五邑大学,大学物理考试试卷包括答案 (2)
大学物理(普通物理)考试试题及答案
任课教师: 系(室)负责人:普通物理试卷第1页,共7页《普通物理》考试题开卷( )闭卷(∨ ) 适用专业年级姓名: 学号: ;考试座号 年级: ;本试题一共3道大题,共7页,满分100分。
考试时间120分钟。
注:1、答题前,请准确、清楚地填各项,涂改及模糊不清者,试卷作废。
2、试卷若有雷同以零分记。
3、常数用相应的符号表示,不用带入具体数字运算。
4、把题答在答题卡上。
一、选择(共15小题,每小题2分,共30分)1、一质点在某瞬时位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即 (1)dr dt (2)d r dt (3) dsdt(4)下列判断正确的是( D )A.只有(1)(2)正确;B. 只有(2)正确;C. 只有(2)(3)正确;D. 只有(3)(4)正确。
2、下列关于经典力学基本观念描述正确的是 ( B )A、牛顿运动定律在非惯性系中也成立,B、牛顿运动定律适合于宏观低速情况,C、时间是相对的,D、空间是相对的。
3、关于势能的描述不正确的是( D )A、势能是状态的函数B、势能具有相对性C、势能属于系统的D、保守力做功等于势能的增量4、一个质点在做圆周运动时,则有:(B)A切向加速度一定改变,法向加速度也改变。
B切向加速度可能不变,法向加速度一定改变。
C切向加速的可能不变,法向加速度不变。
D 切向加速度一定改变,法向加速度不变。
5、假设卫星环绕地球中心做椭圆运动,则在运动的过程中,卫星对地球中心的( B )A.角动量守恒,动能守恒;B .角动量守恒,机械能守恒。
C.角动量守恒,动量守恒; D 角动量不守恒,动量也不守恒。
6、一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,两个质量相同、速度大小相同、方向相反并在一条直线上(不通过盘心)的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L和圆盘的角速度ω则有( C )A.L不变,ω增大;B.两者均不变mmC. L 不变, 减小D.两者均不确定7、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下列说法正确的是 ( C )A.角速度从小到大,角加速度不变;B.角速度从小到大,角加速度从小到大;C. 角速度从小到大,角加速度从大到小;D.角速度不变,角加速度为08、在过程中如果____C_______,则刚体对定轴的角动量保持不变。
五邑大学物理试卷2005-07下B
命题人:李渭清 审批人: 试卷分类(A 卷或B卷) A五邑大学 试 卷学期: 2005 至 2006 学年度 第 1 学期 课程: 大学物理 专业: 纺织系班级:AP04113姓名: 学号:(8分)试指出下列各式所表示的意义:(1)kT 21 (2)RT i 2 (3)RT i M 2(12分)设有1摩尔的氧气(当作理想气体)用作热机的工作物质。
热机的循环过程如图所示,其中ab,cd 为等温线, da,bc 为等容线,ab 温度为T 1,cd 温度为T 2 ad 体积为V 0,bc 体积为2V 0,求循环效率。
V 02V 0(10分)一平面简谐波沿X 方向传播,其振幅和圆频率分别为A 和ω,波速为u,设t =0时的波形曲线如图所示,(1)用相量图法求出原点的初位相;(2)写出此波的波函数; (3)求距O 点λ/4处的振动方程。
(10分)在折射率n 1=1.52的镜头上涂有一层折射率n 2=1.38的MgF 2增反膜,如果此膜适合波长λ=6000A 的光,问膜的最小厚度应取何值?(10分)一衍射双缝,缝距d=0.12mm,缝宽a=0.02mm ,用波长为4000A 的平行单色光垂直入射双缝,双缝后置一焦距为50cm 的透镜。
试求:(1)透镜焦平面上单缝衍射中央明纹的半角宽度和线宽度;(2)透镜焦平面上单缝衍射中央明纹包迹内有多少条干涉主极大?(10分)一束光强为I0偏振光,相继通过两个偏振片P1、P2后出射的光强为I0 /4,而且其偏振方向与入射光的偏振方向垂直。
如果入射光偏振方向与P1的夹角为α1,P1 P2之间的夹角为α2,求α1和α2。
(10分)在氢原子光谱的巴尔末系中,里德伯常数为R,证明最短波长可以写成R4=λ。
(10分)设粒子的波函数为ψ(x,t),说明图中面积A, 面积B 及虚线表示的意义。
(8分)设质子在沿x 轴运动时,速度的不确定度为∆ v =10cm/s ,试估计其坐标的不确定度 ∆ x 。
五邑大学考试题目及答案
五邑大学考试题目及答案一、选择题(每题2分,共20分)1. 五邑大学位于中国的哪个省份?A. 广东省B. 江苏省C. 浙江省D. 四川省答案:A2. 下列哪项不是五邑大学的校训?A. 厚德B. 博学D. 求实C. 创新答案:C3. 五邑大学成立于哪一年?A. 1985年B. 1990年C. 1995年D. 2000年答案:A4. 五邑大学的主要教学语言是什么?A. 英语B. 普通话C. 粤语D. 闽南语答案:B5. 五邑大学提供以下哪个学位?A. 学士B. 硕士C. 博士D. 所有以上选项答案:D6. 五邑大学的学生总数大约是多少?A. 5000人B. 10000人C. 15000人D. 20000人答案:C7. 下列哪项不是五邑大学提供的服务?A. 图书馆B. 医疗服务C. 体育设施D. 法律咨询答案:D8. 五邑大学的校庆日是哪一天?A. 5月8日B. 10月1日C. 11月11日D. 12月25日答案:A9. 五邑大学的学生宿舍是否提供网络接入?A. 是B. 否答案:A10. 五邑大学的学生会组织名称是什么?A. 邑大学生会B. 五邑学生会C. 邑大联盟D. 五邑联盟答案:A二、填空题(每题2分,共20分)11. 五邑大学的校徽由_______、_______和_______三个部分组成。
答案:书本、凤凰、校名12. 五邑大学的宗旨是培养具有_______、_______和_______的高素质人才。
答案:创新精神、实践能力和国际视野13. 五邑大学图书馆藏书量超过_______万册。
答案:10014. 五邑大学的教学区包括_______、_______和_______三个主要区域。
答案:文科楼、理科楼、综合楼15. 五邑大学的学生社团数量超过_______个。
答案:5016. 五邑大学提供的奖学金种类包括_______奖学金、_______奖学金和_______奖学金等。
答案:学术、体育、艺术17. 五邑大学的校歌名称是_______。
大学物理学专业《大学物理(二)》期末考试试卷-附答案
大学物理学专业《大学物理(二)》期末考试试卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。
2、一平行板空气电容器的两极板都是半径为R的圆形导体片,在充电时,板间电场强度的变化率为dE/dt.若略去边缘效应,则两板间的位移电流为__________________。
3、长为、质量为的均质杆可绕通过杆一端的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示。
现有一质量为的子弹以水平速度射入杆上点,并嵌在杆中. ,则子弹射入后瞬间杆的角速度___________。
4、两列简谐波发生干涉的条件是_______________,_______________,_______________。
5、一弹簧振子系统具有1.OJ的振动能量,0.10m的振幅和1.0m/s的最大速率,则弹簧的倔强系数为_______,振子的振动频率为_______。
6、动方程当t=常数时的物理意义是_____________________。
7、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。
8、在主量子数n=2,自旋磁量子数的量子态中,能够填充的最大电子数是______________。
9、一长直导线旁有一长为,宽为的矩形线圈,线圈与导线共面,如图所示. 长直导线通有稳恒电流,则距长直导线为处的点的磁感应强度为___________;线圈与导线的互感系数为___________。
10、一个中空的螺绕环上每厘米绕有20匝导线,当通以电流I=3A时,环中磁场能量密度w =_____________ .()二、名词解释(共6小题,每题2分,共12分)1、能量子:2、受激辐射:3、黑体辐射:4、布郎运动:5、熵增加原理:6、瞬时加速度:三、选择题(共10小题,每题2分,共20分)1、气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程()。
(完整版)大学物理(力学)试卷附答案
