命题与逻辑联结词知识点
数学中的逻辑推理知识点总结
数学中的逻辑推理知识点总结一、引言逻辑推理是数学中重要的思维方式,它涉及到命题、推理规则和推理方法等方面知识。
本文将对数学中的逻辑推理知识点进行总结,帮助读者更好地理解和应用数学中的逻辑推理。
二、命题与逻辑符号命题是陈述性语句,可以判断为真或假。
在数学中,常用字母或字母组合表示命题,在逻辑推理过程中,可以使用逻辑符号对命题进行操作。
常见的逻辑符号包括:1. 否定符号(¬)表示取反;2. 合取符号(∧)表示逻辑与;3. 析取符号(∨)表示逻辑或;4. 条件符号(→)表示蕴含关系;5. 等价符号(↔)表示等价关系。
三、命题联结词及其真值表命题联结词是将多个命题组合成复合命题的符号。
常见的命题联结词有否定(¬)、合取(∧)、析取(∨)、条件(→)、双条件(↔)等。
通过构建命题联结词的真值表,可以确定复合命题的真假。
四、命题的等价关系等价关系是指两个命题在所有情况下都具有相同的真值。
在逻辑推理中,等价关系用双条件符号(↔)表示。
常见的等价关系有以下几种:1. 否定律:¬(p∧q)↔(¬p∨¬q)2. 交换律:(p∧q)↔(q∧p)3. 结合律:((p∧q)∧r)↔(p∧(q∧r))4. 分配律:(p∧(q∨r))↔((p∧q)∨(p∧r))5. 互补律:p∨¬p6. 同一律:p∨T↔T, p∧F↔F五、推理规则推理规则是指根据已知条件和逻辑关系进行推理得出新结论的规则。
在数学中常用的推理规则包括:1. 假言推理:如果p→q是真命题,且已知p为真,则可以推断q为真。
2. 拒取式:如果p→q是真命题,且已知q为假,则可以推断p为假。
3. 析取三段论:如果p∨q为真命题,且已知p为假,q为真,则可以推断q为真。
4. 假言三段论:如果p→q和q→r都是真命题,且已知p为真,则可以推断r为真。
六、数学证明中的逻辑推理逻辑推理在数学证明中起着重要的作用。
数学证明一般包括假设、证明主体和结论等部分,其中证明主体部分的推理过程需要严密的逻辑推理。
命题、联结词、命题公式与真值表
1、一些基本概念 逻辑、命题、真值
2、联结词 3、命题公式 4、真值表
问题?
一、命题的定义
命题P——不关心其具体涵义,只关心其值的 真值
命题变元——定义域:真、假 命题常元——T和F 命题公式(也称命题,合式公式)——含命题变元
的断言,由以下规则生成: (1)单个原子公式是命题。 (2)若A、B是命题公式,┐A、A∧B、A∨B、
pq
qp (qp) q (qp) qp
00
1
0
1
01
0
0
1
10
1
0
1
11
Hale Waihona Puke 111回顾一下:五个联结词真值表
否定
等价(双条件)
合取
析取
蕴涵(条件)
几个相关概念
1、合式公式的层次:
0层
1层
2层
3层
pq
qp (qp) q (qp) qp
00
1
0
1
01
0
0
1
10
1
0
1
11
1
1
1
几个相关概念
A(BC) (D E)
1 01
10
p
2、什么情况下,下面论述为真:
q
说小王不会唱歌或小李不会跳舞是正确的,而
说如果小王会唱歌,小李会跳舞是不正确的。
(p q) (pq)
综合问题1
Key:
A→B、AB也是命题公式。 (3) 有限步应用条款(1)(2)生成的公式。
例:下列符号串都是命题公式
下列符号串是否为命题公式?
命题、联结词、命题公式与真值表
离散数学第一章命题逻辑知识点总结
数理逻辑部分第1章命题逻辑命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。
简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作p. 符号称作否定联结词,并规定p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧u) ∨(t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p q,并称p是蕴涵式的前件,q为蕴涵式的后件. 称作蕴涵联结词,并规定,p q为假当且仅当p 为真q 为假.p q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p q. 称作等价联结词.并规定p q为真当且仅当p与q同时为真或同时为假.说明:(1) p q 的逻辑关系:p与q互为充分必要条件(2) p q为真当且仅当p与q同真或同假联结词优先级:( ),, , , ,同级按从左到右的顺序进行以上给出了5个联结词:, , , , ,组成一个联结词集合{, , , , },联结词的优先顺序为:, , , , ; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.命题常项命题变项命题公式及分类命题变项与合式公式命题常项:简单命题命题变项:真值不确定的陈述句定义合式公式 (命题公式, 公式) 递归定义如下:(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1是合式公式(2) 若A是合式公式,则 (A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B), (A B)也是合式公式(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=B, B是n层公式;(b) A=B C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B C, 其中B,C的层次及n同(b);(d) A=B C, 其中B,C的层次及n同(b);(e) A=B C, 其中B,C的层次及n同(b).例如公式p 0层p 1层p q 2层(p q)r 3层((p q) r)(r s) 4层公式的赋值定义给公式A中的命题变项p1, p2, … , p n指定一组真值称为对A的一个赋值或解释成真赋值: 使公式为真的赋值成假赋值: 使公式为假的赋值说明:赋值=12…n之间不加标点符号,i=0或1.A中仅出现p1, p2, …, p n,给A赋值12…n是指p1=1, p2=2, …, p n=nA中仅出现p,q, r, …, 给A赋值123…是指p=1,q=2 , r= 3 …含n个变项的公式有2n个赋值.真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q p) q p的真值表例 B = (p q) q的真值表例C= (p q) r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q p)q p,B =(p q)q,C= (p q)r等值演算等值式定义若等价式A B是重言式,则称A与B等值,记作A B,并称A B是等值式说明:定义中,A,B,均为元语言符号, A或B中可能有哑元出现.例如,在 (p q) ((p q) (r r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p(q r) (p q) rp(q r) (p q) r基本等值式双重否定律 : A A等幂律:A A A, A A A交换律: A B B A, A B B A结合律: (A B)C A(B C)(A B)C A(B C)分配律: A(B C)(A B)(A C)A(B C) (A B)(A C)德·摩根律: (A B)A B(A B)A B吸收律: A(A B)A, A(A B)A零律: A11, A00同一律: A0A, A1A排中律: A A1矛盾律: A A0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A B, 则(B)(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p(q r) (p q)r证p(q r)p(q r) (蕴涵等值式,置换规则)(p q)r(结合律,置换规则)(p q)r(德摩根律,置换规则)(p q) r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p(q r) (p q) r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q(p q)解q(p q)q(p q) (蕴涵等值式)q(p q) (德摩根律)p(q q) (交换律,结合律)p0 (矛盾律)0 (零律)由最后一步可知,该式为矛盾式.(2) (p q)(q p)解 (p q)(q p)(p q)(q p) (蕴涵等值式)(p q)(p q) (交换律)1由最后一步可知,该式为重言式.问:最后一步为什么等值于1?(3) ((p q)(p q))r)解 ((p q)(p q))r)(p(q q))r(分配律)p1r(排中律)p r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A0A为重言式当且仅当A1说明:演算步骤不惟一,应尽量使演算短些对偶与范式对偶式与对偶原理定义在仅含有联结词, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) A(p1,p2,…,p n) A* (p1, p2,…, p n) (2) A(p1, p2,…, p n) A* (p1,p2,…,p n) 定理(对偶原理)设A,B为两个命题公式,若A B,则A* B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, q, p q, p q r, …简单合取式:有限个文字构成的合取式如p, q, p q, p q r, …析取范式:由有限个简单合取式组成的析取式A 1A2Ar, 其中A1,A2,,A r是简单合取式合取范式:由有限个简单析取式组成的合取式A 1A2Ar, 其中A1,A2,,A r是简单析取式范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p q r, p q r既是析取范式,又是合取范式(为什么?)