航天器控制原理
航天器控制原理(第四章 控制系统组成)
哥伦比亚航天飞机视频资料
4.2
4.2.1 推力器
执行机构
推力器是目前航天器控制使用最广泛的执行机构之 一。它根据牛顿第二定律,利用质射排出,产生反作用 推力,这也正是这种装置被称为推力器或喷气执行机构 的原因。当推安装使得推力方向通过航天器质心,则成 为轨道控制执行机构;而当推力方向不过质心,则必然 产生相对航天器质心的力矩,成为姿态控制执行机构。 根据产生推力所需能源的形式不同,质量排出型推 力器可以分为冷气推力器、热气推力器和电推力器。
加速度计
加速度计是用于测量航天器上加速度计安装点的绝对 加速度沿加速度计输入轴分量的惯性敏感器。虽然目前加 速度计没有广泛用于航天器的姿态稳定和控制,但它是航 天器导航系统中重要的器件。 加速度计的种类很多,有陀螺加速度计、摆式加速度 计、振动加速度计、石英加速度计等。
4.1.6
磁强计
磁强计是以地球磁场为基准,测量航天器姿态的敏 感器。磁强计本身是用来测量空间环境中磁场强度的。 由于地球周围每一点的磁场强度都可以由地球磁场模型 事先确定,因此利用航天器上的磁强计测得的信息与之 对比便可以确定出航天器相对于地球磁场的姿态。 磁敏感器根据工作原理不同可以分为感应式磁强计 和量子磁强计两种。
4.1.4 陀螺 陀螺是利用一个高速旋转的质量来敏感其自旋轴在 惯性空间定向的变化。 陀螺具有两大特性,即定轴性和进动性。 定轴性就是当陀螺不受外力矩作用时,陀螺旋转轴 相对于惯性空间保持方向不变; 进动性就是当陀螺受到外力矩作用时,陀螺旋转轴 将沿最短的途径趋向于外力矩矢量,进动角速度正比于 外力矩大小。
姿态敏感器小结
在实际的航天器姿态控制系统中,各种敏感器单独使 用一般是不能满足要求的,需要多种多个姿态敏感器组 合使用,形成一个姿态测量系统。原因主要有三方面:
航天器控制原理周军课后答案
航天器控制原理周军课后答案1、问题:下列描述的是开普勒第三定律——周期律的是:选项:A:行星绕太阳公转的周期的平方与椭圆轨道的长半径的立方成正比。
B:动量变化率与作用力成正比。
C:对每一个作用,总存在一个大小相等的反作用。
D:每个行星沿椭圆轨道绕太阳运行。
答案: 【行星绕太阳公转的周期的平方与椭圆轨道的长半径的立方成正比。
】2、问题:在推导圆锥曲线时,在二体运动方程的两侧同时与();在推导比角动量时,在二体运动方程两侧同时与()。
选项:A:叉乘,叉乘B:点乘,叉乘C:叉乘,点乘D:点乘,点乘答案: 【叉乘,叉乘】3、问题:下列不属于牛顿贡献的是:选项:A:提出行星运动“椭圆律”B:建立微积分C:提出万有引力定律D: 发现白光是由各种不同颜色的光组成的答案: 【提出行星运动“椭圆律”】4、问题:任何两个物体间均有一个相互吸引的力,这个力与它们的质量成_,与两物体间距离平方成__。
选项:A:正比;反比B:正比;正比C:反比;正比D:反比;反比答案: 【正比;反比】5、问题:根据以下哪个式子能推出比机械能守恒。
选项:A:B:C:D:E:答案: 【】6、问题:开普勒第三定律“周期的平方与椭圆轨道长半轴的立方成正比”,即,其中与()有关。
选项:A:引力常数B:航天器到中心引力体的距离C:偏心率D:比机械能答案: 【引力常数】7、问题:根据以下哪个式子能推出比角动量守恒。
选项:A:B:C:D:E:答案: 【】8、问题:以下哪个是二体运动方程?选项:A:B:C:D:E:答案: 【】9、问题:引力参数和什么因素有关?选项:A:中心体质量B:中心体体积C:中心体密度D:中心体组成成分E:中心体速度答案: 【中心体质量】10、问题:航天器的运行轨道为双曲线轨道,当它与行星相遇时,其轨道拐过角度,那么它与双曲线几何参数的关系为()。
选项:A:B:C:D:答案: 【】11、问题:关于卡文迪许扭秤实验正确的是:选项:A:测出万有引力常数B:测出地球圆周长C:发现了光谱D:证明了重力和加速度的存在答案: 【测出万有引力常数】12、问题:航天器的轨道运动有哪些特点?选项:A:二体运动中航天器唯一可能的运动轨道是圆锥曲线。
航天器结构振动控制与优化设计
航天器结构振动控制与优化设计航天器结构振动控制与优化设计是现代航天领域中的重要课题,它对于保障航天器的安全性、可靠性和性能具有重要意义。
本文将探讨航天器结构振动控制的原理与方法,并介绍优化设计在航天器结构振动控制中的应用。
一、航天器结构振动控制原理航天器在发射、飞行和着陆过程中都会面临各种振动问题。
这些振动问题既会影响航天器的正常工作,又会对载人航天员的生命安全造成潜在威胁。
因此,航天器结构振动控制就显得尤为重要。
航天器结构振动控制的原理主要包括两个方面:被动控制和主动控制。
被动控制是通过改变结构材料和形状等因素来改善结构的振动性能,例如使用减振材料、减振器等。
主动控制则是利用控制装置主动调节结构的振动状态,包括振动传感器、执行器和控制算法等。
二、航天器结构振动控制方法1.模态分析航天器结构的振动分析是了解结构动力学特性的重要手段,其中模态分析是一种常用的方法。
模态分析通过求解结构的固有振动模态和频率,可以确定结构存在的固有振动模式和相应的频率。
这为航天器的振动控制提供了依据。
2.振动控制策略振动控制策略主要包括主动振动控制和被动振动控制。
主动振动控制是基于主动控制技术,通过控制装置实时感知航天器的振动状态,并采取相应的控制措施来减小振动。
