初中数学规律题总结

合集下载

初中数学找规律题

初中数学找规律题

归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方…按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。

1 123 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?5、有一串数字3 6 10 15 21 ___ 第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是().A.1 B.2 C.3 D.47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个.二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ?观察下面三个特殊的等式 ()2103213121⨯⨯-⨯⨯=⨯ ()3214323132⨯⨯-⨯⨯=⨯ ()4325433143⨯⨯-⨯⨯=⨯ 将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯读完这段材料,请你思考后回答:⑴=⨯++⨯+⨯1011003221⑵()()=++++⨯⨯+⨯⨯21432321n n n⑶()()=++++⨯⨯+⨯⨯21432321n n n4、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a ab a b 则符合前面式子的规律,,若…21010 沪科版七年级数学试卷一、填空题:1、如果飞机离地面6000米记为+6000米,现在它又下降了1600米,那么现在飞机的高度可记为__________米.2、当n=______时,3x 2y 5 与 -2x 2y 3n -4是同类项.3、比较大小:23-_____-78. 4﹑若关于x 的方程a-x=3的解是4,则a=5、你玩过“24点”游戏吗?就是让你将给定的四个数,用加、减、乘、除、乘方运算(每个数只能使用一次),使运算结果等于24. 现在给你四个数3、2、6、9,请你列算式:_______________________.6 已知︱a-2︱+(b+3)2=0,则ab 的值等于7、一粒废旧电池大约会污染60万升的水。

初中数学规律题

初中数学规律题
如果1⊕1=2,那么2010⊕2010 = .
6、把数字按如图所示排列起来,从上开始,依次为第一行、第 二行、第三行、……,中间用虚线围的一列,从上至下依次为1、 5、13、25、……,则第10个数为________。
第1行 1
第2行 -2 3
第3行 -4 5 -6
第4行 7 -8 9 -10
第5行 11 -12 13 -14 15
一 如增幅相等(等差数列):
例: 1、3、5、7……求第n位数 例: 2、4、6、8……求第n位数。 例:4、10、16、22、28……,求第n位数。
等差规律:差乘序+某数
4、 6、 8、 10、 12……
相邻之差是2 第一数4=差×序+某= 2×① +2 第二数6=差×序+某= 2×② +2 第三数8=差×序+某= 2×③ +2 第四数10=差×序+某= 2×④ +2
框里的最大的数和最小的数。
12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
995 996 997 998 999 1000 1001
(2010年山东省青岛市)如图,是用棋子摆成的图 案,摆第1个图案需要7枚棋子,摆第2个图案需要 19枚棋子,摆第3个图案需要37枚棋子,按照这样 的方式摆下去,则摆第6个图案需要 枚棋子,
• 同除以4后可得新数列:1、4、9、16…, 很显然是位置数的平方。
• (六)同技巧(四)、(五)一样,有的 可对每位数同加、或减、或乘、或除同一 数(一般为1、2、3)。当然,同时加、或 减的可能性大一些,同时乘、或除的不太 常见。

初中数学数字找规律题技巧汇总

初中数学数字找规律题技巧汇总

初中数学数字找规律题技巧汇总通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a1为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a1+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)、比值相等(等比数列):例:2、4、8、16、…。

第n项为:a n=2n(三)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,即二级等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

举例说明:2、5、10、17……,求第n位数。

分析:数列的增幅分别为:3、5、7,……,增幅以同等幅度增加。

那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。

(四)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9、17、….分析:数列2、3、5、9,17…。

初中数学找规律题(有标准答案)

初中数学找规律题(有标准答案)

初中数学找规律题(有标准答案)初中数学找规律题(有答案)有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索。

一、基本方法——看增幅一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例如,数列4、10、16、22、28……,求第n位数。

分析可得,第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1)6=6n-2.二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

虽然此解法较繁琐,但是此类题的通用解法。

当然,此题也可用其它技巧或用分析观察的方法求出,方法就简单的多了。

三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9、17增幅为1、2、4、8.四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只能用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包含序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中找规律题型总结