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的, (若存在)(2) 否定联结词的内移或消去(3) 使用分配律对分配(析取范式)对分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p q)r解 (p q)r(p q)r(消去)p q r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p q)r解 (p q)r(p q)r(消去第一个)(p q)r(消去第二个)(p q)r(否定号内移——德摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p q)r(p r)(q r) (对分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1i n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M i 表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为极小项(极大项)的名称.m与M i的关系: m i M i , M i m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(p q r)(p q r) m1m3是主析取范式(p q r)(p q r) M1M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p q)r的主析取范式与主合取范式.(1) 求主析取范式(p q)r(p q)r , (析取范式)①(p q)(p q)(r r)(p q r)(p q r)m 6m7,r(p p)(q q)r(p q r)(p q r)(p q r)(p q r)m 1m3m5m7③②, ③代入①并排序,得(p q)r m1m3m5m6m7(主析取范式)(2) 求A的主合取范式(p q)r(p r)(q r) , (合取范式)①p rp(q q)r(p q r)(p q r)M 0M2,②q r(p p)q r(p q r)(p q r)M 0M4③②, ③代入①并排序,得(p q)r M0M2M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p q)r m1m3m5m6m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式A的主析取范式含2n个极小项A的主合取范式为1.A为矛盾式A的主析取范式为0A的主合取范式含2n个极大项A为非重言式的可满足式A的主析取范式中至少含一个且不含全部极小项A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p q)(2) (s u)(3) ((q r)(q r))(4) ((r s)(r s))(5) (u(p q))③ (1) ~ (5)构成的合取式为A=(p q)(s u)((q r)(q r))((r s)(r s))(u(p q))④ A (p q r s u)(p q r s u)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A (p q)((q r)(q r))(s u)(u(p q)) ((r s)(r s)) (交换律) B1= (p q)((q r)(q r))((p q r)(p q r)(q r)) (分配律)B2= (s u)(u(p q))((s u)(p q s)(p q u)) (分配律)B 1B2(p q r s u)(p q r s u) (q r s u)(p q r s)(p q r u)再令B3 = ((r s)(r s))得A B1B2B3(p q r s u)(p q r s u)注意:在以上演算中多次用矛盾律要求:自己演算一遍推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p r, r s结论:s q证明① s附加前提引入②p r前提引入③r s前提引入④p s②③假言三段论⑤p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。
知识点1.1 命题、联结词及命题符号化
第1 章命题逻辑第1 章命题逻辑授课内容知识点1:命题、联结词及命题符号化知识点2:命题公式、真值表及公式分类知识点3:等价式与等价演算知识点4:对偶式与蕴涵式知识点5:范式第1 章命题逻辑授课内容知识点6:主析取范式与主合取范式知识点7:命题演算的推理理论知识点8:有效结论证明方法知识点9:命题演算推理实例解析知识点1:命题、联结词及命题符号化一问题的引入命题逻辑是研究由命题为基本单位构成的前提和结论之间的可推导关系。
那么,什么是命题?如何表示和构成?如何进行推理的?例如:已知:如果今天星期三,那么公鸡会下蛋。
今天是星期三。
问题:根据以上前提你能推出什么结论?二命题、联结词及命题符号化1 命题的概念定义1.1.1:能够判断真假的陈述句称作命题。
命题仅有两种可能的真值:真和假,且二者只能居其一。
真用1或T表示,假用0或F表示。
由于命题只有两种真值,所以称这种逻辑为二值逻辑。
例1.1.1 判断下列语句哪些是命题①-1是整数。
②地球是围绕月亮转的。
③3+5=8。
④木星的表面温度是20 F。
⑤不要讲话!⑥你吃饭了吗?⑦本命题是假的。
(他正在说谎。
等)解①-④都是命题,①和③的真值为真,②真值是假,④不知真和假,但真值是可以确定的。
⑤⑥都不是命题。
⑦无法确定它的真值,当它假时,它便真;当它真时,它便假。
这种断言叫悖论。
2 命题的分类与表示•命题分为两类,第一类是原子命题,它是由再也不能分解成更为简单的语句构成的命题,称为原子命题。
用英文字母P,Q,R,…或带下标Pi,Qi,Ri,…表示之。
例如,用P表示武汉是一座美丽的城市,记为P:武汉是一座美丽的城市。
冒号:代表表示的意思•第二类是复合命题,它由原子命题、命题联结词和圆括号组成。
3 联结词1.3.1 否定联结词﹁P定义1.1.2设P表示一个命题,由命题联结词⎤和命题P连接成⎤P,称⎤P为P的否定式复合命题,⎤P读“非P”。
称⎤为否定联结词。
⎤P是真当且仅当P为假;否定联结词“⎤”的定义可由表1-1表示。
高考数学逻辑联结词与四种命题
;
;
于是,带她去看,说明病史后,老中医什么都没说,只是揭开自己的白大褂,她看见,他只有一条腿。 (17)他说,人活着,不是靠双腿,靠的是一颗完整的心,我只有一条腿,活得好好的,你还比我多半条腿呢,怕什么? (18)从那以后,她常常去老中医那里,不是看病,而是疗心。 (19)再后来,父母给她装了假肢,搬了家,学了钢琴,当了钢琴老师,成了现在的自己。 (20)说完,她淡淡地笑,而我,似乎看见另外一个不一样的她,在我眼前,诉说别人的故事。 (21)是啊,如果不是偶然看见,在我心里,在我眼里,她依旧是那个只会撒娇、娇弱漂亮的公主,而此 刻,我似乎看见,那些她曾经受过的伤害和遭遇,凝聚成一股钢铁般的力量,让她坚强。 (22)再后来,她睡了。 (23)我走在走廊的尽头,心绪难平。 (24)我看见天边有一颗星星,异常耀眼,它像天空的眼睛,注视着大地,带给深沉无助的黑夜,一方光亮,也给黑夜里迷路的人们, 一抹希望。 (25)慢慢地,我看见天边泛着鱼肚白,黎明来了。 (26)那一刻,内心的迷茫,似乎慢慢退却,一点点被一束光照亮,所有难以启齿的磨难和曾经以为的绝望,慢慢变成了希冀。 (27)是的,繁华尽头有悲凉,尘埃深处是繁花。 (2017年5月9日) 16.第10段“乔没有睡 ……而我,尴尬至极,不知道说什么好,竟呆呆地站在那里好几秒”一句中,“尴尬”一词有什么含义和作用?(3分) 17.第20段“说完,她淡淡地笑,而我,似乎看见另外一个不一样的她,在我眼前,诉说别人的故事”,这句话中的“淡淡地笑”对描写乔有什么作用?(3分) 18.联系全 文谈谈你对第24段加线句子的理解。(4分) 19.结合全文谈谈文章最后一个自然段有什么作用?(4分) 20.结合文章中心,联系自己生活实际,谈谈你的感悟。(80字以内)(4分) 代谢: 五、散文阅读 16.(3分) “尴尬”的本义是神情态度不自然。(1分)在这里是指我无意中发现了 乔的隐私(右膝盖之下是空的或者是发现了假肢),感觉自己对乔的自尊造成伤害后内心的不自然,(1分);表现了我对乔的歉意以及不知道该怎么办的心理。(1分) 17.(3分) “淡淡地笑”运用了神态描写(1分),写出了乔面对生活的困境和磨难的轻松平静心理(1分),同时表现了 乔的坚强性格、积极乐观的生活态度。(1分) 18. (4分) 运用比喻修辞(1分),把乔比作天边的一颗星星,她给像我一样身处困境中的人带来光亮、希望。(2分)表达了我对乔的感激、赞美之情。(1分) 19.(4分) 照应文章标题(1分);总结全文(1分);升华主题,鼓励人们在困境 中不要迷茫绝望,要以积极乐观的心态,努力战胜自我,相信风雨过后一定会有彩虹。(2分) 20.(4分) 感悟:结合文章中心,表达自己的观点(面对困境、挫折应有的态度)(2分);联系恰当的生活实际并简析(2分)。 本题为开放性试题,言之有理即可。 (2017浙江宁波)6. 蜕 变 蔡澔淇 她用胖嘟嘟的小手紧握着婴儿床的栏杆坐着,舌尖不住地舔着刚长出的两颗门牙,灵澈的眼珠子骨碌地转动,四处张望。初夏晌午的阳光穿过葡萄棚,在她身上洒满了点点金圈。一片葡萄叶摇曳着飘下,落在她的脚跟前。 她挪动一下圆滚滚的胖腿,好奇地望着那片落叶。一个黑点 在树叶边缘晃动,过了一会成了一条肥厚的黑线,滑过树叶表面,不声不息地直朝她游动。带毛的黑线爬上了她白嫩的脚踝,小腿肚,膝盖……她觉得一阵刺痒,那肥厚的黑线直往上爬,越来越近,毛茸茸的身躯越来越大。转眼间一团黑毛已附在她肩上,黑团中有两粒小眼直盯着她。“达达 ﹣﹣,达﹣﹣达﹣﹣”她惊慌地尖叫,小手死命地挥舞,重心一个不稳,躺卧下来。那黑团又开始移动,逐渐逼近,逐渐庞大…… ? “你还好吧?”交往快两年,未曾牵过手的他紧紧搂住她的双肩,焦急的望着她。 她虚弱地点点头,深吸了口气:“我从小就对毛虫敏感,见了毛虫不是作呕 就是昏倒。刚才昏过去多久了?” “大概一两分钟,把我吓坏了,”他将她扶正,轻声补上,“奇怪,这么晚了,怎么会有毛虫出现?” 她紧依着他,相偎坐着。见到毛虫引起的疙瘩已消尽了,代之的是满脸燥热。她瞥了他揽着她肩膀的手一眼,偷偷抱怨:这么晚出现,再半小时宿舍就要 关门了。 “妈咪﹣﹣妈咪﹣﹣”最断人肠的呼喊将她手中的蚂蚁上树炒出锅外。她慌忙跑过去,小女儿蜷缩在婴儿床的一角,满脸诧异的哭叫着。一条毛虫肆无忌惮地在婴儿床的栏杆上爬行,她一阵昏花,用了四十年的心脏几欲罢工。小女儿挣扎着想爬起来,令人心碎的哭泣成了啜搐。她咬 咬牙,解下围裙往栏杆用力一挥,毛茸肥圆的毛虫滚落于地。她抬起脚,闭起眼重重一踏,觉得脚下一阵瘫软。 ? “不要怕,”她强抑住胸腹的翻腾,轻抚着女儿泪水纵横的苍白面颊,“不要怕,毛虫并不可怕。” 她坐在摇椅内小憩,枯皱的手握着身旁婴儿床的栏杆。初夏晌午的阳光穿过 葡萄棚,在她身上洒满点点金圈。 “奶奶,”是小孙女清稚的童音,“那是什么?” ?她朝小孙女圆胖小手指的方向望过去,一条肥厚的黑线正由阳光下往阴影处滑动。