遗传学实验果蝇杂交设计书
果蝇杂交实验报告
果蝇杂交实验报告一、实验目的本次果蝇杂交实验旨在研究果蝇的遗传规律,通过对不同性状的杂交组合观察和分析,深入了解基因的分离、组合以及连锁和交换现象,验证孟德尔遗传定律,并探究遗传因子在遗传过程中的作用和表现。
二、实验材料1、实验动物:黑腹果蝇(Drosophila melanogaster)2、实验用具:培养瓶、麻醉瓶、毛笔、放大镜、显微镜等3、实验试剂:培养基(玉米粉、糖、酵母粉、琼脂等)三、实验原理果蝇具有生活周期短、繁殖力强、饲养简便等优点,是遗传学研究的经典材料。
孟德尔遗传定律包括基因的分离定律和自由组合定律。
在杂交实验中,通过观察子代果蝇的性状表现及比例,可以推断亲本果蝇的基因型,从而验证遗传定律。
四、实验步骤1、亲本果蝇的饲养与选择选取野生型长翅、红眼果蝇和残翅、白眼果蝇作为亲本。
将它们分别饲养在不同的培养瓶中,在适宜的温度(25℃左右)和湿度条件下培养,保证果蝇的正常生长和繁殖。
2、杂交一代(F1)的制备选取处女蝇:在亲本果蝇培养瓶中,选取羽化后 8 小时内未交配的雌性果蝇作为处女蝇。
处女蝇的选取对于实验结果的准确性至关重要。
杂交操作:将选取的处女蝇与另一性状的雄蝇放入同一培养瓶中进行杂交,做好标记,记录杂交组合和时间。
3、 F1 代果蝇的观察与培养在适宜条件下培养杂交后的果蝇,待其产卵、孵化和生长。
观察 F1 代果蝇的性状表现,并记录。
4、杂交二代(F2)的制备选取 F1 代中的雌雄果蝇进行自交,同样做好标记和记录。
5、 F2 代果蝇的观察与统计待F2 代果蝇孵化和生长成熟后,观察并统计不同性状的果蝇数量,记录在表格中。
五、实验结果1、 F1 代果蝇的性状表现在长翅红眼×残翅白眼的杂交组合中,F1 代果蝇全部表现为长翅红眼,说明长翅和红眼为显性性状,残翅和白眼为隐性性状。
2、 F2 代果蝇的性状分离F2 代果蝇中出现了长翅红眼、长翅白眼、残翅红眼和残翅白眼四种性状。
经过统计分析,其比例接近 9:3:3:1,符合孟德尔的自由组合定律。
实验四 果蝇的杂交——伴性遗传
四. 实验步骤
• 选取处女蝇:选取12小时之内孵化出来 的贞蝇。
• 杂交:正交 红眼♀ Ⅹ 白眼♂ 反交 白眼♀ Ⅹ 红眼♂
• 每瓶放入3—5对果蝇,贴好标签,注明 杂交组合,杂交日期及实验者姓名。
野生型
红眼
白眼
白眼
五. 杂交实验安排
• 确定杂交组合并倒去父、母本亲蝇。 • 12小时之内挑选贞蝇,正交和反交管各
• 控制果蝇红眼和白眼性状的基因位于X染色体 上,在Y染色体上没有相应的等位基因,它们 随着X染色体而传给下一代。如以纯合红眼雌 蝇和纯合白眼雄蝇杂交,子代均为红眼,F2代 中雌蝇均为红眼,雄蝇中半数为红眼,半数为 白眼。以纯合白眼雌蝇与纯合红眼雄蝇杂交F1 代雌蝇均为红眼,雄蝇均为白眼,F2代中无论 雄蝇和雌蝇均有半数为红眼,半数为白眼。正 反交结果不同,这是伴性遗传的典型特点。
三. 材料与方法
1.材料: 野生型果蝇: 突变型果蝇:
红眼 白眼
2. 试剂: 100%乙醚、琼脂、红糖/蔗糖、玉米粉 、酵母粉、丙酸。
3. 用具: 解剖针、直管瓶、麻醉瓶、棉塞 灭菌锅。
4. 果蝇麻醉方法: 将直管瓶中的果蝇快速倒入麻醉瓶中并立即盖上棉塞, 向麻醉瓶的侧口滴加2-3滴100%乙醚,晃动麻醉瓶至果 蝇麻醉。性状观察实验果蝇深度麻醉,杂交实验则轻 度麻醉。
放3对果蝇,置于25℃条件下培养。 • 杂交后7-10天时倒去杂交亲蝇。 • 挑选F1代雌雄果蝇各3只进行F2代繁殖。 • 7-10天倒去F1代亲蝇。 • F2代数量及性状分离统计(统计至F1代自
交后20天止)。
六. 数据处理及X2测验
• 计算X2值,根据X2值和自由度 (df=3),查X2表,若P≧5%,说明 观察值与理论值相符合。对这个实 验来说,意味着实验结果应该是符 合伴性遗传规律的,也就是说,眼 色性状是如何选取处女蝇? • 做实验时为什麽要做正反交? • 列出一些果蝇的伴性遗传性状。
遗传实验果蝇综合大实验性状观察及杂交设计
成虫 图一、果蝇生活史图解
果蝇的生活周期长短与温度关系很密切,30℃以上的温
度能使果蝇不育和死亡,低温则使它生活周期延长,同时生
实验二、果蝇分离定律的实验分析
3、果蝇的活伴性力遗传也实验减分析低,果蝇培养的最适温度20—25℃。
突变性状多,且多数是形态突变,便于观察。
棒眼 B(1)
果蝇的生活周期长短与温度关系很密切,30℃以上的温度能使果蝇不育和死亡,低温则使它生活周期延长,同时生活力也减低,果蝇
认真观察实验室果蝇品系的性状,完成下表
品系
体色
眼色
翅型
刚毛
3
黄
红
长
直
4
灰
红
残
直
6
灰
白
短
卷
18
灰
红
长
直
22
灰
白
长
直
26
黑檀
红
长
直
(八)思考题
1、如何准确鉴定果蝇的雌雄个体?最主要特 征是什么? 2、果蝇的生活史分几个阶段? 3、果蝇作为遗传学模式材料的优点有哪些?
