行抽取的,是不放回、等可能的抽取.
2013年第27届世界大学生运动会在俄罗斯举行,为了支持这次运动会,某大学从报名的 20 名大 三学生中选取 6 人组成志愿小组,请用抽签法设计抽样方案. 解:(1)将 20 名志愿者编号,编号为 1,2,3,4,⋯,20; (2)将 20 个号码分别写在 20 张形状相同的卡片上,制成号签; (3)将 20 张卡片放入一个不透明的盒子里,搅拌均匀; (4)从盒子中逐个不放回地抽取 6 个号签,并记录上面的号码;
A.2
B.3
C.6
D.7
解:C
间隔相等,所以 126 − 8 × 15 = 6.
4.分层抽样
描述: 将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在 总体中所占比例进行简单随机抽样或系统抽样,这种抽样的方法叫做分层抽样.当总体由明显差 别的几部分组成时,为了使抽取样本更好地反映总体的情况,常采用分层抽样.
③简单随机抽样是一种不放回抽样.
④简单随机抽样是一种等可能的抽样,每个个体被抽取到的可能性均为
n N

常用的简单随机抽样方法有抽签法和随机数表法.

(完整版)高一数学必修三《统计》知识点+练习+答案(最新整理)

(完整版)高一数学必修三《统计》知识点+练习+答案(最新整理)

三、
⑥控制图
总体特征的估计
中心线——y=μ 上界线——y=μ+3σ 下界线——y=μ-3σ
1、特征数:总体平均数 μ
总体方差 2 总体标准差
样本平均数 x
样本方差 s2 或 s*2
样本标准差
s 或 s*
1 2、有关公式:样本平均数 : x = (x1+x2 +...+xn)
n
样本方差
1 : s2 或 s*2 s 2= n [(x1- x )2+(x2+ x )2+...+(xn- x )2]
样本,则抽取的 m 个个体中带有标记的个数估计为( )
m
A. N·
M
M
B. m·
N
M
C. N·
D. N
m
8.从 60 件产品中抽取 10 件进行检查,写出抽取样本的过程.
9.某车间工人已加工一种轴 100 件,为了了解这种轴的直径,要从中抽出 10 件在同一条件 下测量(轴的直径要求为 20 mm±0.5 mm),如何采用简单随机抽样法抽取上述样本?
当总体由差异 明显的几部分 组成时,常将 总体分成几部 分,然后按照 各部分所占的 比进行抽样, 这样的抽样叫 ∽。其中分成 的各部分叫做 层。
各自
要点
从总 体中 逐个 抽取
总体 均分 成几 部分 按事 先确 定的 规则 在各 部分 抽取 将总 体分 成几 层, 分层 进行 抽取
方法步骤
1、 抽签法: ①编②放③抽
必修三统计知识点
一、
类 别 内 容 名 称
简 单 随 机 抽 样
系 统 抽 样
分 层 抽 样
抽样方法
定义