大 学 物 理(力学)试 卷一、选择题(共27分) 1.(本题3分)如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 (A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ] 2.(本题3分)几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变.(C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ] 3.(本题3分)关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ] 4.(本题3分)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ ]5.(本题3分)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于β. (B) 大于β,小于2 β.(C) 大于2 β. (D) 等于2 β. [ ] 6.(本题3分)花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A)31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ]7.(本题3分)关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量. (2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的.(B) (1) 、(2) 是正确的. (C) (2) 、(3) 是正确的.(D) (1) 、(2) 、(3)都是正确的. [ ] 8.(本题3分)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变.(C) 减小. (D) 不能确定. [ ] 9.(本题3分)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫⎝⎛=R JmR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针. [ ]二、填空题(共25分)10.(本题3分)半径为20 cm 的主动轮,通过皮带拖动半径为50 cm 的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动.在4 s 内被动轮的角速度达到8πrad ·s -1,则主动轮在这段时间内转过了________圈. 11.(本题5分)绕定轴转动的飞轮均匀地减速,t =0时角速度为ω 0=5 rad / s ,t =20 s 时角速度为ω = 0.8ω 0,则飞轮的角加速度β =______________,t =0到 t =100 s 时间内飞轮所转过的角度θ =___________________. 12.(本题4分)半径为30 cm 的飞轮,从静止开始以0.50 rad ·s -2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t =________,法向加速度a n =_______________. 13.(本题3分)一个作定轴转动的物体,对转轴的转动惯量为J .正以角速度ω0=10 rad ·s -1匀速转动.现对物体加一恒定制动力矩 M =-0.5 N ·m ,经过时间t =5.0 s 后,物体停止了转动.物体的转动惯量J =__________. 14.(本题3分)一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩的大小M =_________. 15.(本题3分)质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度ω =_____________________. 16.(本题4分)在一水平放置的质量为m 、长度为l 的均匀细杆上,套着一质量也为m 的套管B (可看作质点),套管用细线拉住,它到竖直的光滑固定轴OO '的距离为l 21,杆和套管所组成的系统以角速度ω0绕OO '轴转动,如图所示.若在转动过程中细线被拉断,套管将沿着杆滑动.在套管滑动过程中,该系统转动的角速度ωmm m0v 俯视图与套管离轴的距离x 的函数关系为_______________.(已知杆本身对OO '轴的转动惯量为231ml )三、计算题(共38分) 17.(本题5分)如图所示,一圆盘绕通过其中心且垂直于盘面的转轴,以角速度ω作定轴转动,A 、B 、C 三点与中心的距离均为r .试求图示A 点和B 点以及A 点和C 点的速度之差B A v v ϖϖ-和C A v v ϖϖ-.如果该圆盘只是单纯地平动,则上述的速度之差应该如何? 18.(本题5分)一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.19.(本题10分)一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.20.(本题8分)如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n ;(2) 两轮各自所受的冲量矩.21.(本题10分)空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .) 回答问题(共10分) 22.(本题5分)绕固定轴作匀变速转动的刚体,其上各点都绕转轴作圆周运动.试问刚体上任意一点是否有切向加速度?是否有法向加速度?切向加速度和法向加速度的大小是否变化?理由如何? 23.(本题5分)一个有竖直光滑固定轴的水平转台.人站立在转台上,身体的中心轴线与转台竖直轴线重合,两臂伸开各举着一个哑铃.当转台转动时,此人把两哑铃水平地收缩到胸前.在这一收缩过程中,(1) 转台、人与哑铃以及地球组成的系统机械能守恒否?为什么? (2) 转台、人与哑铃组成的系统角动量守恒否?为什么?(3) 每个哑铃的动量与动能守恒否?为什么?大 学 物 理(力学) 试 卷 解 答一、选择题(共27分)C D C C C D B C A 二、填空题(共25分) 10.(本题3分)20 参考解: r 1ω1=r 2ω2 , β1 = ω1 / t 1 ,θ1=21121t β 21211412ωθr r n π=π=4825411⨯π⨯⨯π=t =20 rev11.(本题5分)-0.05 rad ·s -2 (3分)250 rad (2分)12.(本题4分)0.15 m ·s -2(2分)1.26 m ·s -2(2分)参考解: a t =R ·β =0.15 m/s 2 a n =R ω 2=R ·2βθ =1.26 m/s 2 13.(本题3分)0.25 kg ·m 2(3分) 14.(本题3分)157N·m (3分) 15.(本题3分)3v 0/(2l )16.(本题4分)()2202347xl l +ω三、计算题(共38分) 17.(本题5分)解:由线速度r ϖϖϖ⨯=ωv 得A 、B 、C 三点的线速度ωr C B A ===v v v ϖϖϖ 1分各自的方向见图.那么,在该瞬时 ωr A B A 22==-v v v ϖϖϖθ=45° 2分同时 ωr A C A 22==-v v v ϖϖϖ方向同A v ϖ. 1分平动时刚体上各点的速度的数值、方向均相同,故0=-=-C A B A v v v v ϖϖϖϖ 1分 [注]此题可不要求叉积公式,能分别求出 A v ϖ、B v ϖ的大小,画出其方向即可. 18.(本题5分)解:根据转动定律: J d ω / d t = -k ω∴t Jkd d -=ωω2分 两边积分:⎰⎰-=t t Jk 02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k 3分19.(本题10分)θ BC AωB v ϖC v ϖA v ϖB v ϖ-A v ϖB v v A ϖϖ- -C v ϖ A v ϖ解:受力分析如图所示. 2分 2mg -T 1=2ma 1分 T 2-mg =ma 1分T 1 r -T r =β221mr 1分T r -T 2 r =β221mr 1分a =r β2分解上述5个联立方程得: T =11mg / 8 2分20.(本题8分)解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒1分 J A ωA +J B ωB = (J A +J B )ω, 2分 又ωB =0得 ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min 1分(2) A 轮受的冲量矩⎰t MAd = J A (ω -ωA ) = -4.19×10 2 N ·m ·s 2分负号表示与A ωϖ方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s 2分方向与A ωϖ相同.21.(本题10分)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.两个守恒及势能零点各1分,共3分小球到B 点时: J 0ω0=(J 0+mR 2)ω ① 1分()22220200212121BR m J mgR J v ++=+ωωω ② 2分 式中v B 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得:ω=J 0ω 0 / (J 0 + mR 2) 1分代入式②得222002J mR RJ gR B ++=ωv 1分 当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即:()R mg m C 2212=v , gR C 4=v 2分四、问答题(共10分) 22.(本题5分)答:设刚体上任一点到转轴的距离为r ,刚体转动的角速度为ω,角加速度为β,则由运动学关系有:切向加速度a t =r β 1分 法向加速度a n =r ω2 1分对匀变速转动的刚体来说β=d ω / d t =常量≠0,因此d ω=βd t ≠0,ω 随时间变化,即ω=ω (t ). 1分所以,刚体上的任意一点,只要它不在转轴上(r ≠0),就一定具有切向加速度和法向加速度.前者大小不变,后者大小随时间改变. 2分(未指出r ≠0的条件可不扣分)m 2m βT 2 2P ϖ1P ϖTa T 1a23.(本题5分)答:(1) 转台、人、哑铃、地球系统的机械能不守恒. 1分因人收回二臂时要作功,即非保守内力的功不为零,不满足守恒条件. 1分 (2) 转台、人、哑铃系统的角动量守恒.因系统受的对竖直轴的外力矩为零. 1分(3) 哑铃的动量不守恒,因为有外力作用. 1分 哑铃的动能不守恒,因外力对它做功. 1分 刚体题一 选择题 1.(本题3分,答案:C ;09B )一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. 2.(本题3分,答案:D ;09A ) 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A)31ω0. (B) ()3/1 ω0. (C)3 ω0. (D) 3 ω0.3.( 本题3分,答案:A ,08A )1.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. 二、填空题1(本题4分,08A, 09B )一飞轮作匀减速运动,在5s 内角速度由40πrad/s 减少到10π rad/s ,则飞轮在这5s 内总共转过了 圈,飞轮再经 的时间才能停止转动。
