神经网络实学习 例子

合集下载

神经网络例子

神经网络例子

神经网络1.单层感知器数据分类输出为0与1解决线性可分的分类模型例1、从待分类的数据中取出一部分数据及其对应的类别作为样本数据,设计并训练一个能对分类数据进行分类的单层感知器神经网络代码:%给定训练样本数据P=[-、4 -、5 、6;、9 0 、1];%给定样本数据所对应的类别,用0与1来表示两种类别T=[1 1 0];%创建一个有两个输入、样本数据的取值范围都在[-1 1]之间,并且网络只有一个神经元的感知器神经网络net=newp([-1 1;-1 1],1);%设置网络的最大训练次数为20次net、trainParam、epochs=20;%使用训练函数对创建的网络进行训练net=train(net,P,T);%对训练后的网络进行仿真Y=sim(net,P)%计算网络的平均绝对误差,表示网络错误分类E1=mae(Y-T)%给定测试数据,检测训练好的神经网络的性能Q=[0、6 0、9 -0、1;-0、1 -0、5 0、5];%使用测试数据,对网络进行仿真,仿真输出即为分类的结果Y1=sim(net,Q)%创建一个新的绘图窗口figure;%在坐标中绘制测试数据点,并根据数据所对应的类别用约定的符号画出plotpv(Q,Y1);%在坐标中绘制分类线plotpc(net、iw{1},net、b{1})2.线性神经网络模型线性神经网络类似感知器,但就是线性神经网络的激活函数就是线性的,而不就是硬线转移函数,因此,线性神经网络的输出可以就是任意值,而感知器的输出不就是0就就是1,线性神经网络网络与感知器一样只能解决线性可分的问题、例2、要求设计一个线性神经网络,寻找给定数据之间的线性关系代码:P=[1、1 -1、3];T=[0、6 1];%创建一个只有一个输出,输入延迟为0,学习速率为0、01的线性神经网络,minmax(P)表示样本数据的取值范围net=newlin(minmax(P),1,0,0、01);%对创建的神经网络进行初始化,设置权值与阈值的初始值net=init(net);net、trainParam、epochs=500;%设置网络训练后的目标误差为0、0001net、trainParam、goal=0、0001;net=train(net,P,T);y=sim(net,P)%求解网络的均方误差值E=mse(y-T)3.BP神经网络预测能逼近任意非线性函数例3、表2-4为某药品的销售情况,现构建一个如下的BP神经网络对药品的销售进行预测:输入层为三个结点,隐含层结点数为5,隐含层的激活函数为tansig(双曲正切S型传递函数);输出层结点数为1,输出层的激活函数为logsig(S型的对数函数),并利用此网络对药品的销售量进行预测,预测的方法采用滚动预测方式,即用前三个月的销售量来预测第四个月的销售量,如用1、2、3月的销售量为输入预测第4个月的销售量,用2、3、4月的销售量为输入预测第5个月的销售量。

neuroph例子

neuroph例子

neuroph例子Neuroph是在Java语言中开发的一个神经网络框架,允许开发者创建、训练和部署人工神经网络。

本文将介绍一些使用Neuroph的实例,并解释其核心思想和使用方式。

一、基础概念在使用Neuroph之前,您需要熟悉一些基本的神经网络概念。

以下是一些重要的概念:1. 神经元(Neuron):神经网络中的基本单元,用于接收输入并进行加权计算。

每个神经元都有一个激活函数,用于将输入转换为输出。

2. 层(Layer):神经元可以组成层,这些层可以是输入层、隐藏层或输出层。

每个神经元都会将其输出传递给下一层单元进行处理。

3. 权重(Weights):权重是神经元之间的附加值,用于调整网络的输出。

权重的初始值通常是随机的,并且在训练过程中发生变化。

4. 学习率(Learning Rate):学习率是调整权重的速率。

它决定了在每个训练迭代中应该调整多少权重。

高学习率意味着更快的训练,但可能会导致过拟合。

二、实例接下来我们将介绍一些使用Neuroph的实例,帮助您了解神经网络的训练和使用。

1. 神经网络分类器神经网络可以用于分类器问题,例如对图像或文档进行分类。

以下是一个基本的图像分类器示例:```java// 创建输入层InputLayer inputLayer = new InputLayer(10);// 将层分别添加到网络中NeuralNetwork neuralNetwork = new NeuralNetwork();neuralNetwork.addLayer(inputLayer);neuralNetwork.addLayer(hiddenLayer);neuralNetwork.addLayer(outputLayer);// 创建训练数据和标签DataSet dataSet = new DataSet(10, 3);dataSet.addRow(new double[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, new double[]{1, 0, 0});dataSet.addRow(new double[]{1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, new double[]{0, 1, 0});dataSet.addRow(new double[]{1, 0, 1, 0, 1, 0, 1, 0, 1, 0}, new double[]{0, 0, 1});// 训练神经网络backPropagation.learn(dataSet);// 使用训练数据进行预测neuralNetwork.setInput(new double[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 0});neuralNetwork.calculate();double[] output = neuralNetwork.getOutput();// 打印输出System.out.println(Arrays.toString(output));```以上示例构建了一个包含10个输入、5个隐藏和3个输出神经元的分类器。

