2018年人教版高三数学一轮复习课件--立体几何PPT课件

合集下载

2018版高中数学理一轮全程复习课件第七章 立体几何 7.

2018版高中数学理一轮全程复习课件第七章 立体几何 7.

[知识重温] 一、必记 2●个知识点 1.空间向量及其有关概念 语言描述 共线向量(平 表示空间向量的有向线段所在的直线互相① __________ 行向量) 平行或重合 共面向量 平行于②同一平面 ________的向量 对空间任意两个向量 a,b(b≠0),a∥b⇔存在 λ 共线向量定理 a=λb ∈R,使③________ 若两个向量 a,b 不共线,则向量 p 与向量 a,b 共面向量定理 共面⇔存在唯一的有序实数对(x,y),使 p=④ x a+yb ________
[小题热身] 1.在下列命题中: ①若向量 a,b 共线,则向量 a,b 所在的直线平行; ②若向量 a,b 所在的直线为异面直线,则向量 a,b 一定不 共面; ③若三个向量 a,b,c 两两共面,则向量 a,b,c 共面; ④已知空间的三个向量 a,b,c,则对于空间的任意一个向 量 p 总存在实数 x,y,z 使得 p=xa+yb+zc. 其中正确命题的个数是( ) A.0 B.1 C.2 D.3
二、必明 3●个易误点 1. 共线向量定理中 a∥b⇔存在 λ∈R, 使 a=λb 易忽视 b≠0. 2.共面向量定理中,注意有序实数对(x,y)是唯一存在的. 3.一个平面的法向量有无数个,但要注意它们是共线向量, 不要误为是共面向量.
2.数量积及坐标运算 (1)两个向量的数量积: (ⅰ)a· b=|a||b|cos〈a,b〉 ; (ⅱ)a⊥b=⑥________( a· b=0 a,b 为非零向量); (ⅲ)|a|2=a2,|a|= x2+y2+z2.
(2)向量的坐标运算: a=(a1,a2,a3),b=(b1,b2,b3) (a1+b1,a2+b2,a3+b3) 向量和 a+b=⑦________________________ 向量差 a-b=⑧________________________ (a1-b1,a2-b2,a3-b3) 数量积 a· b=⑨________________________ a1b1+a2b2+a3b3 a________0) 1=λb1,a2=λb2,a3=λb a1b1+a2b2+a3b3=0 垂直 a⊥b⇔⑪__________________ a1b1+a2b2+a3b3 夹角公式 cos〈a,b〉=⑫________________________ 2 2 2 2 2 a2 1+a2+a3 b1+b2+b3

2018届高考数学理科全国通用一轮总复习课件:第七章 立体几何 7.7.2 精品

2018届高考数学理科全国通用一轮总复习课件:第七章 立体几何 7.7.2 精品

【解析】以D为原点,DA,DC,DD1所在直线为坐标轴建 立空间直角坐标系,设AB=1, 则D(0,0,0),
N(0,1,
1 2
),M(0,
1 2
,
0),A1
1,
0,1,
所以DN
(0,1,
1 2
),MA1
(1,
1 2
,1),
所以DN
MA1
0 1 1(
1 ) 2
1 1 2
0,
所以 DN M所A1以,A1M与DN所成的角的大小是90°. 答案:90°
则 A(-1,0,2),B1 1,0,0,B(1,0,2),C1(0,3,0),
所以 AB1=(2,0,- 2),BC1=(-1, 3,- 2), 因为 AB1 BC1=(2,0,- 2) (-1, 3,- 2)=0, 所以 AB1 即BC异1,面直线AB1和BC1所成角为直角,则其 正弦值为1.
b.如图②③,n1,n2分别是二面角α-l-β的两个半平面 α,β的法向量,则二面角的大小θ满足cosθ=_c_o_s_<n__1,_n_2_> 或_-_c_o_s_<_n_1_,_n_2>_.
【特别提醒】 1.利用 | AB |2 =AB AB 可以求空间中有向线段的长度. 2.点面距离的求法
【变式训练】将正方形ABCD沿对角线AC折起,当以
A,B,C,D四点为顶点的三棱锥体积最大时,异面直线AD
与BC所成的角为 ( )
A.
B.
C.
D.
6
4
3
2
【解析】选C.不妨以△ABC为底面,则由题意当以 A,B,C,D为顶点的三棱锥体积最大,即点D到底面△ABC 的距离最大时,平面ADC⊥平面ABC,取AC的中点O,连接 BO,DO,则易知DO,BO,CO两两互相垂直,所以分别以 OD,OB,OC 所在直线为z,x,y轴建立空间直角坐标系,令 BO=DO=CO=1,则有O(0,0,0),A(0,-1,0),D(0,0,1),