大学物理试题库及答案详解【考试必备】
第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的分析与解 td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;trd d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确的.故选(D). 1 -4 一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v =(B) 匀减速运动,θcos 0v v =(C) 变加速运动,θcos 0v v =(D) 变减速运动,θcos 0v v = (E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θlh l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗?1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x两式计算.解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x (2) 由 0d d =tx得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t xv2s0.422m.s 36d d -=-==t t x a1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析 根据加速度的定义可知,在直线运动中v -t 曲线的斜率为加速度的大小(图中AB 、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a -t 图上是平行于t 轴的直线,由v -t 图中求出各段的斜率,即可作出a -t 图线.又由速度的定义可知,x -t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x –t 图为t 的二次曲线.根据各段时间内的运动方程x =x (t ),求出不同时刻t 的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB AB AB t t a v v (匀加速直线运动)0=BC a (匀速直线运动)2s m 10-⋅-=--=CD CD CD t t a v v (匀减速直线运动)根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s. 解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -=这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r*(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为m 91.5d 4d 402=+==⎰⎰x x s s QP1 -9 质点的运动方程为23010t t x +-= 22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v o x =-10 m ·s-1, v o y =15 m ·s-1,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β β=-33°41′(或326°19′)1 -10 一升降机以加速度1.22 m ·s-2上升,当上升速度为2.44 m ·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v20221gt t h y -+=v当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v vs 705.02=+=ag ht (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-=s 705.02=+=ag ht (2) 由于升降机在t 时间内上升的高度为2021at t h +='v则 m 716.0='-=h h d1 -11 一质点P 沿半径R =3.0 m 的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a )图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O ′x ′y ′坐标系,并采用参数方程x ′=x ′(t )和y ′=y ′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O ′x ′y ′坐标系中,因t Tθπ2=,则质点P 的参数方程为t TR x π2sin=',t TR y π2cos-=' 坐标变换后,在O x y 坐标系中有t TR x x π2sin='=,R t TR y y y +-=+'=π2cos0 则质点P 的位矢方程为j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sinj i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则s 606034πarctan 1⨯⨯===ωh s ωt 即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t 2,式中a 的单位为m ·s-2,t 的单位为s.如果当t =3s时,x =9 m,v =2 m ·s-1,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=tt a 0d d 0vv v得 03314v v +-=t t (1)由⎰⎰=txx t x 0d d 0v得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m ·s-1代入(1) (2)得v 0=-1 m ·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为 t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v v v 得石子速度 )1(Bt e B A --=v 由此可知当,t →∞时,B A →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t e BA y t Bt y d )1(d 00⎰⎰--= 得石子运动方程 )1(2-+=-Bt e BA tB A y 1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m ·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下. 解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==t t t t 000)d 46(d d j i a v v j i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt r r t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示. 1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为td d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为R a n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ==所以 θR θt a Δ)cos Δ1(2ΔΔ2v -==v(2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2)j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即t ΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v则m 17.112==na ρv 1 -18 飞机以100 m ·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m ·s -1,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为 o 5.12arctan==x y θ(3) 在任意时刻物品的速度与水平轴的夹角为 v v v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2) 令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos (coscos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r 从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 g h ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v = 为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m ·s-1 的初速率罚任意球,已知球门高为3.44 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程222)tan 1(2tan x θg θx y +-=v 以x =25.0 m,v =20.0 m ·s-1 及3.44 m ≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-=因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m ·s-1.