附:果蝇综合大实验杂交设计
1、果蝇分离定律的实验分析 2、果蝇自由组合的实验分析 3、果蝇的伴性遗传实验分析 4、果蝇的三点测验实验分析 5、果蝇的连锁与交换实验分析
返回
(六)果蝇的性状
果蝇的性状主要从以下四个方面进行观察:
每个方面都有不同的性状:
灰体
红眼
体色
黑体 b(2) 黑檀体 e(3)
黄体 y(1) 长翅
翅型
短翅 m(1) 卷翅 Cy(2)
眼
白眼 w(1)
棒眼 B(1)
刚毛
直刚毛 卷刚毛 sn(1)
遗传学果蝇杂交实验报告主要内容
果蝇杂交实验报告(眼色分析)一、实验原理及方法生物某些性状的遗传常与性别联系在一起,这种现象称为伴性遗传(sex-linked inheritance),这是由于支配某些性状的基因位于性染色体上。
果蝇属XY型生物,共有四对染色体,第一对为性染色体,其余三对为常染色体。
雌果蝇的性染色体构型为XX,、雄果蝇为XY。
控制果蝇眼色的基因位于X染色体上,在Y染色体则没有与之相应的等位基因。
将红眼(+)果蝇和白眼(w)果蝇杂交,其后代眼色的表现与性别有关。
而且,正反交的结果不同。
(仅供参考)二、实验材料(品系及性状)亲本正交6#(雌、白眼)X18#(雄、红眼)亲本反交18#(雌、红眼)X 6#(雄、白眼)(可写成基因型)三、实验用品(实验指导书上有)四、杂交实验流程1、培养基的配制,并在培养瓶上写清杂交组合、杂交日期、实验者班级。
室温下培养,至于阴暗温热环境中。
2、两个亲本杂交1、2号培养瓶中分别挑选亲本正交、反交的处女蝇。
3、在接入杂交亲本1、亲本2第七或八天(从开始杂交算第一天)清除所有亲本成蝇。
4、观察正反交组合中不同性别子代1成蝇的眼色,至少观察20只,记录观察结果,并注意是否有例外的情形。
5、从正交组合的子代1中挑选出5对果蝇,放入F 1自交1号培养瓶中,贴上标签,室温下培养(反交组合也一样处理)。
6、在接入子代1培养的第七或八天(从子代1接入新培养瓶算第一天)清除所有子代1成蝇。
7、当子代2数量足够时,观察不同性别的果蝇的眼色,分别统计并做好记录。
五、实验结果及分析图谱分析正交 反交P : X w X w (雌白眼)× X +Y (雄红眼) X +X +(雌红眼)× X w Y (雄白眼)F1: X +X w(雌红眼)× X w Y (雄白眼)X +X w (雌红眼)× X +Y (雄红眼)理论: 1 : 1 1 : 1实际: 25 : 16 20 : 19F2: X +X w X w X w X +Y X w Y X +X + X +X w X +Y X w Y雌红眼 雌白眼 雄红眼 雄白眼 雌红眼 雄红眼 雄白眼理论 1 : 1 : 1 : 1 2 : 1 : 1 实际 13 : 9 : 12 : 10 21 : 11 : 52显隐性判断:正交的结果不论雌雄均为红色,反交的结果是雌性为红眼,雄性为白眼。
果蝇杂交实验实验报告
引言:果蝇杂交实验是遗传学中一项重要的实验方法,通过对果蝇的交配与基因传递进行观察和研究,可以进一步了解和探索基因的遗传规律以及基因变异的机制。
本实验报告旨在阐述果蝇杂交实验的相关概念、实验设计、实验结果及其分析,并提出一些对进一步研究的思考。
概述:果蝇(Drosophilamelanogaster)是一种广泛应用于生物学研究的模式生物。
其繁殖力强、短寿命和基因多样性使其成为遗传学研究的理想模型。
果蝇杂交实验通过对不同基因型的果蝇进行交配,观察后代的表型和基因组成,以了解遗传传递的规律和基因的分离与联合。
正文内容:一、实验设计1.选择适合的果蝇品系2.选择合适的交配模式3.标记果蝇的基因型4.记录并统计实验数据5.设计对照组进行比较分析二、果蝇杂交基础1.果蝇基因的遗传定律2.显性性状和隐性性状3.基因型和表型的关系4.分离比和连锁比的计算方法5.遗传图谱的构建和分析三、果蝇杂交实验的常见模式1.单因素杂交2.双因素杂交3.多因素杂交4.杂交断裂分析5.回交和自交的应用四、果蝇杂交实验的结果与分析1.收集交配后果蝇的数据2.观察和分析后代的表型3.使用分离比和连锁比计算基因频率和遗传距离4.判断基因型的遗传方式(隐性、显性、共显性等)5.通过遗传分析进行基因组定位和识别五、果蝇杂交实验的意义和展望1.果蝇杂交实验在遗传学研究中的重要性2.果蝇杂交实验在基因突变和功能研究中的应用3.果蝇杂交实验在医学和农业领域的潜在应用4.结合其他研究方法和技术的进一步探索5.果蝇杂交实验在深入理解遗传学规律方面的未来挑战总结:通过对果蝇杂交实验的设计、实施和分析,我们可以深入了解基因的遗传规律和遗传变异的机制。
果蝇杂交实验是遗传学研究中不可或缺的工具,对于揭示生物多样性和遗传变异的原因具有重要意义。
通过进一步研究和探索,我们可以更好地利用果蝇模型生物在遗传学、医学和农业领域的潜在应用,为人类的健康和生物多样性的保护做出更大贡献。
果蝇遗传系列杂交实验
实验步骤
1.在杂交前19-20天按杂交组合数量,计划和 培养好亲本。
2.收集处女蝇:一般选择在晚上9点钟把亲本 (种蝇)全部活的成虫转出处死(一个都不能 剩),第二天9点钟前(12小时内,最好8- 10小时内)把培养瓶里羽化的成虫转出,并 按♀、♂分开培养,所得的♀蝇即为处女蝇。
3.按各杂交组合需选的果蝇品系,每瓶放入3 -5对,塞好瓶塞,贴好标签,置于25℃恒 温培养箱中培养。
2. 挑处女蝇时, 每次只挑12小时内羽化成 虫,超过12小时的成虫已逐渐 有交配能力,必须一只不留地倒
出处死,才能进行第 二次挑选
3. 刚羽化的果蝇色淡白,体软绵, 难辨♀♂,务必小心区别
4. 使用毛笔和瓷板,要用酒精棉球 消毒,同时必须凉干才能使用。
5. 每个杂交组合放果蝇 2-3对,用毛笔把果蝇扫进 试管,试管要平放,待蝇醒后, 方能竖起,避免果蝇粘在培养
基上被闷死,杂交组合配 好后,放回培养箱。
6. 培养箱温度保持在25℃, 不要随意更改或调整其他旋
钮,以免影响整个实验。
实验结果的观察和统计