高中数学必修三第二章《统计》测试卷及答案2套

高中数学必修三第二章《统计》测试卷及答案2套

高中数学必修三第二章《统计》测试卷及答案2套测试卷一(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.从某年级1 000名学生中抽取125名学生进行体重的统计分析,就这个问题来说,下列说法正确的是( )A .1 000名学生是总体B .每个被抽查的学生是个体C .抽查的125名学生的体重是一个样本D .抽取的125名学生的体重是样本容量2.由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于-1,那么对于样本1,x 1,-x 2,x 3,-x 4,x 5的中位数可以表示为( ) A.12(1+x 2) B.12(x 2-x 1) C.12(1+x 5) D.12(x 3-x 4) 3.某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,则老年人、中年人、青年人分别应抽取的人数是( )A .7,11,19B .6,12,18C .6,13,17D .7,12,174.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图2.由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 5.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是13,那么另一组数3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数,方差分别是( )A .2,13B .2,1C .4,23D .4,3 6.某学院有4个饲养房,分别养有18,54,24,48只白鼠供实验用.某项实验需抽取24只白鼠,你认为最合适的抽样方法是( )A .在每个饲养房各抽取6只B .把所有白鼠都加上编有不同号码的颈圈,用随机抽样法确定24只C .从4个饲养房分别抽取3,9,4,8只D .先确定这4个饲养房应分别抽取3,9,4,8只,再由各饲养房自己加号码颈圈,用简单随机抽样的方法确定7.下列有关线性回归的说法,不正确的是( )A .相关关系的两个变量不一定是因果关系B .散点图能直观地反映数据的相关程度C .回归直线最能代表线性相关的两个变量之间的关系D .任一组数据都有回归直线方程8.已知施肥量与水稻产量之间的回归直线方程为y ^=4.75x +257,则施肥量x =30时,对产量y 的估计值为( )A .398.5B .399.5C .400D .400.59.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )A .甲地:总体均值为3,中位数为4B .乙地:总体均值为1,总体方差大于0C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为310.某高中在校学生2 000人,高一与高二人数相同并都比高三多1人.为了响应“阳光体育运动”号召,学校举行了“元旦”跑步和登山比赛活动.每人都参加而且只参与了其中一项比赛,各年级参与比赛人数情况如下表: 高一 高二 高三跑步 a b c登山 x y z其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高二参与跑步的学生中应抽取( )A .36人B .60人C .24人D .30人11.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如右图所示的茎叶图表示,则甲、乙两名运动员得分的中位数分别为( )A .19,13B .13,19C .20,18D .18,2012分组 [90,100) [100,110) [110,120) [120,130) [130,140) [140,150]频数 1 2 3 10 3 1A .30%B .70%C .题号 1 2 3 4 5 6 7 8 9 10 1112 答案二、填空题(13.甲、乙、丙、丁四名射击手在选拔赛中的平均环数x 及其标准差s 如下表所示,则选送决赛的最佳人选应是________.甲 乙丙 丁 x7 8 8 7 s 2.5 2.5 2.8 314.一组数据23,27,20,18,x,12,它们的中位数是21,即x 是________.15.某市居民2005~2009年家庭年平均收入x (单位:万元)与年平均支出Y (单位:万元)的统计资料如下表所示:年份 2005 2006 2007 2008 2009收入x 11.5 12.1 13 13.3 15支出Y 6.8 8.8 9.8 10 12根据统计资料,居民家庭年平均收入的中位数是________,家庭年平均收入与年平均支出有________线性相关关系.16.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温.气温(℃) 14 12 8 6用电量(度)22 26 34 38 由表中数据得回归直线方程y ^ =b ^ x +a ^ 中b ^=-2,据此预测当气温为5℃时,用电量的度数约为______.三、解答题(本大题共6小题,共70分)17.(10分)一批产品中,有一级品100个,二级品60个,三级品40个,用分层抽样的方法,从这批产品中抽取一个容量为20的样本,写出抽样过程.18.(12分)为了了解学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)学生跳绳次数的中位数落在哪个小组内?(2)第二小组的频率是多少?样本容量是多少?(3)若次数在110以上(含110次)为良好,试估计该学校全体高一学生的良好率是多少?19.(12分)为了研究三月下旬的平均气温(x )与四月棉花害虫化蛹高峰日(y )的关系,某年份 2003 2004 2005 2006 2007 2008x (℃)24.4 29.6 32.9 28.7 30.3 28.9 y 19 6 1 10 1 8已知x27℃,试估计2010年四月化蛹高峰日为哪天?20.(12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.x 3 4 5 6y 2.5 3 4 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的回归直线方程y ^ =b ^x +a ^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)21.(12分)农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)甲:9,10,11,12,10,20乙:8,14,13,10,12,21.(1)在右面给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.22.(12分)从高三抽出50名学生参加数学竞赛,由成绩得到如下的频率分布直方图.试利用频率分布直方图求:(1)这50名学生成绩的众数与中位数.(2)这50名学生的平均成绩.答案1.C2.C3.B4.C5.D6.D7.D8.B9.D10.A11.A12.B13.乙14.2215.13 正16.4017.解 分层抽样方法:先将总体按其级别分为三层,一级品有100个,产品按00,01,…,99编号,二级品有60个,产品按00,01,…,59编号,三级品有40个,产品按00,01,…,39编号.因总体个数∶样本容量为10∶1,故用简单随机抽样的方法,在一级品中抽10个,二级品中抽6个,三级品中抽4个.这样就可得到一个容量为20的样本.18.解 (1)∵前三组的频率和为2+4+1750=2350<12, 前四组的频率之和为2+4+17+1550=3850>12, ∴中位数落在第四小组内.(2)频率为:42+4+17+15+9+3=0.08, 又∵频率=第二小组频数样本容量, ∴样本容量=频数频率=120.08=150. (3)由图可估计所求良好率约为:17+15+9+32+4+17+15+9+3×100%=88%. 