最新东北大学 数值分析 课件 考试题解析讲课教案

合集下载

数值分析学习课件

数值分析学习课件

数值分析学习课件目录1. 内容概要 (2)1.1 数值分析的重要性 (2)1.2 课件内容概述 (3)2. 基础知识准备 (4)2.1 数学知识要点 (6)2.2 计算机基础 (7)2.3 编程基础 (8)3. 数值计算的基本原理 (10)3.1 误差理论 (11)3.2 近似计算 (13)3.3 算法稳定性与收敛性 (15)4. 数值计算方法与技巧 (16)4.1 插值与逼近 (17)4.2 微分与积分计算 (19)4.3 线性代数方程求解 (19)4.4 优化计算方法 (21)5. 数值分析的应用实例 (22)5.1 数据拟合与预测分析 (23)5.2 微分方程数值解法应用 (24)5.3 线性规划优化问题应用 (26)5.4 其他领域的应用实例 (27)6. 实践操作指导 (28)6.1 编程实践环境搭建 (30)6.2 数值计算软件使用介绍 (31)6.3 编程实践案例分析 (32)7. 课程总结与展望 (33)7.1 课程重点内容回顾 (34)7.2 数值分析发展趋势 (35)7.3 学习建议与展望 (37)1. 内容概要数值分析是一个研究数值算法的学科,旨在寻找有效的方法来求解大量的数学问题,特别是那些无法得到精确解或者求解起来过于繁杂的问题。

它在物理学、工程学、经济学、生物技术以及许多其他科学领域中都是至关重要的。

本课程将涵盖数值分析的核心概念和方法,重点是数值线性代数、数值积分、数值微分方程以及数值优化等经典主题。

学生将理解这些问题的数学背景,掌握相关的数值算法,并能够运用编程实现这些算法。

学生还将学习误差分析、收敛性理论以及如何选择和实现适合特定问题的数值方法。

在整个课程中,学生将通过实际问题的解决,如物理模型、金融模型、生物数据的分析和处理等,来应用所学的数值分析知识和技能。

通过本课程的学习,学生不仅能够加深对数值方法的理解,还能增强解决实际问题的能力。

1.1 数值分析的重要性数值分析是利用计算机解决数学问题的重要工具,在许多领域,例如物理、工程、金融、生物等,现实世界的问题常常难以用精确的解析解表达出来。

东北大学数值分析 总复习+习题21页文档

东北大学数值分析 总复习+习题21页文档
东北大学数值分析 总复习+习题
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
谢谢!
36、自己的鞋子,自己一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子

东北大学数值分析考试题解析

东北大学数值分析考试题解析

数值分析提供了许多实用的算法, 这些算法可以解决各种实际问题, 如线性方程组、微分方程、积分 方程等。这些算法在科学计算、 工程仿真、数据分析等领域都有 广泛的应用。
数值分析在解决实际问题时具有 高效、精确和可靠的特点。通过 数值分析,我们可以快速地得到 问题的近似解,并且可以通过误 差分析来控制解的精度。这使得 数值分析成为解决实际问题的重 要工具。
详细描述
数值分析是一门应用广泛的学科,它通过数学方法将实际问题转 化为可计算的数学模型,并寻求高效的数值计算方法来求解这些 问题。数值分析在科学计算、工程、经济、金融等领域中发挥着 重要的作用,为实际问题的解决提供了有效的工具。
数值分析的应用领域
总结词
数值分析的应用领域非常广泛,包括科学计算、工程、经济、金融等。
非线性方程组的求解精度和速 度取决于所选择的方法和初值 条件。
非线性方程组的求解在科学计 算、工程技术和计算机图形学 等领域有广泛应用。
最优化方法
最优化方法是寻找使某个 函数达到最小或最大的参 数值的方法。
最优化方法的效率和精度 取决于所选择的算法和初 始参数值。
常用的最优化方法包括梯 度下降法、牛顿法和拟牛 顿法等。
数值分析在人工智能领域的应用
总结词
数值分析在人工智能领域的应用关键,涉及深度学习、神经 网络等领域。
详细描述
数值分析为人工智能提供了理论基础和算法支持,特别是在 深度学习和神经网络方面。通过数值分析的方法,可以优化 神经网络的参数和结构,提高人工智能的性能和准确性。
数值分析在金融领域的应用
总结词
常见的迭代法有雅可比迭代法 、高斯-赛德尔迭代法等。
牛顿法
牛顿法是一种基于泰勒级数 的迭代方法,用于求解非线 性方程的根。