日光下鲜明的黑线掀开了她人生的相簿,一组组幻灯片在眼前跳动。她深吸口气,咧开干瘪的嘴,露出仅剩两颗门牙朝小孙 女笑笑。 “那是蝴蝶的幼虫。”她说。 【注释】①蚂蚁上树:四川名菜 (选自《台湾极短篇小说集》) ? 故事?场景的组合 (1)阅读小说先关注故事。请根据故事内容,各用一个词填空。 小小的毛毛虫、伴随着“她”走过童年、青年、中年,直至老年; 小小的婴儿床,承载了“她”、 “女儿”、“孙女”的童年。 故事以毛毛虫为线索,始于初遇时的 ,历经再见时的恐惧,终于凝望时的。 ? 语言?意义的蕴含 (2)画线句中,“她”两次说“不要怕”,仅仅是在安慰女儿吗?清写出你的看法和理由。 ◆称呼?人物的标识 (3)小说中没有出现主人公的名字,都是用“她 ”来代替。请说说作者的意图。 ? 标题?主旨的暗示 (4)结合选文,谈谈你对小说标题“蜕变”的理解。 【考点】9E:小说阅读综合. 【分析】这篇小说以“毛毛虫”为线索,写了她人生的四个阶段,第一阶段(开头到“逐渐逼近,逐渐庞大”),写她童年时对毛毛虫的畏惧;第二阶段 (“你还好吧”到“再半小时宿舍就要 关门了”),写她青年时对毛毛虫的畏惧,以及男友对她的关爱;第三阶段(“妈咪﹣﹣妈咪”到“毛虫并不可怕”),写她中年时,看到女儿对毛毛虫的畏惧,勇敢上前扑打;第四阶段(“她坐在摇椅内小憩”到结尾),写她老年时,小孙女指着毛毛 虫问她那是什么,她淡定地说,那是蝴蝶的幼虫. 【解答】(1)本题考查内容的理解.这篇小说以“毛毛虫”为线索,写了她人生的四个阶段,但文中出现的她又不仅仅指她一人,文章写她成长的四个阶段中,那小小的婴儿床边哭叫的有“她”,有她的“女儿”,还有她的“孙女”. (2 )本题考查句子情感的理解. 这里写“她”两次说“不要怕”,是“她”的中年阶段,此时的“她”已为人母,看见自己的孩子受到惊吓,自然会去安慰.但结合前文对“她”的描述,可以知道“她”天生怕毛毛虫,特别是青年时,她见到毛毛虫“不是作呕就是昏倒”,所以这里的“不要怕 ”还应是对“她”自己的安慰,安慰自己不要怕,要保护好女儿. (3)本题考查写作人称在文中的作用分析.解答此题要读懂小说内容,结合小说的主旨分析作者的意图. 初读本文,一定会觉得内容很乱,情节无法连贯,但仔细一分析,发现“她”在文中分别指代她、她的女儿和孙女,作 者是想让情节看似连贯却又错乱,引起读者的深思,最终恍然大悟.这样更能突出全文的主旨,耐人寻味. (4)本题考查标题含义的理解.解答此题要结合内容与主旨分析标题的表义与深层含义. 从文中反复出现的黑色毛毛虫来年地,“蜕变”指黑色的毛毛虫蜕变成美丽的蝴蝶;从文中“ 她”的成长过程,又可以看出,暗指她经历岁月的风霜,由幼弱、胆小的少女变为沉稳、大胆的具有母性的女人. 代谢: (1)女儿 孙女 (2)不仅仅是在安慰女儿,也是在安慰自己.前文写了她在童年与青年时对毛毛虫的畏惧,特别是青年时,她见到毛毛虫“不是作呕就是昏倒”,现在 为人母了,看见女儿受到惊吓,出于母性,是安慰女儿不要怕,出于自己的本性,也是在安慰自己不要怕. (3)她在文中分别指代她、她的女儿和孙女,作者用同一人称代词指代不同的人,意在让情节看似连贯却又错乱,引起读者的深思,最终恍然大悟.这样更能突出全文的主旨,耐人寻 味. (4)“蜕变”表义指黑色的毛毛虫蜕变成美丽的蝴蝶,暗指她经历岁月的风霜,由幼弱、胆小的少女变为沉稳、大胆的具有母性的女人. (2017江苏扬州)12. 后生可畏 刘斌立 (1)我第一次去鉴睿律师楼,就注意到了前台旁边多了一张不怎么和谐的小桌子。一个大男孩模样的小伙 子,睡眼惺忪地在那捧着厚厚的《刑法》,有一页没一页的翻着。 (2)我问律师楼的合伙人李信,他一脸嬉笑地回答:“这孩子他爸是我们律师楼的大客户,也是老朋友了。他想让他儿子考律师,非得要我们把这孩子安排在这打杂,一边让他看书备考。其实我们啥事也 没给他安排,让他自 己在那天天待着呢。” (3)“哦,这孩子看着还挺老实的。”我随口应和道。 (4)“老实!您可别小瞧这小子,听他爸说,他一心要当摇滚乐手,跟着一个不靠谱的摇 滚乐队干了两年的鼓手。”老李边说边摇着头。 (5)后来我再去律师楼的时候,都会下意识地看看这个叫常远的“摇滚 ”男孩,他也是经常应景似得挺朋克,一会夹克上带钉,一会头发颜色又变了。 (6)那年律考后没几天,我去律师楼办事,发现常远那桌子没了,人也没了踪影。问道老 李,没想到老李苦笑着说:“那小子跑了,据说和一个摇滚乐队跑到青海茫崖矿区那边,在矿区的一个小镇上的酒吧里演 出呢。他爹差点没气背过去,已经发誓不管他了。” (7)我又惊讶又好笑,随着老李附和道“现在的年轻人啊”。 (8)一年以后一天,我突然接到鉴睿律师楼李信律师的微信。“还记得那个玩摇滚乐的男孩吗?他又回来了!这次主动来求我,要继续准备考律师,还在我这打杂看书。
5逻辑联结词与四种命题
4.表示形式:用小写的拉丁字母p、q、r、s…来表示 简单的命题, 复合命题的构成形式有三类:“p或q”、“p且q”、“非 5.p”真值表:表示命题真假的表叫真值表;
复合命题的真假可通过下面的真值表来加以判定。
p q 非p P或q P且q
真真 假
真
真
真假 假 真
假
假真 真
真
假
假假 真 假
假
(二)四种命题
(4)逆命题为真,否命题一定为真。
(三)几点说明
1.逻辑联结词“或”的理解是难点,“或”有三层 含义:
以“P或q”为例:一是p成立但q不成立,二是p不成立 但q成立,三是p成立且q成立, 2.对命题的否定只是否定命题的结论,而否命题既 否定题设又否定结论
3.真值表 P或q:“一真为真”, P且q:“一假为假”
;
地向前疾行。画面下方的文字说此人为病中的穷孩子募捐,正在旅途中。画中心有大字———跟穷人一起上路。 这位汉子一定走过了千山万水,不然不会有如此深邃的目光。他刚毅的表情背后掩饰着隐痛,用这条假肢走,每一步恐怕都要痛。那么———如图所示———他正徒步穿越新 疆的独山子、玛纳斯、一碗泉,甘肃的马莲井、黄羊镇、娘娘坎,然后经陕鄂湘粤到香港。他是香港人。一个忍痛的行者用假肢穿越过大西北的旷野,信念像火苗一样越烧越旺:让没钱的孩子治病。 照片用镀铝金属镶框,内置灯光照明,一幅连一幅延伸到前面。画面上的汉子像排队一 样,一个接一个向你迎面走来,昂着头,有些吃力地移脚。然后是一行比一行小的字———跟穷人一起上路。 香港街头,很少见到通常印象中的穷人,大家似乎衣食丰足。在这幅视觉冲击力强烈的招贴画中,“穷人”两字竟很尊贵,关注他们如同每个人的责任。 就是说,此刻我感动了, 血液从各处奔涌而出,冲撞全身。心里默念:跟穷人一起上路!跟穷人一起上路
离散数学第一章命题逻辑知识点总结
数理逻辑部分第1章命题逻辑命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。
简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作p. 符号称作否定联结词,并规定p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧u) ∨(t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可符号化为v∨w , 为什么4.蕴涵式与蕴涵联结词“”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p q,并称p是蕴涵式的前件,q为蕴涵式的后件. 称作蕴涵联结词,并规定,p q为假当且仅当p 为真q 为假.p q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p q. 称作等价联结词.并规定p q为真当且仅当p与q同时为真或同时为假.说明:(1) p q 的逻辑关系:p与q互为充分必要条件(2) p q为真当且仅当p与q同真或同假联结词优先级:( ),, , , ,同级按从左到右的顺序进行以上给出了5个联结词:, , , , ,组成一个联结词集合{, , , , },联结词的优先顺序为:, , , , ; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.命题常项命题变项命题公式及分类命题变项与合式公式命题常项:简单命题命题变项:真值不确定的陈述句定义合式公式 (命题公式, 公式) 递归定义如下:(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1是合式公式(2) 若A是合式公式,则 (A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B), (A B)也是合式公式(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=B, B是n层公式;(b) A=B C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B C, 其中B,C的层次及n同(b);(d) A=B C, 其中B,C的层次及n同(b);(e) A=B C, 其中B,C的层次及n同(b).例如公式p 0层p 1层p q 2层(p q)r 3层((p q) r)(r s) 4层公式的赋值定义给公式A中的命题变项p1, p2, … , p n指定一组真值称为对A的一个赋值或解释成真赋值: 使公式为真的赋值成假赋值: 使公式为假的赋值说明:赋值=12…n之间不加标点符号,i=0或1.A中仅出现p1, p2, …, p n,给A赋值12…n是指p1=1, p2=2, …, p n=nA中仅出现p,q, r, …, 给A赋值123…是指p=1,q=2 , r= 3 …含n个变项的公式有2n个赋值.真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q p) q p的真值表例 B = (p q) q的真值表例C= (p q) r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q p)q p,B =(p q)q,C= (p q)r等值演算等值式定义若等价式A B是重言式,则称A与B等值,记作A B,并称A B是等值式说明:定义中,A,B,均为元语言符号, A或B中可能有哑元出现.