求:(1) 该轮在t ′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2得比例系数 322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω== 则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa在2.0s内该点所转过的角度 rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n2s 2s m 80.4d d -=⋅==t ωr a t t(2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s 1 -25 一无风的下雨天,一列火车以v 1=20.0 m ·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v 2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得 1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan221v v v -= 而要使hlαarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -27 一人能在静水中以1.10 m ·s-1的速度划船前进.今欲横渡一宽为1.00 ×103 m 、水流速度为0.55 m ·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.。
大学物理考试题及答案
大学物理考试题及答案一、选择题(每题4分,共40分)1. 下列哪个量是标量?A. 力B. 位移C. 动量D. 速度2. 下列哪个量是矢量?A. 质量B. 静力C. 动能D. 加速度3. 以恒力F作用下,物体位移x的函数关系为F = 2x + 3,其中F 为单位时间内物体所受的总力,则力学功W与位移x的函数关系是:A. W = 2x^2 + 3xB. W = 4x + 3C. W = 4x^2 + 6xD. W = 2x + 34. 物体A自由落体以恒定加速度a1下落,物体B自由落体以恒定加速度a2下落。
当两者同时从同一高度下落时,哪个物体先触地?A. 物体AB. 物体BC. 物体A和物体B同时触地D. 初始速度不同,无法确定5. 压强的单位是:A. 牛顿/平方米B. 焦耳/秒C. 瓦特/安培D. 千克/立方米6. 当一个物体浸没在液体中时,所受浮力等于:A. 物体的重力B. 液体的重力C. 物体的体积D. 物体的质量7. 功率的单位是:A. 焦耳B. 瓦特C. 牛顿D. 米/秒8. 电阻的单位是:A. 欧姆B. 瓦特C. 安培D. 瓦/米9. 轴上有两个质量相等的物体A和B,A在轴上离轴心的距离是B 的2倍,则这两个物体对轴的转动惯量之比是:A. 1:1B. 1:2C. 2:1D. 1:410. 电磁感应现象中,导线中产生电动势的原因是:A. 导线自身的电子受到力的作用B. 磁场变化引起电磁感应C. 电磁波辐射作用D. 电磁振荡引起电动势二、填空题(每题4分,共40分)11. 物体在光滑水平面上受到的摩擦力等于 _______________ 。
12. 力学功的单位是_________________。
13. 物体下落的过程中,速度不断增大,则物体的加速度为___________ 。
14. 一个能够制热的物体对另一个物体传递能量的方式是_________________。
15. 光线从一个光密介质射入到一个光疏介质中时发生_________________。
(完整版)大学物理(力学)试卷附答案
大 学 物 理(力学)试 卷一、选择题(共27分) 1.(本题3分)如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 (A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ] 2.(本题3分)几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变.(C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ] 3.(本题3分)关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ] 4.(本题3分)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ ]5.(本题3分)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于β. (B) 大于β,小于2 β.(C) 大于2 β. (D) 等于2 β. [ ] 6.(本题3分)花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A)31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ]7.(本题3分)关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量. (2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的.(B) (1) 、(2) 是正确的. (C) (2) 、(3) 是正确的.(D) (1) 、(2) 、(3)都是正确的. [ ] 8.(本题3分)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变.(C) 减小. (D) 不能确定. [ ] 9.(本题3分)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫⎝⎛=R JmR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针. [ ]二、填空题(共25分)10.(本题3分)半径为20 cm 的主动轮,通过皮带拖动半径为50 cm 的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动.在4 s 内被动轮的角速度达到8πrad ·s -1,则主动轮在这段时间内转过了________圈. 11.(本题5分)绕定轴转动的飞轮均匀地减速,t =0时角速度为ω 0=5 rad / s ,t =20 s 时角速度为ω = 0.8ω 0,则飞轮的角加速度β =______________,t =0到 t =100 s 时间内飞轮所转过的角度θ =___________________. 12.(本题4分)半径为30 cm 的飞轮,从静止开始以0.50 rad ·s -2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t =________,法向加速度a n =_______________. 13.(本题3分)一个作定轴转动的物体,对转轴的转动惯量为J .正以角速度ω0=10 rad ·s -1匀速转动.现对物体加一恒定制动力矩 M =-0.5 N ·m ,经过时间t =5.0 s 后,物体停止了转动.物体的转动惯量J =__________. 14.(本题3分)一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩的大小M =_________. 15.(本题3分)质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度ω =_____________________. 16.(本题4分)在一水平放置的质量为m 、长度为l 的均匀细杆上,套着一质量也为m 的套管B (可看作质点),套管用细线拉住,它到竖直的光滑固定轴OO '的距离为l 21,杆和套管所组成的系统以角速度ω0绕OO '轴转动,如图所示.若在转动过程中细线被拉断,套管将沿着杆滑动.在套管滑动过程中,该系统转动的角速度ωmm m0v 俯视图与套管离轴的距离x 的函数关系为_______________.(已知杆本身对OO '轴的转动惯量为231ml )三、计算题(共38分) 17.