1.把各杂交组合的果蝇成虫分别倒出试管, 并逐个组合麻醉,观察性状,做好记录。
2.样本自由度为n-1
4.根据实际观察数计算理论值。 5.计算2 值,结果必须与显著平准作比较
系列杂交实验内容
1.果蝇的单因子实验杂交组合
18#♀ x 2 #♂ (正交) 2#♀ x 18#♂(反交)
2.果蝇二对因子自由组合实验的杂交组合
e♀ x 2#♂ (正交)
2#♀ x e#♂ (反交)
3.果蝇的伴性遗传杂交组合
18#♀ x 22#♂ (正交) 22#♀ x 18#♂ (反交)
遗传学实验果蝇杂交设计书
实验材料
果蝇的品种和来源
品种:野生果蝇、突变果蝇、转基因果蝇等
来源:自然环境中、实验室培养、基因库等
实验所需的试剂和器材
试剂:果蝇培养 基、酵母菌、青 霉素等
器材:显微镜、 培养皿、离心管、 注射器等
实验步骤
添加副标题
果蝇杂交设计书
汇报人:XX
目录
PART One
添加目录标题
PART ThreT Two
实验目的
PART Four
实验步骤
PART Six
实验注意事项
单击添加章节标题
实验目的
了解果蝇杂交实验的原理
实验目的:探究 果蝇杂交实验的 原理
实验原理:通过 果蝇杂交实验, 研究果蝇的遗传 规律和基因表达
实验结果分析
数据整理和分析
对实验数据进 行整理,包括 杂交组合、后 代数量、性状
等
对整理后的数 据进行统计分 析,计算各杂 交组合的性状
分离比
根据统计分析 结果,判断各 杂交组合是否 符合预期的分 离比,即是否 符合孟德尔遗
传规律
对不符合预期 的分离比进行 讨论,分析可
能的原因
结果解释和讨论
实验结果与预 期一致,表明 果蝇杂交实验
实验步骤:选择 合适的果蝇品种, 进行杂交实验, 观察杂交后代的 表现
实验结果:通过 数据分析,得出 果蝇杂交实验的 遗传规律和基因 表达模式
掌握果蝇杂交实验的操作流程
了解果蝇杂交实验的目的和意义 熟悉果蝇杂交实验的操作流程 掌握果蝇杂交实验的注意事项 掌握果蝇杂交实验的数据分析和结果解释
分析果蝇杂交实验的结果
遗传学实验报告——果蝇杂交实验
遗传学实验报告果蝇双因子杂交、伴性遗传杂交和三点测交实验目的:学习果蝇杂交方法、遗传学数据统计处理方法;实验验证自由组合规律、伴性遗传规律;通过三点测交学习遗传作图。
实验原理: 1. 双因子杂交本实验使用18号野生型果蝇和14号纯合黑檀体、残翅果蝇进行杂交,其中黑檀体对灰体为隐性,残翅对长翅为隐性,两对基因位于非同源染色体上。
正交 反交18♀×14♂ 14♀ × 18♂双因子杂交遗传图解 2. 伴性遗传杂交本实验使用18号野生型果蝇与纯合白眼果蝇杂交,其中白眼相对于红眼是隐性性状,白眼基因位于X 染色体上。
正交 反交18♀ × w ♂ w ♀ × 18♂伴性遗传图解F 1⊗F 2: 灰长:灰残:黑长:黑残=9:3:3:1P灰长黑残F1⊗ F 2: 灰长:灰残:黑长:黑残=9:3:3:1 灰长P 黑残P X +X + X w YP X w X w X+YF 1: X +X w X +YF 1: X +X w Xw Y⊗ ⊗F 2: X + X + X +X + Y X w Y ♀红眼 ♀红眼 ♂红眼 ♂白眼 1 : 1 : 1 : 1 F 2: X +X w X w X X + Y X w Y ♀红眼 ♀白眼 ♂红眼 ♂白眼 1 : 1 : 1 : 1♀红眼♂白眼 ♂白眼♀红眼3. 三点测交本实验使用6号纯合白眼、卷刚毛、小翅果蝇与18号野生型果蝇杂交,获得F 1代后再自由交配即可获得具有8种表型的测交F 2代。
白眼、卷刚毛、小翅均为X 染色体上的隐性性状。
P 6号♀(wsnm/wsnm ) × 18号♂(+++/Y)白卷小红直实验材料:18号野生型果蝇 ,14号纯合黑檀体、残翅果蝇,白眼果蝇,6号纯合白眼、卷刚毛、小翅果蝇;麻醉瓶、酒精灯、玻璃板、毛笔、培养管、酒精棉球、乙醚、解剖镜 实验步骤:1. 杂交前提前将装有不同表型果蝇培养管中的成年果蝇全部放出,确保8-10小时后培养管中的雌果蝇都是刚刚孵化的处女蝇。
果蝇杂交综合实验方案
果蝇杂交实验——验证遗传学三大定律1 实验目的:1.1 通过对果蝇的一对相对性状的杂交试验,观察性状的显、隐性关系及其在后代中的分离现象,验证孟德尔的第一定律——分离定律。
1.2 通过对果蝇两对相对性状的杂交试验,验证孟德尔第二定律:自由组合定律。
1.3 通过位于果蝇性染色体的基因控制的性状的杂交试验,验证遗传学第三个规律:连锁遗传。
并了解伴性遗传与非伴性遗传的区别以及掌握伴性基因在正、反交中的差异。
2 实验原理2.1 果蝇的生活史:果蝇的生活周期长短与温度有密切关系。
一般来说,30℃以上温度能使果蝇不育或死亡,低温能使生活周期延长,生活力下降,饲养果蝇的最适温度为20~25℃。
生活周期长短与饲养温度的关系果蝇在25℃时,从卵到成蝇需10天左右,成虫可活26~33天。
果蝇的生活史如下:雌蝇→减数分裂→卵受精雄蝇→减数分裂→精子羽化(第八天)(可活26~33天)产第一批卵蛹(第四天)第二次蜕皮第一批卵孵化(第二天)(第零天)第一次蜕皮幼虫(第一天)果蝇的生活周期和各发育阶段的经过时间2.2 果蝇的性别及突变性状的鉴别:果蝇的每一体细胞有8个染色体(2n=8),可配成4对,其中3对在雌雄果蝇中是一样的,称常染色体。
另外一对称性染色体,在雌果蝇中是XX,在雄蝇中是XY。
果蝇的雌雄在幼虫期较难区别,但到了成虫期区别相当容易。
雄性个体一般较雌性个体小,腹部环纹5条,腹尖色深,第一对脚的跗节前端表面有黑色鬃毛流苏,称性梳(Sex combs)。
雌性环纹7条,腹尖色浅,无性梳。
实验中选用的果蝇突变性状一般都可用肉眼鉴定,例如红眼与白眼,正常翅与残翅等。
而另一些性状可在解剖镜下鉴定,如焦刚毛与直刚毛等。
现列表如下:实验中使用的果蝇突变品系2.3 黑体果蝇的体色为黑色(b),与之相对应的野生型果蝇的体色为灰色(+),灰色对黑色为完全显性,控制这对相对性状的基因位于第二号染色体上。
用具有这对相对性状的两纯合亲本杂交,性状的遗传行为应符合分离定律。