2018版高中数学一轮全程复习(课件)第七章 立体几何 7.4

2018版高中数学一轮全程复习(课件)第七章 立体几何 7.4
行”)
因为②_l_∥__α__, __l⊂___β___,α__∩__β_=__b_,
所以 l∥b
第九页,编辑于星期六:二十二点 二十三分。
2.平面与平面平行的判定定理和性质定理
文字语言图形语言源自符号语言因为③_a_∥__β__,
判 一个平面内的两条相交直线 定 与另一个平面平行,则这两 定 个平面平行(简记为“线面
第十页,编辑于星期六:二十二点 二十三分。
3.平行关系中的两个重要结论 (1)垂直于同一条直线的两个平面平行,即若 a⊥α,a⊥β, 则 α∥β. (2)平行于同一平面的两个平面平行,即若 α∥β,β∥γ,则 α ∥γ.
第十一页,编辑于星期六:二十二点 二十三分。
二、必明 3●个易误点 1.直线与平面平行的判定中易忽视“线在面内”这一关键 条件. 2.面面平行的判定中易忽视“面内两条相交线”这一条件. 3.如果一个平面内有无数条直线与另一个平面平行,易误 认为这两个平面平行,实质上也可以相交.
第十九页,编辑于星期六:二十二点 二十三分。
考向二 平面与平面平行的判定和性质
[互动讲练型] [例 2] 如图,四棱柱 ABCD-A1B1C1D1 的底面 ABCD 是正 方形,O 是底面中心,A1O⊥底面 ABCD,AB=AA1= 2.
(1)证明:平面 A1BD∥平面 CD1B1; (2)求三棱柱 ABD-A1B1D1 的体积.
第二十六页,编辑于星期六:二十二点 二十三 分。
考向三 平行关系的综合应用[互动讲练型] [例 3] 如图,ABCD 与 ADEF 为平行四边形,M,N,G 分 别是 AB,AD,EF 的中点.
(1)求证:BE∥平面 DMF; (2)求证:平面 BDE∥平面 MNG.
第二十七页,编辑于星期六:二十二点 二十三 分。

高考数学一轮总复习教学课件第七章 立体几何与空间向量第7节 利用空间向量求空间距离

高考数学一轮总复习教学课件第七章 立体几何与空间向量第7节 利用空间向量求空间距离

|·|
||

=.
考点三 用空间向量求线线、线面、面面的距离
[例3] 在棱长为3的正方体ABCD-A1B1C1D1中,E,F分别是BB1,DD1的中
点,则平面ADE与平面B1C1F之间的距离为


.
解析:以点A为坐标原点,AB,AD,AA1所在直线分别为x轴、
y轴、z轴建立如图所示的空间直角坐标系,连接AB1,
||
=
|-|
+
=3 .
用向量法求点面距离的步骤
(1)建系:建立恰当的空间直角坐标系.
(2)求点坐标:写出(求出)相关点的坐标.

(3)求向量:求出相关向量的坐标( ,α内两个不共线向量,平面
α的法向量n).

|·|
(4)求距离:d=
.
||
[针对训练] 如图,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,D,
如图,已知平面α的法向量为 n,A 是平面α内的定点,P 是平面α外一
点.过点 P 作平面α的垂线 l,交平面α于点 Q,则 n 是直线 l 的方向向


量,且点 P 到平面α的距离就是在直线 l 上的投影向量 的长度,

因此 PQ=|·


·
||
|=|
||

|=
|·|
||
× )
)
2.平面α的法向量n=(1,-1,2),点B在α上且B(2,2,3),则P(-2,1,3)
到α的距离为


.