(本题5分)如图所示,一圆盘绕通过其中心且垂直于盘面的转轴,以角速度ω作定轴转动,A 、B 、C 三点与中心的距离均为r .试求图示A 点和B 点以及A 点和C 点的速度之差B A v v ϖϖ-和C A v v ϖϖ-.如果该圆盘只是单纯地平动,则上述的速度之差应该如何? 18.(本题5分)一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.19.(本题10分)一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.20.(本题8分)如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n ;(2) 两轮各自所受的冲量矩.21.(本题10分)空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .) 回答问题(共10分) 22.(本题5分)绕固定轴作匀变速转动的刚体,其上各点都绕转轴作圆周运动.试问刚体上任意一点是否有切向加速度?是否有法向加速度?切向加速度和法向加速度的大小是否变化?理由如何? 23.(本题5分)一个有竖直光滑固定轴的水平转台.人站立在转台上,身体的中心轴线与转台竖直轴线重合,两臂伸开各举着一个哑铃.当转台转动时,此人把两哑铃水平地收缩到胸前.在这一收缩过程中,(1) 转台、人与哑铃以及地球组成的系统机械能守恒否?为什么? (2) 转台、人与哑铃组成的系统角动量守恒否?为什么?(3) 每个哑铃的动量与动能守恒否?为什么?大 学 物 理(力学) 试 卷 解 答一、选择题(共27分)C D C C C D B C A 二、填空题(共25分) 10.(本题3分)20 参考解: r 1ω1=r 2ω2 , β1 = ω1 / t 1 ,θ1=21121t β 21211412ωθr r n π=π=4825411⨯π⨯⨯π=t =20 rev11.(本题5分)-0.05 rad ·s -2 (3分)250 rad (2分)12.(本题4分)0.15 m ·s -2(2分)1.26 m ·s -2(2分)参考解: a t =R ·β =0.15 m/s 2 a n =R ω 2=R ·2βθ =1.26 m/s 2 13.(本题3分)0.25 kg ·m 2(3分) 14.(本题3分)157N·m (3分) 15.(本题3分)3v 0/(2l )16.(本题4分)()2202347xl l +ω三、计算题(共38分) 17.(本题5分)解:由线速度r ϖϖϖ⨯=ωv 得A 、B 、C 三点的线速度ωr C B A ===v v v ϖϖϖ 1分各自的方向见图.那么,在该瞬时 ωr A B A 22==-v v v ϖϖϖθ=45° 2分同时 ωr A C A 22==-v v v ϖϖϖ方向同A v ϖ. 1分平动时刚体上各点的速度的数值、方向均相同,故0=-=-C A B A v v v v ϖϖϖϖ 1分 [注]此题可不要求叉积公式,能分别求出 A v ϖ、B v ϖ的大小,画出其方向即可. 18.(本题5分)解:根据转动定律: J d ω / d t = -k ω∴t Jkd d -=ωω2分 两边积分:⎰⎰-=t t Jk 02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k 3分19.(本题10分)θ BC AωB v ϖC v ϖA v ϖB v ϖ-A v ϖB v v A ϖϖ- -C v ϖ A v ϖ解:受力分析如图所示. 2分 2mg -T 1=2ma 1分 T 2-mg =ma 1分T 1 r -T r =β221mr 1分T r -T 2 r =β221mr 1分a =r β2分解上述5个联立方程得: T =11mg / 8 2分20.(本题8分)解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒1分 J A ωA +J B ωB = (J A +J B )ω, 2分 又ωB =0得 ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min 1分(2) A 轮受的冲量矩⎰t MAd = J A (ω -ωA ) = -4.19×10 2 N ·m ·s 2分负号表示与A ωϖ方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s 2分方向与A ωϖ相同.21.(本题10分)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.两个守恒及势能零点各1分,共3分小球到B 点时: J 0ω0=(J 0+mR 2)ω ① 1分()22220200212121BR m J mgR J v ++=+ωωω ② 2分 式中v B 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得:ω=J 0ω 0 / (J 0 + mR 2) 1分代入式②得222002J mR RJ gR B ++=ωv 1分 当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即:()R mg m C 2212=v , gR C 4=v 2分四、问答题(共10分) 22.(本题5分)答:设刚体上任一点到转轴的距离为r ,刚体转动的角速度为ω,角加速度为β,则由运动学关系有:切向加速度a t =r β 1分 法向加速度a n =r ω2 1分对匀变速转动的刚体来说β=d ω / d t =常量≠0,因此d ω=βd t ≠0,ω 随时间变化,即ω=ω (t ). 1分所以,刚体上的任意一点,只要它不在转轴上(r ≠0),就一定具有切向加速度和法向加速度.前者大小不变,后者大小随时间改变. 2分(未指出r ≠0的条件可不扣分)m 2m βT 2 2P ϖ1P ϖTa T 1a23.(本题5分)答:(1) 转台、人、哑铃、地球系统的机械能不守恒. 1分因人收回二臂时要作功,即非保守内力的功不为零,不满足守恒条件. 1分 (2) 转台、人、哑铃系统的角动量守恒.因系统受的对竖直轴的外力矩为零. 1分(3) 哑铃的动量不守恒,因为有外力作用. 1分 哑铃的动能不守恒,因外力对它做功. 1分 刚体题一 选择题 1.(本题3分,答案:C ;09B )一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. 2.(本题3分,答案:D ;09A ) 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A)31ω0. (B) ()3/1 ω0. (C)3 ω0. (D) 3 ω0.3.( 本题3分,答案:A ,08A )1.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. 二、填空题1(本题4分,08A, 09B )一飞轮作匀减速运动,在5s 内角速度由40πrad/s 减少到10π rad/s ,则飞轮在这5s 内总共转过了 圈,飞轮再经 的时间才能停止转动。
五邑大学 电磁场A卷答案五邑大学 往年电磁波答案
⎪⎪⎪⎩⎪⎪⎪⎨⎧→>>→<<→==反常色散正常色散无色散p g p p g p p g p v v dwdv v v dw dv v v dw dv ,0,0,0一、填空:1. 标量场梯度的意义:描述标量场在某点的最大变化率及其变化最大的方向2. 给出。
求空间两点的梯度:3. 给出矢量场。
写出通量的含义(大于、等于、小于0)的情况:0>φ通过闭合曲面有净的矢量线穿出; 0<φ有净的矢量线进入;0=φ进入与穿出闭合曲面的矢量线相等4. 电磁场的物理模型中的基本物理量可以分为源量和场量两大类。
源量为( 通量源 )和( 漩涡源 )分别用来描述产生电磁效应的两类场源。
( 静电荷)是产生电场的源,(恒定电流)是产生磁场的源。
5. 对于线性。
E J ϕ=。
欧姆定律的微分形式:E J σ=6. 在静电场平衡的情况下,导体内部的电场为(零),则导体表面的边界条件为⎪⎩⎪⎨⎧-=∂∂=S nρϕεϕ常数 7. 对于线性、各向同性介质,则电场能量密度有⎰⎰=∙=vv e dv E dv E E W 22121εε 8. 恒定电场与静电场的重要区别:(1)形成原因:静电场是静止电荷激发的,恒定电场是恒定电流激发的(2)边界条件:静:n n t t J J E E 2121==,; 恒: n n t t D D E E 2121==,9. 传导电流密度: E J σ=和位移电流密度:tD J d ∂∂= 电场能量密度:E D w e ∙=21和磁场能量密度: H B w m ∙=21 10. 相速度V 的意义和表达式:相速v p :载波的恒定相位点推进速度 二、简答:1.复矢量形态、麦克斯韦积分形式、微分形式、辅助方程 辅助方程: 麦克斯韦方程组的积分形式 麦克斯韦方程组的微分形式⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅=⋅⋅∂∂-=⋅⋅∂∂+=⋅⎰⎰⎰⎰⎰⎰⎰S V S C S C S ρdV S D S B S t B l E S t D J l H d 0d d d d )(d ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇ρD B t B E t D J H 0 复矢量的麦克斯韦方程: 2.描述理想介质的均匀平面波的传播特点(1)电场、磁场与传播方向之间相互垂直,是横电磁波(TEM 波)。
五邑大学物理第二版复习题.doc