果蝇杂交实验实验报告11页
果蝇杂交实验实验报告11页实验说明:本实验旨在通过果蝇的杂交实验,验证遗传学中显性、隐性基因的遗传规律,并说明分离定律和自由组合定律的遗传规律。
实验步骤:1. 选择个体:从实验室的果蝇窝中选取发育良好的雄性和雌性果蝇各10只。
2. 成对交配:将这20只果蝇按性别配对,即将10只雄性和10只雌性挑选成5对进行交配。
3. 接孢子:在交配后72小时内,用细长的玻璃棒蘸取成熟的孢子接触到交配后12小时的果蝇卵上,使其受精。
4. 观察子代:将接孢子得到的果蝇卵培养至成熟,观察并记录子代果蝇的性状数量比例。
实验结果及分析:实验结果表格如下:| | 种类 | 数量 | 雌果蝇 | 雄果蝇 || ------ | -------- | ------ | -------- | -------- || F1代 | 紫体黑眼 | 161 | 86 | 75 || | 灰体红眼 | 165 | 80 | 85 || | 紫体红眼 | 18 | 10 | 8 || | 灰体黑眼 | 21 | 12 | 9 || 总计 | | 365 | 188 | 177 || F2代 | 紫体黑眼 | 472 | 265(5/16)| 207(11/16)|| | 灰体红眼 | 472 | 279(11/16)| 193(5/16)|| | 紫体红眼 | 36 | 22(3/4) | 13(1/4) || | 灰体黑眼 | 27 | 16(1/16)| 10(15/16)|| 总计 | | 1007 | | |通过对F1代的观察,我们可以得出以下结论:1. 紫体和灰体基因是显性、黑眼和红眼基因是隐性。
2. 紫体和黑眼的组合是常态,是最为普遍的基因型。
4. 基因在生殖细胞中随机组合,随机性导致每个基因分离的可能性是相等的。
5. 在F1代中,四个基因组合表现为2:1:1:2。
随后,我们进行了F1代的自由组合定律实验,结果如下:1. 同一对基因之间的相互组合是随机的。
果蝇杂交实验模板
实验五果蝇杂交实验一、实验目的与要求了解伴性遗传和非伴性遗传的区别,以及了解伴性基因在正反杂交中的差异,理解遗传规律。
二、实验类型本实验为设计型实验。
三、实验原理及说明基因的颗粒性遗传是孟德而尔遗传学定律的精髓,两对处于不同染色体上的基因决定两对相对性状的遗传遵循孟德尔定律。
常染色体上的基因遗传时,性状分离在雌雄两性中有同样的表现。
性染色体上的一对等位基因伴随性染色体遗传,其性状遗传与性别相联系。
处于同一染色体上的连锁基因可以发生一定频率的重组,重组值的大小反映基因在染色体上的相对距离。
三点测交就是通过一组杂交对三队连锁基因的交换行为进行测定,以确定其在染色体上的相对位置和排列顺序的最经典的实验。
这些规律的验证可以分别进行,也可以通过不同突变体的合理组合有所侧重。
如伴性遗传基因分离图解:A:B:♀X+X+ ×X w Y♂♀X w X w ×X+Y♂红眼白眼白眼红眼F1 F1♂X w Y ♂X+ Y ♀♀X+ X+X w X+Y X w X+X w X w Y♀红♂红♀红♂白实验说明:vg位于第二号染色体,e位于第三号染色体,w sn3 m位于X染色体。
从图解得知,以显性个体作杂交组合的母本时,F1代和非伴性遗传相同,若以隐性个体作杂交组合母本时F1代中的雄性表现为隐性性状。
四、实验仪器五、实验内容和步骤1.实验准备:(1)用具牛奶瓶,麻醉瓶,磁板,海绵板,解剖针,毛笔,镊子,解剖镜,死蝇收集瓶,吸虫管,口曲纸,解剖针,普通果蝇的两个品系:野生型果蝇(+),白眼果蝇(w),残翅果蝇(vg),黑檀体果蝇(e),白眼、卷刚毛、小翅果蝇(w sn3 m)。
(说明:vg位于第二号染色体,e位于第三号染色体,w sn3 m位于X染色体。
)(2)药品:乙醚,0.75NaCl2.实验步骤:第一周:学生根据实验材料自己确定实验方案,可以任选其中1-2个杂交组合。
①选取每组实验所要用的各种果蝇表型作为亲本进行杂交。
果蝇杂交实验计划书
果蝇杂交实验计划书生技08-1组员:刘晓瑜080414113侯交弟080414118刘越080414112胡亚云080414114一、实验目的通过观察具一对相对性状差异的亲本杂交,其F2代表现得分离现象,验证分离定律的存在;通过观察具两对相对性状差异的亲本杂交,其F2代表现得分离现象,验证自由组合定律的存在;验证伴性遗传规律,伴性基因与常染色体上等位基因分离定律想比较时,进一步理解两者之间的区别与联系。
1、通过实验掌握果蝇的杂交实验2、验证和加深理解遗传定律的原理:①分离定律②自由组合定律③④伴性遗传规律⑤绘制遗传图的原理3、记录实验结果,掌握统计处理的方法及求重组值的方法、绘制遗传图的方法二、实验原理及设计果蝇的染色体:选取雄性黑檀体果蝇(eeX+Y)和雌性三隐性果蝇(EEX W X W)作为亲本。
其中雄性为黑檀体、长翅、红眼和直刚毛;雌性为灰体、小翅、白眼和卷刚毛。
获得F1代进行自交,统计F2代性状及雌雄,数量等等,记录。
控制红眼、长翅、直刚毛这三个形状的基因在X染色体上,控制体色的基因在常染色体上,用EE或ee表示其基因型。
黑檀体果蝇是野生型果蝇的突变体,即体色由灰色转变为黑色,其余形状没有改变。
三隐形突变体形状为白眼、小翅和卷刚毛,用X w X w表示。
显性性状为红眼、长翅和直刚毛,用X+Y表示。
且白眼、小翅、卷刚毛这三个基因位于X染色体上连锁。
因此黑檀体雄性果蝇基因型为eeX+Y,雌性三隐性果蝇为EEX w X w。
孟德尔分离定律:具一对相对性状差异的亲本杂交(单因子杂交),F1代为一对基因的杂合体,它们表现显性性状。
杂合体中来自父本雄性生殖细胞和母本雌性生殖细胞的等位基因相互银行独立,在形成配子过程中,它们相互分离,分别进入到不同的配子中,从而产生两种类型不同、数目相等的配子(不同配子的比例为1:1), F1自交或互交时,由于雌雄配子的随机结合,F2代基因型比例为1:2:1,在显性完全时,表型分离比例为3:1孟德尔自由组合定律:具两对或两对以上相对性状差异的亲本杂交(双因子或多因子杂交),F1代形成多对基因的杂合体,它们表现多种显性性状,F1代杂合体形成配子的过程中,一对等位基因按分离定律的彼此分离与另一结(或几对)等位基因的彼此分离是相互独立的,即不同对的等位基因是以自由组合的方式进入配子的。