例如,在 (p q) ((p q) (r r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p(q r) (p q) rp(q r) (p q) r基本等值式双重否定律 : A A等幂律:A A A, A A A交换律: A B B A, A B B A结合律: (A B)C A(B C)(A B)C A(B C)分配律: A(B C)(A B)(A C)A(B C) (A B)(A C) 德·摩根律: (A B)A B(A B)A B吸收律: A(A B)A, A(A B)A零律: A11, A00同一律: A0A, A1A排中律: A A 1矛盾律: A A0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A B, 则(B)(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p(q r) (p q)r证p(q r)p(q r) (蕴涵等值式,置换规则)(p q)r(结合律,置换规则)(p q)r(德摩根律,置换规则)(p q) r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p(q r) (p q) r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q(p q)解q(p q)q(p q) (蕴涵等值式)q(p q) (德摩根律)p(q q) (交换律,结合律)p0 (矛盾律)0 (零律)由最后一步可知,该式为矛盾式.(2) (p q)(q p)解 (p q)(q p)(p q)(q p) (蕴涵等值式)(p q)(p q) (交换律)1由最后一步可知,该式为重言式.问:最后一步为什么等值于1(3) ((p q)(p q))r)解 ((p q)(p q))r)(p(q q))r(分配律)p1r(排中律)p r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A0A为重言式当且仅当A 1说明:演算步骤不惟一,应尽量使演算短些对偶与范式对偶式与对偶原理定义在仅含有联结词, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) A(p1,p2,…,p n) A* (p1, p2,…, p n)(2) A(p1, p2,…, p n) A* (p1,p2,…,p n)定理(对偶原理)设A,B为两个命题公式,若A B,则A* B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, q, p q, p q r, …简单合取式:有限个文字构成的合取式如p, q, p q, p q r, …析取范式:由有限个简单合取式组成的析取式A 1A2Ar, 其中A1,A2,,A r是简单合取式合取范式:由有限个简单析取式组成的合取式A 1A2Ar, 其中A1,A2,,A r是简单析取式范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p q r, p q r既是析取范式,又是合取范式(为什么)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的, (若存在)(2) 否定联结词的内移或消去(3) 使用分配律对分配(析取范式)对分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p q)r解 (p q)r(p q)r(消去)p q r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p q)r解 (p q)r(p q)r(消去第一个)(p q)r(消去第二个)(p q)r(否定号内移——德摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p q)r(p r)(q r) (对分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1i n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M i表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为极小项(极大项)的名称.m与M i的关系: m i M i , M i m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(p q r)(p q r) m1m3是主析取范式(p q r)(p q r) M1M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p q)r的主析取范式与主合取范式.(1) 求主析取范式(p q)r(p q)r , (析取范式)① (p q)(p q)(r r)(p q r)(p q r)m 6m7,r(p p)(q q)r(p q r)(p q r)(p q r)(p q r)m 1m3m5m7③②, ③代入①并排序,得(p q)r m1m3m5m6m7(主析取范式)(2) 求A的主合取范式(p q)r(p r)(q r) , (合取范式)①p rp(q q)r(p q r)(p q r)M 0M2,②q r(p p)q r(p q r)(p q r)M 0M4③②, ③代入①并排序,得(p q)r M0M2M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p q)r m1m3m5m6m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式A的主析取范式含2n个极小项A的主合取范式为1.A为矛盾式A的主析取范式为0A的主合取范式含2n个极大项A为非重言式的可满足式A的主析取范式中至少含一个且不含全部极小项A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p q)(2) (s u)(3) ((q r)(q r))(4) ((r s)(r s))(5) (u(p q))③ (1) ~ (5)构成的合取式为A=(p q)(s u)((q r)(q r))((r s)(r s))(u(p q))④ A (p q r s u)(p q r s u) 结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A (p q)((q r)(q r))(s u)(u(p q)) ((r s)(r s)) (交换律) B1= (p q)((q r)(q r))((p q r)(p q r)(q r)) (分配律)B2= (s u)(u(p q))((s u)(p q s)(p q u)) (分配律)B 1B2(p q r s u)(p q r s u) (q r s u)(p q r s)(p q r u)再令B3 = ((r s)(r s))得A B1B2B3(p q r s u)(p q r s u) 注意:在以上演算中多次用矛盾律要求:自己演算一遍推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p r, r s结论:s q证明① s附加前提引入②p r前提引入③r s前提引入④p s②③假言三段论⑤p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。
命题的知识点总结
命题的知识点总结命题是逻辑学中的一个重要概念,也是数学、哲学等学科中的重要内容之一。
了解命题的知识点对于理解逻辑思维和解决问题具有重要意义。
下面将总结命题的相关知识点,希望对广大读者有所帮助。
1. 命题的定义命题是陈述句,它要么为真,要么为假。
可以通过简单句子或复合句子来描述一个命题。
例如,“今天是星期一”、“2加2等于4”都是命题。
而“请把门关上”、“明天下雨”则不是命题,因为它们既不为真也不为假。
2. 命题的种类命题有简单命题和复合命题之分。
简单命题是不能再分解为更小的命题的命题,而复合命题是由两个或多个简单命题通过逻辑联结词构成的命题,例如“如果今天下雨,我就留在家里”就是一个复合命题。
3. 命题的逻辑联结词逻辑联结词是用来连接命题的词语,包括合取(与)、析取(或)、蕴涵(如果……就……)和等价(当且仅当)等。
这些逻辑联结词能够体现命题之间的逻辑关系,是理解命题逻辑结构的关键。
4. 命题的真值表真值表是用来表示命题的真假情况的表格,其中列出了所有可能的真值组合和对应的命题值。
通过真值表可以清晰地了解命题之间逻辑关系。
例如,“p与q”、“p或q”、“如果p,则q”等命题都可以通过真值表来分析。
5. 命题的充分条件和必要条件充分条件指的是当某命题为真时,另一命题也为真;必要条件指的是当另一命题为真时,某命题也一定为真。
这两个概念是理解命题蕴涵关系的基础。
6. 命题的等价关系如果两个命题所表示的意思完全相同,那么它们是等价的。
等价关系是逻辑推理中的重要内容,能够帮助我们简化逻辑问题的推导。
7. 命题的逻辑运算逻辑运算是指对命题进行逻辑操作,包括否定、合取、析取、蕴涵、等价等。
了解命题的逻辑运算规则对于进行逻辑推理和解决问题有着重要的意义。
8. 命题的推理通过对命题的逻辑运算,可以进行推理过程。
推理是通过某些已知的命题推导出新的命题,是解决问题的基本思维方法之一。
以上就是命题的一些基本知识点总结。
命题量词与逻辑联结词
(2)p或q:方程x +x-1=0的两实根符号相同或绝对值相等.假命 题. 2 p且q:方程x +x-1=0的两实根符号相同且绝对值相等.假命题. ������ p:方程x +x-1=0的两实根符号不相同.真命题. 【点评】由两个简单命题构成复合命题时,要注意语言文字 的简化与综合.判断复合命题的真假时,要记准判断法则.
2
2
变式训练1 (1)命题p:所有有理数都是实数,命题q:正数的对 数都是负数,则下列命题中为真命题的是 ( (A)(������ p)或q. (C)(������ p)且(������ q). (B)p且q. (D)(������ p)或(������ q).
2
)
(2)已知命题p:存在x∈R,使tan x=1;命题q:x -3x+2<0的解集是
垂直,即不垂直平面内所有直线,即不垂直平面,④正确.
【答案】D
3.命题“有些负数满足不等式(1+x)(1-9x )>0”的否定是 . 【答案】任意负数满足不等式(1+x)(1-9x )≤0
2
2
题型1 对“或”“且”“非”的理解
例1 写出下列各组命题构成的“p或q”“p且q”
“������ p”形式的复合命题,并判断这些复合命题的真假. (1)p:平行四边形的对角线相等;q:平行四边形的对角线互相
个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个平面相互
垂直;
③垂直于同一直线的两条直线相互平行; ④若两个平面垂直,那么一个平面内与它们的交线不垂直的
直线与另一个平面也不垂直.
其中为真命题的是 ( (A)①和②. (C)③和④. )
(B)②和③. (D)②和④.