1 一束光强为20I 的自然光入射到两个叠在一起的偏振片上,问: (1)最大透过光强为多少?0I (2)最小透过光强为多少? 0 (3)若透射光强度为最大透射光强的410I ,则两块偏振片的偏振化方向之间的夹角θ为多少? 0I cos^2=1/40I cos θ=1/2 θ=π/32、如图1所示,一块玻璃片上滴一油滴,当油滴展开成油墨时,在波长600nm 的单色光正入射下,从反射光中观察到油膜形成的干涉条纹。
设油的折射率20.11=n ,玻璃折射率50.12=n ,试问: (1)油滴外围(最薄处)区域对应于亮区还是暗区,为什么?(2)如果总共可以观察到5条明纹,且中心为明纹,问中心点油膜厚h 为多少?图1解:(1)因为空气折射率为n=1,21n n n <<, 油膜上下表面均有半波 损失,因此油膜上下表面反射光的光程差e n 12=δ,其中e为薄膜的厚度,油滴外围(最薄处)区域e =0,所以光程差为 零,所以为亮区。
(2)油膜表面总共可以观察到5条明纹,除去边上的零级亮纹,则中心处亮纹的级次为4,即有λ421=h n则,m n h 61102-==λ3、一单色光垂直照射到相距为1.0mm 的双缝上,在距双缝2.5m 的光屏上出现干涉条纹。
测得相邻两条明纹中心的间距为2.0mm ,求入射光的波长。
d sin θ=k λ;d Δθ=λ;d=1×10^-3;D=2.5;x=2.0×10^-3;tan Δθ=sin Δθ=x/D=λ/d; λ=dx/D=8×10^-74、如图所示的单缝衍射实验中,缝宽m a 4100.6-⨯=,透镜焦距m f 4.0=,光屏上坐标m x 3104.1-⨯=的P 点为明纹,入射光为白光光谱(波长范围400nm~750nm )中某一单色光。
求:(1)入射光的波长可能是?(2)相对于P 点,缝所截取的波阵面分成半波带的个数? 解:(1)P 点为明纹的条件是2)12(sin λθ+=k a ,x 相对于f 而言是小量,因此,θ角是小角度,fx=≈θθtan sin 。
五邑大学-物理期末试卷A
五邑大学-物理期末试卷A一、选择题(共40分,每小题2分)1.以下哪个是牛顿第三定律的描述? A. 物体A对物体B施加的作用力等于物体B对物体A施加的作用力 B. 物体A对物体B施加的作用力等于物体B对物体A施加的重力 C. 物体A对物体B施加的作用力等于物体B对物体A施加的摩擦力 D. 物体A对物体B施加的作用力等于物体B对物体A施加的电磁力2.物理学中,以下哪个单位不是用来衡量力的? A. 牛顿 B. 瓦特 C. 伏特 D. 特斯拉3.以下哪个是草地滑球比赛的一个基本规则? A. 球员应该用自己的腿把球踢到对方球门中 B. 球员应该用自己的手将球投入对方球门中 C. 球员应该用自己的手把球传递给对方队员 D. 球员应该用球杆将球击入对方球门中4.以下哪个单位用来衡量物体的动量? A. 牛顿·秒 B. 瓦特·秒 C. 焦耳 D. 牛顿·米5.陀螺的自旋是由于哪个物理定律的作用? A. 质量守恒定律 B. 动量守恒定律 C. 安培定律 D. 角动量守恒定律6.按照牛顿第一定律的描述,以下哪个现象是不可能发生的? A. 物体在平衡状态下保持静止 B. 物体在匀速直线运动状态下保持匀速直线运动 C. 物体在斜面上保持静止D. 物体在匀速圆周运动状态下保持匀速圆周运动…二、填空题(共30分)1.单位质点在单位时间内通过某面积的动量变化量称为\underline{\quad\quad\quad\quad}。
2.物体在受到重力作用时,下落的加速度称为\underline{\quad\quad\quad\quad}。
3.一个质量为10千克的物体,下落过程中受到的重力大小为\underline{\quad\quad\quad\quad}牛顿。
4.物体从A点沿直线运动到B点,速度为10 m/s,经过时间为5秒,则从A点到B点的距离为\underline{\quad\quad\quad\quad}米。
《大学物理》考试试卷及答案解析
《大学物理》考试试卷及答案解析一、选择题(每个题只有一个正确选项,把答案填入表格中,每题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案 ACDCDBCA1.一运动质点在某瞬时位于矢径),(y x r的端点处,s 为路程,表示速度大小为错误的是( A )(A) dt dr (B) dtds (C )dt r d (D )22()()dx dydt dt +2.竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A 不下落,圆筒转动的角速度ω至少应为( C ) ( A)Rgμ (B)g μ(C)R gμ (D)Rg 3.对功的概念有以下几种说法正确的是( D )(1)保守力作正功时系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力与反作用力大小相等、方向相反,所以两者所作的功的代数合必为零. (4)做功大小与参考系有关。
(A) (1) 、 (2)是正确的. (B) (2) 、 (3)是正确的. (C) (3)、(4)是正确的. (D) (2)、(4)是正确的. 4.一物体静止在粗糙的水平地面上,现用一大小为1F 的水平拉力拉动物体,经过一段时间后其速度变为v ,若将水平拉力大小变为2F ,物体从静止开始经同样的时间后速度变为2v ,对于上述两个过程,用1F W ,2F W 分别表示1F 、2F 所做的功,1f W ,2f W 分别表示前后两次克服摩擦力所做的功,则( C ) (A )21214,2F F f f W W W W >> (B )21214,2F F f f W W W W >= (C )21214,2F F f f W W W W <=, (D )21214,2F F f f W W W W <<5.关于高斯定理0ε∑⎰⎰=⋅=Φise qs d E,下列说法中正确的是( D )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零 (B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零 (D )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零6、半径为R 的金属球与地连接,在与球心O 相距d 处有一电荷为q 的点电荷,如图所示。
大学物理考试题试卷及答案
期末考试试卷考试科目:大学物理考试时间90 (分钟)一、填空题(每空2分,共20分)1、质量为m的重锤,从高度为h处自由落到受锻压的工件上,使工件发生形变,如果作用的时间为t,则重锤对工件的平均冲力为_____________________。
2、质量为50 kg的货物,平放在卡车底板上.卡车以4 m/s2的加速度启动.货物与卡车底板无相对滑动.则在开始的3秒钟内摩擦力对该货物作的功W=___________________________.3、一个质点做圆周运动时,切向加速度______________(填可能、一定)不变4、一个容器内有1mol的某种气体,现从外界输入J21009.2⨯的热量,测得其温度升高10K,则该气体分子的自由度为____________个.5、已知波源的振动周期为4.00×10-2 s,波的传播速度为300 m/s,波沿x轴正方向传播,则位于x1 = 10.0 m 和x2 = 16.0 m的两质点振动相位差为__________.6、光强均为I0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是______________________.7、波长为600 nm的单色平行光,垂直入射到缝宽为a=0.60 mm的单缝上,缝后有一焦距f=60 cm的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为__________.8、附图表示一束自然光入射到两种媒质交界平面上产生反射光和折射光.按图中所示的各光的偏振状态,反射光是__________光;折射光是________光;这时的入射角i0称为____________角.二、选择题(每空2分,共30分。
请将正确答案的序号填在括号内)1、将一球从地面斜上抛,抛射角为θ=45°,初速率v0=20m·s-1,当落在高为h的平台上时,其速率为15 m·s-1,则平台高h应为(不计空气阻力g=10 m·s-1)()(A) 4.38m (B) 8.75m (C) 17.5m (D) 不能确定2、一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()(A) 不得小于gRμ.(B) 必须等于gRμ.(C) 不得大于gRμ.(D) 还应由汽车的质量m决定.3、子弹射入放在水平光滑地面上静止的木块后而穿出,以地面为参考系,下列说法中正确的说法是()(A) 子弹减少的动能变为木块的动能.(B) 子弹木块系统的机械能守恒.(C) 子弹动能的减少等于子弹克服木块阻力所做的功.(D) 子弹克服木块阻力所做的功等于这一过程中产生的热.4、两个相同的刚性容器,一个盛有氢气,一个盛有氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相同,现将3J热量传给氦气,使之升高到一定的温度,若使氢气也升高同样的温度,则应向氢气传递热量为()(A) 3J.(B) 5J.(C) 6J.(D) 10J5、一台工作于温度分别为327o C和27o C的高温热源与低温热源之间的卡诺热机,每经历一个循环吸热2000J,则对外做功()(A) 2000J (B) 1000J.(C) 4000J.(D) 500J。
大学物理考试试卷(附答案)