东北大学09数值分析(研)答案

东北大学09数值分析(研)答案
1+ n
。 2 − n ,...,2,1 = k � 0 =
i≠ j
k
i
∑ �即
) 4 h(O + ) 2n f
2 n
x∂ 61 y∂ y∂x∂ y∂ x∂ 2 + n fh + n y = + ) nf n + n ( + nf n 2 + n2 ( f 2∂ f 2 ∂ 3 h3 f 2∂ f∂ f∂ 2 h
3 n 2
1+ k
i)
1= i j − i 1= j 1= i ∏ ( ∑ = i y ) x ( i l ∑ = ) x ( nL = ) x ( f = j −x n n n
x
�有性一唯的式项多值插由
i≠ j
j i 1= j j − i 1= j ∏ x− x∏ = = )x ( il jx − x j −x n n
x−
) k(
x 使若� T )4 / 3 ,3 / 2 ,2 / 1( =
)1(
x �得步一代迭

�有且而。3�n 取应�故
4
� 4 /1 − 2 /1 − � � � 0 6 0 3 / 1 − � = B 为阵矩代迭 . = 1 B, � 3 / 1 − i b o c a J 于由 5 � � � 2 /1 2 /1 − 0 �
2

。线曲合拟的 2 xb + a = y 如形求试 1 0 3 1�
i y
… … … … 密 … … … …

。步 2 5 代迭应即。 2 5� k 取�以所
1
4 2
2 1
82.15 ≈
ix
x − )1( x 6 21 / 32 )0 ( nl ÷ nl = 1 B nl ÷ 1 nl > k 5 6 / 3− 01 ) B − 1( ε

数值分析考试及答案

数值分析考试及答案

数值分析考试及答案作者:日期:班级• • •• • •• • •• • • o • • •学号• • •• • •姓名密• • •• • •o• • •• • •东北大学研究生院考试试卷2011 —2012 学年第一学期课程名称:数值分析(共3页)一、解答下列各题:(每题5分,共30分)1.设近似值x具有5位有效数字,则x的相对误差限为多少? 解:记x* 0.吋2…10m,则x的相对误差为:0.5 10m 50.a1a2... 10m0.5 10 50.10.5 10即,相对误差限为:0.5 102.问a, b满足什么条件时,矩阵Ao • • •• • •• • •线总分一——二三四五4 2 02 5a有分解式A GG T,并求a b 2时0 b 54 2 0 2 1 0解:由于A 2 5 a 1 2 a/2 (A对称正定时)0 b 5 0 b/2 5 ab/4所以,当2 .5 a b 2 5时有分解式 A GG T,a b 2 时有:4 2 0 2 0 0 2 1 0A 2 5 2 1 2 0 0 2 10 2 5 0 1 2 0 0 23.解线性方程组X1 2x2 2 的Jacobi 迭代法是否收敛,为什么?2x19x2 3的分解式(其中G是对角线元素大于零的下三角形矩阵)解:Jacobi迭代矩阵为:B2/92,所以,(B) 2/3 1所以,Jacobi迭代法是否收敛.4.对方程f (x) (x3 a)20建立敛?若收敛,收敛阶是多少?解:Newton迭代格式为:X k 1 X kf(xk)f (X k)由于迭代函数为:(x)?X ka6x2所以,此迭代格式收敛,收敛阶是Newton迭代格式,并说明此迭代格式是否收3X k a2~ ,x k6X k,方程根为:1.56k 6:k2, k 012-3 a,所以,5.设f (x) 4x3 3x 5,求差商f[0,1], f[1,2,3,4]和f [1,2,3,4,5]。

东北大学-数值分析-课后习题详细解析

东北大学-数值分析-课后习题详细解析

1.01
1.01
1.01
1
0.66
0.995
0.66
1.17
2
0.67
1.17
0.553333
1.223333
3
0.553333
1.165
0.517778
1.241111
4
0.556667
1.223333
0.505926
1.247037
5
0.517778
1.221667
0.501975
1.249012
解 a.x=-1/-0.99=1.010101,y=-0.98/-0.99=0.989899
b.用Gauss消元法
7
10 2 x y 1
x
y
2
回代得解: y=1, x=0.
再用列主元Gauss消元法
10 2 x y 1
100 y 100
10 2 x y 1
x
y
2
回代得解: y=1, x=1.
x(k 1
x(k 2
1) 1)
3
2
x(k 2
)
2 1.5x1(k1)
G-S法x1(k)
1.01 0.98 1.94 4.82 13.46 39.38 117.14
G-S法x2(k)
1.01 0.53 -0.91 -5.23 -18.19 -57.07 17 -173.71
可见,J迭代法和G-S迭代法均不收敛. 实际上, (B)=31/2>1 ,(G)=3>1.
10
2-11.设•为一向量范数,P为非奇异矩阵,定义xp= Px, 证明xp 也是一种向量范数.
证明 (1)xp=Px0,而且Px=0Px=0x=0 (2)xp=P(x)=Px=||Px=||xp (3)x+yp=P(x+y)=Px+PyPx+Py=xp+yp 所以xp是一种向量范数. 2-12.设A为对称正定矩,阵证,明定义•Ax是A一= 种向x量T A范x数.