1.3命题与简单逻辑联结词
第二讲简单逻辑联结词、全称量词与存在量词基本知识:一、命题及其关系⏹命题的概念:用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.⏹四种命题的相互关系,如右图所示.(1)四种命题间的相互关系:(2)四种命题的真假关系:①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.二、充分条件与必要条件⏹“若p则q”是真命题,即p q⇒;⇒/.“若p则q”是假命题,则p q⏹在判断命题真假的问题中,一方面可以直接写出命题进行判断,也可以通过命题的等价性进行判断,即原命题与逆否命题等价,否命题与逆命题等价.否命题与命题的否定不同。
重点:充分条件与必要条件的判别步骤一:理清题干中的条件和结论如:A是B成立的××条件;其中A是条件,B是结论A成立的××条件是B;其中B是条件,A是结论步骤二:是的充要条件(1)充分性:把p当作已知条件,结合命题的前提条件,推出q;(2)必要性:把q当作已知条件,结合命题的前提条件,推出p.学前练习:1.已知a ,b ,c ∈R ,命题“若a b c ++=3,则222a b c ++≥3”的否命题是 (A )若a+b+c ≠3,则222a b c ++<3 (B )若a+b+c=3,则222a b c ++<3 (C )若a+b+c ≠3,则222a b c ++≥3 (D )若222a b c ++≥3,则a+b+c=3 2命题P :a ∈A ,则b ∈B ,那么命题┐P 是( )A 若 a ∈A 则b ∉B B 若a ∉A 则b ∉ BC 若 a ∉A 则b ∈BD 若b ∉ B 则a ∈A3设{1,2}M =,2{}N a =,则“1a =”是“N M ⊆”则( )A 充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件4. 已知集合A ={x ∈R|12<2x <8},B ={x ∈R|-1<x <m +1},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是 (C )A .m ≥2 B.m ≤2 C .m >2 D.-2<m <25.若命题甲是命题乙的充分非必要条件,命题丙是命题乙的必要非充分条件,命题丁是命题丙的充要条件,则命题丁是命题甲的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件例题讲解3、逻辑联结词与量词一.简单的逻辑联结词(1)用联结词“且”联结命题p 和命题q ,记作p ∧q ,读作“p 且q ”. (2)用联结词“或”联结命题p 和命题q ,记作p ∨q ,读作“p 或q ”. (3)对一个命题p 全盘否定记作綈p ,读作“非p ”或“p 的否定”. (4)命题p ∧q ,p ∨q ,綈p 的真假判断p ∧q 中p 、q 有一假为假,p ∨q 有一真为真,p 与非p 必定是一真一假.二、全称量词与存在量词:命题中的“对所有”、“任意一个”等短语叫做全称量词,用符号“∀”表示,“存在”、“至少有一个”等短语叫做存在量词,用符号“∃”表示.含有全称量词的命题叫做全称命题,全称命题:“对M 中任意一个x ,有()p x 成立”可用符号简记为,()x M p x ∀∈.含有存在量词的命题叫做特称命题,特称命题:“存在M 中任意一个x ,使()p x 成立”可用符号简记为,()x M p x ∃∈.练习: 1已知命题P :n ∈N ,2 A ∀n ∈N ,2n ≤1000 B .∀n ∈N ,2n >1000C .∃n ∈N ,2n ≤1000D .∃n ∈N ,2n <10002下列特称命题中,假命题是 ( )A .∃x ∈R ,x 2-2x -3=0 B.至少有一个x ∈Z ,x 能被2和3整除 C.存在两个相交平面垂直于同一直线 D.∃x ∈{x |x 是无理数},使x 2是有理数例题讲解例1.命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0,命题q :实数x 满足x 2-x -6≤0或x 2+2x -8>0,且P ⌝是q ⌝的必要不充分条件,求a 的取值范围.例2.设P :关于x 的不等式1xa >的解集是{}0x x <,Q :函数()2lg y ax x a =-+的定义域为R,若“P或Q”为真,“P且Q”为假,求a的取值范围.。
5逻辑联结词与四种命题
可当他快到终点时,才发现机会全错过了。 第三个弟子吸取了前边两个弟子的教训。当走过全程三分之一时,即分出大中小三类;再走三分之一时,验是否正确;等到最后三分之一时,他选择了属于大类中的一个美丽的穗。虽说,这穗不是田里最好最大的一个,但对他来说,已经 是心满意足了。 137、科学史上因语文而失误例谈 ①美国化学家路易斯于1916年在一篇中提出了共价键理论,但在本世纪20年代曾一度被称为朗缪尔理论。原因是路易斯虽很聪明,但性格内向,不善言谈,他提出功价键理论后,并未引起多大反响。致使这一理论濒临泯灭的困 境。幸亏三年后,一位思想敏锐的化学家朗缪尔看出了共价键理论的重大意义,于是,一方面凭借生动活泼流畅的文笔在有影响的《美国化学学会志》等刊物发表系列,一方面又以滔滔不绝的口才在国内大型学术会议上多次发表演说,终于使这一理论走出了困境,得到普遍承认。 ②现在举世公认,美国科学家维纳是信息论的创始人,因为他在上世纪50年代对信息论做了系统阐述,并建立了维纳滤波理论和信号预测论。可早在30年代就提出信息论的竟是中国数学家申农。最先提出信息论的却没有成为创始者,其原因固然很复杂,但有一点可以肯定,申农未能充分 利用语文工具对信息论进行系统阐述和广泛宣传,该是原因之一。 ③著名物理学家法拉第,早在1873年就已经发现了电磁感应现象,但由于他在论述这一现象时,用语晦涩,致使这项重大的科学发现在长达26年的确时间里被束之高阁。后来幸亏了酷爱诗歌的物理学家麦克斯韦以他 特有的形象思维和精练的语言,把它描述出来,才使这一重大科学发现公之于众。 138、老报纸的价值 旧报纸,若是卖给收废品的,一斤大约三四毛钱。 但吴江路就有一家老报纸馆专营《人民日报》、《光明日报》、《解放军报》和《文汇报》等老报纸,上世纪60年代的 普通报纸,每张要卖218元,就是上世纪80年代的普通报纸,每张也要卖128元。那些按理说没有收藏价值的普通旧报纸居然还卖得挺火。 原来,商家打出的宣传是这样的:为自己或者是亲人卖一份生日老报纸吧!颜色已发黄的老报纸配以充满怀旧情调的包装,就有一些历史韵味。 顾客主要是二三岁的市民,他们或者购买自己出生那一天的报纸,看看自己出生那天世界发生了哪些事,或者卖来赠送给长辈,以引起长辈对青春的记忆。 这老板叫刘德保,素有收集老报纸的兴趣。他将老报纸的卖点定位于生日礼物上,可谓别出心裁,既雅致,又有韵味;既可以 满足青年人对出生那个年代的好奇,又会唤起中老年人对逝去岁月的缅怀。三四毛钱一斤的旧报纸得以卖出每张一二百元的高价,价钱翻了千倍以上,可谓极高附加值了! 139、最大的不幸 一个人在他23岁时为人陷害,在牢房里呆了9年,后来冤案告破,他终于走出了监狱。出 狱后,他开始了常年如一日的反复控诉、咒骂:“我真不幸,在最年轻有为的时候竟遭受冤屈,在监狱度过本应最美好的一段时光。那样的监狱简直不是人居住的地方,狭窄得连转身都困难。唯一的细小窗口里几乎看不到星点灿烂的阳光,冬天寒冷难忍;夏天蚊虫叮咬……真不明白,上 帝为什么不惩罚那个陷害我的家伙,即使将千刀万剐,也难以解我心头之恨啊!” 73岁那年,在贫病交加中,他终于卧床不起。弥留之际,牧师来到他的床边:“可怜的孩子,去天堂之前,忏悔你在人世间的一切罪恶吧……”牧师的话音刚落,病床上的他声嘶力竭地叫喊起来: “我没有什么需要忏悔,我需要的是诅咒,诅咒那些施予我不幸命运的人……” 牧师问:“您因受冤屈在监狱呆了多少年?离开监狱后又生活了多少年?”他恶狠狠地将数字告诉了牧师。 牧师长叹了一口气:“可怜的人,您真是世上最不幸的人,对您的不幸,我真的感到万分 同情和悲痛!但他人囚禁了你区区9年,而当你走出监牢本应获取永久自由的时候,您却用心底里的仇恨、抱怨、诅咒囚禁了自己整整41年!” 140、索尼:不迷信专家 近几年,日本索尼公司在招聘大学生时,对学校名称采取“不准问,不准说,不准写”的“三不”方针。公司认为, 在激烈竞争和多变时代,企业需要各种人才,只有将各种不同的人聚集在一起,才能更好地发挥创造性,开发出新产品。只在少数名牌大学中招聘人才,会使企业失去活力。索尼公司的创始人之一的井深大说:“我从不迷信专家,专家倾向于争辩你为什么不做或不能做某种事情,而我们 经常强调的是从无到有去实干。”因此,索尼喜欢思想敏锐、不墨守成规、勇于探索创新的人,他们鼓励科技人才“跳槽”,可以在公司任何部门寻找新的职位,“毛遂自荐”参与项目的开发研究。公司认为,这种人思想开放,思维活跃,兴趣广泛,具有创造意识和创新精神,是实干家 而不是空谈家,有培养和发展前途,应加以重用。 141、神奇的皮鞋 多明尼奎?博登纳夫,是法国一位年轻企业家、艺术家。他所经营的公司历来就是发展美术业,但始终都是没有看到兴旺的一天。 一天,他在徒步回家的路上,突然,感到脚下有什么绊了一下,低头一看,原 来是一只破旧皮鞋,他刚想抬起脚将它踢开,却又发现这只鞋有几分像一张皱纹满布的人脸。一个艺术的灵感刹那间在他脑海里闪现,他如获至宝,于是赶忙将破旧皮鞋拾起,迫不及待地跑回家,将其改头换面,变成了一件有鼻有眼有表情的人像艺术品。 以后,博登纳夫又陆续捡 回一些残旧破皮鞋,经过他那丰富的想象力和神奇的艺术之手再加工,一双双被遗忘的“废物”先后变成奇妙谐趣的皮鞋脸谱艺术品。后来,博登纳夫在巴黎开设了皮鞋人像艺术馆,引起了轰动,生意异常兴隆。 看来,在现实生活中,在许多人不屑一顾的小小事情里,往往都隐藏 着成功的契机。当然,要获成功,得靠用心发掘。博登纳夫的这一成功,无疑就在于他比别人多了一个“艺术”心眼。 142、我们到底有多美 世界著名法学家德沃金先生到中国一游,并在几所著名法学院巡回讲演。在一次讲演后,与学生们青春激扬的问答恰恰相反,有一个蠢 货突然发问:“你对我们这所大学如何看?”他到这个学校,准确地说,到这个梯形教室,只有几十分钟,始则略有诧异,继则笑笑,充满理解地笑笑,说:“这是个极好的大学!”——他还能说什么呢?! 这是时下的一种通病。有些人见到洋人,尤其是见到欧美来的西洋人,便 非要拉住人家的手问长问短,非要请教别人自己美不美,非要请教别人我们这里是不是好山好水好地方。真的不懂,我们的学子从幼儿园起就接受爱国主义教育,居然仍旧如此不自信。 