……… 评卷密封线…………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理…………… 评卷密封………线 ……… 大学物理考试试卷(附答案) 学年二学期 大学物理 C 课程 时间100分钟 72学时,4.5学分,闭卷,总分100分,占总评成绩 70 %一、选择题(共24分,每小题3分) 1.设质点沿X 轴作简谐运动,用余弦函数表示,振幅为A ,当t =0时,质点过0x A =-处且向X 轴正向运动,则其初相位为 (A )4/π; (B )4/3π; (C ) 4/5π; (D )4/7π。
[ ] 2.一平面简谐波在弹性媒质中传播时,某一时刻在传播方向上媒质中某质元在负的最大位移处,则它的能量是 (A )动能为零,势能最大; (B )动能为零,势能最零; (C )动能最大,势能最大; (D )动能最大,势能为零。
[ ] 3.以布儒斯特角由空气入射到一玻璃表面上的自然光,反射光是 (A )在入射面内振动的完全偏振光; (B )平行于入射面的振动占优势的部分偏振光; (C )垂直于入射面振动的完全偏振光; (D )垂直于入射面的振动占优势的部分偏振光。
[ ] 4.质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加一倍,那么气体对外所做的功在 (A )绝热过程最大,等压过程最小;(B )绝热过程最大,等温过程最小; (C )绝热过程最小,等压过程最大;(D )等压过程最大,等温过程最小。
[ ]5.高斯定理⎰⎰∑=S q S E 01d .ε ,说明了静电场的哪些性质(1) 电场线不是闭合曲线 (2) 库仑力是保守力(3) 静电场是有源场 (4) 静电场是保守场(A) (1)(3) (B) (2)(3) (C) (1)(2) (D) (1)(4) [ ]6.如图所示,半圆形线圈半径为R ,通有电流I ,在磁场B 的作用下从图示位置转过30︒时,它所受的磁力矩的大小和方向分别为:(A )4/2IB R π,沿图面竖直向下;(B )4/2IB R π,沿图面竖直向上;(C )4/32IB R π,沿图面竖直向下;(D )4/32IB R π,沿图面竖直向上。
2021年大学课程《大学物理(下册)》期末考试试题 含答案
姓名班级学号………密……….…………封…………………线…………………内……..………………不…………………….准…………………答….…………题…2021年大学课程《大学物理(下册)》期末考试试题含答案考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
3、请仔细阅读各种题目的回答要求,在密封线内答题,否则不予评分。
一、填空题(共10小题,每题2分,共20分)1、真空中有一半径为R均匀带正电的细圆环,其电荷线密度为λ,则电荷在圆心处产生的电场强度的大小为____。
2、一质点作半径为0.1m的圆周运动,其角位置的运动学方程为:,则其切向加速度大小为=__________第1秒末法向加速度的大小为=__________。
3、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。
4、四根辐条的金属轮子在均匀磁场中转动,转轴与平行,轮子和辐条都是导体,辐条长为R,轮子转速为n,则轮子中心O与轮边缘b之间的感应电动势为______________,电势最高点是在______________处。
5、二质点的质量分别为、. 当它们之间的距离由a缩短到b时,万有引力所做的功为____________。
6、已知质点的运动方程为,式中r的单位为m,t的单位为s。
则质点的运动轨迹方程,由t=0到t=2s内质点的位移矢量______m。
7、两根相互平行的“无限长”均匀带正电直线1、2,相距为d,其电荷线密度分别为和如图所示,则场强等于零的点与直线1的距离a为_____________ 。
8、一个力F作用在质量为 1.0 kg的质点上,使之沿x轴运动.已知在此力作用下质点的运动学方程为 (SI).在0到 4 s的时间间隔内, (1) 力F的冲量大小I=__________________. (2) 力F对质点所作的功W =________________。
2021年五邑大学大学物理考试题库
普通物理Ⅲ 试卷( A 卷)一、单项选取题1、运动质点在某瞬时位于位矢r端点处,对其速度大小有四种意见,即(1)t r d d ; (2)dt r d ; (3)t s d d ; (4)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断对的是( )(A) 只有(1)(2)对的 (B) 只有(2)对的 (C) 只有(2)(3)对的 (D) 只有(3)(4)对的 2、一种质点在做圆周运动时,则有( ) (A) 切向加速度一定变化,法向加速度也变化 (B) 切向加速度也许不变,法向加速度一定变化 (C) 切向加速度也许不变,法向加速度不变 (D) 切向加速度一定变化,法向加速度不变3、如图所示,质量为m 物体用平行于斜面细线联结置于光滑斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它加速度大小为( )(A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ 4、对质点组有如下几种说法: (1) 质点组总动量变化与内力无关; (2) 质点组总动能变化与内力无关; (3) 质点组机械能变化与保守内力无关. 下列对上述说法判断对的是( ) (A) 只有(1)是对的 (B) (1) (2)是对的 (C) (1) (3)是对的 (D) (2) (3)是对的 5、静电场中高斯面上各点电场强度是由:( )(A) 高斯面内电荷决定 (B) 高斯面外电荷决定 (C) 空间所有电荷决定 (D) 高斯面内电荷代数和决定6、一带电粒子垂直射入均匀磁场中,如果粒子质量增长为本来2倍,入射速度也增长为本来2倍,而磁场磁感应强度增大为本来4倍,则通过粒子运动轨道所围面积磁通量增大为本来:( )(A) 2倍 (B) 4倍 (C) 0.5倍 (D) 1倍7、一种电流元Idl 位于直角坐标系原点 ,电流沿z 轴方向,点P (x ,y ,z )磁感强度沿x 轴分量是: ( )(A) 0(B) ()()2/32220/4/z y x Ixdl ++-πμ(C) ()()2/12220/4/zy x Ixdl ++-πμ(D)()()2220/4/z y x Ixdl ++-πμ8、图为四个带电粒子在O点沿相似方向垂直于磁力线射入均匀磁场后偏转轨迹照片. 磁场方向垂直纸面向外,轨迹所相应四个粒子质量相等,电量大小也相等,则其中动能最大带负电粒子轨迹是( )(A) Oa (B) Ob (C) Oc (D) Od9、无限长直圆柱体,半径为R ,沿轴向均匀流有电流.设圆柱体内( r < R )磁感强度为B i ,圆柱体外( r > R )磁感强度为B e ,则有 ( ) (A) B i 、B e 均与r 成正比246810246810cdY A x i s T i t l eX Axis Title###O(B) B i 、B e 均与r 成反比(C) B i 与r 成反比,B e 与r 成正比 (D) B i 与r 成正比,B e 与r 成反比10、下列说法对的是( )(A) 闭合回路上各点磁感强度都为零时回路内一定没有电流穿过 (B) 闭合回路上各点磁感强度都为零时回路内穿过电流代数和必然为零 (C) 磁感强度沿闭合回路积分为零时回路上各点磁感强度必然为零(D) 磁感强度沿闭合回路积分不为零时回路上任意一点磁感强度都不也许为零 二、填空题1、由于速度 变化而引起加速度称为切向加速度;由于速度 变化而引起加速度称为法向加速度.2、一质量为5kg 物体在平面上运动,其运动方程为j t i r236-=,式中j i,分别为x 、y轴正方向单位矢量,则物体所受合外力F大小为________N ;方向为 .3、描述矢量场两个重要特性量是通量和 .4、在稳恒磁场中,通过某一闭合曲面磁通量为 ;在静电场中,电场强度沿任一闭合途径线积分为 .5、静电平衡时,导体内任意两点电势 .6、在真空中,毕奥萨伐尔定律数学表达式是 .7、图中所示以O 为心各圆弧为静电场等势(位)线图,已知U 1<U 2<U 3,比较它们大小.E a ________ E b (填<、=、>).8、带电粒子在磁场中做圆周运动半径为 ,周期为 . 9、在如图所示回路中,两共面半圆半径分别为a 和b ,且有公共圆心O ,当回路中通有电流I 时,圆心O 处磁感强度 B 0 = ,方向.U U10、真空中磁场安培环路定理表达式为 . 三、计算题1、已知一质点作直线运动,其加速度a =4+3t 2m s -⋅.开始运动时,x =5 m ,v =0,求该质点在t =10 s 时速度和位置.2、一颗子弹由枪口射出时速率为v 0 m·s -1,当子弹在枪筒内被加速时,它所受合力为F =(a -bt )N(a ,b 为常数),其中t 以s 为单位:(1)假设子弹运营到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受冲量;(3)求子弹质量. (本题10分)3、1 mol 单原子抱负气体从300 K 加热到350 K ,问在下列两过程中吸取了多少热量?增长了多少内能?对外做了多少功?(1)容积保持不变;(2)压力保持不变. (本题10分) 4、半径为1R 和2R (21R R >)两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1) 1r R <;(2) 12R r R <<;(3) 2r R >处各点场强. (本题10分)5、一根很长同轴电缆,由一导体圆柱(半径为a )和一同轴导体圆管(内、外半径分别为b ,c )构成,如图所示.使用时,电流I 从一导体流去,从另一导体流回.设电流都是均匀地分布在导体横截面上,求:(1)导体圆柱内(r a <),(2)两导体之间(a r b <<),(3)导体圆筒内(b r c <<),(4)电缆外(r c >)各点处磁感应强度大小.