19.解 由题意知:x ≈29.13,y =7.5,∑6i =1x 2i =5 130.92, ∑6i =1x i y i =1 222.6,∴b ^=∑6i =1x i y i -6x y ∑6i =1x 2i -6x2≈-2.2, a ^ =y -b ^ x ≈71.6,∴回归方程为y ^=-2.2x +71.6.当x =27时,y ^=-2.2×27+71.6=12.2,据此,可估计该地区2010年4月12日或13日为化蛹高峰日.20.解 (1)散点图如下:(2)x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5, ∑4i =1x i y i =3×2.5+4×3+5×4+6×4.5=66.5,∑4i =1x 2i =32+42+52+62=86, ∴b ^=∑4i =1x i y i -4x y ∑4i =1x 2i -4x 2=66.5-4×3.5×4.586-4×4.52=0.7, a ^=y -b ^ x =3.5-0.7×4.5=0.35.∴y ^=0.7x +0.35. ∴所求的回归直线方程为y ^=0.7x +0.35.(3)现在生产100吨甲产品用煤y ^=0.7×100+0.35=70.35,∴90-70.35=19.65.∴生产能耗比技改前降低约19.65吨标准煤.21.解 (1)茎叶图如图所示:(2)x 甲=9+10+11+12+10+206=12, x 乙=8+14+13+10+12+216=13, s 2甲=16×[(9-12)2+(10-12)2+(11-12)2+(12-12)2+(10-12)2+(20-12)2]≈13.67,s 2乙=16×[(8-13)2+(14-13)2+(13-13)2+(10-13)2+(12-13)2+(21-13)2]≈16.67.因为x 甲<x 乙,所以乙种麦苗平均株高较高,又因为s 2甲<s 2乙,所以甲种麦苗长的较为整齐.22.解 (1)由众数的概念可知,众数是出现次数最多的数.在直方图中高度最高的小长方形框的中间值的横坐标即为所求,所以众数应为75.由于中位数是所有数据中的中间值,故在频率分布直方图中体现的是中位数的左右两边频数应相等,即频率也相等,从而就是小矩形的面积和相等.因此在频率分布直方图中将频率分布直方图中所有小矩形的面积一分为二的直线所对应的成绩即为所求. ∵0.004×10+0.006×10+0.02×10=0.04+0.06+0.2=0.3,∴前三个小矩形面积的和为0.3.而第四个小矩形面积为0.03×10=0.3,0.3+0.3>0.5, ∴中位数应位于第四个小矩形内.设其底边为x ,高为0.03,∴令0.03x =0.2得x ≈6.7,故中位数约为70+6.7=76.7.(2)样本平均值应是频率分布直方图的“重心”,即所有数据的平均值,取每个小矩形底边的中点值乘以每个小矩形的面积即可.∴平均成绩为45×(0.004×10)+55×(0.006×10)+65×(0.02×10)+75×(0.03×10)+85×(0.021×10)+95×(0.016×10)≈74.测试卷二(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.对于给定的两个变量的统计数据,下列说法正确的是( )A .都可以分析出两个变量的关系B .都可以用一条直线近似地表示两者的关系C .都可以作出散点图D .都可以用确定的表达式表示两者的关系2.一组数据中的每一个数据都乘以2,再减去80,得到一组新数据,若求得新的数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )A .40.6,1.1B .48.8,4.4C .81.2,44.4D .78.8,75.63.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如右图,则下面结论中错误的一个是( )A .甲的极差是29B .乙的众数是21C .甲罚球命中率比乙高D .甲的中位数是244.某学院A ,B ,C 三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A 专业有380名学生,B 专业有420名学生,则在该学院的C 专业应抽取的学生人数为( )A .30B .40C .50D .605.在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.4、8.4、9.4、9.9、9.6、9.4、9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )A .9.4,0.484B .9.4,0.016C .9.5,0.04D .9.5,0.0166.两个变量之间的相关关系是一种( )A .确定性关系B .线性关系C .非确定性关系D .非线性关系7.如果在一次实验中,测得(x ,y )的四组数值分别是A (1,3),B (2,3.8),C (3,5.2),D (4,6),则y 与x 之间的回归直线方程是( )A.y ^ =x +1.9B.y ^=1.04x +1.9C.y ^ =0.95x +1.04D.y ^=1.05x -0.98.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )A .①简单随机抽样,②系统抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C .①系统抽样,②简单随机抽样,③分层抽样D .①分层抽样,②系统抽样,③简单随机抽样9.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码 1 2 3 4 5 6 7 8 9 10取到的次数 13 8 5 7 6 13 18 10 11 9则取到号码为奇数的频率是( )A .0.53B .0.5C .0.47D .0.3710.某校对高一新生进行军训,高一(1)班学生54人,高一(2)班学生42人,现在要用分层抽样的方法,从两个班中抽出部分学生参加4×4方队进行军训成果展示,则(1)班,(2)班分别被抽取的人数是( )A .9人,7人B .15人,1人C .8人,8人D .12人,4人11.右图是根据《山东统计年鉴2010》中的资料作成的2000年至2009年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到2000年至2009年我省城镇居民百户家庭人口数的平均数为( )A .304.6B .303.6C .302.6D .301.612甲的成绩环数 7 8 9 10频数 5 5 5 5乙的成绩环数 7 8 9 10频数 6 4 4 6丙的成绩环数 7 8 9 10频数 4 6 6 4s 1、s 2、s 3( )A .s 3>s 1>s 2B .s 2>s 1>s 3题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4小题,每小题5分,共20分)13.已知一个回归直线方程为y ^=1.5x +45(x i ∈{1,5,7,13,19}),则y =________.14.若a 1,a 2,…,a 20这20个数据的平均数为x ,方差为0.21,则a 1,a 2,…,a 20,x 这21个数据的方差为________.15.从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.16.某公司有员工49人,其中30岁以上的员工有14人,没超过30岁的员工有35人,为了解员工的健康情况,用分层抽样方法抽一个容量为7的样本,其中30岁以上的员工应抽取________人.三、解答题(本大题共6小题,共70分)17.(10分)某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:广告支出x(单位:万元)123 4销售收入y(单位:万元)12284256(1)画出表中数据的散点图;(2)求出y对x的回归直线方程;(3)若广告费为9万元,则销售收入约为多少万元?18.