遗传学之果蝇杂交实验方案(好)
果蝇杂交实验方案一、实验时间、对象实验时间: 2003年4月9日至月日。
参试人员二、实验设计特点本实验是将果蝇的单因子实验、自由组合与性连锁遗传(伴性遗传)等几个独立杂交实验一次性完成。
三、实验目的1、观察几种常见品系的果蝇,鉴别雌雄果蝇,了解果蝇生活史,观察果蝇各发育阶段的形态。
2、学习实验果蝇的饲养方法,掌握果蝇杂交的方法,理解分离定律的原理,学习记录交配结果和进行统计分析的方法。
3、了解两对基因的杂交方法,正确认识两对基因的自由组合原理。
4、了解伴性遗传和常染色体遗传的区别;理解和验证伴性遗传和分离、连锁交换定律;四、实验原理果蝇(fruit fly)是双翅目昆虫,属果蝇属,约有2500个种。
果蝇具有生活史短、繁殖率高、饲养简便等特点,是研究遗传学的好材料,尤其是在基因分离、自由组合、连锁交换等方面,对果蝇的研究更是广泛而充分。
分离定律是在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
即同源染色体上等位基因的分离。
自由组合定律是控制不同性状的遗传因子的分离和组合是互不干扰的;在形成同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
即非同源染色体上非等位基因的自由组合。
连锁遗传定律,原来为同一亲本所具有的两个不同性状,在后代中常常有连系在一起遗传的倾向,这种现象称为连锁遗传。
即同源染色体上非等位基因间交换重组。
伴性遗传:性染色体上的基因遗传行为与性别有关(F2中正反交结果不同)。
1、单因子实验:P 长翅+ + ×残翅vg vg↓F1 长翅+ vg↓ÄF2 1 + + : 2 + vg : 1 vg vg(长:残=3:1)2、双因子实验:P 黑檀体+ + ee ×vg vg + + 残翅↓F1 野生型+e vg +↓F2 野生型:黑檀体:残翅:黑檀体、残翅9 : 3 : 3 : 13、伴性遗传正交反交P X+ X+ ×XW Y P XW XW♂×X+ Y ♀♀红眼♂白眼♂红眼♀白眼F1 X+XW X+Y F1 X+XW XW YF2 X+X+ X+XW X+Y XWY F2 X+XW XWXW X+Y XW Y♀红眼♀红眼♂红眼♂白眼♀红眼♀红眼♂红眼♂白眼1 :1 :1 : 1 1 :1 :1 : 1五、实验材料、器具1、实验材料:18#:Wild type/野生型雄蝇、雌蝇22#:White eye/白眼2#:Vestigial/残翅e#:Ebony/黑檀体黑腹果蝇的纯系野生型18#(红眼、长翅、灰身) 、突变型22#( 白眼、长翅、灰身)、2#( 红眼、残翅、灰身) 和e#( 红眼、长翅、黑檀体)。
遗传学实验果蝇杂交设计书
遗传学实验果蝇杂交设计书一、单因子试验1、实验原理分离定律(law of segregation)也称孟德尔分离定律。
一对基因在杂合状态下不互相影响,各自保持相对的独立性,而在形成配子的时候,就会互相分开,并按照原样分配到不同的配子中去。
在一般情况下,配子的理论分离比是1:1,子二代(F2)的基因型分离比是1:2:1,若显性完全,F2的表型分离比是3:1。
杂种后代分离出来的隐性基因纯合体与原来隐性亲本在表型上是一样的,隐性基因并不因为和显性基因在一起而改变它的性质。
单因子杂交是指一对等位基因间的杂交。
野生型果蝇是长翅(+/+),其长翅超出腹部末端约1/3.残翅果蝇的双翅已经退化,只留下少量残迹(vg/vg),无飞翔能力。
Vg的基因座位于第二染色体67.0,。
对长翅(+)完全隐性。
用野生型长翅果蝇与残翅果蝇杂交,子一代(F1)全是长翅。
子一代系内交配,子二代产生性状分离,长翅:残翅为3:1,。
基因型为+/vg(长翅)雌雄均可产生两种配子+和vg,并且各占1/2,。
简单列表可知F2的性状比为3:1。
表1 果蝇杂交实验的配子及双翅形状的遗传2、实验步骤(1)确定杂交亲本,挑选处女蝇。
选用2#与18#为亲本进行杂交实验。
选用野生型长翅和突变型残翅果蝇为杂交亲本。
雌蝇一定要选处女蝇。
处女蝇的挑选方法:亲本饲养2周之后,提前10—12小时把培养瓶内所有活的成虫倒干净,然后在倒掉成虫的12小时内吧新羽化的成虫倒出来,装进消毒过的培养瓶或者平底试管进行适度麻醉,麻醉后放在消毒过的白瓷板或者硬纸板上把雌雄蝇分别挑出,雌蝇即为处女蝇。
根据实验所需处女蝇数量的多少,可连续收集,但不要超过3天。
(2)配好杂交组合,进行正、反杂交。
正交组合:野生型长翅(♀)×突变型残翅(♂)。
用消毒过的毛笔把3—4只长翅处女蝇扫入培养瓶中,然后把培养瓶水平放置,一面麻醉状态下的果蝇沾到培养基或水珠而被闷死,随机用同样方法扫入3—4只残翅雄蝇,塞紧棉塞,贴好标签,保持水平直至果蝇苏醒后放入25℃恒温培养箱中培养。
果蝇杂交实验实验报告
果蝇杂交实验实验报告一、引言果蝇(Drosophila melanogaster)作为一种经典的模式生物,在遗传学研究中起到了重要的作用。
正是通过对果蝇的杂交实验,使我们对于遗传学的规律和机制有了更深入的了解。
本实验通过对果蝇的杂交实验,旨在探究果蝇常染色体和性染色体的遗传规律。
二、材料与方法1.材料:雄果蝇、雌果蝇、香蕉培养基、实验室培养箱等。
2.方法:(1)将一对纯合的雌雄果蝇分别放置于不同的培养箱中,在香蕉培养基上放置果蝇饲料。
(2)观察果蝇的交配情况,记录下雌雄果蝇的表型特征。
(3)将获得的F1代果蝇杂交,在新的培养箱中培养。
(4)观察F2代果蝇的表型特征,并记录相关数据。
三、结果与分析通过本实验观察得到的结果如下:1.F1代果蝇:观察F1代果蝇时,发现它们的表型特征与亲本两代的表型特征之间存在显然的差异。