解析:因为 =(4,1,0),故 P(-2,1,3)到α的距离 d=
|(,,)·(,-,)|

高三数学一轮复习课件——立体几何共58页

高三数学一轮复习课件——立体几何共58页
60、人民的幸福是至高无个的法。— —西塞 罗
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
高三数学一轮复习课件——立体几何
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
55、 为 中 华 之 崛起

2018届高考数学理科全国通用一轮总复习课件:第七章 立体几何 7.1 精品

2018届高考数学理科全国通用一轮总复习课件:第七章 立体几何 7.1 精品

2.(必修2P19练习T3改编)利用斜二测画法得到的:
①三角形的直观图一定是三角形;
②正方形的直观图一定是菱形;
③等腰梯形的直观图可以是平行四边形;
④菱形的直观图一定是菱形.
以上结论正确的个数是
.
【解析】由斜二测画法的规则可知①正确;②错误,是一 般的平行四边形;③错误,等腰梯形的直观图不可能是平 行四边形;而菱形的直观图也不一定是菱形,④也错误. 答案:1
2.已知三视图,判断几何体的技巧 (1)对柱、锥、台、球的三视图要熟悉. (2)明确三视图的形成原理,并能结合空间想象将三视 图还原为直观图. (3)遵循“长对正、高平齐、宽相等”的原则. 易错提醒:对于简单组合体的三视图,应注意它们的交 线的位置,区分好实线和虚线的不同.
【题组通关】
1.(2016·临沂模拟)某几何体的三视图如图所示,那么
2.给出下列命题: ①在圆柱的上、下底面的圆周上各取一点,则这两点的 连线是圆柱的母线; ②在圆台的上、下底面的圆周上各取一点,则这两点的 连线是圆台的母线;
③圆柱的任意两条母线所在的直线是互相平行的.
其中正确命题的序号是 ( )
A.①②
B.②③
C.①③
D.③
【解析】选D.根据圆柱、圆台的母线的定义和性质
2
4
在图②中作C′ OC 6 a.
2
8
所以S△A′B′C′=
1 AB CD 1 a 6 a 6 a2.
2
2 8 16
(2)选C.如图,在原图形OABC中, 应有OD=2O′D′=2 2 2 (4cm2 ), CD=C′D′=2cm,
所以OC= OD2 CD2 4 2 2 所22以O6Acm=O, C,

2018版高考数学全国人教B版理大一轮复习课件:第八章

2018版高考数学全国人教B版理大一轮复习课件:第八章

诊断自测 1.判断正误(在括号内打“√”或“×”) 精彩PPT展示
)
(1)直线l与平面α内的无数条直线都垂直,则l⊥α.( (2)垂直于同一个平面的两平面平行.( )
(3)若两平面垂直,则其中一个平面内的任意一条直线垂直 于另一个平面.( α⊥β.( )
(4)若平面α内的一条直线垂直于平面β内的无数条直线,则
∵PA⊥底面ABCD,AB⊂平面ABCD, ∴PA⊥AB. 又∵AB⊥AD,且PA∩AD=A,
∴AB⊥平面PAD,而PD⊂平面PAD,
∴AB⊥PD. 又∵AB∩AE=A,∴PD⊥平面ABE.
规律方法 (1)证明直线和平面垂直的常用方法有: ①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α); ③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质
(α⊥β,α∩β=a,l⊥a,l⊂β⇒l⊥α).
(2) 证明线面垂直的核心是证线线垂直,而证明线线垂直则 需借助线面垂直的性质 .因此,判定定理与性质定理的合理 转化是证明线面垂直的基本思想.
可知C正确.
答案 C
5.(教材改编)在三棱锥P-ABC中,点P在平面ABC中的射影 为点O, (1)若PA=PB=PC,则点O是△ABC的________心.
(2) 若 PA⊥PB , PB⊥PC , PC⊥PA , 则 点 O 是 △ABC 的
________心. 解析 (1)如图1,连接OA,OB,OC,OP, 在Rt△POA、Rt△POB和Rt△POC中,PA=PC=PB, 所以OA=OB=OC,即O为△ABC的外心.
第5讲
空间中的垂直关系
最新考纲
1.以立体几何的定义、公理和定理为出发点,认
识和理解空间中线面垂直的有关性质与判定定理; 2.能运用 公理、定理和已获得的结论证明一些空间图形的垂直关系的 简单命题.