被动振动控制是通过设计合理的结构形状和材料来减小结构的振动响应。
3.优化设计优化设计在航天器结构振动控制中起着重要的作用。
通过优化设计可以改善结构的振动特性,减小结构的振动响应。
优化设计可以基于模态分析和振动控制策略进行,通过改变结构参数和材料等因素,使得结构在满足特定约束条件下达到最佳的振动控制效果。
三、航天器结构优化设计案例研究以某型号航天器为例进行航天器结构振动控制的优化设计。
首先,进行模态分析,确定航天器的固有振动频率和模态;然后,采用主动振动控制策略,设计并安装振动传感器和执行器;最后,利用优化算法对航天器结构参数进行调整,以达到最佳的振动控制效果。
航空航天工程师的航天器测量与控制技术
航空航天工程师的航天器测量与控制技术航天工程是现代科技的重要组成部分,而在航空航天工程中,航天器的测量与控制技术是至关重要的一环。
本文将介绍航天器测量与控制技术的基本概念、主要原理以及近年来的发展动向。
一、航天器测量技术航天器测量技术是指对航天器各种物理量和运动参数进行测量的科学与技术方法。
在航天器的设计、制造以及运行过程中,准确获取和分析各种数据是非常重要的。
1.1 航天器姿态测量航天器姿态测量是航天器测量技术的核心内容之一。
姿态测量包括航天器的位置、姿态角、角速度等参数的测量。
目前常用的姿态测量方法有陀螺仪、星敏感器、加速度计等。
1.2 航天器静力学测量航天器的静力学测量主要是针对航天器在发射和运行过程中所受到的各种力的测量。
静力学测量可以帮助工程师提供设计依据,确保航天器在各种环境中的安全。
1.3 航天器环境参数测量航天器环境参数测量是指对航天器所处的环境参数进行测量。
这些参数包括气温、气压、湿度、辐射等。
测量这些参数可以为航天器的设计和操作提供重要参考。
二、航天器控制技术航天器控制技术是指对航天器进行控制和调整的技术方法。
航天器控制技术的目标是保持航天器的姿态、定位和轨道稳定。
2.1 航天器姿态控制航天器姿态控制是指对航天器的位置、角度等姿态参数进行控制和调整,以满足航天器在宇宙环境中稳定运行和完成任务的要求。
姿态控制主要依靠推进器、姿态控制器和惯性导航系统等设备完成。
2.2 航天器轨道控制航天器轨道控制是指对航天器的轨道进行精确调整和控制。
轨道控制技术的主要手段是利用航天器自身的动力系统,通过火箭发动机推进、推进剂控制等方法来调整轨道的形状、高度和速度等参数。
2.3 航天器定位控制航天器定位控制是指对航天器在宇宙中的位置进行准确定位和控制。
利用卫星导航系统、雷达测距等技术手段,可以实现对航天器的准确定位和导航。
三、航天器测量与控制技术的发展趋势近年来,随着航天技术的快速发展,航天器测量与控制技术也在不断推陈出新。
航天器姿态与轨道控制原理
航天器姿态与轨道控制原理
从系统建模的角度来看,航天器的姿态与轨道控制原理包括两部分:旋转系统和平衡系统。
旋转系统包括控制方法、动力方法、传感方法和反馈控制方法等,来实现航天器姿态控制。
平衡系统则运用轨道力学、轨道建模、轨道规划以及发动机控制等方法,以轨道航行、轨道改良等为目标,保证航天器完成任务。
通常情况下,旋转系统使用发动机以及由发动机带动的旋转机构来控制和调节航天器构型和姿态。
旋转系统的主要控制方式有:有限旋转系统控制、控制反馈系统控制、面向目标的制导控制和旋转目标控制等,结合传感器系统通过利用陀螺仪、角速度矢量积分等方法,对航天器角度、转矩控制进行调节,使最终姿态稳定。
平衡系统使用发动机以及由发动机带动的旋转机构来推进航天器的空间轨道控制,通过改变发动机输出力及轨道建模下的参数,如卫星质量、平衡系数等,来调节航天器轨道,如通过线加速、混乱改正、超密对抗等方式,来实现轨道的航行控制。
总之,航天器姿态与轨道控制原理是结合发动机控制技术与建模技术,将航天器位置、朝向以及运动控制起来,以实现宇宙任务的一系列原理。
航空航天工程师的航天器遥测和控制系统
航空航天工程师的航天器遥测和控制系统航天器遥测和控制系统是航空航天工程师在航天器飞行中至关重要的组成部分。
它不仅能够监测航天器的各种参数,还能实现对航天器的远程操作和控制。
本文将介绍航天器遥测和控制系统的基本原理、应用以及发展趋势。
一、航天器遥测和控制系统的基本原理航天器遥测和控制系统基于遥测技术,通过测量和传输航天器上各种传感器采集的数据,实时监测航天器的运行状态。
同时,它还可以接收地面指令,控制航天器的姿态、航向和速度等参数。
航天器遥测和控制系统由传感器、遥测数据传输模块、指令接收模块和执行机构等组成。
传感器是航天器遥测和控制系统中最基础的部分,它能够感知航天器上各种物理量,如温度、压力、姿态等。
传感器将采集到的数据转化为电信号,并通过遥测数据传输模块传送给地面控制中心。
遥测数据传输模块是连接航天器和地面控制中心的纽带,它可以通过无线电或卫星通信等方式将传感器采集到的数据传输回地面。
遥测数据传输模块可以实现高速、可靠的数据传输,保证航天器上各个部分数据的实时更新。
指令接收模块是地面控制中心向航天器发送指令的接收装置。
通过接收地面发出的指令,指令接收模块可以将指令传递给执行机构,实现对航天器各个部分的控制。
执行机构是根据接收到的指令实现对航天器姿态、航向和速度等参数的调整。
执行机构通过控制航天器上的发动机、推力装置等来实现对航天器运动状态的控制和调节。
二、航天器遥测和控制系统的应用航天器遥测和控制系统广泛应用于各类航天任务中,包括卫星发射、航天器在轨运行以及返回舱的控制等。