(12分)炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时,钢水的含碳量x 与冶炼时间y(从炉料熔化完毕到出钢的时间)的一列数据如下表所示:x(0.01%104180190177147134150191204121 )y(min)100200210185155135170205235125(1)作出散点图,你能从散点图中发现含碳量与冶炼时间的一般规律吗?(2)求回归直线方程;(3)预测当钢水含碳量为160时,应冶炼多少分钟?19.(12分)甲乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.20.(12分)随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:家庭编号12345678910x i收入) 千元0.81.11.31.51.51.82.2.22.42.8y i(支出) 千元0.71.1.21.1.31.51.31.72.2.5(1)判断家庭平均收入与月平均生活支出是否相关?(2)若二者线性相关,求回归直线方程.21.(12分)某工厂有工人1 000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).(1)A类工人中和B类工人中各抽查多少工人?(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.表1生产能力分组[100,110)[110,120)[120,130)[130,140)[140,150)人数48x 5 3 表2生产能力分组[110,120)[120,130)[130,140)[140,150)人数6y 3618①先确定x,y,再补全下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)图1 A类工人生产能力的频率分布直方图图2 B类工人生产能力的频率分布直方图②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).22.(12分)一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验.测得的数据如下:零件数x(个)10 20 30 40 50 60 70 80 90 100加工时间y(分) 62 68 75 81 89 95 102 108115122(1)y与x是否具有线性相关关系?(2)如果y与x具有线性相关关系,求回归直线方程;(3)根据求出的回归直线方程,预测加工200个零件所用的时间为多少?答案1.C2.A3.D4.B5.D6.C 7.B8.A9.A10.A11.B12.B13.58.514.0.215.0.030 316.217.解(1)作出的散点图如图所示(2)序号x y x2xy1112112222845633429126445616224∑1013830418易得x=52,y=692,所以b ^ =∑4i =1x i y i -4x y ∑4i =1x 2i -4x 2=418-4×52×69230-4×⎝ ⎛⎭⎪⎫522=735, a ^ =y -b ^x =692-735×52=-2.故y 对x 的回归直线方程为y ^=735x -2.(3)当x =9时,y ^=735×9-2=129.4.故当广告费为9万元时,销售收入约为129.4万元.18.解 (1)以x 轴表示含碳量,y 轴表示冶炼时间,可作散点图如图所示:从图中可以看出,各点散布在一条直线附近,即它们线性相关. i 1 2 3 4 5 6 7 8 910 x i 104 180 190 177 147 134 150 191 204 121 y i 100 200 210 185 155 135 170 205235 125x i yi10 400 36 000 39 900 32 745 22 785 18 090 25 500 39 155 47 940 15 125 x =159.8,y =172,∑10i =1x 2i =265 448,∑10i =1y 2i =312 350,∑10i =1x i y i =287 640 设所求的回归直线方程为y ^=b ^x +a ^,b ^=∑10i =1x i y i -10x y∑10i =1x 2i -10x2≈1.267,a ^ =y -b ^x ≈-30.47.所求回归直线方程为y ^=1.267x -30.47.(3)当x =160时,y ^=1.267×160+(-30.47)=172.25.即当钢水含碳量为160时,应冶炼约172.25分钟.19.解 (1)由图象可得甲、乙两人五次测试的成绩分别为 甲:10分,13分,12分,14分,16分; 乙:13分,14分,12分,12分,14分.x 甲=10+13+12+14+165=13,x 乙=13+14+12+12+145=13,s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4,s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.(2)由s 2甲>s 2乙可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高. 20.解 (1)作出散点图:观察发现各个数据对应的点都在一条直线附近,所以二者呈线性相关关系.(2)x =110(0.8+1.1+1.3+1.5+1.5+1.8+2.0+2.2+2.4+2.8)=1.74,y =110(0.7+1.0+1.2+1.0+1.3+1.5+1.3+1.7+2.0+2.5)=1.42,∑10i =1x i y i =27.51,∑10i =1x 2i =33.72, b ^=∑10i =1x i y i -10x y∑10i =1x 2i -10x2≈0.813 6,a ^=1.42-1.74×0.813 6≈0.004 3,∴回归方程为y ^=0.813 6x +0.004 3.21.解 (1)A 类工人中和B 类工人中分别抽查25名和75名.(2)①由4+8+x +5+3=25,得x =5,6+y +36+18=75,得y =15. 频率分布直方图如下:图1 A 类工人生产能力的频率分布直方图图2 B 类工人生产能力的频率分布直方图从直方图可以判断:B 类工人中个体间的差异程度更小.②x A =425×105+825×115+525×125+525×135+325×145=123,x B =675×115+1575×125+3675×135+1875×145=133.8,x =25100×123+75100×133.8=131.1.A 类工人生产能力的平均数,B 类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,133.8和131.1. 22.解 (1)作出如下散点图:由图可知,y 与x 具有线性相关关系. i 1 2 3 4 5 67 8 9 10 x i 10 20 30 40 50 60 70 80 90 100 y i 62 68 75 81 8995 102 108 115 122x i yi620 1 360 2 250 3 240 4 450 5 700 7 140 8 640 10 350 12 200 x =55,y =91.7,∑10i =1x 2i =38 500,∑10i =1y 2i =87 777,∑10i =1x i y i =55 950, 设所求的回归直线方程为y ^=b ^x +a ^,则有b ^=∑10i =1x i y i -10x y∑10i =1x 2i -10x 2=55 950-10×55×91.738 500-10×552≈0.668, a ^=y -b ^x =91.7-0.668×55=54.96,因此,所求的回归直线方程为y ^=0.668x +54.96.(3)这个回归直线方程的意义是当x 每增加1时,y 的值约增加0.668,而54.96是y 不随x 变化而变化的部分,因此,当x =200时,y 的估计值为y ^=0.668×200+54.96=188.56≈189,因此,加工200个零件所用的时间约为189分.。