高考数学一轮复习 第六讲 立体几何课件

高考数学一轮复习 第六讲 立体几何课件

四、利用空间向量解决立体几何问题 1.抓住两个关键的向量:直线的方向向量与平面的法向量. 2.掌握向量的运算:线性运算与数量积运算. 3.正确进行转化,即将所求角转化为向量的夹角,将所求距离转化 为向量的模. 4.用向量法求异面直线所成角的一般步骤 (1)选择三条两两垂直的直线建立空间直角坐标系; (2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值; (4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.
二、球与其他几何体的外接与内切 1.空间几何体与球接、切问题的求解方法 (1)求解球与棱柱、棱锥的接、切问题时,一般先过球心及接、切 点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用 平面几何知识寻找几何中元素间的关系求解. (2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂 直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成一个球的内接长 方体,利用4R2=a2+b2+c2求解.
一、几何体的结构特征 1.三视图问题的常见类型及解题策略 (1)由几何体的直观图求三视图.注意观察方向,能看到的部分用 实线表示,不能看到的部分用虚线表示. (2)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球 的三视图,明确三视图的形成原理,结合空间想象将三视图还原为 直观图. (3)由几何体的部分视图画出剩余的部分视图.先根据已知的视图, 还原、推测直观图的可能形状,再推测剩下部分视图的可能形状. 当然若为选择题,也可将选项逐项代入,再看看给出的部分视图是 否符合.
2.几个与球有关的切、接常用结论 (1)已知正方体的棱长为a,球的半径为R,则 ①若球为正方体的外接球,则2R= 3 a; ②若球为正方体的内切球,则2R=a; ③若球与正方体的各棱相切,则2R= 2 a. (2)若长方体的同一顶点处的三条棱长分别为a,b,c,外接球的半径 为R,则2R= ������2 + ������2 + ������2 .

高考数学(理)一轮复习精品课件:专题《立体几何》

高考数学(理)一轮复习精品课件:专题《立体几何》

2.正棱柱与正棱 锥的结构特征 3.旋转体的 结构特征 4.三视图
考点42
空间几何体的结构、三视图
1.多面体的结构特征
2.正棱柱与正棱 锥的结构特征 3.旋转体的 结构特征 4.三视图
考点42
空间几何体的结构、三视图
定义:从一个几何体的正前方、正左方、正上方三个 不同的方向看这个几何体,描绘出的平面图形,分别 称为正(主)视图、侧(左)视图、俯视图.
2.外接球、内切 球的计算问题
在Rt△OO′M中,OM2=OO′2+O′M2,即R2=d2+
r2.
8
9
10
11
12
13Байду номын сангаас
14
考法2 空间几何体的三视图
1.识别三视 图的步骤
(1)弄清结构,明确位置 (2)先画正视图,再画俯视图,最后画侧视图 (3)被遮住的轮廓线要画成虚线
2.判断余下视图
1.计算有关 线段的长
当球内切于正方体时,切点为正方体各个 面的中心,正方体的棱长等于球的直径;
2.外接球、内切 球的计算问题
7
考法1
空间几何体的结构特征
球与旋转体的组合通常作轴截面解题. 球与多面体的组合,通过多面体的一条侧棱
1.计算有关 线段的长
和球心(或“切点”“接点”)作出截面图解题. 设球O的半径为R,截面圆O′的半径为r,M为截 面圆上任一点,球心O到截面圆O′的距离为d,则
专题8
第1 节
立体几何
空间几何体的三视图、表面积和体积
第2 节
质 第3 节
空间直线、平面平行与垂直的判定及其性
空间中的计算问题
1
考点42
空间几何体的结构、三视图

人教版高中数学高考一轮复习--高考中的立体几何(课件 共47张PPT)

人教版高中数学高考一轮复习--高考中的立体几何(课件 共47张PPT)

∴CA,CB,CC1两两垂直.
以点C为坐标原点, , , 1 分别为x轴、y轴、z轴正方向,建立空间直
角坐标系,如图所示,
则 C(0,0,0),C1(0,0,2),A1(2 3,0,4),E(0,2,4λ).
设平面 A1EC1 的法向量为 n1=(x1,y1,z1),
1 ·1 1 = 0,
3.用向量方法证明面面平行或垂直的方法:α∥β⇔e1∥e2⇔存在实数λ,使
2 ⊥ ,
e2=λe1(e1≠0);α⊥β⇔e1⊥e2⇔e1·e2=0;α∥β⇔
其中α,β为不重合的
2 ⊥ .
两个平面,e1,e2为α,β的法向量,A,B,C为α内不共线的三个点.
例2 如图,CC1⊥平面ABC,平面ABB1A1⊥平面ABC,四边形ABB1A1为正
2
2 2
2 2 2
设平面 PDC 的法向量为 n=(x,y,z),=(-1,0,1), =(-1,1,1),
- + = 0,
· = 0,