亲本雌雄果蝇分别具有红眼和白眼的表型特征,而F1代果蝇则全部表现出了红眼的表型特征。
这表明红眼是显性基因,白眼则是隐性基因。
2.F2代果蝇:观察F2代果蝇时,发现红眼和白眼出现的比例约为3:1、这符合孟德尔遗传定律中隐性基因与显性基因出现的比例。
同时,红眼果蝇分为两个类型,红色身体和灰色身体的比例也约为3:1通过对F1代和F2代果蝇的观察分析,我们可以推测雌雄果蝇的眼色以及身体颜色的遗传方式:红眼为显性遗传,白眼为隐性遗传,红色身体为显性遗传,灰色身体为隐性遗传。
四、讨论与结论通过果蝇杂交实验,我们可以得出结论:果蝇眼色和身体颜色的遗传是由显性和隐性基因控制的。
红眼和红色身体为显性基因,白眼和灰色身体为隐性基因。
此外,从F2代果蝇的比例来看,显性基因和隐性基因出现的比例接近3:1,符合孟德尔遗传定律。
果蝇杂交实验不仅对于遗传学的研究具有重要的意义,也对我们理解生物的遗传规律和机制提供了深刻的启示。
通过实际操作与观察,我们不仅理论上了解了遗传学的基础知识,还培养了我们在实验中观察、分析和解读数据的科学素养。
果蝇杂交实验设计方案
果蝇杂交实验方案组员:鲁登位周云马晓龙张桃詹剑琴史鸿宣王丽权嘎玛央金动科 1002 班第二组㈠实验目的:本次实验中我们使用果蝇作为材料来验证基因分离规律、自由组合规律、伴性遗传。
加深理解遗传定律。
同时在实验过程中要掌握果蝇杂交技术和学会运用生物统计方法进行数据分析。
㈡实验原理:选取果蝇做为遗传学研究的原因: 1、果蝇体型小,体长不到半厘米;饲养管理容易,既可喂以腐烂的水果,又可配培养基饲料;一个牛奶瓶里可以养上成百只。
2、果蝇繁殖系数高,孵化快,只要1 天时间其卵即可孵化成幼虫,2-3 天后变成蛹,再过 5 天就羽化为成成虫。
从卵到成虫只要 10 天左右,一年就可以繁殖 30 代。
3、果蝇的染色体数目少,仅 3 对常染色体和 1 对性染色体,便于分析。
作遗传分析时,实验者只需用放大镜或显微镜一个个地观察、计数就行了。
分离定律:一对等位基因在杂合子中保持相对独立性,形成配子时彼此分离并随机分配到不同的配子里。
F1配子的分离比是1: 1;基因型的分离比是1: 2: 1,F 表型的分离比是3: 1。
2自由组合定律:位于非同源染色体上的两对等位基因决定的性状在杂种第二代形成配子时是自由组合的。
由分离定律可知一对等位基因决定性状在杂种第二代表型比是3: 1,两对互不连锁的基因决定的性状在杂种第二代表型比是9: 3: 3: 1。
伴性遗传:位于性染色体上的基因所控制的性状在遗传上与性别相联系的遗传现象,称为伴性遗传。
㈢实验材料:果蝇材料: 6 个品种的果蝇: 4 号、 6 号、 18 号、 22 号、 25 号、 e 号其性状特征如下:性状眼色体色翅型刚毛品种25 号瓶白 w灰 y长 +直 Sn6 号瓶(三隐性)白 w灰 y长 (小翅 )m卷 sn4 号瓶红 X W灰 y残 Vg直 Sn18 号瓶红 st灰 y长 +直 Sne 号瓶 (三显性 )红 st黑 B长 +直 Sn22 号瓶白 w灰 y长 +直 Sn实验器具和药品:1.用具:果蝇饲养瓶、麻醉瓶、双目解剖镜、毛笔、镊子、标签2.药品:乙醚、玉米粉、琼脂、蔗糖、酵母粉、丙酸②培养基的制作 :根据实验进程的需要提前配置好培养基水76ml玉米粉糖琼脂丙酸酵母(四)实验分组经过小组讨论将小组分为三小组,做三组实验来探究出一个最好的可以在一组实验中验证三个定律的杂交组合。
设计果蝇杂交实验报告
设计果蝇杂交实验报告引言果蝇(Drosophila melanogaster)是一种常见的模式生物,因其短寿、易于培养和遗传特性而被广泛应用于遗传学研究中。
果蝇的杂交实验可以帮助我们理解基因的遗传规律以及基因型与表型之间的关系。
本实验旨在通过果蝇杂交,观察不同基因型的果蝇交配后后代的表型分布,并验证孟德尔遗传定律。
实验方法实验材料和设备- 双眼突变型白眼果蝇(眼睛呈白色)- 原生型红眼果蝇(眼睛呈红色)- 无翅型果蝇(翅膀退化)- 硬纸板盒子- 室温恒温培养箱- 透明胶带实验步骤1. 准备双眼突变型白眼果蝇组,计划交配白眼果蝇与红眼果蝇。
2. 将双眼突变型白眼果蝇和红眼果蝇分别放养于不同的果蝇匣中,培养3天以保证果蝇的适应环境。
3. 在交配前一天,将两种果蝇分别转移到新的果蝇匣中,同时粘贴一层透明胶带在果蝇匣的一侧,以阻止果蝇之间的接触。
4. 第二天,取下透明胶带,让白眼果蝇与红眼果蝇自由交配。
5. 观察交配后果蝇的表型特征。
6. 培养交配后的果蝇约10天,观察后代果蝇的表型特征。
实验结果交配后果蝇的表型观察交配后果蝇的表型特征符合预期:部分果蝇眼睛呈现为白色,部分果蝇眼睛呈现为红色。
后代果蝇的表型观察经过10天培养,观察到后代果蝇中有白眼果蝇和红眼果蝇。
白眼果蝇占据了约1/4的比例,而红眼果蝇占据了约3/4的比例。
这与孟德尔的等位基因分离定律相符,并且支持了白眼果蝇为显性突变基因。
讨论本实验通过果蝇杂交,成功观察到了不同基因型果蝇交配后后代的表型分布,并验证了孟德尔遗传定律。
在果蝇的杂交实验中,白眼果蝇是由于突变基因导致的,而红眼果蝇是其正常的基因型。
通过将白眼果蝇与红眼果蝇交配,我们观察到了白眼果蝇和红眼果蝇在后代中的分布比例,证明了显性突变基因对其后代的影响。
然而,本实验也存在一些限制。
首先,在果蝇的杂交实验中,由于果蝇繁殖速度较快,可能会出现自然杂交的情况。
为了尽量避免这种情况的发生,我们采取了粘贴透明胶带的措施,并尽可能将果蝇放养在不同的果蝇匣中。
实验六-果蝇的有性杂交(设计性实验)
实验六果蝇的有性杂交(设计性实验)一、实验目的本实验在完全开放的状态下进行,学生处于主导地位,通过小组讨论的方法,自己选择实验组合,提出实验设计方案,独立完成实验内容;教师只是起协助作用。
通过实验验证遗传学的三大定律:分离规律、自由组合规律和连锁互换规律(伴性遗传),比较正反交在F1及F2代之间的差异。