数值分析PPT课件

数值分析PPT课件

03
数值分析的方法和技巧广泛应用于科学计算、工程、经 济、金融等领域。
主题的重要性
随着计算机技术的不断发展, 数值计算已经成为解决实际问 题的重要手段。
数值分析为各种数学问题提供 了有效的数值计算方法和技巧, 使得许多问题可以通过计算机 得以解决。
掌握数值分析的知识和方法对 于数学建模、科学计算、数据 分析等领域具有重要意义。
意义。
未来数值分析的发展方向
随着计算机技术的不断发展,数值分析 将更加依赖于计算机实现,因此数值算 法的优化和并行化将是未来的重要研究
方向。
随着大数据时代的到来,数值分析将更 加注重对大规模数据的处理和分析,因 此数据科学和数值分析的交叉研究将成
为一个新的研究热点。
随着人工智能和机器学习的发展,数值 分析将更加注重对非线性、非平稳问题 的处理,因此新的数值算法和模型将不
数值积分和微分
矩形法
将积分区间划分为若干个小的矩形区域,求 和得到近似积分值。
辛普森法
梯形法
利用梯形公式近似计算定积分,适用于简单 的被积函数。
利用三个矩形区域和一个梯形区域的面积近 似计算定积分。
02
01
高斯积分法
利用高斯点将积分区间划分为若干个子区间, 通过求和得到近似积分值。
04
03
矩阵的特征值和特征向量
数值分析ppt课件
目录
• 引言 • 数值分析的基本概念 • 数值分析的主要算法 • 数值分析的误差分析 • 数值分析的实例和应用 • 结论
01
引言
主题简介
01
数值分析是数学的一个重要分支,主要研究如何利用数 值计算方法解决各种数学问题。
02
它涉及到线性代数、微积分、微分方程、最优化理论等 多个数学领域。

(汇总)东北大学-数值分析--考试题解析.ppt

(汇总)东北大学-数值分析--考试题解析.ppt

构造函数(t)=(t)-H3(t)-C(x)t(t-1)2(t-2) 于是,存在x,使(4)(x)=0,即(4)(x)-4!C(x)=0
R(x) f (4) ( x ) x(x 1)2 (x 2)
4!
五、(12分)试确定参数A,B,C及,使数值积分公式
2
2
f
(x)dx
Af
( )
Bf
(0)
Cf
( )
有尽可能高的代数精度,并问代数精度是多少?它是否是
Gauss公式?
解 令公式对(x)=1,x,x2,x3,x4都精确成立,则有 4=A+B+C, 0=A-C, 16/3=A2+C2, 0=A3-C3 64/5=A4+C4 ,解得:A=C=1精0品/文9档,B=16/9,=(12/5)1/2 7
令2(x)=cx(x-1)2,可得2(x)=0.5x(x-1)2;
令1(x)=cx(x-1)(x-2),可得1(x)=-x(x-1)(x-2),
于是
H3(x)==-x(3x--21.)5x2(2x+-22.)5-x3+x2(精x品-2文)档+2.5x(x-1)2
–0.5x(x-1)(x-2) 6
由于,R(0)=R(1)=R(2)=R(1)=0, 故可设 R(x)=C(x)x(x-1)2(x-2)
(3)因为0<</2,所以() cos / 2 1 sin 0
故,此迭代法线性收敛(收敛阶为1).
三、(14分)设线性方程组
4x1 x2 2x3 1 x1 5x2 x3 2 2x1 x2 6x3 3
(1)写出Jacobi法和SOR法的迭代格式(分量形式);
(2)讨论这两种迭代法的收敛性.