取 n=(1,0,1).
- + + = 0,
· = 0,
1 1
∵n· = 2 − 2=0,∴ ⊥n.
又 EF⊄平面 DCP,∴EF∥平面 DCP.
2 31 + 21 = 0,


21 + (4-2)1 = 0,
1 ·1 = 0,
3
令 z1=1,则 x1=- ,y1=1-2λ,
3
3
可取 n1= - 3 ,1-2,1 .
设平面 A1EC 的法向量为 n2=(x2,y2,z2),
2 ·1 = 0,
2 32 + 42 = 0,

高考数学一轮复习-第三板块-立体几何-层级(二)球的切、接问题与动态问题(动点、截面)【课件】

高考数学一轮复习-第三板块-立体几何-层级(二)球的切、接问题与动态问题(动点、截面)【课件】

针对训练
1.(2022·韶关测试)(多选)在正方体 ABCD-A1B1C1D1 中,点 E,F 分别是棱 AB,
CC1 的中点,则下列说法正确的是
命题点(二) 几何体的外接球
空间几何体的外接球是高中数学的重点、难点,也是高考命题的热点,一
般通过对几何体的割补或寻找几何体外接球的球心两大策略解决此类问题.
[例 1] (2022·新高考Ⅰ卷)已知正四棱锥的侧棱长为 l,其各顶点都在同一球
面上.若该球的体积为 36π,且 3≤l≤3 3,则该正四棱锥体积的取值范围是( )
由题意及图可得l2=h2+ 22a2, R2=h-R2+ 22a2,
解得
h=2lR2 =l62, a2=2l2-1l48,
所以正四棱锥的体积
V
=13a2h
=13
2l2-1l48×
l62=
l4 18
2-1l28(3≤l≤3 3),所以 V′=49l3-5l54=19l34-l62(3≤l≤3 3),令 V′=0,得 l=2 6,所以当 3≤l<2 6时,V′>0;当 2 6<l≤3 3时,V′<0,所以函数 V=1l482-1l28(3≤l≤3 3)在[3,2 6)上单调递增,在(2 6,3 3]上单调递减,又当
1.已知△ABC 中,AB=4,BC=3,AC=5,以 AC 为轴旋转一周得到一个旋
转体,则该旋转体的内切球的表面积为
()
A.4396π B.54796π C.52756π D.32455π 解析:旋转体的轴截面如图所示,其中 O 为内切球的球心,过
O 作 AB,BC 的垂线,垂足分别为 E,F,则 OE=OF=r(r
[答案] AD
方法技巧 1.动点问题的解题关键 在立体几何中,某些点、线、面按照一定的规则运动,构成各式各样的轨迹, 探求空间轨迹与探求平面轨迹类似,应注意几何条件,善于基本轨迹转化. 2.截面形状及相应面积的求法 (1)结合线面平行的判定定理与性质定理求截面问题. (2)结合线面垂直的判定定理与性质定理求正方体中截面问题. (3)猜想法求最值问题:“要灵活运用一些特殊图形与几何体的特征动中找 静”,如正三角形、正六边形、正三棱锥等. (4)建立函数模型求最值问题:①设元;②建立二次函数模型;③求最值.