神经网络的实际应用举例

神经网络的实际应用举例

神经网络的实际应用举例神经网络是模拟人类神经系统机制的计算模型。

它可以从大量数据中自主学习,分析和识别复杂的模式,被应用到许多领域,包括计算机视觉、语音识别、自然语言处理等。

下面介绍神经网络在实际应用中的几个典型案例:一、机器翻译机器翻译是指将一种语言的文本转换成另一种语言的文本。

以Google Translate为例,通过神经网络,将大量的双语数据进行学习和模型的训练,实现了高质量的机器翻译。

神经网络通过提取出源语言文本中的特征,转换成语义空间的向量,在目标语言中寻找最相似的向量,并根据这些向量生成目标语句。

同时,还可以实现实时的语音翻译功能。

二、人脸识别人脸识别技术在安全监控、智能家居等领域广泛使用。

以人脸识别门禁为例,首先通过摄像头捕捉到人脸图像,然后提取特征,将人脸图像转换成向量。

接着,将向量输入神经网络,通过模型识别出人脸的身份信息,最后与数据库中保存的人脸信息进行比对,从而判断身份是否匹配。

三、自动驾驶自动驾驶技术是当前人工智能技术最具代表性的一个领域。

以谷歌无人驾驶汽车为例,通过激光雷达、相机、雷达和GPS等传感器收集周围环境信息,并通过神经网络进行深度学习,实现对环境信息的感知和处理。

然后,结合交通规则和路况等条件,进行行驶决策,开展自主驾驶。

四、医疗影像分析医疗影像分析需要对大量医学图像进行处理和分析,如CT、MRI等。

因此,对于快速准确地分析疾病信息非常重要。

以肺癌识别为例,通过神经网络可以对肺部影像进行分割和预处理,提取肺结节的特征,进而诊断是否为恶性肿瘤。

综上,神经网络的实际应用非常广泛,除了上面所提到的应用领域外,还可以应用在音视频处理、推荐系统等领域,为我们带来越来越多的便捷和效率。

深度学习中的循环神经网络实践案例分享

深度学习中的循环神经网络实践案例分享

深度学习中的循环神经网络实践案例分享在目前的人工智能领域中,深度学习已经成为了一个非常重要的分支。

其中,循环神经网络(Recurrent Neural Networks, RNN)是目前应用最为广泛的算法之一。

RNN 是一种神经网络模型,专门用于处理时间序列数据。

在本文中,我们将会分享几个深度学习中 RNN 的实践案例,希望能够对读者有所帮助。

案例一:语言模型语言模型是 NLP 中的重要应用之一。

它可以帮助我们预测一段给定的文本。

在深度学习中,通常采用基于 RNN 的模型来实现语言模型。

其中,最为常见的是 LSTM 和 GRU。

接下来,我们将用 LSTM 作为例子来说明实现过程。

在语言模型中,我们需要将输入的文本转化为向量化的形式。

一般常用的方式是将每个词汇映射为一个固定长度的向量,例如word2vec。

之后,我们需要在每个时刻都给出一个当前词汇生成下一个词汇的概率分布。

在这个过程中,我们需要使用 LSTM 这样的循环神经网络模型。

具体实现步骤:首先,我们需要建立一个 LSTM 模型。

在 Keras 中,我们可以使用如下代码:```pythonfrom yers import LSTMfrom keras.models import Sequentialmodel = Sequential()model.add(LSTM(512, input_shape=(None, voc_size)))```其中,voc_size 表示词汇表的大小,None 表示输入序列的长度不确定。

接下来,我们需要定义模型的训练过程。

在这个过程中,我们需要给定一个 batch 的文本,用 lstm 模型逐步生成每个词汇的概率分布,再通过误差反传的方式对模型参数进行更新。

具体代码如下:```pythonfrom yers import Densefrom keras.optimizers import RMSpropoptimizer = RMSprop(lr=0.01)model.add(Dense(voc_size, activation='softmax'))pile(loss='categorical_crossentropy',optimizer=optimizer)def train_on_batch(self, x, y):self.model.train_on_batch(x, y)```接下来,我们可以使用训练好的模型来预测一段文本。