数值分析ex24《数值分析》习题课省名师优质课赛课获奖课件市赛课一等奖课件

数值分析ex24《数值分析》习题课省名师优质课赛课获奖课件市赛课一等奖课件

Ex9.写出用修改旳欧拉法求问题
y 2 y 2 y e x sin x
y(0)
0,
y(0)
1 /
2
旳计算公式
0 x3
18/18
y2
f (x,
y1 ,
y2 )
y1 ( x0 ) y0 , y2 ( x0 ) y0
y(3) f ( x, y, y, y)
y( x0 ) y0 ,
y( x0 ) y01 , y( x0 ) y02
令 y1=y, y2=y’ y3=y”
y1’=y2 y2’=y3 y3’=f(x, y1, y2, y2)
b a [ f (a)
(b a)3 f (b)]
f ( )
a
2
12
2. Simpson公式
b
ba
ab
a f ( x)dx
6
[ f (a) 4 f ( ) f (b)] 2
复合梯形求积公式 令h=(b-a)/n
b
h
n1
f (x)dx [ f (a) f (b) 2 f (a jh)]
1 sin x
I 0 x dx
使其截断误差不超出 0.5×10-3,应算多少次函数值?
提醒:
f ( x) sin x
1
cos( xt)dt
x
0
思索: 给定积分 3 e x sin xdx 1
当要求误差不大于10-3时用复合梯形公式和Simpson 公式计算时, 需要计算多少次函数值?
14/18
《数值分析》习题课 IV
数值求积公式及代数精度 数值求导措施与截断误差 一阶常微分方程数值法 局部截断误差与精度
插值型求积公式:

东北大学数值分析3.26

东北大学数值分析3.26
xi
( k 1)
x
(k ) i
i 1 n 1 ( k 1) (bi a ij x j a ij x (jk ) ) j 1 j i a ii
, i 1,2, n, k 0,1,2,
或写成向量形式 x(k+1)=x(k)+D-1(b+Lx(k+1)+(U-D)x(k)) , k=0,1,2,…
det(£ ) =det[(D-L)-1 ((1-)D+U)] =det[(E-D-1L)-1 ]det[(1-)E+D-1U)] =(1-)n 于是 |1-|<1, 或 0<<2
定理3.8 设A是严格对角占优矩阵,则解方程组Ax=b 的SOR方法,当0<1时收敛. 定理3.9 证 于是 (1-)(Dy,y)+(Uy,y)=[(Dy,y)-(Ly,y)]
(3.3)
, k 1,2,3,
或写成: 其中
0 a 21 B a 22 a n1 a nn
x(k+1)=Bx(k)+g
a12 a11 0 a n2 a nn a1n a11 a 2n a 22 0
a11 a12 a1n a 21 a 22 a 2 n (D L) U a n1 a n 2 a nn
若||1, 则矩阵(D-L)-U 是严格对角占优矩阵, 这与
det((D-L)-U)=0矛盾, 所以||<1,于是(G)<1.
由于迭代矩阵的行范数小于1,故此迭代法收敛.
§4 逐次超松弛迭代法---SOR方法
将Jacobi迭代法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R(x)=(x)-H3(x).
解 (1)由y0=2,y1=3,y2=5,y1=0.5,得 H3(x)=20(x)+31(x)+52(x)+0.51(x) 令0(x)=c(x-1)2(x-2),可得0(x)=-0.5(x-1)2(x-2), 令1(x)=x(x-2)(ax+b),可得1(x)=-x(x-2), 令2(x)=cx(x-1)2,可得2(x)=0.5x(x-1)2; 令1(x)=cx(x-1)(x-2),可得1(x)=-x(x-1)(x-2),
2) 5
x3(k1)
x(k) 3
(1
3
x(k1) 1
1 6
x(k1) 2
x(k) 3
1) 2
(2)因为A是严格对角占优矩阵,但不是正定矩阵,故
Jacobi法收敛,SOR法当0<1时收敛.
(3)由(1)可见B=3/4,且取x(0)=(0,0,0)T,经计算可
得x(1)=(1/4,-2/5,1/2)T,于是x(1)-x(0)=1/2,所以有
(1)写出Jacobi法和SOR法的迭代格式(分量形式);
(2)讨论这两种迭代法的收敛性.
(3)取初值x(0)=(0,0,0)T,若用Jacobi迭代法计算时,
预估误差x*-x(10) (取三位有效数字).
解 (1)Jacobi法和SOR法的迭代格式分别为
x
( 1
k
1
)
1 4
x (k) 2
1 2
算精度为=10-2的近似根; (3)此迭代法的收敛阶是多少?说明之. 解 (1)因为0<x1时,(x)<0,x2时,(x)>0,所以(x)
仅在(1,2)内有零点,而当1<x<2时,(x)>0,故(x)单调. 因此方程(x)=0有唯一正根,且在区间(1,2)内.
(2)构造迭代格式: x k 1 1 sx ikn k 0 ,1 ,2 ,... 由于|(x)|=| co x/s 21sixn |<1,故此迭代法收敛.
数值解yn是否稳定?为什么? 解 (1)由于
K 2 f(x n 3 2 h ,y n 3 2 h1 )K fnfxn 3 2hfyn 3 2hnf 12[2xf2n 94h2x2fyn 9 8h2fn2yf2n 94h2fn2O(h3)
容易验证公式对(x)=x5仍精确成立,故其代数精度为5, 是Gauss公式。 六、(12分)设初值问题
yf(x,y)
y(a)
(1)试证单步法
axb
K1f(xn,yn), K2f(xn3 2h,yn3 2hK 1) yn1ynh 4(K13K2) n0,1,2,...
y0
是二阶方法. (2)以此法求解y=-10y, y(0)=1时,取步长h=0.25,所得
于是 H3(x)=-(x-1)2(x-2)-3x(x-2)+2.5x(x-1)2 –0.5x(x-1)(x-2) =x3-2.5x2 +2.5x+2
由于,R(0)=R(1)=R(2)=R(1)=0, 故可设 R(x)=C(x)x(x-1)2(x-2)
构造函数(t)=(t)-H3(t)-C(x)t(t-1)2(t-2) 于是,存在x,使(4)(x)=0,即(4)(x)-4!C(x)=0
1aa