2018高考数学(文理通用版)一轮复习课件:第七章 立体几何 第1讲

2018高考数学(文理通用版)一轮复习课件:第七章 立体几何 第1讲

• A.0 B.1 • C.2 D.3 • [解析] (1)(2)(3)(5)不正确,(4)正确,故选 B.
2.(2016· 天津,5 分)将一个长方体沿相邻三个面的对角线截去一 个棱锥, 得到的几何体的正视图与俯视图如图所示, 则该几何体的侧(左) 视图为 导学号 30071968 (
B
)
• [解析] 由正视图、俯视图得原几何体的 形状如图所示,则该几何体的侧视图为B .
• 知识点二 空间几何体的三视图 • 空间几何体的三视图是用正投影得到的, 完全相同 这种投影下与投影面平行的平面图形留下 主(正)视图 左(侧)视图 俯视图 的影子与平面图形的形状和大小是 _________的,三视图包括__________、 ___________、________.
• 知识点三 空间几何体的直观图 斜二测 • 空间几何体的直观图常用________画法来 画,其规则是: 垂直 • 1.原图形中x轴、y轴、z轴两两垂直,直 平行于 观图中,x′轴、y′轴的夹角为45°(或135°) 不变 ,z′轴与x′轴、y′轴所在平面 ______. 原来的一半 • 2.原图形中平行于坐标轴的线段,直观图 中仍分别________坐标轴.平行于y轴和z 轴的线段在直观图中保持原长度_____,平 行于x轴的线段长度在直观图中变为 _____________.
1.下列结论正确的个数为 导学号 30071967 (
B
)
(1)夹在圆柱的两个平行截面间的几何体还是圆柱. (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥. (3)上下底面是两个平行的圆面的旋转体是圆台. (4)用一个平面去截一个球,截面是一个圆面. (5)在用斜二测画法画水平放置的∠A 时,若∠A 的两边分别平行于 x 轴和 y 轴,且∠A=90° ,则在直观图中∠A=45° .

2018版高中数学一轮全程复习(课件)第七章 立体几何 7.5

2018版高中数学一轮全程复习(课件)第七章 立体几何 7.5

(2)在直三棱柱 ABC-A1B1C1 中,A1A⊥平面 A1B1C1. 因为 A1C1⊂平面 A1B1C1,所以 A1A⊥A1C1. 又因为 A1C1⊥A1B1,A1A⊂平面 ABB1A1,A1B1⊂平面 ABB1A1, A1A∩A1B1=A1, 所以 A1C1⊥平面 ABB1A1. 因为 B1D⊂平面 ABB1A1,所以 A1C1⊥B1D. 又因为 B1D⊥A1F,A1C1⊂平面 A1C1F,A1F⊂平面 A1C1F, A1C1∩A1F=A1, 所以 B1D⊥平面 A1C1F. 因为直线 B1D⊂平面 B1DE,所以平面 B1DE⊥平面 A1C1F.
第八页,编辑于星期六:二十二点 二十三分。
[知识重温] 一、必记 6●个知识点 1.直线与平面垂直 (1)定义:直线 l 与平面 α 内的①___任__意___一条直线都垂直,
就说直线 l 与平面 α 互相垂直.
第九页,编辑于星期六:二十二点 二十三分。
(2)判定定理与性质定理
文字语言
图形语言
一条直线与一个平 判定 面内的两条相交直 定理 线都垂直,则该直线
又∵BD∥B′D′,∴BD⊥CE.
答案:B
第五页,编辑于星期六:二十二点 二十三分。
4.(2017·银川一模)如图,在正方形 ABCD 中,E、F 分别是 BC、CD 的中点,G 是 EF 的中点,现沿 AE、AF 及 EF 把这个 正方形折成一个空间图形,使 B、C、D 三点重合,重合后的点 记为 H,那么,在这个空间图形中必有( )
第三页,编辑于星期六:二十二点 二十三分。
[小题热身] 1.(2015·浙江卷)设 α,β 是两个不同的平面,l,m 是两条
不同的直线,且 l⊂α,m⊂β.( ) A.若 l⊥β,则 α⊥β B.若 α⊥β,则 l⊥m C.若 l∥β,则 α∥β D.若 α∥β,则 l∥m 解析:∵l⊥β,l⊂α,∴α⊥β(面面垂直的判定定理). 答案:A