高一数学人教A版必修三练习:第二章统计2.2.2含解析

高一数学人教A版必修三练习:第二章统计2.2.2含解析

(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.已知一组数据为20,30,40,50,50,60,70,80,其中平均数、中位数和众数的大小关系是()A.平均数>中位数>众数B.平均数<中位数<众数C.中位数<众数<平均数D.众数=中位数=平均数解析:由所给数据知,众数为50,中位数为50,平均数为50,所以众数=中位数=平均数.故选D.答案: D2.(2015·青岛高一期中)从甲、乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲、乙两组数据的平均数分别为x甲,x乙,中位数分别为m甲,m乙,则()A.x甲<x乙,m甲>m乙B.x甲<x乙,m甲<m乙C.x甲>x乙,m甲>m乙D.x甲>x乙,m甲<m乙解析:由题中茎叶图知,甲的平均数为(5+6+8+10+10+14+18+18+22+25+27+30+30+38+41+43)÷16=21.5625,乙的平均数为(10+12+18+20+22+23+23+27+31+32+34+34+38+42+43+48)÷16=28.5625,所以x甲<x乙.甲的中位数为(18+22)÷2=20, 乙的中位数为(27+31)÷2=29, 所以m 甲<m 乙.故选B. 答案: B3.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )A. 3B.2105C .3D.85解析: 因为x =100+40+90+60+10100=3.所以s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]=1100(20×22+10×12+30×12+10×22)=160100=85, 所以s =2105.故选B.答案: B4.(2015·潍坊高一期中)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( ) A.1169 B.367 C .36D.677解析: 由题图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x =91×7,解得x =4.故s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.故选B.答案: B二、填空题(每小题5分,共15分)5.某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下频率分布直方图.估计这次考试的平均分为________.解析: 利用组中值估算抽样学生的平均分.45·f 1+55·f 2+65·f 3+75·f 4+85·f 5+95·f 6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71,平均分是71分. 答案: 71分6.甲、乙两人在相同的条件下练习射击,每人打5发子弹,命中的环数如表: 甲:6,8,9,9,8; 乙:10,7,7,7,9.则两人的射击成绩较稳定的是________. 解析: 由题意求平均数可得x 甲=x 乙=8,s 2甲=1.2,s 2乙=1.6,s 2甲<s 2乙,所以甲稳定.答案: 甲7.若40个数据的平方和是56,平均数是22,则这组数据的方差是________,标准差是________.解析: 设这40个数据为x 1,x 2,…,x 40,则s 2=140⎣⎡⎦⎤⎝⎛⎭⎫x 1-222+⎝⎛⎭⎫x 2-222+…+⎝⎛⎭⎫x 40-222=140⎣⎡⎦⎤(x 21+x 22+…+x 240)+40×⎝⎛⎭⎫222-2×22(x 1+x 2+…+x 40) =140×⎝⎛⎭⎫56+20-2×22×40 =3640=910, 所以s =31010.答案:910 31010三、解答题(每小题10分,共20分)8.如图所示的是甲、乙两人在一次射击比赛中中靶的情况(击中靶中心的圆面为10环,靶中各数字表示该数字所在圆环被击中时所得的环数),每人射击了6次.(1)请用列表法将甲、乙两人的射击成绩统计出来;(2)请用学过的统计知识,对甲、乙两人这次的射击情况进行比较. 解析: (1)甲、乙两人的射击成绩统计表如下:(2) x 甲=16×(8×2+9×2+10×2)=9(环), x乙=16×(7×1+9×3+10×2)=9(环), s 2甲=16×[(8-9)2×2+(9-9)2×2+(10-9)2×2]=23, s 2乙=16×[(7-9)2+(9-9)2×3+(10-9)2×2]=1,因为x甲=x乙,s2甲<s2乙,所以甲与乙的平均成绩相同,但甲的发挥比乙稳定.9.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.解析:(1)由频率分布直方图知(0.04+0.03+0.02+2a)×10=1,所以a=0.005.(2)55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73.所以平均分为73分.(3)分别求出语文成绩分数段在[50,60),[60,70),[70,80),[80,90)的人数依次为0.05×100=5,0.4×100=40,0.3×100=30,0.2×100=20.所以数学成绩分数段在[50,60),[60,70),[70,80),[80,90)的人数依次为:5,20,40,25.所以数学成绩在[50,90)之外的人数有100-(5+20+40+25)=10(人).。

高中数学必修三第二章《统计》章节练习题(含答案)

高中数学必修三第二章《统计》章节练习题(含答案)