深度学习 神经网络

深度学习 神经网络

我们希望所建立的网络可以尽可能的满足这些不变性特点。 为了理解卷积神经网络对这些不变性特点的贡献,我们将用不具 备这些不变性特点的前馈神经网络来进行比较。
图片识别--前馈神经网络
方便起见,我们用depth只有1的灰度图来举例。 想要完成的任务是:在宽长为4x4 的图片中识别是否有下图所示的“横折”。 图中,黄色圆点表示值为0的像素,深色圆 点表示值为1的像素。 我们知道不管这个横折在图片中的什么位置,都会被认为是相同 的横折。
例子:人脸识别
物质组成视角:神经网络的学习过程就是学习物质组成方式的过程。
增加节点数:增加同一层物质的种类,比如118个元素的原子层就有118个节点。
增加层数:增加更多层级,比如分子层,原子层,器官层,并通过判断更抽象的概念来 识别物体。
2.3、神经网络的训练
神经网络的学习过程就是学习控制着空间变换方式(物质组成方式)的权重矩阵 W , 那如何学习每一层的权重矩阵 W 呢?
因为环境的变化是随机的,所以进化并没有方向,但是却有增加差异性的趋势。 通过自我复制的方式,能够产生的差异性还是较弱。所以自然界慢慢的开始形成了有性 繁殖,两个不同的个体进行交配,增加子代的差异性。但是有性繁殖使得大范围移动成 为了必然需求。环境会随着移动而变化,个体在上一环境中通过自然学习所学习到的关 联,在下一个环境并不适用。



运用BP算法的多层前馈神经网络神经网络实例:

1
0
1
0.2
0.4
-0.5
-0.3
0.1
0.2
-0.3
-0.2
-0.4
0.2
0.1


省去中间计算过程,最后得到第一轮训练之后的新的权重与阈值:

实验四、RBF神经网络实验报告

实验四、RBF神经网络实验报告
简单说明一下为什么RBF网络学习收敛得比较快。当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络。由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的学习速度很慢。BP网络就是一个典型的例子。
如果对于输入空间的某个局部区域只有少数几个连接权值影响输出,则该网络称为局部逼近网络。常见的局部逼近网络有RBF网络、小脑模型(CMAC)网络、B样条网络等。
广义RBF网络
Cover定理指出:将复杂的模式分类问题非线性地映射到高维空间将比投影到低维空间更可能线性可分。
广义RBF网络:从输入层到隐藏层相当于是把低维空间的数据映射到高维空间,输入层细胞个数为样本的维度,所以隐藏层细胞个数一定要比输入层细胞个数多。从隐藏层到输出层是对高维空间的数据进行线性分类的过程,可以采用单层感知器常用的那些学习规则,参见神经网络基础和感知器。
寻找逼近函数F(x)通过最小化下面的目标函数来实现:
加式的第一项好理解,这是均方误差,寻找最优的逼近函数,自然要使均方误差最小。第二项是用来控制逼近函数光滑程度的,称为正则化项,λ是正则化参数,D是一个线性微分算子,代表了对F(x)的先验知识。曲率过大(光滑度过低)的F(x)通常具有较大的||DF||值,因此将受到较大的惩罚。
3)Inverse multiquadrics(拟多二次)函数
σ称为径向基函数的扩展常数,它反应了函数图像的宽度,σ越小,宽度越窄,函数越具有选择性。
完全内插存在一些问题:
1)插值曲面必须经过所有样本点,当样本中包含噪声时,神经网络将拟合出一个错误的曲面,从而使泛化能力下降。K,K<P,从样本中选取K个(假设不包含噪声)作为Φ函数的中心。
隐藏层的作用是把向量从低维m映射到高维P,低维线性不可分的情况到高维就线性可分了。