初中找规律题型总结

1、二级数列这里所谓的二级数列是指数列中前后两个数的和、差、积或商构成一个我们熟悉的某种数列形式。

例1:2 6 12 20 30 ( 42 )(2002年考题)解析:后一个数与前个数的差分别为:4,6,8,10这显然是一个等差数列,因而要选的答案与30的差应该是12,所以答案应该是B。

例2:20 22 25 30 37 ( ) (2002年考题)解析:后一个数与前一个数的差分别为:2,3,5,7这是一个质数数列,因而要选的答案与37的差应该是11,所以答案应该是C。

例3:2 5 11 20 32 ( 47 ) (2002年考题)解析:后一个数与前一个数的差分别为:3,6,9,12这显然是一个等差数列,因而要选的答案与32的差应该是15,所以答案应该是C。

例4:4 5 7 1l 19 ( 35 ) (2002年考题)解析:后一个数与前一个数的差分别为:1,2,4,8这是一个等比数列,因而要选的答案与19的差应该是16,所以答案应该是C。

例5:3 4 7 16 ( 43 ) (2002年考题)解析:后一个数与前一个数的差分别为:1,3,9这显然也是一个等比数列,因而要选的答案与16的差应该是27,所以答案应该是D。

例6:32 27 23 20 18 ( 17 ) (2002年考题)解析:后一个数与前一个数的差分别为:-5,-4,-3,-2这显然是一个等差数列,因而要选的答案与18的差应该是-1,所以答案应该是D。

例7:1, 4, 8, 13, 16, 20, ( 25 ) (2003年考题)解析:后一个数与前一个数的差分别为:3,4,5,3,4这是一个循环数列,因而要选的答案与20的差应该是5,所以答案应该是B。

例8:1, 3, 7, 15, 31, ( 63 ) (2003年考题)解析:后一个数与前一个数的差分别为:2,4,8,16这显然是一个等比数列,因而要选的答案与31的差应该是32,所以答案应该是C。

初中数学题中的规律

初中数学题中的规律

一、基本方法——看增幅
(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2
(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;
2、求出第1位到第第n位的总增幅;
3、数列的第1位数加上总增幅即是第n位数。

举例说明:2、5、10、17……,求第n位数。

分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。

那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:
[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1
所以,第n位数是:2+ n2-1= n2+1
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或。

初中数学规律题方法总结

初中数学规律题方法总结

郭氏数学:初中数学规律题方法总结初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

举例说明:2、5、10、17……,求第n位数。

分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。

那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。

(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

初中数学规律题解题技巧大全

初中数学规律题解题技巧大全

初中数学规律题解题技巧大全1.分类法:将问题中的要素进行分类,找出其中的共同点或规律。

例如,将一组数字按奇偶分类,可以发现奇数和偶数交替出现的规律。

2.逆向思维法:从目标结果出发,逆向思考问题,找出达到目标的步骤和规律。

例如,如果要求从5到1倒数,可以逆向思考,先从1开始计数,每次加1,直到53.引入临时变量法:在一些题目中,我们可以引入一个临时变量来辅助观察规律。

例如,当求一组数之间的差值时,引入一个临时变量来表示差值,观察其规律。

4.数列法:有些规律题可以通过找出数列的通项公式来解决。

根据已知条件列出数列前几项,观察数列之间是否有其中一种规律,并尝试找出通项公式。

5.图形法:有些规律题中会涉及到图形,可以通过画图观察图形之间的变化来找出规律。

例如,观察数字五角星的顶点数和边数之间的关系,可以发现边数是顶点数的两倍减一6.再加一法:一些规律题中涉及到数的增加或减少,可以通过对已知条件进行逐个增加或减少1来观察规律。