高中数学必修三第二章《统计》章节练习题(30分钟50分)一、选择题(每小题3分,共18分)1.某题的得分情况如下:得分/分0 1 2 3 4频率/% 37.0 8.6 6.0 28.2 20.2其中众数是( )A.37.0%B.20.2%C.0分D.4分2.观察下列各图:其中两个变量x,y具有相关关系的图是( )A.①②B.①④C.③④D.②③3.利用随机数表法对一个容量为500编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,若选定从第12行第5列的数开始向右读数(下面摘取了随机数表中的第11行至第15行),根据下表,读出的第3个数是( )18 18 07 92 4544 17 16 58 0979 83 86 19 6206 76 50 03 1055 23 64 05 0526 62 38 97 7584 16 07 44 9983 11 46 32 2420 14 85 88 4510 93 72 88 7123 42 40 64 7482 97 77 77 8107 45 32 14 0832 98 94 07 7293 85 79 10 7552 36 28 19 9550 92 26 11 9700 56 76 31 3880 22 02 53 5386 60 42 04 5337 85 94 35 1283 39 50 08 3042 34 07 96 8854 42 06 87 9835 85 29 48 39A.841B.114C.014D.1464.工人月工资(元)与劳动产值(千元)变化的回归直线方程为=60+90x,下列判断正确的是( )A.劳动产值为1 000元时,工资为50元B.劳动产值提高1 000元时,工资提高150元C.劳动产值提高1 000元时,工资提高90元D.劳动产值为1 000元时,工资为90元5.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi ,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是( )A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg6.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是( )A.200,20B.100,20C.200,10D.100,10二、填空题(每小题4分,共12分)7.某高中共有学生900人,其中高一年级240人,高二年级260人,为做某项调查,拟采用分层抽样法抽取容量为45的样本,则在高三年级抽取的人数是.8.将容量为n的样本中的数据分为6组,绘制频率分布直方图,若第一组至第六组的数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和为27,则n= .9.高三某班学生每周用于物理学习的时间x(单位:小时)与物理成绩y(单位:分)之间有如下关系:根据上表可得回归方程的斜率为3.53,则回归直线在y轴上的截距为.(答案保留到0.1)三、解答题(每小题10分,共20分)10.为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.表1和表2分别是注射A和B后的试验结果.试画出频率分布直方图并比较中位数的大小.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表表2:注射药物B后皮肤疱疹面积的频数分布表11.为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A 药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?高中数学必修三第二章《统计》章节练习题参考答案(30分钟50分)一、选择题(每小题3分,共18分)1.某题的得分情况如下:得分/分0 1 2 3 4频率/% 37.0 8.6 6.0 28.2 20.2其中众数是( )A.37.0%B.20.2%C.0分D.4分【解析】选C.根据众数的概念可知C正确.2.观察下列各图:其中两个变量x,y具有相关关系的图是( )A.①②B.①④C.③④D.②③【解析】选C由散点图知③④具有相关关系.3.利用随机数表法对一个容量为500编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,若选定从第12行第5列的数开始向右读数(下面摘取了随机数表中的第11行至第15行),根据下表,读出的第3个数是( )18 18 07 92 4544 17 16 58 0979 83 86 19 6206 76 50 03 1055 23 64 05 0526 62 38 97 7584 16 07 44 9983 11 46 32 2420 14 85 88 4510 93 72 88 7123 42 40 64 7482 97 77 77 8107 45 32 14 0832 98 94 07 7293 85 79 10 7552 36 28 19 9550 92 26 11 9700 56 76 31 3880 22 02 53 5386 60 42 04 5337 85 94 35 1283 39 50 08 3042 34 07 96 8854 42 06 87 9835 85 29 48 39A.841B.114C.014D.146【解析】选B.在随机数表中选取数字时,要做到不重不漏,不超范围,因此抽取的数字依次为389,449,114,…,因此第三个数为114.4.(2015·西安高一检测)工人月工资(元)与劳动产值(千元)变化的回归直线方程为=60+90x,下列判断正确的是( )A.劳动产值为1 000元时,工资为50元B.劳动产值提高1 000元时,工资提高150元C.劳动产值提高1 000元时,工资提高90元D.劳动产值为1 000元时,工资为90元【解析】选C.回归系数的意义为:解释变量每增加1个单位,预报变量平均增加b个单位.本题中,劳动产值提高14元,则工人工资提高90元.5.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi ,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是( )A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg【解析】选D.根据线性回归方程中各系数的意义求解.由于线性回归方程中x的系数为0.85,因此y与x具有正的线性相关关系,故A正确.又线性回归方程必过样本中心点(,),因此B正确.由线性回归方程中系数的意义知,x每增加1cm,其体重约增加0.85kg,故C正确.当某女生的身高为170cm时,其体重估计值是58.79kg,而不是具体值,因此D不正确.6.(2014·广东高考)已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是( )A.200,20B.100,20C.200,10D.100,10【解题指南】样本容量为总体乘以抽取比例,抽取的高中生近视人数则需要用高中生数乘以抽取比例再乘以近视率.【解析】选A.样本容量为10 000×2%=200,抽取的高中生近视人数为2 000×2%×50%=20.二、填空题(每小题4分,共12分)7.(2015·北京高一检测)某高中共有学生900人,其中高一年级240人,高二年级260人,为做某项调查,拟采用分层抽样法抽取容量为45的样本,则在高三年级抽取的人数是.【解析】高三的人数为400,所以在高三抽取的人数为×400=20.答案:208.(2015·大同高一检测)将容量为n的样本中的数据分为6组,绘制频率分布直方图,若第一组至第六组的数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和为27,则n= .【解析】依题意得,前三组的频率总和为=,因此有=,即n=60.答案:609.(2015·南昌高一检测)高三某班学生每周用于物理学习的时间x(单位:小时)与物理成绩y(单位:分)之间有如下关系:x 24 15 23 19 16 11 20 16 17 13y 92 79 97 89 64 47 83 68 71 59根据上表可得回归方程的斜率为3.53,则回归直线在y轴上的截距为.(答案保留到0.1)【解析】由已知可得==17.4,==74.9.设回归直线方程为=3.53x+,则74.9=3.53×17.4+,解得≈13.5.答案:13.5三、解答题(每小题10分,共20分)10.为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.表1和表2分别是注射A和B后的试验结果.试画出频率分布直方图并比较中位数的大小.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表面积[60,65) [65,70) [70,75) [75,80)频数30 40 20 10表2:注射药物B后皮肤疱疹面积的频数分布表面积[60,65) [65,70) [70,75) [75,80) [80,85)频数10 25 20 30 15【解析】由表1可得注射药物A后的频率分布表:分组频率[60,65) 0.3 0.06[65,70) 0.4 0.08[70,75) 0.2 0.04[75,80) 0.1 0.02 由表2可得注射药物B后的频率分布表:分组频率[60,65) 0.1 0.02[65,70) 0.25 0.05[70,75) 0.2 0.04[75,80) 0.3 0.06[80,85) 0.15 0.03 画出频率分布直方图:可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B后的疱疹面积的中位数在70至75之间,所以注射药物A后的疱疹面积的中位数小于注射药物B后的疱疹面积的中位数.11.为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A 药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?【解析】(1)设A 药观测数据的平均数为,B 药观测数据的平均数为,由观测结果可得=×(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,=×(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6,由以上计算结果可得>,因此可以看出A药的疗效更好.(2)由观测结果可绘制如下茎叶图从以上茎叶图可以看出,A 药疗效的试验结果有的叶集中在茎2,3上,B药疗效的试验结果有的叶集中在茎0,1上,由此可以看出A药的疗效更好.- 11 -。