高三数学(理)一轮复习(课件)第七章 立体几何7-5

高三数学(理)一轮复习(课件)第七章 立体几何7-5

因为 SA=SB,所以△SAB 为等腰三角形, 所以 SE⊥AB。 又 SE∩DE=E,所以 AB⊥平面 SDE。 又 SD⊂平面 SDE,所以 AB⊥SD。 在△SAC 中,SA=SC,D 为 AC 的中点, 所以 SD⊥AC。 又 AC∩AB=A,所以 SD⊥平面 ABC。 (2)由于 AB=BC,则 BD⊥AC, 由(1)可知,SD⊥平面 ABC,又 BD⊂平面 ABC, 所以 SD⊥BD, 又 SD∩AC=D,所以 BD⊥平面 SAC。
1.证明面面垂直的常用方法:(1)利用面面垂直的定义;(2)利用面面 垂直的判定定理,转化为从现有直线中(或作辅助线)寻找平面的垂线,即 证明线面垂直。
2.两个平面垂直问题,通常是通过“线线垂直→线面垂直→面面垂 直”的过程来实现的。
【变式训练】 (2019·唐山市摸底考试)如图,在四棱锥 P-ABCD 中, PC⊥底面 ABCD,ABCD 是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD =2,E 是 PB 的中点。
考点三 开放型问题 【例 3】如图所示,在直四棱柱 ABCD-A1B1C1D1 中,DB=BC, DB⊥AC,点 M 是棱 BB1 上一点。
(1)求证:B1D1∥平面 A1BD。 (2)求证:MD⊥AC。 (3)试确定点 M 的位置,使得平面 DMC1⊥平面 CC1D1D。
解 (1)证明:由直四棱柱,得 BB1∥DD1,且 BB1=DD1,
(1)如图,连接 OA,OB,OC,OP,在 Rt△POA,Rt△POB 和 Rt△POC 中,PA=PB=PC,所以 OA=OB=OC,即 O 为△ABC 的外心。
(2)如图,延长 AO,BO,CO 分别交 BC,AC,AB 于 H,D,G。因为 PC⊥PA,PB⊥PC,PA∩PB=P,所以 PC⊥平面 PAB,又 AB⊂平面 PAB, 所以 PC⊥AB,因为 AB⊥PO,PO∩PC=P,所以 AB⊥平面 PGC,又 CG ⊂平面 PGC,所以 AB⊥CG,即 CG 为△ABC 边 AB 上的高。同理可证 BD, AH 分别为△ABC 边 AC,BC 上的高,即 O 为△ABC 的垂心。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设矛盾.
[答案] D
解决此类题目要准确理解几何体的定义,把握几何体
的结构特征,并会通过反例对概念进行辨析.举反例时可
利用最熟悉的空间几何体如三棱柱、四棱柱、正方体、三 棱锥、三棱台等,也可利用它们的组合体去判断.
1.(2013· 天津质检)如果四棱锥的四条侧棱都相等,就称
它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命 题中,假命题是 A.等腰四棱锥的腰与底面所成的角都相等 B.等腰四棱锥的侧面与底面所成的二面角都相等或 ( )
目 录
立体几何
第一节 空间几何体的结构特征及三视图和直观图
第二节 空间几何体的表面积和体积
第三节 空间点、直线、平面间的位置关系 第四节 直线、平面平行的判定及性质 第五节 直线、平面垂直的判定与性质 第六节 空间向量及其运算和空间位置关系
第七节 空间向量与空间角
立体几何
[知识能否忆起] 一、多面体的结构特征 多面体 结构特征 有两个面 互相平行 ,其余各面都是四边形,并 棱柱 平行且相等 且每相邻两个面的交线都 ___________ 有一个面是 多边形 ,而其余各面都是有一个 公共 顶点 棱锥 ____ 的三角形 底面 截面 底面 棱锥被平行于 的平面所截, 和 棱台 之间的部分
标轴 平行于y轴的线段长度在直观图中
. 不变
变为原来的一半
五、三视图 几何体的三视图包括 正视图 、 侧视图 、俯视图 ,
分别是从几何体的 正前方 、正左方 、 正上方 观察几何
体画出的轮廓线.
[小题能否全取] 1.(教材习题改编)以下关于几何体的三视图的论述中,正
确的是
A.球的三视图总是三个全等的圆 B.正方体的三视图总是三个全等的正方形 C.水平放置的正四面体的三视图都是正三角形 D.水平放置的圆台的俯视图是一个圆
互补
C.等腰四棱锥的底面四边形必存在外接圆 D.等腰四棱锥的各顶点必在同一球面上
出的轮廓线.
3.对斜二测画法的认识及直观图的画法
(1)在斜二测画法中,要确定关键点及关键线段,“平