例如,观察一些数的平方数之间的差值,可以逐个加17.同构法:在一些规律题中,可以通过观察数字或图形的对称性来找出规律。

例如,观察数字0-9的对称性,可以发现数字6和9是相互对称的。

8.反证法:在一些情况下,我们可以采用反证法来解决规律题。

即假设问题的逆否命题成立,然后推导出矛盾的结论,从而得出原命题的正确性。

9.推广法:通过观察已知条件的相似性或不变性,将其推广到更一般的情况下。

例如,当求一个数字的平方时,可以观察平方的规律,并将其推广到其他数字。

10.数学工具法:在解决规律题时,可以运用数学工具来辅助观察和推理。

例如,使用图形计算器绘制图形,使用计算器进行计算等。

以上是一些常用的解题技巧,通过灵活运用这些技巧,可以帮助我们更好地解决初中数学规律题。

在解题过程中,还要注重观察细节、积累经验,并进行逻辑思维和推理能力的训练,提高解题的准确性和效率。

初中数学规律题汇总(全部有解析)

初中数学规律题汇总(全部有解析)

初中数学规律题汇总“有比较才有鉴别”。

通过比较.可以发现事物的相同点和不同点.更容易找到事物的变化规律。

找规律的题目.通常按照一定的顺序给出一系列量.要求我们根据这些已知的量找出一般规律。

揭示的规律.常常包含着事物的序列号。

所以.把变量和序列号放在一起加以比较.就比较容易发现其中的奥秘。

初中数学考试中.经常出现数列的找规律题.本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较.如增幅相等.则第n个数可以表示为:a1+(n-1)b.其中a为数列的第一位数.b为增幅.(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28…….求第n位数。

分析:第二位数起.每位数都比前一位数增加6.增幅都是6.所以.第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等.但是增幅以同等幅度增加(即增幅的增幅相等.也即增幅为等差数列)。

如增幅分别为3、5、7、9.说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦.但是此类题的通用解法.当然此题也可用其它技巧.或用分析观察的方法求出.方法就简单的多了。

(三)增幅不相等.但是增幅同比增加.即增幅为等比数列.如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等.且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法.只用分析观察的方法.但是.此类题包括第二类的题.如用分析观察法.也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目.通常按照一定的顺序给出一系列量.要求我们根据这些已知的量找出一般规律。

找出的规律.通常包序列号。

所以.把变量和序列号放在一起加以比较.就比较容易发现其中的奥秘。

完整)初中数学找规律专项练习题(有答案)

完整)初中数学找规律专项练习题(有答案)

完整)初中数学找规律专项练习题(有答案)1、观察规律:1=1;1+3=4;1+3+5=9;1+3+5+7=16;…,则2+6+10+14+…+2014的值是多少?2、用四舍五入法对取近似数,并精确到千位,用科学计数法表示为多少?3、观察下面的一列数:-1,2,-3,4,-5,6…请找出其中排列的规律,并按此规律填空。

(1)第10个数是多少?第21个数是多少?(2)-40是第几个数?26是第几个数?4、一组按规律排列的数:1,3,6,10,15…请推断第9个数是多少?5、计算:(-100)+(-101)=多少?(-2)+(-2)=多少?6、若。

则等于多少?7、大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成多少个?8、猜数字游戏中,XXX写出如下一组数:1,3,5,7,9…n个数是…,XXX猜想出第六个数字是多少?根据此规律,第9、10个数字分别是多少?9、若。

与|b+5|的值互为相反数,则等于多少?10、在计数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制的比较如下表:十进位制二进制 1 1 2 10 3 11 4 100 5 101 6 110 …… 请将二进位制xxxxxxxx(二)写成十进位制数为多少?11、为求。

值,可令S=。

则2S=。

因此所以。

仿照以上推理计算出的值是多少?二、选择题13、的值是多少?【】A.-2 B.-1 C.0 D.114、已知8.62=73.96,若x=0.7396,则x的值等于()A.86.2B.862C.±0.862D.±86215、计算:(-2)+(-2)的值是多少?A.2B.-1C.-2D.-416、计算等于多少?A. B. C. D.17、已知a、b互为相反数,c、d互为倒数,m的绝对值为1,p是数轴到原点距离为1的数,那么的值是多少?A.3 B.2 C.1 D.018、若。