但凡有人以中国特色为名,拒绝外国的时候,被拒绝的大多是比较先进的,也是比较合理的。相 反,学习外国坏东西的时候,我们大多不谈中国特色。鼓励汽车消费时也不谈中国特色。养狗成风时也不谈中国特色。近年来中国兴起了养狗热潮,说是西洋人也喜欢养狗,因为狗是人类的朋友。但西洋人有导盲犬,我们有吗?没有。反正街上是见不到一条导盲犬。 143、以德报怨 没有社会效用 过去我们一直以为“以德报怨”是最高的道德境界,可是关于德怨相报的经济学分析却表明,以德报怨的社会效用为0分,一个小偷被抓到了,报之以德,会给他一个错误的暗示,结果鼓励他错上加错。如有人问孔子:“以德报怨,会怎么样呢?”孔子答:“怎么会用 德去报怨呢?!应当以直报怨。报德的对象只能是德而不是怨。”孔子对如何抱怨的方案是“直”,它可以理解为,一是要用正直的方式对待破坏规则的人,二是要直率地告诉对方,你什么地方做错了事。经济学家认为,以直报怨的社会效用是1分,以直报怨的人,既不想迎合你(报 德);也不想报复你(报怨);而是让你知道错在哪里,犯了什么规。在道德的范畴内,这种方式也是满不错的。 最糟糕的是以怨报怨,怨怨相报,只能两败俱伤,所以经济学分析给它打了-2分。 144、钱学森的“大成智慧学” 《日报?理论周刊》4月12日刊登中国人民大 学教授钱学敏的文章,介绍了钱学森的“大成智慧学”。 钱老曾说:“人的智慧是两大部分:量智和性智。缺一不成智慧!此为‘大成智慧学’。”什么是“量智”和“性智”呢?钱老认为,现代科学技术体系中的数学科学、自然科学、系统科学、军事科学、社会科学、思维科学、 人体科学、地理科学、行为科学、建筑科学等10大科学技术部门的知识是性智、量智的结合,主要表现为“量智”;而文艺创作、文艺理论、美学以及各种文艺实践活动,也是性智与量智的结合,但主要表现为“性智”。“性智”、“量智”是相通的。 钱老说:“‘量智’主要是 科学技术,是说科学技术总是从局部到整体,从研究量变到质变,‘量’非常重要。当然科学技术也重视由量变所引起的质变,所以科学技术也有‘性智’,也很重要。大科学家就尤其要有‘性智’。‘性智’是从整体感受入手去理解事物,是从‘质’入手去认识世界。中医理论就如此, 从‘望、闻、问、切’到‘辨施治’,但最后也有‘量’,用药都定量的嘛。” 关于“量智”与“性智”、逻辑思维与形象思维不可分离及其在科学与艺术创作过程中的作用,钱老分析:“从思维科学角度看,科学工作总是从一个猜想开始的,然后才是科学论;换言之,科学工作 是源于形象思维,终于逻辑思维。形象思维是源于艺术,所以科学工作是先艺术,后才是科学。相反,艺术工作必须对事物有个科学的认识,然后才是艺术创作。在过去,人们总是只看到后一半,所以把科学和艺术分了家,而其实是分不了家的;科学需要艺术,艺术也需要科学。” 145、平常心 三伏天,禅院的草地枯黄了一大片。“快撒些草籽吧,好难看啊!”小和尚说。“等天凉了。”师父挥挥手,“随时。” 中秋,师父买了一大包草籽,叫小和尚去播种。秋风突起,草籽飘舞。“不好,许多草籽被吹飞了。”小和尚喊。“没关系,吹走的多半是空 的,撒下去也不会发芽。”师父说,“随性。” 撒完草籽,几只小鸟即来啄食。“要命了!草籽都被鸟吃了!”小和尚急得跳脚。“没关系,草籽多,吃不完!”师父继续翻着经书,“随遇。” 半夜一场骤雨。一大早,小和尚冲进禅房:“师父!这下完了,好多草籽被雨水冲 走了!”“冲到哪儿,就在哪儿发芽!”
高一数学逻辑联结词与四种命题知识精讲
高一数学逻辑联结词与四种命题通用版【本讲主要内容】逻辑联结词与四种命题含有“或”、“且”、“非”复合命题的概念及其构成形式;四种命题的关系,充分、必要条件。
【知识掌握】【知识点精析】1、命题:可以判断真假的语句叫做命题。
2、逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词。
3、简单命题和复合命题:不含逻辑联结词的命题叫做简单命题。
简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题。
由简单命题和逻辑联结词构成的命题叫做复合命题。
4、真值表:非或且真真假真真真假真假假真真真假假假假假为了正确判断复合命题的真假,首先应该确定复合命题的形式,然后指出其中简单命题的真假,再根据真值表判断这个复合命题的真假。
5、四种命题的形式:如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题。
一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题。
把其中一个命题叫做原命题,另一个命题叫做原命题的否命题。
一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题。
把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题。
原命题:若则;逆命题:若则;否命题:若则;逆否命题:若则。
一个命题的真假与其他三个命题的真假有如下关系:①原命题为真,它的逆命题不一定为真;②原命题为真,它的否命题不一定为真;③原命题为真,它的逆否命题一定为真;④原命题的逆命题为真,原命题的否命题一定为真。
6、一般地,如果已知,那么我们就说是成立的充分条件;q是p成立的必要条件;如果既有,又有q p 那么我们就说是成立的充分必要条件。
【解题方法指导】例1. “已知、、、是实数,若,,则。
”写出上述命题的逆命题、否命题、逆否命题,并分别判断它们的真假。
点拨:“已知,,,是实数”是大前提,写四种命题时应该保留。
[选修2-1]·[2命题与基本逻辑连接词] · [基础] · [知识点+典型例题]·[教师版]
命题与基本逻辑连接词知识讲解一、命题及其关系1.命题的定义定义:我们把用语言、符号或式子表达的,可以判断真假的语句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫假命题.注意:并不是任何语句都是命题,只有能判断真假的语句才是命题.一般来说,疑问句,祈使句,感叹句都不是命题,但是反义疑问句是命题.如:a.“这是一棵大树”;b.“2x<”;c.“三角函数是周期函数吗?”,“但愿每一个三次方程都有三个根”,“指数函数的图像真漂亮!”d.125>“”,“6=2”,“π”是无理数;e.“每一个不小于6的偶数都是两个奇素数之和”(歌德巴赫猜想);“在2010年前,将有人登上火星”2.命题的结构结构:数学中,具有“若p,则q”这种形式的命题是常见的,我们把这种命题中的p称为命题的条件,q称为命题的结论.3.命题的四种形式形式:一般地,用p和q分别表示原命题的条件和结论,用p⌝和q⌝来表示p和q的否定,⌝,于是四种命题的形式就是:原命题:若p,则q;逆命题:若q,则p;否命题:如果p⌝.则q⌝;逆否命题:如果q⌝,则p注意:关于逆命题、否命题与逆否命题,也可以如下表述:(1)交换原命题的条件和结论,所得的命题是逆命题.如:同位角相等,两直线平行.它的逆命题就是:两条直线平行,同位角相等.(2) 同时否定原命题的条件和结论,所得的命题是否命题如上例的否命题是:同位角不相等,两直线补平行.(3) 交换原命题的条件个结论,并同时否定,所得的命题是逆否命题.如上例:两条直线不平行,同位角不相等.4.四种命题的相互关系(1).四种命题以及它们之间的关系1).原命题为真,它的逆命题不一定为真;如:原命题“若0a=,则0ab=”是真命题,它的逆命题“若0a=”是假命题.ab=,则02) .原命题为真,它的否命题不一定为真;如:原命题“若0a=,则0ab=”是真命题,它的否命题“若0ab≠”是假命题.a≠,则03) .原命题为真,它的逆否命题一定为真;如:原命题“若0a=,则0ab=”是真命题,它的否命题“若0ab≠,则0a≠”是假命题.4) .互为逆否的命题是等价命题,它们同真同假,综上所述:在一个命题的四种命题中,真命题的个数要么是0个,要么是2个,要么是4个.四种情况:(2)四种命题它们之间的等价关系关系:互为逆否命题是互为等价命题(即真假相同),而其它的命题不是互为等价命题(即真假不一定相等).这一等价性,可以从集合的角度来解释:设{}=,即使命题p为A x p x()真的对象所组成的集合,{}B=()x q x ,因此由p q ⇒可知A B ⊆, U U C A C B ∴⊆,即p q ⌝⌝⇒,反过来,若p q ⌝⌝⇒,即U U C A C B ⊆,∴A B ⊆,即p q ⇒5.命题的否定与否命题的区别(1) 若命题为“若p ,则q ”,则其命题的否定:“若p ,则q ⌝”,而其否命题是:“若p ⌝,则q ⌝”.(2) 常见的一些词语和它的否定词语对照表二、基本逻辑连接词1. “且”“或”“非”的概念(1) 且定义:一般地,用逻辑联结词“且”把命题p 和q 联结起来,就得到一个新命题,记作p q ∧,读作“p 且q ”.逻辑联结词“且”与日常语言中的“并且”、“及”、“和”相当.可以用“且”定义集合的交集:{|()()}A B x x A x B =∈∧∈. 判断命题p q ∧的真假:当p q 、都为真命题,p q ∧就为真命题;当p q 、两个命题中只要有一个命题为假命题,p q ∧ 就为假命题. (2) 或定义:一般地,用逻辑联结词“或”把命题p 或q 联结起来,就得到一个新命题,记作p q ∨,读作“p 或q ”.逻辑联结词“或”的意义和日常语言中的“或者”相当.可以用“或”定义集合的并集:{|()()}A B x x A x B =∈∨∈. 判断命题p q ∨的真假:当p q 、两个命题中,只要有一个命题为真命题时,p q ∨为真命题;当p q 、两个命题都为假命题,p q ∨为假命题 (3) 非定义:一般地,对命题p 加以否定,得到一个新的命题,记作p ⌝,读作“非p ”或“p 的否定”.逻辑联结词“非”(也称为“否定”)的意义是由日常语言中的“不是”“全盘否定”“问题的反面”等抽象而来.有()p p ⌝⌝=成立.可以用“非”来定义集合A 在全集U 中的补集:{|()}{|}U A x U x A x U x A =∈⌝∈=∈∉ð.判断p ⌝命题的真假: p ⌝和p 不能同真同假,其中一个为真,另一个必定为假.2.复合问题的真值表:三、量词1、全称量词定义:短语“对所有的”“任意一个”在逻辑中通常叫做全称量词,用符号“∀”表示,含有全称量词的命题,叫做全称命题.全称命题的否定:全称命题 q :x A ∀∈,()q x ;它的否定是 q ⌝:x A ∃∈,()q x ⌝.