它可以监测航天器的运行状态,及时发现并修正运行中的异常情况,确保航天任务的圆满完成。
在卫星发射过程中,航天器遥测和控制系统可以实时监测发射过程中的各种参数,如推力、姿态和温度等。
通过对这些参数的监测,航天工程师可以及时调整发射参数,确保卫星顺利进入预定轨道。
在航天器在轨运行过程中,航天器遥测和控制系统则起到了关键的作用。
它可以实时监测航天器的各项性能指标,如电力系统、姿态控制系统和燃料消耗等。
航天器控制:航天器姿态主动稳定系统(2)
1
0
0
z
0 1 0 0
2015/12/22
22
2 零动量反作用轮三轴姿态控制
零动量反作用轮进行三轴姿态控制
• 其特点在于反作用飞轮有正转或反转,但是整个航天器的总 动量矩为零。
• 这种姿态稳定系统的需要俯仰、偏航和滚动三轴姿态信息。 • 所以该三轴控制系统的主要部件是一组提供三轴姿态信息的
敏感器,一组运算的控制器,反作用轮以及卸载去饱和推力 器。
13
1.6 反作用飞轮力矩分配
多飞轮系统
• 设航天器装有n(n≥3)个反作用飞轮,各飞轮的角动量方向矢 量分别为hw1,hw2, … hwn ,对应角动量幅值向量为 hw [hw1 hwn ]T 时,有其角动量在航天器本体系的投影为
hw hw1hw1 hwnhwn Cwhw 其中 Cw hw1 hwn
• 其中由于飞轮相对航天器本体的角速度为ωr ,有
H W
HW t
r HW
• 式中∂HW / ∂t 为相对于固连于飞轮系的微商。代入可得:
H B
B HB
HW t
B HW
r
HW
T
• 整理可得:
H B
B HBTFra bibliotek HW t
B HW
JW W W 0 Tunt
JWW Tunt JWW 0
怎么使得飞轮转速卸载到0?
施加与飞轮初始转速相反的卸载力矩,力矩越大,卸载速度越快。
能否采用磁力矩给飞轮卸载?
航天测控通信原理及应用
航天测控通信原理及应用航天测控通信原理及应用随着现代科技的不断发展,航天技术也得到了迅速的发展。
而航天测控通信就是航天技术中不可缺少的一部分。
下面将从原理和应用两个方面介绍航天测控通信。
一、原理1.航天测控的基本原理:航天器在太空中运行时,通过地面站向航天器发送指令,收集空间信息,控制航天器,保证其安全降落。
这就需要航天测控系统。
2.航天测控通信的原理:在航天测控过程中,必须采用通信方式完成地面站和卫星之间的数据传输。
这就是航天测控通信。
通信利用无线电波传播。
一般采用发射功率较小的卫星遥测遥控技术,通过地面站向卫星发出指令,并从卫星收到数据,完成数据传输。
3.航天测控通信系统的构成:航天测控通信系统由地面站和卫星两部分组成。
地面站主要包括天线、收发设备、终端设备、数据处理设备等。
其中最主要的装备为卫星接收机和卫星发射机。
卫星上装配有天线控制装置(ACU)、卫星通信模块、遥控遥测模块等电子设备。
二、应用1.卫星通信:在航天测控中,卫星通信是必不可少的一部分。
利用航天测控技术的无线电波传导特点,将指令传输到卫星,使卫星按指令完成任务。
2.星载测控:随着卫星的发展,测控技术也不断进步。
星载测控技术就是指在卫星上安装测控设备,实现卫星测控的一种技术。
3.深空测控:深空测控是指对行星、卫星、彗星等天体进行跟踪观测,并根据观测结果进行数据分析和处理。
4.测量和确定地球重力场:航天测控通信技术也可以用于测量和确定地球的重力场,帮助科学家更好地研究地球的内部结构和演化历史。
综上所述,航天测控通信是航天技术中不可缺少的一部分,它为航天器的安全运行提供了难以替代的保障。
同时,在工况监测、环境监测、人类生活等多个领域也有广泛应用。
随着信息技术的不断进步,航天测控通信技术也将不断完善和发展。
航天器动力系统双模型调控原理
航天器动力系统双模型调控原理航天器的动力系统是确保航天器顺利进行各项任务的关键要素之一。
在航天器的动力系统中,双模型调控是一种常见且有效的控制原理。
本文将详细介绍航天器动力系统双模型调控的原理和应用。
一、双模型调控原理概述双模型调控是指在航天器的动力系统中采用两种不同的数学模型进行控制。
一种模型用于正常工作状态下的控制,另一种模型则用于故障发生时的应急控制。
通过双模型调控,可以保证航天器在各种情况下都能够保持稳定运行,并在发生故障时采取相应的措施保持安全。
二、双模型调控原理详解1. 正常工作模型:在航天器正常工作状态下,双模型调控使用一种基于航天器正常运行数据建立的数学模型进行控制。
这个模型会根据航天器的运行数据和参数,通过运算预测出航天器的状态,并基于此进行控制。
正常工作模型的任务是确保航天器在正常工作状态下的稳定运行,其控制策略会根据航天器的状态和目标进行调整,以达到最佳控制效果。
2. 应急控制模型:当航天器发生故障或异常情况时,双模型调控会切换到应急控制模型进行控制。
应急控制模型是一种根据航天器可能出现的故障情况建立的数学模型,它会预测并模拟故障对航天器的影响,并制定相应的控制策略。
应急控制模型的任务是在故障发生后,通过相应的控制策略保证航天器的安全运行。
3. 切换策略:双模型调控的关键之处在于切换策略,即如何在发生故障时从正常工作模型切换到应急控制模型,并确保切换过程的平稳进行。
切换策略通常是基于航天器的状态和故障信息进行决策的。
一般情况下,当航天器检测到故障信号时,会触发切换策略,将控制模式从正常工作切换到应急控制。