1 a
a1a20,a 1
a
1 0
012a20, 得:1 a 1
1
2
2Hale Waihona Puke 3.向量x=(x1,x2,x3)T,试问|x1|+|2x2|+|x3|是不是一种向 量范数___是___,而|x1|+|2x2+x3|是不是一种向量范数_不__是__.
4.求 3 a 的Newton迭代格式为_x _k _1 __xk _ _x _3 k 3 _x k _2a _或 _x _k_ 1_ _3 2 _x _k_ _a 3 _x_k 2 _.
解 只要取(x)=x3-a ,或(x)=1-x3/a. 5.设(x)=x3+x2-3,则差商[3,32,33,34]=__1_____.
6.设l0(x),l1(x),l2(x),l3(x)是以x0,x1,x2,x3为互异节点
的三次插值基函数,则
3
lj
(x)(xj
2)3=___(_x_-_2_)_3____.
x (k) 3
1 4
x
( 2
k
1
)
1 5
x (k) 1
1 5
x (k) 3
2 5
x
( 3
k
1
)
1 3
x (k) 1
1 6
x (k) 2
1 2
x1(k1)
x(k) 1
(x1(k)
1 4
x(k) 2
1 2
x(k) 3
1) 4
x2(k1)
x(k) 2
(1
5
x(k1) 1
x(k) 2
1 5
x(k) 3
R (x)f(4)(x)x(x1 )2(x2)
4 !
五、(12分)试确定参数A,B,C及,使数值积分公式
2 2 f( x ) d A x () fB ( 0 ) fC ( ) f
有尽可能高的代数精度,并问代数精度是多少?它是否是
Gauss公式?
解 令公式对(x)=1,x,x2,x3,x4都精确成立,则有 4=A+B+C, 0=A-C, 16/3=A2+C2, 0=A3-C3 64/5=A4+C4 ,解得:A=C=10/9,B=16/9,=(12/5)1/2
x * x (1)0B k x (1 ) x (0 ) 0 .715 0 0 .5 0 .113
1 B
1 0 .75
四、(13分)已知(0)=2,(1)=3,(2)=5,(1)=0.5, (1)试建立一个三次插值多项式H3(x),使满足插值条件:
H3(0)=2,H3(1)=3,H3(2)=5,H3(1)=0.5; (2)设y=(x)在[0,2]上四次连续可微,试确定插值余项
j0
7.设S(x)=
x3x2 2x3b2xcx1
0x1 是以0,1,2为节
1x2
点的三次样条函数,则b=___-_2____c=___3______. 解 由2=b+c+1,5=6+2b+c,8=12+2b,可得
二、(13分)设函数(x)=x2-sinx-1 (1)试证方程(x)=0有唯一正根; (2)构造一种收敛的迭代格式xk=(xk),k=0,1,2,…计
取初值x0=1.5, 计算得x1=1.41333, x2=1.40983,由于 |x2-x1|=0.0035<10-2 , 故可取根的近似值x2=1.40983.
(3)因为0<</2,所以()co /2 s1sin 0
故,此迭代法线性收敛(收敛阶为1).
三、(14分)设线性方程组 4x1 x2 2x3 1 x1 5x2 x3 2 2x1 x2 6x3 3
相关文档
最新文档