将全称量词变为存在量词,再否定它的性质.2、存在量词定义:短语“存在一个”“至少有一个”在逻辑中通常用叫做参在量词,用符号“∃”表示,含有存在量词的命题,叫做特称命题.存在性命题的否定:存在性命题 p :x A ∃∈,()p x ;它的否定是 p ⌝:x A ∀∈,()p x ⌝. 将存在量词变为全称量词,再否定它的性质.3、全称命题与存在性命题不同的表达方法典型例题一.选择题(共9小题)1.(2018•马鞍山三模)命题p:若a>b,则a﹣1>b﹣1,则命题p的否命题为()A.若a>b,则a﹣1≤b﹣1 B.若a≥b,则a﹣1<b﹣1C.若a≤b,则a﹣1≤b﹣1 D.若a<b,则a﹣1<b﹣1【解答】解:根据否命题的定义:若原命题为:若p,则q.否命题为:若┐p,则┐q.∵原命题为“若a>b,则a﹣1>b﹣1”∴否命题为:若a≤b,则a﹣1≤b﹣1故选:C.2.(2018•郑州二模)命题“∀x∈[1,2],x2﹣3x+2≤0”的否定是()A.∀x∈[1,2],x2﹣3x+2>0 B.∀x∉[1,2],x2﹣3x+2>0C.,,> D.,,>【解答】解:命题:“∀x∈[1,2],x2﹣3x+2≤0的否定是,,>,故选:C.3.(2018•河西区一模)命题p:“∀x∈R,x2+2x+1>0”的否定是()A.∀x∈R,x2+2x+1≤0 B.x0∈R,使得x02+2x0+1≤0C.x0∈R,使得x02+2x0+1>0 D.x0∈R,使得x02+2x0+1<0【解答】解:由全称命题的否定为特称命题,可得命题p:“∀x∈R,x2+2x+1>0”的否定是“x0∈R,使得x02+2x0+1≤0”,故选:B.4.(2018•成都模拟)设有下面四个命题P1:若z满足z∈C,则z∈R;P2:若虚数a+bi(a∈R,b∈R)是方程x3+x2+x+1=0的根,则a﹣bi也是方程的根:P3:已知复数z1,z2则z1=的充要条件是z1z2∈R:P4;若复数z1>z2,则z1,z2∈R.其中真命题的个数为()A.1 B.2 C.3 D.4【解答】解:P1:若z满足z∈C,设z=a+bi,a,b∈R,则z=(a+bi)(a﹣bi)=a2﹣(bi)2=a2+b2∈R;故命题为真命题,P2:由x3+x2+x+1=0得x2(x+1)+x+1=(1+x2)(x+1)=0,则x=﹣1或x=±i,若虚数a+bi(a∈R,b∈R)是方程x3+x2+x+1=0的根,则a﹣bi也是方程的根正确:P3:已知复数z1,z2,则设z1==a+bi,a,b∈R,则z2=a﹣bi,a,b∈R,则z1z2=(a+bi)(a﹣bi)=a2﹣(bi)2=a2+b2∈R成立,即充分性成立,设z1=2i,z2=i,满足:z1z2=2i•i=﹣2∈R,但z1=不成立,即必要性不成立,故此命题为假命题.P4;若复数z1>z2,则z1,z2∈R.正确.其中真命题的个数为3个,故选:C.5.(2017春•邹平县校级期中)已知命题p:x∈A∪B,则非p是()A.x不属于A∩B B.x不属于A或x不属于BC.x不属于A且x不属于B D.x∈A∩B【解答】解:由x∈A∪B知x∈A或x∈B.非p是:x不属于A且x不属于B.故选:C.6.(2017春•历城区校级期中)命题“方程x2﹣4=0的解是x=±2”中,使用的逻辑联结词的情况是()A.没有使用联结词 B.使用了逻辑联结词“或”C.使用了逻辑联结词“且”D.使用了逻辑联结词“非”【解答】解:x=±2是指x=2或x=﹣2.∴使用了使用了逻辑联结词“或”,故选:B.7.(2012秋•临夏市校级期末)命题:“方程X2﹣2=0的解是X=”中使用逻辑联系词的情况是()A.没有使用逻辑连接词B.使用了逻辑连接词“且”C.使用了逻辑连接词“或”D.使用了逻辑连接词“非”【解答】解:命题:“方程X2﹣2=0的解是X=”可以化为:“方程X2﹣2=0的解是X=,或X=﹣”故命题:“方程X2﹣2=0的解是X=”中使用逻辑联系词为:或故选:C.8.(2010秋•景洪市校级期末)命题“方程x2=1的解是x=±1”中,使用逻辑词的情况是()A.没有使用逻辑联结词B.使用了逻辑联结词“或”C.使用了逻辑联结词“且”D.使用了逻辑联结词“或”与“且”【解答】解:命题的等价条件是方程x2=1的解是x=1或x=﹣1,使用了逻辑连接词“或”,故选:B.9.(2018•商丘三模)直三棱柱ABC﹣A1B1C1的直观图及三视图如图所示,D为AC的中点,则下列命题是假命题的是()A.AB1∥平面BDC1B.A1C⊥平面BDC1C.直三棱柱的体积V=4D.直三棱柱的外接球的表面积为4π【解答】解:取A1C1中点O,连接OB1,AO,∵D为AC的中点,∴四边形DAOC1为平行四边形,∴AO∥C1D,又四边形BDOB1为平行四边形,∴BD∥OB1,∴平面AOB1∥平面BDC1,AB1⊂平面AOB1,∴AB1∥平面BDC1.∵由三视图知A1B1⊥平面BCC1B1,BC1⊂平面BCC1B1,∴A1B1⊥BC1,CB1⊥BC1∴BC1⊥平面A1B1C,∴BC1⊥A1C;∵由侧视图知△ABC为等腰直角三角形,D为AC的中点,∴BD⊥AC,∴BD⊥平面ACC1A1,∴A1C⊥BD,又BD∩BC1=B,∴A1C⊥平面BDC1.故B正确;由三视图知:直三棱柱的高为2,底面是直角边长为2的等边三角形,∴体积V=×2×2×2=4,∴C正确;由直三棱柱的结构特征知,直三棱柱为正方体的一半,∴外接球的半径R==,∴外接球的表面积S=4π×3=12π,∴D错误;故选:D.二.填空题(共5小题)10.(2017春•启东市期末)命题:∀x∈A,均有x∈B的否定是x∈A,则x ∉B.【解答】解:全称命题的否定是特称命题,对于集合A,B,命题:“∀x∈A,则x∈B”的否定形式为:命题:“x∈A,则x ∉B”.故答案为:x∈A,则x∉B.11.(2017•南京一模)已知命题p:x∈R,x2+2x+a≤0是真命题,则实数a的取值范围是(﹣∞,1] .【解答】解:若命题p:x∈R,x2+2x+a≤0是真命题,则判别式△=4﹣4a≥0,即a≤1,故答案为:(﹣∞,1].12.(2016春•泰兴市校级期中)“∀x∈[1,2],x2﹣a≤0”为真命题,则a的取值范围是a≥4.【解答】解:“∀x∈[1,2],x2﹣a≤0”为真命题,故a≥(x2)max=4在x∈[1,2]恒成立,则a的取值范围是a≥4,故答案为;a≥4.13.(2015•宿豫区校级模拟)若命题“x∈R,有x2﹣mx﹣m≤0”是假命题,则实数m的取值范围是(﹣4,0).【解答】解:命题“x∈R,有x2﹣mx﹣m≤0”是假命题,它的否定命题是“∀x∈R,有x2﹣mx﹣m>0”,是真命题,即m2+4m<0;解得﹣4<m<0,∴m的取值范围是(﹣4,0).故答案为:(﹣4,0).14.(2013•江阴市校级模拟)命题“∀x∈R,有x2+1≥x”的否定是x∈R,使x2+1<x.【解答】解:∵原命题“∀x∈R,有x2+1≥x”∴命题“∀x∈R,有x2+1≥x”的否定是:x∈R,使x2+1<x.故答案为:x∈R,使x2+1<x.三.解答题(共3小题)15.(2017秋•林芝县校级期末)写出下列命题的否定.(1)命题“存在一个三角形,内角和不等于180°”(2)命题“∀x∈R,|x|+x2≥0”【解答】(本小题(10分),每小题5分)解:(1)特称命题的否定是全称命题,所以,命题“存在一个三角形,内角和不等于180°”的否定是所有三角形,内角和都等于180°.(2)全称命题的否定是特称命题,所以,命题“∀x∈R,|x|+x2≥0”的否定是:x∈R,|x|+x2<0.16.(2017秋•湖北期中)已知p:“实数m满足:(m﹣2a)(m﹣3a)<0(a>0)”;q:“实数m满足:方程表示双曲线”;若p是q的充分不必要条件,求实数a的取值范围.【解答】解:p真则2a<m<3a,q真则(m﹣1)(4﹣m)<0,解得m>4或m<1,p是q的充分不必要条件,则p⇒q,而q不能推出p,或<或的取值范围是,,17.判断下列命题的真假:(1)已知a,b,c,d∈R,若a≠c,或b≠d,则a+b≠c+d.(2)∀x∈N,x3>x2(3)若m>1,则方程x2﹣2x+m=0无实数根.(4)存在一个三角形没有外接圆.【解答】解:(1)为假命题,反例:1≠4,或5≠2,而1+5=4+2(2)为假命题,反例:x=0,x3>x2不成立(3)为真命题,因为m>1⇒△=4﹣4m<0⇒无实数根(4)为假命题,因为每个三角形都有唯一的外接圆.。
6-1命题与联结词
P
Q P→Q
0
0
1
0
1
1
1
0
0
1
1
1
表1-4 联结词“→”的定义
例1 如果某动物为哺乳动物,则它必胎生。 例2 如果我得到这本小说,那么我今夜就读完它。 例3 如果雪是黑的,那么太阳从西方出。 上述三个例子都可用条件命题P→Q表达。 在例1中P:某动物为哺乳动物,Q:它必胎生。
应强调指出的是:复合命题的 真值只取决于各原子命题的真值, 而与它们的内容、含义无关,与原 子命题之间是否有关系无关。理解 和掌握这一点是至关重要的。
小结 : 本节给出了如下五种联结词的定义:
否定 设P为一命题,P的否定是一个新的命题,记作 ┐P。 若P为T,┐P为F;若P为F,┐P为T。
合取 两个命题P和Q的合取是一个复合命题,记作P∧Q。 当且仅当P、Q同时为T时,P∧Q为T,在其他情况下,P∧Q 的真值都是F。
疑问((43句))离你:散 今提数 年出学 暑问是 假题现 去的代旅句数行子学吗,的?句一(末个疑用重问问要句号)分。支。 感叹(5句)一:个带人有说浓: 厚“我感正情在的说句谎子”,。句(末悖用论感)叹号。
悖论:自相矛盾的陈述。
例(5) 一个人说: “我正在说谎”。
他是在说谎还是在说真话呢? 如果他讲真话, 那么他所说 的是真, 也就是他在说谎。 我们得出结论如果他讲真话, 那么他 是在说谎。另一方面, 如果他是说谎, 那么他说的是假; 因为他承 认他是说谎, 所以他实际上是在说真话, 我们得出结论如果他是 说谎, 那么他是讲真话。
真值是否唯一确定,与是否知道无关。
再看下面的语句中,哪些语句是命题,如果是命题,指出命(它题1)的,、真真(值值2为):T是。 (1)能被7整除的正整数只有1和7本身。
命题、量词、逻辑联结词
观察下列命题:
(1)所有矩形都是正方形; (2)每一个有理数都能写成分数的形式; (3)有些三角形是直角三角形; (4)在平面中一切三角形的内角和都等于180°; (5)存在一个有理数x,使得x2+x-1=0 ; (6)和为正数的两个数中至少有一个是正数; (7)每一个等腰三角形的两个底角相等; (8)过平面外一点存在一条直线与该平面平行; (9)过一点有一条直线与已知平面内任意一条直线 都垂直.