同时,为了保证切换的平稳,在切换过程中可能会引入一些过渡策略,以确保航天器的稳定运行。
三、双模型调控的优势和应用领域1. 优势:双模型调控在航天器动力系统中具有以下几个优势:- 可靠性:通过使用两种不同的控制模型,可以提高航天器的可靠性和鲁棒性,即使在发生故障时也能保证航天器的安全运行。
基于模型预测控制的航天器姿态控制研究
基于模型预测控制的航天器姿态控制研究一、引言航天器姿态控制是航天工程中的重要问题之一,它关系着航天器的稳定性和精度,对于载人航天、卫星定位、空间探测等任务都具有重要意义。
传统的姿态控制方法往往基于经验和观察,无法满足对复杂环境中航天器姿态的准确控制需求。
基于模型预测控制(Model Predictive Control,简称MPC)的航天器姿态控制方法在近年来得到了广泛应用,并取得了显著的研究进展。
二、基于模型预测控制的原理与方法1. 模型预测控制原理模型预测控制是一种基于模型的控制方法,通过建立系统的数学模型,对未来一段时间内的系统响应进行预测,并根据预测结果修正控制输入,从而实现对系统的控制。
模型预测控制的核心思想是通过优化问题求解来寻求最优控制策略,以使系统在一定时间范围内满足给定的性能指标。
2. 模型预测控制方法航天器姿态控制中常用的模型预测控制方法包括线性二次型模型预测控制(Linear Quadratic Model Predictive Control,简称LQMPC)和非线性模型预测控制(Nonlinear Model Predictive Control,简称NMPC)。
LQMPC方法假设系统模型是线性的,并通过求解线性二次型优化问题得到最优控制律;而NMPC方法则适用于非线性系统,可以通过迭代求解非线性优化问题近似得到最优控制策略。
三、基于模型预测控制的航天器姿态控制系统1. 系统建模在基于模型预测控制的航天器姿态控制系统中,首先需要建立航天器的数学模型。
航天器姿态控制系统涉及到刚体动力学、航天器运动学等多个方面,因此需要综合考虑刚体力学、电机驱动、传感器测量等多个因素进行建模。
2. 预测模型基于航天器的数学模型,可以通过离散化、线性化等方法获得离散时间的线性预测模型。
预测模型可以用于预测航天器未来一段时间内的姿态变化,进而进行优化计算得到最优控制输入。
3. 优化求解在模型预测控制中,通过求解优化问题得到最优控制输入。
航空航天工程师的航天器热控技术
航空航天工程师的航天器热控技术航空航天工程师在航天器设计与制造过程中起到至关重要的作用。
其中,航天器热控技术是航空航天工程师必须掌握的关键技能之一。
本文将探讨航天器热控技术的基本原理、挑战以及未来发展趋势。
一、航天器热控技术的基本原理航天器在太空环境中面临极端的温度条件,从极高温度的太阳辐射到极低温度的深空环境。
因此,航天器热控技术的基本目标是保证航天器的各个部分在设计范围内的温度之间保持平衡,以确保器件和系统的正常工作。
1.1 航天器热交换原理航天器需要通过热交换来平衡内外部的温度差异。
热交换可以通过辐射、传导和对流等方式实现。
其中,辐射是太空环境下最主要的热交换方式,而传导和对流则在其他特定条件下起到重要作用。
1.2 热控规划和排布航天器的热控规划和排布涉及到热源和热辐射器的布置以及热保护层的设计等。
热控规划需要考虑到航天器的发射、空间操作和返回等各个阶段的热控要求,确保航天器在不同操作模式下的热控性能。
1.3 热控材料的选择航天器热控技术中,材料的选择对实现热控性能至关重要。
航天器所用材料必须具备较高的热阻和热导率,以保证良好的热控效果。
此外,航天器所用材料还需要具备较好的抗辐照和抗氧化性能,以应对太空环境的极端条件。
二、航天器热控技术的挑战航天器的热控技术面临诸多挑战。
在航空航天工程师的工作中,他们需要解决以下问题:2.1 多种热源的热控航天器在太空环境中会受到多种不同的热源影响,例如太阳辐射、地球辐射、内部系统热源等。
因此,航天器热控技术需要在各种情况下对不同热源进行有效的控制和管理。
2.2 热控效能的平衡在设计航天器的热控系统时,需要平衡热控效能和航天器的质量、功耗、体积等方面的考虑。
这涉及到在不同设计限制下做出最佳选择,以实现最佳的热控性能。
2.3 太空环境的极端条件航天器在太空中面临的温度条件极端,从高温到低温的过渡可能会对航天器的稳定性和正常运行产生负面影响。
因此,航空航天工程师需要设计出能够应对这些极端条件的热控系统。
航天测控的原理和应用
航天测控的原理和应用一、航天测控的概述航天测控是指通过测量和控制手段对航天器进行监测、导航、控制和处理数据的技术,是航天任务顺利完成的关键环节。
航天测控系统由地面站和航天器组成,通过通信链路进行信息的传递,从而实现对航天器的测量和控制。
二、航天测控的原理航天测控的原理主要涉及到航天器的测量和控制两个方面。
2.1 航天器的测量原理航天器的测量是指对航天器各种状态参数和数据的获取和分析,包括航天器的位置、速度、姿态、姿态稳定性等。
测量主要通过以下几种方式实现:•遥测测量:通过航天器上的传感器采集航天器的姿态、温度、气压等数据,并通过通信链路传输到地面站进行分析和处理。
•测距测速:通过测距仪和测速仪等设备,对航天器与地面站之间的距离和相对速度进行测量。
•星敏感器测量:通过星敏感器对航天器相对于恒星的视线角进行测量,从而确定航天器的姿态。