(本题10分)普通物理Ⅲ 试卷( A 卷)答案一、单项选取题1、D2、B3、D4、C5、C6、B7、B8、C9、D 10、B二、填空题1. 数值(或大小);方向2. 30;y 轴负向3.环流4. 0;05. 相等6.203044r e Id B d r r Id B d r⨯=⨯=πμπμ或7. = 8.mv Bq ;2mBqπ 9.)11(40ba I +μ;垂直纸面向里 10. ∑⎰=⋅I l d B μ0三、计算题1.解:∵ t tva 34d d +==分离变量,得 t t v d )34(d += 积分,得 12234c t t v ++= 3分 由题知,0=t ,00=v ,∴01=c故 2234t t v += 又由于 2234d d t t t x v +== 分离变量, t t t x d )234(d 2+=积分得 232212c t t x ++= 3分由题知 0=t ,50=x ,∴52=c 故 521232++=t t x 2分因此s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v 2分2、解:(1)由题意,子弹到枪口时,有0)(=-=bt a F ,得bat =2分 (2)子弹所受冲量⎰-=-=tbt at t bt a I 0221d )( 3分将bat =代入,得ba I 22= 2分(3)由动量定理可求得子弹质量202bv a v I m == 3分 3、解:(1)等体过程 由热力学第一定律得E Q ∆=吸热 )(2)(1212V T T R iT T C E Q -=-=∆=υυ 25.623)300350(31.823=-⨯⨯=∆=E Q J 对外作功 0=A 4分 (2)等压过程)(22)(1212P T T R i T T C Q -+=-=υυ 吸热 75.1038)300350(31.825=-⨯⨯=Q J )(12V T T C E -=∆υ 内能增长 25.623)300350(31.823=-⨯⨯=∆E J对外作功 5.4155.62375.1038=-=∆-=E Q A J 6分4、解:高斯定理0d ε∑⎰=⋅q S E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q 4分(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外 4分(3) 2R r >=∑q∴ 0=E 2分5、解:⎰∑μ=⋅LI l B 0d(1)a r < 2202RIr r B μπ=202RIrB πμ=3分 (2) b r a << I r B 02μπ=rIB πμ20=2分 (3)c r b << I bc b r I r B 0222202μμπ+---= )(2)(22220b c r r c I B --=πμ 3分 (4)c r > 02=r B π0=B 2分普通物理Ⅲ( B 卷)一、单项选取题(在每小题四个备选答案中,选出一种对的答案,并将其代码填入题干后括号内。
大学物理期末考试试卷和答案(B)
XXX学年第一学期《大学物理(2-2)》期末试卷专业班级姓名学号开课系室基础物理系考试日期注意:选择题和填空题答案要填写在试卷相应的位置!计算题在各题空白处答题。
一、选择题(共30分)1、(本题3分)(1001) [ ]一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零. (C) 处处不为零. (D) 无法判定 .2、(本题3分)(1355) [ ] 如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为:(A) E = 0,U > 0. (B) E = 0,U < 0. (C) E = 0,U = 0. (D) E > 0,U < 0.3、(本题3分)(1204) [ ] 两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把它们充电到 1000 V ,然后将它们反接(如图所示),此时两极板间的电势差为: (A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V4、(本题3分)(2050) [ ] 若要使半径为4×10-3 m 的裸铜线表面的磁感强度为 7.0×10-5 T ,则铜线中需要通过的电流为(μ0 =4π×10-7 T ·m ·A -1)(A) 0.14 A . (B) 1.4 A . (C) 2.8 A .(D) 14 A .5、(本题3分)(2608) [ ]磁介质有三种,用相对磁导率μr 表征它们各自的特性时, (A) 顺磁质μr >0,抗磁质μr <0,铁磁质μr >>1. (B) 顺磁质μr >1,抗磁质μr =1,铁磁质μr >>1. (C) 顺磁质μr >1,抗磁质μr <1,铁磁质μr >>1. (D) 顺磁质μr <0,抗磁质μr <1,铁磁质μr >0.6、(本题3分)(2809) [ ]一个电阻为R ,自感系数为L 的线圈,将它接在一个电动势为)(t ε的交变电源上,线圈的自感电动势为tILL d d -=ε, 则流过线圈的电流为: (A) R t /)(ε (B) R t L /])([εε- (C) R t L /])([εε+ (D) R L /ε 7、(本题3分)(2415) [ ]用导线围成如图所示的回路(以O 点为心的圆,加一直径),放在轴线通过O 点垂直于图面的圆柱形均匀磁场中,如磁场方向垂直图面向里,大小随时间减小,则感应电流的流向为(A)8、(本题3分)(4190) [ ] 要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV . (B) 3.4 eV . (C) 10.2 eV . (D) 13.6 eV .9、(本题3分)(5619) [ ] 波长λ =5000 Å的光沿x 轴正向传播,若光的波长的不确定量∆λ =10-3 Å,则利用不确定关系式h x p x ≥∆∆可得光子的x 坐标的不确定量至少为(A) 25 cm . (B) 50 cm . (C) 250 cm . (D) 500 cm .10、(本题3分)(4225) [ ] 在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性. (D) 既不能提高激光束的方向性也不能提高其单色性.二、填空题(共30分)11、(本题3分)(1382)电荷分别为q 1,q 2,q 3的三个点电荷分别位于同一圆周的三个点上,如图所示.设无穷远处为电势零点,圆半径为R ,则b 点处的电势 U =__________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五邑大学,大学物理考试试卷包括答案 一、(6分)写出270C 时1个氦原子的平均动能和1摩尔氦气的内能。
T=300K
二、(12分)如图所示,热机的工作媒质是单原子的理想气体,其工作过程经循环a-b 和c-d 的等
温过程b-c 和d-a 的的等容过程完成,图中Ta =T1,
Tc =T2,V2 =2V1求此热机的效率。
三、(12分)如图所示,两个振幅频率都相同的相干波源S1S2的坐标分别为λ85±,S2比S1超前 /2,它们以同样的波速相向时,在S1S2之间形成相干图象。
设P 点的坐标为x ,写出两波在P 点相遇时的位相差,和满足干涉抵消的点的坐标。
x
x x λππ
λλλππϕ42)85()85(22-=⎥⎦⎤⎢⎣⎡--+-=
∆(5分)
πϕ)12(+=∆k 时,相消(4分) 83,8,85λλλ--
=x (3分) 四、(10分)如图波长为6800A 的平行光垂直照射在L=0.12m 长的两块玻片上,两玻片的一头相互接触,另一头被直径d = 0.048mm 的细钢丝隔开。
求(1)相邻的两条明纹的高度差;(2)相邻的两条明纹的间距。
(1)A h 34002==∆λ(5分) (2)431041012.0048.0-⨯=⨯=θ(1分) )(105.83m h L -⨯=∆=∆θ(4分)
五(10分)波长为600nm 的单色光垂直照射在一光栅上,第二级和第三级谱线分别在衍射角满足sin =0.20和sin =0.30处,第四级缺级。
试求该光栅的光栅常数d 及其狭缝宽度a 。
m d k d 6100.6sin -⨯=→=λθ(5分)
V 2 p V 1 V a b c d eV kT 223109.33001038.12323--⨯=⨯⨯⨯==ε5.373930031.82
323⨯⨯==RT E 2ln 1RT Q ab ν=)(2321T T R Q Q bc da -==ν2ln 2RT Q cd ν=da ab cd bc Q Q Q Q ++-=1η
六(10分)将透射方向成900的两块偏振片M 和N 共轴平行放置,并在它们之间平行地插入另一偏振片B ,设入射的自然光强为I0,求当B 与M 的夹角分别为0和450时,出射光的强度之比。
02020160cos 30cos 2
I I = (5分) 02020245cos 45cos 2I I = (4分) I 1 / I 2 =3/4(1分)
七(6分)已知天空中两颗星相对一望远镜的角距离为rad 61084.4-⨯,它们发出的光的波长是
5500A ,问望远镜的直径至少要多大,才能分辨这两颗星?
八(6分)为使电子具有2A 的德布罗意波长,需要多大的加速电压?
k k mE p m
p E 222
=→= (2分) meV
h mE h h
p k 22==→=λλ (2分) V=37.2(V)(1分) 九、(8分)一个质量为m 的粒子,约束在长度为L 的线段上,求它的速度的不确定量,并估计它至少具有的多少动能。
2
≥∆∆p x L x =∆ (4分) 最小动量L p 2 =∆ Lm
v 2 =∆(2分)。