掌握果蝇杂交的实验技术,运用生物统计方法对实验数据进行分析,并计算遗传图距和基因排列顺序。
要求学生在一段时间内安排好实验进程,如实记录实验中出现的现象和问题,并做出自己的判断。
二、实验原理遗传是极其复杂的生命现象,只有通过少数相对性状有差异的类型进行杂交,观察这些性状在亲本和子代中的表现,并对大量材料进行分析才有可能找到或验证性状遗传的基本规律。
1.关于分离规律(law of segregation)生物体一对相对性状的遗传行为符合孟德尔的分离规律。
一对等位基因在杂合状态中(A/a)保持相对的独立性,减数分裂形成配子时,随同源染色体的分离而彼此分离、分配到不同的配子中,配子只含有成对因子中的一个。
各种雌雄配子受精时随机结合,因此,等位基因杂合体的自交后代基因型分离比AA : Aa : aa是1 : 2 : 1,如果显性完全,其表型分离比为3 : 1。
等位基因的显隐性决定其性状表现。
通过果蝇一对因子的杂交或测交实验,即可以验证分离规律。
现以果蝇的长翅和残翅性状的遗传规律举例说明(见下图)。
2.关于自由组合规律(law of independent assortment)两对或两对以上的位于非同源染色体上的非等位基因的遗传行为符合孟德尔的自由组合规律(独立分配规律)。
在减数分裂形成配子的过程中,位于不同对染色体上、控制不同相对性状的等位基因随着同源染色体的分离和非同源染色体的自由组合一起进入不同配子。
也就是说非等位基因独立行动,可分可合,有均等机会组合到同一个生殖细胞中。
受精后,配子之间随机自由结合,导致了基因的重组,后代出现亲代所没有的性状,也就是变异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遗传学实验果蝇杂交设计书一、单因子试验1、实验原理分离定律(law of segregation)也称孟德尔分离定律。
一对基因在杂合状态下不互相影响,各自保持相对的独立性,而在形成配子的时候,就会互相分开,并按照原样分配到不同的配子中去。
在一般情况下,配子的理论分离比是1:1,子二代(F2)的基因型分离比是1:2:1,若显性完全,F2的表型分离比是3:1。
杂种后代分离出来的隐性基因纯合体与原来隐性亲本在表型上是一样的,隐性基因并不因为和显性基因在一起而改变它的性质。
单因子杂交是指一对等位基因间的杂交。
野生型果蝇是长翅(+/+),其长翅超出腹部末端约1/3.残翅果蝇的双翅已经退化,只留下少量残迹(vg/vg),无飞翔能力。
Vg的基因座位于第二染色体67.0,。
对长翅(+)完全隐性。
用野生型长翅果蝇与残翅果蝇杂交,子一代(F1)全是长翅。
子一代系内交配,子二代产生性状分离,长翅:残翅为3:1,。
基因型为+/vg(长翅)雌雄均可产生两种配子+和vg,并且各占1/2,。
简单列表可知F2的性状比为3:1。
2、实验步骤(1)确定杂交亲本,挑选处女蝇。
选用2#与18#为亲本进行杂交实验。
选用野生型长翅和突变型残翅果蝇为杂交亲本。
雌蝇一定要选处女蝇。
处女蝇的挑选方法:亲本饲养2周之后,提前10—12小时把培养瓶内所有活的成虫倒干净,然后在倒掉成虫的12小时内吧新羽化的成虫倒出来,装进消毒过的培养瓶或者平底试管进行适度麻醉,麻醉后放在消毒过的白瓷板或者硬纸板上把雌雄蝇分别挑出,雌蝇即为处女蝇。
根据实验所需处女蝇数量的多少,可连续收集,但不要超过3天。
(2)配好杂交组合,进行正、反杂交。
正交组合:野生型长翅(♀)×突变型残翅(♂)。
用消毒过的毛笔把3—4只长翅处女蝇扫入培养瓶中,然后把培养瓶水平放置,一面麻醉状态下的果蝇沾到培养基或水珠而被闷死,随机用同样方法扫入3—4只残翅雄蝇,塞紧棉塞,贴好标签,保持水平直至果蝇苏醒后放入25℃恒温培养箱中培养。
反交组合:将亲本性别交换。
(3)培养7天之后把亲本果蝇成虫全部倒出来处死。
(4)再过7天F1成蝇出现,把F1成蝇转移到经过消毒的空瓶子里进行适度麻醉,观察F1翅形的变化,并把结果记录。
把5~6对适度麻醉的F1转入另一培养瓶,标明信息。
表2 正、反交F1果蝇翅形观察结果记录表(5)过7天,F1成虫倒出处死,培养基继续培养。
(6)过7天,F2成虫出现,开始观察,可以连续观察7天左右,往后可能有F3成虫出现,所以观察时间不要超过8天。
记录数据,观察过的成虫集中处死。
表3 正、反交F2果蝇翅形观察结果记录表(7)处理数据,并进行卡方检验,来确认是否符合理论猜测比值。
2(1)F1全部为长翅果蝇,而且正反交结果一样。
(2)F2出现翅形的性状分离,并且数量比大约符合长翅:断翅为3:1,且正反交结果类似。
通过卡方检验证明实际分离比与理论分离比一致。
二、两对基因自由组合实验1、实验原理由非同源染色体上的两对等位基因所决定的两对相对性状,在杂种第二代是自由组合的。
根据孟德尔第二定律,一对基因的分离与另一对(或者另几对)基因的分离是独立的。
一对基因所决定的性状在杂种第二代是3:1,两对不连锁的基因所决定的形状,在杂种第二代就呈9:3:3:1,黑檀体果蝇(e)的体色乌黑,e的基因座位于3号染色体70.7;与e相对应的野生型性状是体色灰黄。
残翅果蝇(vg)的双翅几乎没有,只能看到少量残迹,vg的基因座位于2号染色体67.0;与vg相对应的野生型是长翅。
由于e和vg位于不同源的染色体上,所以两对基因杂种在形成生殖细胞的时候,会产生4种不同类型的配子,其理论比例为1:1:1:1。
如果子一代系内杂交,4种♂配子和4种♀配子可形成16种组合的合子,其中9种2、实验步骤选用2#与e进行杂交试验(1)分别挑选e、vg的处女蝇,要注意麻醉瓶、毛笔、白瓷板的消毒(烘箱60℃烘4h以上)。
(2)把vg♀和e♂放在一培养瓶中,e♀和vg♂放在另一培养瓶中。
操作类似单因子试验。
(3)7天后将亲本倒干净处死。
(4)7天后检查F1成虫的形状。
若全为灰身长翅,则杂交成功,否则为假杂种。
成功的组合挑选5~6对F1成蝇转移到新的培养瓶中继续培养。
(5)7天后倒出F1成虫处死。