•惯性测量单元:通过惯性测量单元对航天器的加速度和角速度进行测量,从而获取航天器的位置和速度。
2.2 航天器的控制原理航天器的控制是指通过对航天器的姿态、轨道、飞行速度等参数进行控制,确保航天器按照任务要求进行运行。
控制主要通过以下几种方式实现:•推力控制:通过推进系统对航天器施加推力,改变航天器的轨道和速度。
•姿态控制:通过姿态控制系统对航天器的姿态进行调整,保持航天器稳定。
•电动控制:通过电动机、电液系统等设备对航天器的各个部件进行控制,实现对航天器的各种功能的操作和控制。
•控制算法:通过编写控制算法,对航天器的状态和参数进行监测和控制,确保航天器按照任务要求进行运行。
三、航天测控的应用航天测控技术在航天领域有着广泛的应用,主要包括以下几个方面:3.1 航天器的轨道控制航天测控技术可以通过对航天器的推力、姿态和速度等参数进行控制,实现对航天器轨道的调整和控制。
例如,对于地球同步轨道的通信卫星,需要保持恒定的轨道位置,航天测控技术可以实现对其轨道位置的控制,从而确保通信卫星能够始终覆盖特定地区。
航天器姿态控制系统的设计与研究
航天器姿态控制系统的设计与研究近年来,随着空间技术的不断发展,航天器的任务越来越复杂,对其姿态控制系统的要求也越来越高。
姿态控制是航天器稳定性和精确性的关键,因此对航天器姿态控制系统的设计和研究具有重要意义。
一、姿态控制系统的作用和原理姿态控制是指控制航天器的朝向、角速度和角加速度等参数,使其达到预期的姿态和运动状态。
航天器姿态控制系统主要由传感器、控制器和执行器三部分组成。
传感器用于获取航天器当前的姿态和运动状态,控制器根据传感器信息计算出航天器需要的控制指令,执行器则将控制指令转化为物理控制力或转矩,对航天器进行姿态控制。
姿态控制系统实现的基本原理是反馈控制。
传感器测量航天器的姿态参数并反馈给控制器,控制器根据反馈信号计算航天器需要的控制量,并输出给执行器,执行器对航天器进行干扰控制,从而达到预期的姿态和运动状态。
二、姿态控制系统的设计航天器姿态控制系统的设计要考虑以下几个方面:1.航天器特性:航天器的质量、大小、结构和机动性等因素都会影响姿态控制系统的设计。
例如小型卫星姿态控制系统的传感器要轻巧、紧凑,而大型载人飞船需要更为精密的姿态控制系统。
2.任务需求:航天器的任务特性如飞行速度、高度和任务要求等也是姿态控制系统设计的重要考虑因素。
比如对于轨道交会任务的航天器,需要更高的姿态控制精度和敏感性。
3.控制方法:姿态控制系统有多种控制方法,如比例控制、积分控制、微分控制和模糊控制等。
根据航天器的特性和任务需求选择合适的控制方法是设计姿态控制系统的重要环节。
4.传感器选择:传感器用于获取航天器当前的姿态和运动状态,因此选择合适的传感器也是姿态控制系统设计的重要环节。
航天器姿态控制系统经常使用的传感器有陀螺仪、加速度计、星敏感器和地磁传感器等。
5.控制器算法:控制器算法用于计算姿态控制指令,姿态控制系统的精度和稳定性与控制器算法的优化程度密切相关。
常见的控制算法有PID控制、模糊控制和自适应控制等。
第四章航天器的姿态动力学与控制
11.3.6 姿态敏感器
姿态就是航天器在空间的方位,而姿态敏感器用来测量航天器 本体坐标系相对于某个基准坐标系的相对角位置和角速度,以确 定航天器的姿态。要完全确定一个航天器的姿态,需要3个轴的角 度信息。由于从一个方位基准最多只能得到两个轴的角度信息 (俯仰和偏航),为此要确定航天器的三轴姿态至少要有两个方 位基准。姿态敏感器按不同的基准方位,可分为下列5类:1、以 地球为基准方位:红外地平仪,地球反照敏感器;2、以天体为基 准方位:太阳敏感器,星敏感器;3、以惯性空间为基准方位:陀 螺,加速度计;4、以地面站为基准方位:射频敏感器;5、其 他:例如磁强计(以地磁场为基准方位),陆标敏感器(以地貌 为基准方位)。
单轴
与喷气推力器三轴姿态稳定系统相比,飞轮三轴姿态稳定系统 具有多方面的优点。
1、飞轮可以给出较精确的连续变化的控制力矩,可以进行线性控 制,而喷气推力器只能作非线性开关控制。因此飞轮的控制精度一 般比喷气推力器的高一个数量级,而且姿态误差速率也比喷气控制 小。
2、飞轮所需要的能源是电能,可以不断通过太阳能电池在轨得到补 充,因而适合于长寿命工作。喷气推力器需要消耗工质或燃料,在 轨无法补充,因此其使用寿命大大受限,基本上与航天器携带的工 质或燃料质量成正比,而且还有长期密封问题。
11.3.3 自旋稳定
自旋稳定的原理:是利用航天器绕自旋轴旋转所获得的陀螺定轴 性,使航天器的自旋轴方向在惯性空间定向。它的主要优点首先是为 航天器获得规则的姿态运动提供了一种简单的手段。自旋卫星利用非 常简单的仪器便可提供姿态信息,而且因为运载工具通常是以自旋方 式入轨的,所以航天器很容易达到完全无源的惯性定向,并且有一定 的精度。其次,由于自旋运动具有比较大的动量矩,因此航天器抵抗 外干扰的能力很强,因为当自旋航天器受到恒定干扰力矩作用时,其 自旋轴是以速度漂移,而不是以加速度漂移。加之自旋稳定能使航天 器发动机的推力偏心影响减至最小,因此自旋稳定方式在航天器,特 别是在早期发射的航天器中得到了广泛的应用。
航天飞机的制导与控制课件
控制系统的应用
发射与入轨控制
确保航天飞机准确进入预定轨 道,降低发射失败的风险。
在轨操作控制
操控航天飞机在轨道上的变轨 、对接和释放卫星等任务。
返回着陆控制
使航天飞机在完成在轨任务后 安全返回地面。