必修三第二章统计单元测试题及答案

必修三第二章统计单元测试题及答案

必修三第二章统计单元测试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(必修三第二章统计单元测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为必修三第二章统计单元测试题及答案(word版可编辑修改)的全部内容。

必修三统计试题一、选择题(每小题5分,共60分)1.①某学校高二年级共有526人,为了调查学生每天用于休息的时间,决定抽取10%的学生进行调查;②一次数学月考中,某班有10人在100分以上,32人在90~100分,12人低于90分,现从中抽取9人了解有关情况;③运动会工作人员为参加4×100 m 接力赛的6支队伍安排跑道.就这三件事,恰当的抽样方法分别为( )A .分层抽样、分层抽样、简单随机抽样B .系统抽样、系统抽样、简单随机抽样C .分层抽样、简单随机抽样、简单随机抽样D .系统抽样、分层抽样、简单随机抽样2. 某单位有名职工,现采用系统抽样方法抽取人做问卷调查,将人按1,2,…,84084042840随机编号,则抽取的人中,编号落入区间的人数为 ( )42[]481,720A .11 B .12 C .13 D .143从2007名学生中选取50名参加全国数学联赛,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下的2000人再按系统抽样的方法抽取,则每人入选的可能性( )A .不全相等B .均不相等C .都相等,且为D .都相等,且为4。