(完整版)初中数学中考规律题目汇编

(完整版)初中数学中考规律题目汇编

35.猜想、探索规律型一、选择题14. (2009年金华市)在直角坐标系中,已知点 A (3,2).作点A 关于y 轴的对称点为 A i ,作点A i 关于原点的对称点为 A 2,作点A 2关于x 轴的对称点为 A 3, 作点A3关于y 轴的对称点为 A 4,…按此规律,则点 A 8的坐标为 ▲.18. ( 2009年大水市)观察下列计算:1 - -^1 •瑚+ 1) = (<2-1)(^2 + 1) = 1,(焉 + 73^)( ® 1) = [( V 2T ) + (® 例 W+ 1) =2,1 1 1 一 - L LL _^2— + 巫 + 姬 + 折 + 成)(V 4+ 1)=[(惊-1) +h/3-V 2) +(诲-网 W + 1) = 3,从以上计算过程中找出规律,并利用这一规律进行计算:(吏 + 1 十V 3+ 吏十山+ 瞻 + …* ^200 + ^2009)( "2010+ 1)= ---------------------------- ,5. (2009 年营口市)计算:31+ 1 = 4 , 32 + 1 = 10 , 33+ 1 = 28 , 34+ 1 = 82 , 35+ 1 = 244,…,归纳计算结 果中的个位数字的规律,猜测 32009 + 1的个位数字是( )A . 0B . 2C. 4D. 81. (2009年四川省内江市)如图,小陈从。

点出发,前进5米后向右转20°, 再前进5米后又向右转20°, ,这样一直走下去,他第一次回到出发点 O 时一共走了()A. 60米B. 100米°20°C. 90米D. 120米【关键词】正多边形.20°【答案】C.2.( 2009年贵州黔东南州) 某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验; 第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组应该有种子数()粒。

初中数学规律题的解题方法和技巧

初中数学规律题的解题方法和技巧

一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

举例说明:2、5、10、17……,求第n位数。

分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。

那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。

(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学规律题

初中数学规律题

初中数学规律题概述初中数学规律题是考察学生数学思维和逻辑推理能力的一种题型。

这类题目通常涉及到数字、图形、函数、统计、排列组合和应用题等不同方面的规律,需要学生通过观察、分析和归纳来发现其中的规律,并运用所学知识进行解答。

一、数字规律题数字规律题是初中数学规律题中最基本的一种,主要涉及到数字的递增、递减、循环等规律。

例如:1,2,3,4,5,(),(),()答案:6,7,8(每相邻两个数相差为1)二、图形规律题图形规律题主要是通过观察图形的变化规律,找出图形之间的联系和变化规律。

例如:图1:△○□☆△○□☆△○□☆……图2:□□○☆□□○☆□□○☆……图3:○□☆△□○☆△□○☆△……答案:图1中每组图形包含一个三角形、一个圆形、一个正方形和一个五角星;图2中每组图形包含两个正方形、一个圆形和一个五角星;图3中每组图形包含一个圆形、一个正方形、一个三角形和一个五角星。

三、函数规律题函数规律题主要是通过观察函数图像的变化规律,找出函数之间的联系和变化规律。

例如:y=x+2,y=x^2+2,y=x^3+2,y=x^4+2图像的规律是什么?答案:这些函数的图像都是关于y 轴对称的,且每个函数图像的最低点坐标都是(0,2)。

四、统计规律题统计规律题主要是通过观察数据的分布规律,找出数据之间的联系和变化规律。

例如:一组数据分别为:10,15,20,25,30。

这组数据的平均数、中位数和众数分别是多少?答案:这组数据的平均数为20,中位数为20,众数为20。

五、排列组合规律题排列组合规律题主要是通过观察排列和组合的变化规律,找出排列和组合之间的联系和变化规律。

例如:从n个元素中取出r个元素的所有排列的个数是多少?答案:n(n-1)(n-2)……(n-r+1)/r!六、数列综合规律题数列综合规律题主要是通过观察数列的变化规律,找出数列之间的联系和变化规律。