航天员生命保障
确保航天员在发射、在轨和返 回过程中的生命安全。
04
航天飞机的制导与控制 技术
自动控制系统技术
03
航天飞机的控制系统
控制系统的组成
导航系统
用于确定航天飞机的位 置和航向,确保其准确 进入轨道和返回地面。
推进系统
包括主发动机和姿态控 制发动机,用于产生推 力,控制航天飞机的速
度和方向。
姿态控制系统
通过使用反作用力矩和 推力矢量控制,保持航
天飞机的稳定姿态。
生命保障系统
提供氧气、水和食物等 必需品,确保航天员的
航天飞机的制导与控制 课件
目录 CONTENT
• 航天飞机制导与控制概述 • 航天飞机的制导系统 • 航天飞机的控制系统 • 航天飞机的制导与控制技术 • 航天飞机的制导与控制挑战与解
决方案 • 航天飞机的制导与控制案例研究
01
航天飞机制导与控制概 述
定义与特点
定义
航天飞机制导与控制是指通过一系列 的导航、控制和指令系统,引导航天 飞机从发射、运行到返回和着陆的全 过程。
自动控制系统技术是航天飞机制导与 控制的核心,它能够自动调整航天飞 机的姿态、速度和高度等参数,确保 航天飞机按照预定轨迹飞行。
自动控制系统技术包括自动控制系统 设计、控制算法开发、传感器数据处 理等方面的内容,是实现航天飞机精 确制导与控制的关键。
导航定位技术
导航定位技术是航天飞机制导与控制 的重要组成部分,它能够确定航天飞 机的位置、航向和速度等信息,为制 导与控制提供基础数据。
宇宙航天的原理
宇宙航天的原理宇宙航天的原理是指人类探索宇宙、进入太空和进行宇宙航行的基本原理。
宇宙航天的实现需要克服地球重力、逃离地球大气层、保证宇航员的生存和工作环境、进行太空航行、返回地球等一系列挑战性问题。
首先,宇宙航天需要克服地球的重力。
地球吸引物体的引力使得宇宙船必须具备足够的推力才能逃逸地球引力的束缚,进入太空。
为了实现逃逸速度,宇宙航天器通常采用火箭发动机驱动,喷出高速喷射的燃料来产生巨大的推进力,以克服重力并突破地球引力的束缚。
其次,宇宙航天需要克服地球大气层的阻力。
地球大气层对于进入太空的航天器来说是一个巨大的阻碍物,因为它会产生强大的空气阻力和热量,会给宇航员带来巨大的风险。
在进入太空之前,航天器必须加速到足够高的速度,以克服空气阻力,这个速度被称为第一宇宙速度。
为了降低空气阻力,航天器设计中采用了流线型的外形,并使用热保护材料来抵御高温。
同时,也会选取较低的轨道,通过大气层的稀薄部分飞行,以减小碰撞和空气阻力的影响。
宇宙航天还需要保证宇航员的生存和工作环境。
太空环境极端恶劣,其中包括极低温、高真空、宇宙辐射等。
为了使宇航员能够在太空中生活和工作,航天器必须提供适宜的压力、温度和氧气环境,确保宇航员能够呼吸、进食和排泄。
此外,宇航员还需要抵御宇宙辐射的危害,如太阳辐射和宇宙射线等。
因此,太空舱内的构造及设计需要在保证安全的前提下提供足够的生活空间和工作环境。
太空航行是宇宙航天的另一个重要方面。
在太空中,宇宙船需要进行精确的导航、定位和轨道控制。
宇宙航行器中配备了各种导航和控制系统,如陀螺仪、推进器、姿态控制器等。
这些系统可以帮助宇航员确认宇宙船的位置和速度,及时进行调整和修正。
此外,宇宙航天还涉及轨道计算、星座定位、引力弹射等技术,以实现预定的轨道和飞行路径。
最后,宇宙航天还需要解决宇航员的返回问题。
在执行航天任务后,宇航员需要返回地球。
返回过程需要航天器再次进入地球大气层,在高速运动中经历大气密度的增加,产生剧烈的热量和空气阻力。
航天器热管理系统工作原理
航天器热管理系统工作原理航天器热管理系统是指在航天器中负责调节和控制温度的系统。
由于航天器在太空中会受到极端的温度变化,热管理系统的设计和运行对于保证航天器的正常工作至关重要。
航天器热管理系统的工作原理主要包括热平衡与热控制两个方面。
热平衡是指在不同温度环境下,航天器内外部温度保持相对稳定,以防止航天器的部件过热或过冷。
热控制是指在特定工作模式下,通过调节热量的传输和释放,使航天器内部保持恒定的温度。
热平衡的实现主要依靠热传导、热辐射和热对流三种方式。
热传导是指热量通过物质的直接接触传导,航天器中的隔热材料可以减少热传导的发生,从而保护航天器内部组件免受外部温度的影响。
热辐射是指物体因温度差异而发射和吸收电磁辐射,航天器中的热辐射控制系统可以通过选择适当的材料和表面处理来调节航天器的辐射热量。
热对流是指由于物体的运动而产生的热量传输,航天器中的对流热控制系统可以通过设计合理的通风系统来调节航天器内外的空气流动,以实现热量的平衡。
热控制是为了保持航天器内部特定区域的温度恒定。
热控制的实现依靠热量的传输和释放。
航天器内部的热量传输主要通过热管、热泵和热电材料等方式实现。
热管是一种利用液态工质在真空环境中传输热量的设备,通过液态工质的汽化和冷凝循环,将热量从高温区域传输到低温区域。
热泵是一种利用机械或电力驱动的热量传输设备,可以通过制冷剂的循环来实现热量的传输和释放。
热电材料是一种可以将热能直接转化为电能或者将电能转化为热能的材料,可以通过控制电流的方向和大小来调节航天器内部的温度。
除了热量的传输和释放,航天器热管理系统还需要通过温度传感器和控制器来监测和调节航天器的温度。
温度传感器可以通过测量航天器内部和外部的温度来反馈给控制器,控制器根据温度的变化情况来调节热管理系统的工作状态,以保持航天器的温度在合适的范围内。