某大学数学系共有学生5 000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从数学系所有学生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修3第二章统计复习题
一、选择题
1.某机构进行一项市场调查,规定在某商场门口随机抽一个人进行询问调查,直到调查到事先规定的调查人数为止,这种抽样方式是
A.系统抽样B.分层抽样C.简单随机抽样D.非以上三种抽样方法2. 一个年级有12个班,每个班的同学从1至50排学号,为了交流学习经验,要求每班学
号为14的同学留下进行交流,这里运用的是
A.分层抽样
B.抽签抽样
C.随机抽样
D.系统抽样
3. 某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本的青年职工为7人,则样本容量为
A.7 B.15 C.25 D.35
4.为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为
A. 40
B. 30
C. 20
D. 12
5.在某项体育比赛中,七位裁判为一选手打出的分数如下:
90 89 90 95 93 94 93
去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为
A.92,2 B.92 ,2.8C.93,2 D.93,2.8
6. 变量y与x之间的回归方程
A.表示y与x之间的函数关系B.表示y和x之间的不确定关系C.反映y与x之间的真实关系达到最大限度的吻合D.反映y和x之间真实关系的形式
7. 线性回归方程ˆy bx a
=+必过点
A.(0,0) B.(x,0) C.(0,y) D.(x,y)
8.在下列各图中,每个图的两个变量具有相关关系的图是
(1)(2)(3)(4)
A.(1)(2)B.(1)(3)C.(2)(4)D.(2)(3)
9.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,
25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4;则样本在[25,25.9)上的频率为
A.3
20
B.
1
10
C.
1
2
D.
1
4
101008
组号 1 2 3 4 5 6 7 8
第三组的频数和频率分别是 ( )
A 14和0.14
B 0.14和14 C
14
1和0.14 D 31和141
11. 已知数据12,,...,n a a a 的平均数为a ,方差为2
S ,则数据122,2,...,2n a a a 的平均数和方
差为( )
A .2,a S
B .22,a S
C .22,2a S
D .2
2,4a S
12、在抽查产品尺寸的过程中,将其尺寸分成若干组,[a ,b ]是其中的一组,抽查出的个体在该组上的频率为m ,该组上的直方图的高为h ,则=-||b a ( ) A .
h m B .hm C .m
h
D .m h + 二、填空题
13. 一个总体的60个个体的编号为0,1,2,…,59,现要从中抽取一个容量为10的样本,请根据编号按被6除余3的方法,取足样本,则抽取的样本号码是 . 14. 甲、乙两人在10天中每天加工零件的个数用茎叶图表示(如下图),中间一列的数字
表示零件个数的十位数,两边的数字表示零件个数的个位数.则这10天甲、乙两人日加工零件的平均数分别为 和 .
15. 已知样本9,10,11,,x y 的平均数是10,16.
如果数据1x ,2x ,…,n x 的平均数为4,方差为0.7,则1
35x ,235x , (35)
x 的平
均数是 ,方差是 .
17. 某市居民
2005~2009年家庭年平均收入x (单位:万元)与年平均支出Y (单位:万元)的统计资料如下表所示:
根据统计资料,居民家庭年平均收入的中位数是 ,家庭年平均收入与年平均支出有 线性相关关系.
18.从某小学随机抽取100名同学,将他们身高(单位:厘米) 数据绘制成频率分布直方图(如图).由图中数据 可知a = .
若要从身高在[120,130﹚,[130,140﹚,[140,150﹚
三组内的学生中,用分层抽样的方法选取18人参加一 项活动,则从身高在[140,150]内的学生中选取的人数
a
应为 .
三、解答题
19. 在2007全运会上两名射击运动员甲、乙在比赛中打出如下成绩:
甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8; 乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;
(1)用茎叶图表示甲,乙两个成绩;并根据茎叶图分析甲、乙两人成绩;
(2)分别计算两个样本的平均数x 和标准差s ,并根据计算结果估计哪位运动员的成绩比较稳定.
20. “你低碳了吗?”这是某市为倡导建设节约型 社会而发布的公益广告里的一句话.活动组织者为了 了解这则广告的宣传效果,随机抽取了120名年龄在 [10,20) ,[20,30) ,…, [50,60) 的市民进行问 卷调查,由此得到的样本的频率分布直方图如图所示.
(1) 根据直方图填写右面频率分布统计表;
(2)
(3) 按分层抽样的方法在受访市民中抽取n 名市民作为本次
活动的获奖者,若在[10,20)的年龄组中随机抽取了6人,
则的n 值为多少?
21. 以下是某地搜集到的新房屋的销售价格y 和房屋的面积x 的数据:
(1)画出数据对应的散点图; (2)求线性回归方程;
(3)据(2)的结果估计当房屋面积为2150m 时的销售价格. (本题建议使用计算器)
22.为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:
(1)求出表中,,,m n M N 所表示的数; (2)画出频率分布直方图;
(m 2)
高一数学必修3第二章统计复习题答案
一、选择题
DDBAB CDDCA DA
二、填空题
13. 3,9,15,21,27,33,39,45,51,57 14.24 , 23 15. 96
16. 17 , 6.3 17. 13 ,正 18. 0.030 3
三、解答题
19.(1
由上图知,甲中位数是9.05,乙中位数是9.15,乙的成绩大致对称, 可以看出乙发挥稳定性好,甲波动性大. (2)解:x 甲
1
10
(9.4+8.7+7.5+8.4+10.1+10.5+10.7+7.2+7.8+10.8)=9.11. s 甲
])11.98.10(...)11.97.8()11.94.9[(10
1
222-++-+-=1.3. 1
10
x 乙(9.1+8.7+7.1+9.8+9.7+8.5+10.1+9.2+10.1+9.1)=9.14. 22
2
1[9.19.148.79.149.19.140.910
s 乙
()()
()

由s s 甲乙,这说明了甲运动员的波动大于乙运动员的波动,所以我们估计,乙运动员比较
稳定.
(2)由已知得受访市民年龄的中位数为
0.50.015100.025100.1
10030
30
30
330.0350.035
35
()(岁);
(3) 由618120
n
,解得40n .
21.解:(1)数据对应的散点图如图所示:
(2)1095151==∑=i i x x ,1570)(2
5
1
=-=∑=x x l i i xx ,
308))((,2.235
1
=--==∑=y y x x l y i i i xy
设所求回归直线方程为y bx
a ,则1962.01570
308
≈=
=
xx
xy l l b ; 8166.11570
308
1092.23≈⨯
-=-=x b y a 故所求回归直线方程为8166.11962.0+=x y
(3)据(2),当2
150m x =时,销售价格的估计值为:
2466.318166.11501962.0=+⨯=y
(万元)
22.解:(1)1
50,50(1420158)20.02
M m ===-++++= 2
1,0.0450N n === (2)如右图
(m 2)。

相关文档
最新文档