行于x轴的线段平行性不变,长度不变;平行于y轴的线 段平行性不变,长度减半.”
(2)按照斜二测画法得到的平面图形的直观图,其面 积与原图形的面积有以下关系: 2 S 直观图= S 原图形,S 原图形=2 2S 直观图. 4
3.下列三种叙述,其中正确的有
(
)
①用一个平面去截棱锥,棱锥底面和截面之间的部
分是棱台;
②两个底面平行且相似,其余各面都是梯形的多面 体是棱台; ③有两个面互相平行,其余四个面都是等腰梯形的 六面体是棱台.
A.0个
C.2个
B.1个
D.3个
解析:①中的平面不一定平行于底面,故①错.②③ 可用下图反例检验,故②③不正确. 答案:A
4.(教材习题改编)利用斜二测画法得到的: ①正方形的直观图一定是菱形;
②菱形的直观图一定是菱形;
③三角形的直观图一定是三角形. 以上结论正确的是________. 解析:①中其直观图是一般的平行四边形,②菱形 的直观图不一定是菱形,③正确.
答案:③
5.一个长方体去掉一个小长方体,所得几何体的正视
四、平行投影与直观图 空间几何体的直观图常用斜二测 画法来画,其规则是:
(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′
轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面 .
垂直 (2)原图形中平行于坐标轴的线段,直观图中仍_________
.平行于x轴和z轴的线段在直观图中保持原长度 平行于坐,
(
)
解析:B中正方体的放置方向不明,不正确.C中三视
图不全是正三角形.D中俯视图是一个圆环.
答案:A
2.(2017· 杭州模拟)用任意一个平面截一个几何体,各
个截面都是圆面,则这个几何体一定是
A.圆柱 C.球体 B.圆锥
(
)
D.圆柱、圆锥、球体的组合体
解析:当用过高线的平面截圆柱和圆锥时,截面分别 为矩形和三角形,只有球满足任意截面都是圆面. 答案:C
2.对三视图的认识及三视图画法
(1)空间几何体的三视图是该几何体在三个两两垂直
的平面上的正投影,并不是从三个方向看到的该几何体 的侧面表示的图形. (2)在画三视图时,重叠的线只画一条,能看见的轮 廓线和棱用实线表示,挡住的线要画成虚线. (3)三视图的正视图、侧视图、俯视图分别是从几何 体的正前方、正左方、正上方观察几何体用平行投影画
空间几何体的结构特征
[例1] (2017· 哈师大附中月考)下列结论正确的是 ( )
A.各个面都是三角形的几何体是三棱锥 B.以三角形的一条边所在直线为旋转轴,其余两边绕旋
转轴旋转形成的曲面所围成的几何体叫圆锥
C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥 可能是六棱锥 D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
[自主解答]
A错误,如图1是由两个相同的三棱锥
叠放在一起构成的几何体,它的各个面都是三角形,但 它不是三棱锥;B错误,如图2,若△ABC不是直角三角 形,或△ABC是直角三角形但旋转轴不是直角边,所得
的几何体都不是圆锥;
图1
图2
C错误,若该棱锥是六棱锥,由题设知,它是正六 棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题
二、旋转体的形成 几何体 圆柱 旋转图形 矩形 任一边 旋转轴 所在的直线 圆锥 直角三角形 一条直角边 所在的直线 垂直于底边的腰 所在的直 圆台 直角梯形 线 直径 所在的直线 球 半圆 三、简单组合体
简单组合体的构成有两种基本形式:一种是由简
单几何体拼接而成;一种是由简单几何体截去或挖去 一部分而成,有多面体与多面体、多面体与旋转体、 旋转体与旋转体的组合体.
图与侧视图分别如图所示,则该几何体的俯视图为
________.
解析:由三视图中的正、侧视图得到几何体的直观图如
图所示,所以该何体的俯视图为③.
答案:③
1.正棱柱与正棱锥
(1)底面是正多边形的直棱柱,叫正棱柱,注意正棱柱中 “正”字包含两层含义:①侧棱垂直于底面;②底面是正多边
形.
(2)底面是正多边形,顶点在底面的射影是底面正多边形 的中心的棱锥叫正棱锥,注意正棱锥中“正”字包含两层含义: ①顶点在底面上的射影必需是底面正多边形的中心,②底面是 正多边形,特别地,各棱均相等的正三棱锥叫正四面体.
相关文档
最新文档