航天器热管理系统的工作原理是通过热平衡和热控制来保证航天器在极端温度环境下的正常工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 世界航天技术发展的概况航天技术发展是当今世界上最引人注目的事业之一,它推动着人类科学技术的进步,使人类活动的领域由大气层内扩展到宇宙空间。
航天技术是现代科学技术的结晶,是基础科学和技术科学的集成,力学、热力学、材料学、医学、电子技术、光电子技术、自动控制、计算机、真空技术、低温技术、半导体技术、喷气推进、制造工艺学等学科,以及这些科学技术在航天应用中相互交叉、渗透而产生的大量新学科,都对航天技术的发展起了重要作用。
所以,航天技术是一个国家科学技术水平的重要标志。
航天技术是一门综合性的工程技术,主要包括:制导与控制技术,热控制技术,喷气推进技术,能源技术,空间通信技术,遥测遥控技术,生命保障技术,航天环境工程技术,火箭及航天器的设计、制造和试验技术,航天器的发射、返回和在轨技术等。
由多种技术融于一体的航天系统是现代高技术的复杂大系统,不仅规模庞大,技术高新、尖端,而且人力、物力耗费巨大,工程周期长。
时至今日,航天技术已被广泛应用到政治、军事、经济和科学探测等领域,已成为一个国家综合国力的象征。
.1.2 近代航天技术的发展19世纪末20世纪初,火箭才又重新蓬勃地发展起来。
近代的火箭技术和航天飞行的发展,涌现出许多勇于探索的航天先驱者,其中代表人物K.3.齐奥尔科夫斯基,R.戈达德(Robert Goddard),H.奥伯特(Hermann Oberth)。
航天技术从20世纪50年代末期的研究试验阶段到70年代中期,发展到了广泛实际应用阶段。
其中60年代以来,为科学研究、国民经济和军事服务的各种科学卫星与应用卫星得到了很大发展。
至70年代,军、民用卫星已全面进入应用阶段。
一方面向侦察、通信、导航、预警、气象、测地、海洋、天文观测和地球资源等专门化的方向发展,同时另一方面,各类卫星亦向多用途、长寿命、高可靠性和低成本的方向发展。
这两种趋势相互补充,取得了显著的效益。
80年代中后期,基于模块化和集成化设计思想的新型微、小卫星崛起,成为航天技术发展中的一个新动向。
这类卫星重量轻、成本低、研制周期短、见效快,已逐渐成为今后应用卫星的一支生力军。
1.2 航天器的分类与系统组成航天技术是一门研究和实现如何把航天器送人空间,并在那里进行活动的工程技术。
它主要包括航天器、运载工具和地面测控三大部分。
为了便于了解,我们首先对航天器进行分类。
同一个航天器可兼有数种任务,故机械地、绝对地分类,是不可能的。
同一类航天器,往往包括了几种系列,而每一系列又可分成数种不同的卫星系统或型号。
1.2.1 按载人与否分类航天器可分为无人航天器与载人航天器两大类。
无人航天器按是否绕地球运行又可分为人造地球卫星和宇宙探测器两类。
它们又可以进一步按用途分类,1.人造地球卫星简称人造卫星,是数量最多的航天器(占90%以上)。
它们的轨道长度由100多公里到几十万公里。
按用途它们又可分为:(1) 科学卫星:发展科学卫星的主要目的是:①研究近地空间环境和日地关系,为载人飞船、应用卫星和战略武器的发展提供资料;②进行天文观测;③对地球科学,例如地球磁场、电离层与磁层的关系、地壳力学、海洋动力学等方面进行研究。
(2) 应用卫星:利用星载仪器设备,以应用为目的,在轨道上完成某种任务的卫星,称为应用卫星。
它们直接为国民经济和军事服务,如通信卫星、气象卫星、侦察卫星、导航卫星、测地卫星、地球资源卫星等。
(3) 技术试验卫星:技术试验卫星是针对某些航天器(如应用卫星或飞船等)的特殊新工艺或某项新的系统技术而设计的,其目的是进行预先的飞行试验。
在航天技术发展中,技术试验卫星曾发挥了它的作用,世界各国相当重视这种卫星的研制。
2.载人航天器目前的载人航天器只在近地轨道飞行和从地球到月球的登月飞行。
今后将出现可以到达各种星球的载人飞船,以及供人类长期在空间生活和工作的永久性空间站。
载人航天器按飞行和工作方式可分为:(1) 载人飞船:能保障航天员在外层空间生活和工作,以执行航天任务并能返回地面的航天器;(2) 空间站:可供多名航天员巡访、长期工作和居住的载人航天器;(3) 航天飞机:可以重复使用的,往返于地面和高度在1 000 km以下的近地轨道之间,运送有效载荷的航天器。
3.宇宙探测器飞出地球轨道的探测器,有行星际探测器和恒星际(飞出太阳系)探测器两种。
其中行星际探测器按探测目标又可分为月球和行星(金星、火星、水星、木星、土星等)探测器。
如20世纪60~70年代,前苏联发射的“月球”、“金星”、“火星”、“水星”等系列探测器,美国发射的“水手”、“海盗”、“先驱者”、“旅行者”等系列探测器。
1.2.2 人造地球卫星的功能分类按航天器在轨道上的功能来进行分类,就人造地球卫星而言,可分为观测站、中继站、基准站和轨道武器四类。
每一类又包括了各种不同用途的航天器。
1.观测站卫星处在轨道上,对地球来说,它站得高,看得远(视场大),用它来观察地球是非常有利的。
此外,由于卫星在地球大气层以外不受大气的各种干扰和影响,所以用它来进行天文观测也比地面天文观测站更加有利。
属于这种功能的卫星有下列几种典型的用途。
(1) 侦察卫星:在各类应用卫星中侦察卫星发射得最早(1959年发射),发射的数量也最多。
侦察卫星有照相侦察和电子侦察卫星两种。