2
a b ab b ②
2 2 2
(a b )(a b ) b(a b ) ③
d ,等式两边可以除以d④ R a b b
简单命题 真 ⑤四边相等且四角相等的四边形是正方形.
真
符合条件的简单命题 真
判断命题形式,不可以仅从字面上看它是否有 逻辑联结词,要从命题的结构来看.
【例5】 写出下面“p或q”、“p且q”、“非p”、
“非q”形式的复合命题,并判断真假 p:7是21的约数;q:7是26的约数 ① P或q: 7是21的约数或是26的约数 ② p且q: 7是21的约数且是26的约数 ③ 非p: ④ 非q: 7不是21的约数 7不是26的约数 真 假 假 真
所以x 2 2 0 x R, x 2 0”为真命题. “ 由于0 N , 当x 0时,x 4 1不成立
2
因此命题“x N , x 1”是假命题
4
(3) (4)
由于 1 Z , 当x 1时,使x 3 1成立
而 3都不是有理数
3
(真) ⑧ (真) ⑨
2
4
x=2 或 x=-1 是 方 程 ( x-2)(x+1)=0 的 根
高考数学逻辑联结词与四种命题1
个
一个
个
不都 反面词 是
存在 某个
某些 至 少 有 两个
没有
例1.指出下列复合命题形式并指出构成它的简单 命题, (1)等腰三角形顶角的角平分线垂直平分底边, (2)垂直于弦的直径平分这条弦且平分弦所对的 两条弧,
(3)43
(4)平行四边形不是梯形
练习1.分别写出下列各组命题构成的“p或q”、“p且 q”、“非p”形式的复合命题 (1)p: 5是有理数,q: 5是无理数 (2)p:方程x2+2x-3=0的两根符号不同,
即:原命题 它的逆否命题
(4)逆命题为真,否命题一定为真。
即:原命题的否命题 原命题的逆命题
故四个命题真或假的个数必为偶数
一个命题很难判定真假时,可用它的逆否 命题去判定,可能会比较方便。
(三)几点说明
1.逻辑联结词“或”的理解是难点,“或”有三层含义
:
以“P或q为真”为例:一是p成立但q不成立,二是p不成
立但q成立,三是p成立且q成立,
2.真值表
P或q:“一真为真”,
P且q:“一假为假”
3.对命题的否定只是否定命题的结论,而否命题既否定
题设又否定结论
4.互为逆否命题的两个命题等价,为命题真假判定提供
一个策略。
56。.常用用反词证语法的两否个定难点:1)何所有时用 至2多)有如一何得至矛盾少。有
正面词 都是 任意一
4.表示形式:用小写的拉丁字母p、q、r、s…来表示 简单的命题,
复合命题的构成形式有三类:“p或q”、“p且q”、“ 非p” 5.真值表:表示命题真记假作的:表叫“真p∨值q表”、;“p∧q”、 复“合┐命p”题的真假可通过下面的真值表来加以判定。
p q ┐p P∨q P∧q
简易逻辑知识点
1、命题的定义:可以判断真假的语句叫做命题。
2、逻辑联结词、简单命题与复合命题:
“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单
命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。
构成复合命题的形式:p或q(记作“p∨q” );p且q(记作“p∧q” );非p(记作“┑q” ) 。
3、“或”、“且”、“非”的真值判断
(1)“非p”形式复合命题的真假与F的真假相反;
(2)“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;
(3)“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.
4、四种命题的形式:
原命题:若P则q;逆命题:若q则p;
否命题:若┑P则┑q;逆否命题:若┑q则┑p。
(1)交换原命题的条件和结论,所得的命题是逆命题;
(2)同时否定原命题的条件和结论,所得的命题是否命题;
(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.
5、四种命题之间的相互关系:
一个命题的真假与其他三个命题的真假有如下三条关系:(原命题逆否命题)
①、原命题为真,它的逆命题不一定为真。
②、原命题为真,它的否命题不一定为真。
③、原命题为真,它的逆否命题一定为真。
6、如果已知pq那么我们说,p是q的充分条件,q是p的必要条件。
若pq且qp,则称p是q的充要条件,记为p⇔q.
7、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法。
8.1 命题与逻辑连接词
(3)只有有限步使用规则(1),(2) 所组成的符号串是命题公式。 一个命题公式就是一个合法的 符号串:(P∨R),( (P→(Q∧R)) (QP)都是命题公式,
但(PQ), P→∧R很明显都不合法,
因而都不是命题公式。
约定: (1)公式最外层括号一律可省略 (2)联结词运算优先级依次为: ,(∧,∨),→, 例:P→Q∨(R∧QS) 所表示的 是公式((P)→(Q∨((R∧Q) S))) 定义 B称为公式A的子公式, 如果B是公式A的一部分,
其真值状况 P Q P∧Q 0 0 0 0 1 0 1 0 0 1 1 1
他去了教室,也去了实验室 设P:他去了教室, Q:他去了实验室, 则该命题可表示为P∧Q。 你作硬件,我作软件。 设A:你作硬件, B:我作软件, 则该命题可表示为A∧B
析取词(disjunction)“或”(or) 用符号∨表示 设P,Q表示两命题, 那么P∨Q表示P和Q的析取, 当P和Q有一为真时,P∨Q为真, 只有当P和Q均假时P∨Q为假。 P∨Q读作 “P或Q”。
个质数的和(哥德巴赫猜想)。
(6)第29届奥林匹克运动会开幕 时北京天晴。 (7)好过瘾啊! (8)你去上机吗? (9)请随手关门! (10)我希望有一台笔记本电脑。
(11)我只给那些不给自己刮胡
子的人刮胡子。 解: (1),(2),(3)都是命题, (1),(3)真值为真, (2)真值为假。 (4),(5),(6)也是命题, (7)是感叹句 (8)是疑问句
符合事实的判断其命题真值为真 记为“T”或“1”; 不符合事实的判断其命题真值为 假,记为“F”或“0”。 因此一个命题的真值一定为“真、 假”其中的一个(也有其他的逻辑 不这样定义,如第10章的多值逻 辑和模糊逻辑)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题与逻辑联结词
一、命题与逻辑联结词 1、命题定义
可以判断真假的语句叫“命题” 2、分类 简单命题
复合命题(由简单命题与逻辑联结词构成)
p 或q :q p ∨ p 且q :q p ∧
非p :p ⌝(命题p 的否定) 3、判断复杂命题的真假 一真或真,一假且假. 4、四种命题 (1)原命题.
若p ,则q . (2)逆命题
若q ,则p . (3)否命题
若p ⌝,则q ⌝. (4)逆否命题
若q ⌝,则p ⌝.
5、四种命题关系
(1)原命题与逆否命题同真同假. (2)逆命题与否命题同真同假. 6、命题的否定与否命题. (1)命题的否定:(只否定结论). p 表示命题,非p 叫做命题的否定; 若p 则q ,则命题的否定为:若p 则q ⌝ (2)否命题(既否定条件,又否定结论) 若p 则q 的否命题为: 若p ⌝则q ⌝.
二、充分条件与必要条件. 1、充分条件
若q p ⇒,则p 是q 的充分条件(q 的充分条件p ) 2、必要条件
若q p ⇒,则q 是p 的充分条件(p 的充分条件q ) 3、充要条件
若q p ⇒且p q ⇒(或q p ⇔)则p 是q 的充要条件。
4、充分条件与必要条件判定 (1)数轴法 (2)集合法
(3)等价法
三:全称量词与存在量词 1、 全称量词:“所有的”.“任意一个”.“每个”,用“∀”表示。
存在量词:“存在一个”.“至少有一个”.“有些”,用“∃”表示. 2、 全称命题(含有全称量词的命题):();,x p M x ∈∀
特称命题(含有存在量词的命题):().,00x p M x ∈∃
3、含有一个量词的命题的否定.
4、一些常用正面描述的词语的否定形式:。