例如:1,1/2,3/5,8/13,()答案:21/34。

初中数学规律题汇总

初中数学规律题汇总

初中数学规律题汇总
以下是一些初中数学常见的规律题目汇总:
1. 题目:已知一条边长为a的正方形中,内接一个圆,求这个圆的直径和面积。

解答:
正方形的对角线就是圆的直径,所以圆的直径为a。

圆的面积公式为S=πr²,其中r为半径,所以圆的面积为
S=π(a/2)²=πa²/4。

2. 题目:已知一个等边三角形,求它的边长和高。

解答:
等边三角形的三条边长相等,所以它的边长为a。

等边三角形的高是从顶点到底边中点的垂线,因此高等于边长的一半,即高为h=a/2。

3. 题目:已知一个等腰三角形,已知底边长为a,求它的高和面积。

解答:
等腰三角形的两条底边相等,所以它的底边长为a。

等腰三角形的高是从顶点到底边上的垂线,所以高和底边中点以及顶点形成一个直角三角形,高等于勾股定理中的直角边之一,即高为h=sqrt(a²-(a/2)²)。

等腰三角形的面积公式为S=(底边长*a)/2,所以面积为
S=(a*a)/4。

4. 题目:已知一个矩形,已知其长为a,宽为b,求它的周长
和面积。

解答:
矩形的周长公式为P=2(a+b),所以周长为P=2a+2b。

矩形的面积公式为S=a*b,所以面积为S=ab。

5. 题目:已知一个梯形,已知上底为a,下底为b,高为h,求它的面积。

解答:
梯形的面积公式为S=(上底+下底)*高/2,所以面积为
S=(a+b)*h/2。

初中数学数字找规律题技巧汇总.

初中数学数字找规律题技巧汇总.

初中数学数字找规律题技巧汇总通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a1为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a1+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)、比值相等(等比数列):例:2、4、8、16、…。

第n项为:a n=2n(三)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,即二级等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

举例说明:2、5、10、17……,求第n位数。

分析:数列的增幅分别为:3、5、7,……,增幅以同等幅度增加。

那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。

(四)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9、17、….分析:数列2、3、5、9,17…。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学规律题解题基本方法(一)数列的找规律初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;<3、数列的第1位数加上总增幅即是第n位数。

举例说明:2、5、10、17……,求第n位数。

分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。

那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。

(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

例如,观察下列各式数:0,3,8,15,24,……。

试按此规律写出的第100个数是。

—解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。

我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,……。

序列号:1,2,3,4,5,……。

容易发现,已知数的每一项,都等于它的序列号的平方减1。

因此,第n项是n2-1,第100项是1002-1。

(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关。

例如:1,9,25,49,(),(),的第n为(2n-1)2(三)看例题:A:2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案与3有关且............即:n3+1B:2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。

再在找出的规律上加上第一位数,恢复到原来。

{例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。

例 : 4,16,36,64,,144,196,… (第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方。

(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。

当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。

(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。

三、基本步骤 ~先看增幅是否相等,如相等,用基本方法(一)解题。

如不相等,综合运用技巧(一)、(二)、(三)找规律 如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律最后,如增幅以同等幅度增加,则用用基本方法(二)解题 四、【典型例题】例1 观察下列算式:,65613,21873,7293,2433,813,273,93,3387654321======== ……用你所发现的规律写出20043的末位数字是__________。

!观察下列式子:326241⨯==+⨯;4312252⨯==+⨯;5420263⨯==+⨯;6530274⨯==+⨯……请你将猜想得到的式子用含正整数n 的式子表示来__________。

五、图形找规律小时侯我们都玩过搭积木的游戏,今天我们不妨重拾童年趣事,利用手中的火柴棒搭建一些常见的图形,探索规律。

合作交流,探索规律:活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表: `⑵照这样的规律搭建下去,搭n 个这样的三角形需要多少根火柴棒 ★注意引导学生概括“探索规律”的一般步骤: ① 寻找数量关系; ② 用代数式表示规律 ③ 验证规律。

★练习:四棱柱有几个顶点、几条棱、几个面五棱柱呢十棱柱呢n 棱柱呢 活动二:探索具体情景下事物的规律问题1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法;问题2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。

⑵按照上图方式继续排列桌子,完成下表:问题3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人3张呢n张呢⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。

⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐人。

【活动三:探索图表的规律下面是2000年八月份的日历:⑴日历中的绿色方框中的9个数之和与该方框正中间的数有什么关系⑵这个关系对其它这样的方框成立吗你能用代数式表示这个关系吗⑶这个关系对任何一个月的日历都成立吗为什么⑷你还能发现这样的方框中9个数之间的其他关系吗用代数式表示。

⑸你还能提出那些问题4 图3—4①是一个三角形,分别连接这个三角形三边的中点,得到图3—4②;再分别连结图3—4②中间的小三角形三边的中点,得到图3—4③,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题。

①②》……(1)将下表填写完整(2)在第n 个图形中有____________________个三角形(用含n 的式子表示)。

例6.如图,把一个面积为1的正方形分等分成两个面积为21的矩形,接着把面积为21的矩形等分成两个面积为41的正方形,再把面积为41的矩形等分成两个面积为81示的规律计算:=+++++++25611281641321161814121*例7.把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正方体的个数是例8.观察下列图形并填表。

六、巩固练习题1.用黑白两颜色的正六边形地面砖按如图所示规律,拼成若干个图案: (1)第4个图案中有白色地面砖 块;11(2)第n 个图案中有白色地面砖 块。

2.下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有)2(≥n n 个棋子,每个图案棋子总数为S ,按下图的排列规律推断,S 与n 之间的关系可以用式子来表示。

【……3.观察与分析下面各列数的排列规律,然后填空。

①5,9,13,17, , 。

②4,5,7,11,19, , 。

^③10,20,21,42,43, , ,174,175。

④4,9,19,34,54, , ,144。

⑤45,1,43,3,41,5, , ,37,9。

⑥6,1,8,3,10,5,12,7, , 。

⑦0,1,1,2,3,5, , 。

⑧180,155,131,108, , 。

⑨5,15,45,135, , 。

⑩60,63,68,75, , 。

4.你能很快算出21995吗]为了解决这个问题,我们考察个位上的数为5的自然数的平方,任意一个个位数为5的自然数可写成10•n +5,即求2)510(+n 的值(n 为自然数),你试分析 ,3,2,1===n n n 这些简单情况,从中控索其规律,并归纳,推测出结论(在下面空格内填上你的控索结果)。

通过计算,控索规律:225152=可写成25)11(1100++⨯ 625252=可写成25)12(2100++⨯ 1225352=可写成25)13(3100++⨯ 2025452=可写成25)14(4100++⨯…………5625752=可写成 7225852=可写成<第三个第一个第二个42==s n 83==s n 124==s n 165==s n从第(1)的结果,归纳、推测得:=+2)510(n根据上面的归纳、推测,请算出:=219955.观察下列几个算式,找出规律: 1+2+1=41+2+3+2+1=91+2+3+4+3+2+1=161+2+3+4+5+4+3+2+1=25 ……利用上面规律,请你迅速算出:①1+2+3+…+99+100+99+…+3+2+1= …②据①你会算出1+2+3+…+100是多少吗③据上你能推导出1+2+3+…+n 的计算公式吗12.给出下列算式:1881322⨯==-,28163522⨯==-,38245722⨯==-,48327922⨯==-,…,观察上面的一系列等式,你能发现什么规律用代数式表示这个规律是 。

6.研究下列算式,你会发现有什么规律224131==+⨯;239142==+⨯;2416153==+⨯;2525164==+⨯……请将你找出的规律用公式表示出来: 。

7.如图的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律填写: a 所表示的数: 。

b 所表示的数: 。

:8.因为111113=⨯⨯=,11112=⨯=,9812133=+=+ 93)21(22==+362781321333=++=++ 366)321(22==++10064278143213333=+++=+++ 10010)4321(22==+++那么=++++++333333100994321 。

9.将1,21-,31,41-,51,61-,…按一定规律排成下表:试找出12006-在第 行第 个数155114411331121111b b a 10191817161514131211-----'10.如下图:(1)10252641'(2)>11.把1到200的数像下表那样排列,用正方形框子围住横的3个数,竖的3个数,这9个数的和是162。

相关文档
最新文档