照相侦察卫星是用光学设备对地面目标进行拍照的卫星。
20世纪70年代以来,前苏联和美国每年发射的军用卫星中,约有1/3的卫星用于各种形式的照相侦察,它们在200 km的近地轨道上进行普查和详查。
电子侦察卫星利用星载电子设备截获空间传播的电磁波,并转发到地面,通过分析和破译,获得敌方的情报。
电子侦察的目的是确定他方的飞机、雷达等系统的位置和特征参数,窃听他方的无线电和微波通信。
电子侦察卫星以无线电探测和记录设备完成这些使命。
总之,无论对军事战略侦察,还是对军事战术侦察,侦察卫星所提供的情报信息,起着不可忽视的作用,曾为美国和前苏联政策的制定和军事行动提供了依据。
据报道,美国和前苏联将近70%的军事情报来源于侦察卫星。
目前,在美、俄两国的军用卫星中,50%以上都是侦察卫星。
美国已研制了六代侦察卫星,可见光照相分辨率为O.3 m,工作寿命200 d以上;无线电传输型相机分辨率为O.3~3 m,卫星工作寿命两年多。
俄罗斯的侦察卫星工作寿命从几天到几个月。
美国通过延长卫星工作寿命,大大减少发射数量,俄罗斯则通过增加卫星发射数量以保证全年有侦察卫星在天上工作。
(2) 气象卫星:气象卫星利用所携带的各种气象遥感器,接收和测量来自地球、海洋和大气的可见光辐射、红外线辐射和微波辐射信息,再将它们转换成电信号传送给地面接收站。
气象人员根据收集的信息,经过处理,得出全球大气温度、湿度、风等气象要素资料。
几小时就可得到全球气象资料,从而作出中期和长期天气预报,确定台风中心位置和变化,预报台风和其他风暴。
气象卫星对于保证航海和航空的安全,保证农业、渔业和畜牧业生产,都有很大作用。
气象卫星已由单纯的气象试验,发展到多学科和多领域的综合应用;由低轨道系统,发展到高轨道系统,形成了全球气象卫星观测网。
气象卫星在军事活动中的应用也日益加强,有的国家已建立了全球性的军事气象资料的收集系统,向军事单位提供实时的或非实时的气象资料。
随着航天技术的进一步发展,气象遥感器将向多样化、高精度方向发展,大大丰富气象预报的内容和提高预报精度。
同时气象卫星提供的云图也将由静态云图向动态云图方向发展,这将会引起气象卫星发展的一次重大突破。
(3) 地球资源卫星:资源卫星是在侦察卫星和气象卫星的基础上发展而来的。
利用星上装载的多光谱遥感器获取地面目标辐射和反射的多种波段的电磁波,然后把它传送到地面,再经过处理,变成关于地球资源的有用资料。
它们包括地面的和地下的,陆地的和海洋的等等。
地球资源卫星可广泛用于:地下矿藏、海洋资源和地下水源调查;土地资源调查,土地利用,区域规划;调查农业、林业、畜牧业和水利资源合理规划管理;预报农作物长势和收成;研究自然植物的生成和地貌;考查和监视各种自然灾害如病虫害、森林火灾、洪水等;环境污染、海洋污染;测量水源,雪源;铁路,公路选线,港口建设,海岸利用和管理,城市规划。
地球资源卫星具有重大的经济价值和潜在的军事用途。
(4) 海洋卫星:海洋是生命的摇篮和风雨的故乡,海洋与人类的密切关系正逐渐被认识。
海洋控制着自然界中水的循环和大气运动,主导调节大陆的气候,提供廉价的运输条件和高质量的水产食物。
海洋中蕴藏着巨大的能源和矿物资源。
对海洋、海岸线的调查、研究、利用和开发,虽然可以利用气象卫星、地球资源卫星获得一些资料和数据,但不解决根本问题,例如资源卫星遥感器波段主要在可见光和近红外波段,而海洋遥感器波段主要在红外和微波波段。
我国既是一个大陆国家(9 600 000 km2土地),又是一个海洋国家(海岸线18 000 km,拥有4 700 000 km2海域,多于4 000 000 km2的经济开发区),发展海洋卫星是国民经济和军事部门之必需。
海洋卫星的任务是海洋环境预报,包括远洋船舶的最佳航线选择,海洋渔群分析,近海与沿岸海洋资源调查,沿岸与近海海洋环境监测和监视,灾害性海况预报和预警,海洋环境保护和执法管理,海洋科学研究,以及海洋浮标、台站、船舶数据传输,海上军事活动等。
当然,作为观测站的卫星远不止以上几种,预警卫星、核爆炸探测卫星、天文预测卫星(如美国的“哈勃”太空望远镜)等均属于这一类。
虽然它们的功能各有侧重,但基本观测原理都是相似的。
2.中继站中继站是一种在轨道上对信息进行放大和转发的卫星。
具体分为两类:一类用于传输地面上相隔很远的地点之间的电话、电报、电视和数据;另一类用于传输卫星与地面之间的电视和数据。
这种卫星有下列几种:(1) 通信卫星:利用卫星进行通信和平常的地面通信相比较,具有下列优点:①通信容量大;②覆盖面积广;③通信距离远;④可靠性高;⑤灵活性好;⑥成本低。
通信卫星一般采用地球静止轨道,相当于静止在天空上。
若有3颗地球静止轨道卫星,彼此相隔120°,就可实现除地球两极部分地区外的全球通信。
通信卫星已用于国际、国内和军事通信业务,同时开展了区域性通信和卫星对卫星的通信。
卫星通信技术已赋有很浓的军事色彩,它在战略通信和战术通信中占有绝对的优势。
目前,各国已有的国际、国内卫星通信系统都承担着军事通信任务。
通信卫星已进入相当成熟的实际应用阶段,特别是随着地球静止轨道卫星通信技术的发展,它的应用日益广泛。
它可用于传输电话、电报、电视、报纸、图文传真、语音广播、时标、数据、视频会议等。
(2) 广播卫星:广播卫星是一种主要用于电视广播的通信卫星。
这种广播卫星不需要经过任何中转就可向地面转播或发射电视广播节目,供公众团体或者个人直接接收,因此又称为直播卫星。