(6)7天后,观察F2成虫,可连续观察一周。
(7)统计数据,处理数据,进行卡方检验。
表3 χ2测验统计3、预期实验结果(1)F1全为灰体长翅,且正反交结果一致。
(2)F2出现形状分离,且灰体长翅:灰体残翅:黑体长翅:黑体残翅约为9:3:3:1。
且正反交结果类似。
通过卡方检验证明实际分离值与理论分离值一致。
三、三点测交与遗传作图1、实验原理位于不同染色体上的两对基因,它们决定的两对形状在F2中是自由组合的。
而位于一条染色体上的基因则是连锁的。
同源染色体之间可以发生交换,使子代出现一定数量的重组型,重组型出现的多少反映出基因间发生交换的频率的高低。
根据基因在染色体中直线排列的原理,基因间距离越远,期间发生交换的可能性越大,即交换频率越高;反之则小,交换律就低。
因此交换值(crossing-over value)的大小可以用来表示基因间距离的长短。
但交换值无法直接测定,只有通过基因之间的重组来估计所发生交换的频率。
所以通过计算重组值的大小,可以反映基因之间距离的大小。
金银图距是通过重组值的测定而得到的。
如果基因座相距很近,重组率与交换律的值相等,可以根据重组率的大小作为有关基因间的相对距离,把基因顺序地排列在染色体上,绘制出基因图。
但在基因间相距较远的情况下,可能发生不止一次交换,这时如果简单把重组率当做交换律,就会低估了交换律,图距也会随之变小。
因此需要利用实验数据进行修正,以便正确估计图距。
根据这个道理,可以确定一系列基因在染色体上的相对位置。
本实验通过对同一染色体上3个非等位基因的交换行为来验证基因在染色体上呈直线排列。
选用野生型果蝇(+++/+++长翅、直刚毛、红眼)与三隐性果蝇(abc/abc白眼、短翅、焦刚毛)杂交,制成三因子杂种(+++/abc),再把雌性杂种与三隐性个体测交,在测交后代中由于基因间的交换可得到8种不同的表型,经过数据处理,绘制出遗传学图,这样一次实验便可测出3个连锁基因在染色体上的距离和顺序,就叫做三点测交或三点试验。
三隐性果蝇(m sn3w)具有短翅(m翅长至腹部末端)、卷刚毛(sn3)、白色复眼(w),这三个基因都在X染色体上。
把三隐性雌性果蝇与野生型雄蝇杂交,所得F1的雌蝇是三因子杂种(m sn3 w//+++),雄蝇是m sn w/|(“/”表示X染色体,“|”表示Y染色体),F1雌雄果蝇相互交配,得测交后代。
F1的雌蝇表现型是野生型,雄蝇是三隐性。
得到测交后代,其中多数个体与原来亲本相同。
同时也会出现少量与亲本不同的个体,称为重组型。
重组型是基因间发生交换的结果。
F1雌蝇是三因子杂种,可以形成8种配子,而F1雄蝇是三隐性个体,它们进行同系近交,即测交,F2可得到8种表型。
根据8种表型的相对频率可以计算重组值,并确定三基因的排列顺序。
因为重组值是表示基因间的交换频率,而图距表示基因间的相对距离,通常是由两个临近的基因图距相加得来的,所以图距往往不同于重组值。
图距可以超过50%,而重组值只会逐渐接近而不会超过50%,只有基因相距较近的时候,重组值才和图距相等。
2、实验步骤选用6#雌果蝇与18#雄果蝇进行杂交实验(1)收集和挑选三隐性品系处女蝇,同时收集挑选野生型雄蝇。
在挑选过程中,注意麻醉瓶等干热消毒,酒精擦拭之后晾干使用。
(2)把挑选到的三隐性雌蝇和野生型雄果蝇,各3~5只,用毛笔扫进空白的培养瓶中进行杂交,操作与注意事项同前。
(3)7~8天出现F1幼虫,处死亲本。
(4)7天后,F1成蝇出现,可以观察到F1雌蝇全部是野生型表型,雄蝇全是三隐性。
挑选20~30对F1果蝇,放到新的培养瓶中继续杂交,每瓶5~6对。
(5)7天后,F2幼虫出现,处死F1成虫。
(6)再继续培养,7天后,F2成虫出现,可以开始观察。
注意适度麻醉,否则可能导致长翅短翅难以分辨。
至少观察250个果蝇,记录数据。
(7)分析数据,计算基因间重组值,绘制遗传学图,进行修正。
3、预期实验结果(1)F1雌蝇全为野生型,F1雄蝇全为三隐性。
(2)F2大部分为野生型或三隐性果蝇,但是会出现不同于亲本的形状组合。
四、伴性遗传1、实验原理很多生物都有性染色体,而性别与这些性染色体有密切的关系,如果基因位于性染色体上,那么这些形状与性别就会有关系。
遗传学商,将位于性染色体上的基因锁控制的形状遗传方式成为伴性遗传。
果蝇的性染色体属于XY型,雄蝇为XY,雌性为XX。
通过果蝇眼色遗传的研究,可以观察到果蝇眼色性状的遗传与性别有着密切关系,因此可以知道控制果蝇眼色的基因位于X染色体上。
正交:雌性野生型与雄性白眼杂交,F1全为野生型红眼,F1系内近交,F2♀全为野生型红眼,♂野生型红眼和白眼各占一半。
反交:雌性白眼与雄性野生型红眼杂交,F1♂全为白眼,♀全为红眼。
F1系内近交,F2无论雌雄,均出现各占一半的白眼和红眼。
由此,子代雄性个体的X染色体均来自母本,而父本的X染色体总是传递给子代雌体,这是伴性遗传的一个重要特征。
也可能有X染色体不分离而产生例外情况,会使得反交F1的雌性出现白眼。
2、实验步骤选用18#与22#果蝇进行杂交试验(1)挑选收集♀红眼处女蝇,♀白眼处女蝇。
(2)正交:把雌性红眼处女蝇和雄性白眼各3~4只,放在同一培养瓶中杂交。
反交:雌性白眼处女蝇和雄性红眼各3~4只,放在另一培养瓶中。
(3)把两组培养7天F1幼虫出现,倒干净亲本果蝇处死。
(4)7天后,观察F1成虫性状,记录数据,注意区分性别。
之后各挑3~5对成虫转入新的培养瓶中饲养。
表1 F1 A组合(正交)♀++×WY♂观察结果1(5)7天后处死F1成虫。
(6)7天后,把F2成虫转移到另一个空瓶子中,进行适度麻醉,观察眼色和性别,统计数据。
表3 F2 A组合(正交)表4 F2 B组合(反交)3、预期实验结果(1)F1成虫中,正交组全部为红眼,反交组♀全为红眼,雄性全为白眼。
(2)F2成虫中,正交组♀全为红眼,♂一半为白眼,一半为红眼。
反交组,无论雄性雌性,均为红眼白眼各占一半。
卡方检验理论与实际观察值相一致。