BP神经网络原理与应用实习论文

BP神经网络原理与应用实习论文

学年论文(本科)学院数学与信息科学学院专业信息与计算科学专业年级10级4班姓名徐玉琳于正平马孝慧李运凤郭双双任培培论文题目BP神经网络原理与应用指导教师冯志敏成绩2013年 9月 24日BP神经网络的原理与应用1.BP神经网络的原理1.1 BP神经网络的结构BP神经网络模型是一个三层网络,它的拓扑结构可被划分为:输入层(InputLayer )、输出层(Outp ut Layer ) ,隐含层(Hide Layer ).其中,输入层与输出层具有更重要的意义,因此也可以为两层网络结构(把隐含层划入输入层,或者把隐含层去掉)每层都有许多简单的能够执行并行运算的神经元组成,这些神经元与生物系统中的那些神经元非常类似,但其并行性并没有生物神经元的并行性高.BP神经网络的特点:1)网络由多层构成,层与层之间全连接,同一层之间的神经元无连接.2)BP网络的传递函数必须可微.因此,感知器的传递函数-——二值函数在这里没有用武之地.BP网络一般使用Sigmoid函数或线性函数作为传递函数.3)采用误差反向传播算法(Back-Propagation Algorithm)进行学习.在BP 网络中,数据从输入层隐含层逐层向后传播,训练网络权值时,则沿着减少误差的方向,从输出层经过中间各层逐层向前修正网络的连接权值.随着学习的不断进行,最终的误差越来越来小.BP神经网络的学习过程BP神经网络的学习算法实际上就是对误差函数求极小值的算法,它采用的算法是最速下降法,使它对多个样本进行反复的学习训练并通过误差的反向传播来修改连接权系数,它是沿着输出误差函数的负梯度方向对其进行改变的,并且到最后使误差函数收敛于该函数的最小点.1.3 BP网络的学习算法BP网络的学习属于有监督学习,需要一组已知目标输出的学习样本集.训练时先使用随机值作为权值,修改权值有不同的规则.标准的BP神经网络沿着误差性能函数梯度的反向修改权值,原理与LMS算法比较类似,属于最速下降法.拟牛顿算法牛顿法是一种基于二阶泰勒级数的快速优化算法.其基本方法是1(1)()()()x k x k A k g k -+=-式中 ()A k ----误差性能函数在当前权值和阀值下的Hessian 矩阵(二阶导数),即2()()()x x k A k F x ==∇牛顿法通常比较梯度法的收敛速度快,但对于前向型神经网络计算Hessian 矩阵是很复杂的,付出的代价也很大.有一类基于牛顿法的算法不需要二阶导数,此类方法称为拟牛顿法(或正切法),在算法中的Hessian 矩阵用其近似值进行修正,修正值被看成梯度的函数. 1)BFGS 算法在公开发表的研究成果中,你牛顿法应用最为成功得有Boryden,Fletcher,Goldfard 和Shanno 修正算法,合称为BFG 算法. 该算法虽然收敛所需的步长通常较少,但在每次迭代过程所需要的计算量和存储空间比变梯度算法都要大,对近似Hessian 矩阵必须进行存储,其大小为n n ⨯,这里n 网络的链接权和阀值的数量.所以对于规模很大的网络用RPROP 算法或任何一种梯度算法可能好些;而对于规模较小的网络则用BFGS 算法可能更有效. 2)OSS 算法 由于BFGS 算法在每次迭代时比变梯度算法需要更多的存储空间和计算量,所以对于正切近似法减少其存储量和计算量是必要的.OSS 算法试图解决变梯度法和拟牛顿(正切)法之间的矛盾,该算法不必存储全部Hessian 矩阵,它假设每一次迭代时与前一次迭代的Hessian 矩阵具有一致性,这样做的一个有点是,在新的搜索方向进行计算时不必计算矩阵的逆.该算法每次迭代所需要的存储量和计算量介于梯度算法和完全拟牛顿算法之间. 最速下降BP 法最速下降BP 算法的BP 神经网络,设k 为迭代次数,则每一层权值和阀值的修正按下式进行(1)()()x k x k g k α+=-式中()x k —第k 次迭代各层之间的连接权向量或阀值向量;()g k =()()E k x k ∂∂—第k 次迭代的神经网络输出误差对各权值或阀值的梯度向量.负号表示梯度的反方向,即梯度的最速下降方向;α—学习效率,在训练时是一常数.在MATLAB 神经网络工具箱中,,可以通过改变训练参数进行设置;()E K —第k 次迭代的网络输出的总误差性能函数,在MATLAB 神经网络工具箱中BP 网络误差性能函数默认值为均方误差MSE,以二层BP 网络为例,只有一个输入样本时,有2()()E K E e k ⎡⎤=⎣⎦21S≈22221()S i i i t a k =⎡⎤-⎣⎦∑ 222212,1()()()()s ii j i i j a k f w k a k b k =⎧⎫⎪⎪⎡⎤=-⎨⎬⎣⎦⎪⎪⎩⎭∑21221112,,11()(()())()s s i j i j i i i j j f w k f iw k p ib k b k ==⎧⎫⎡⎤⎛⎫⎪⎪=++⎢⎥ ⎪⎨⎬⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭∑∑若有n 个输入样本2()()E K E e k ⎡⎤=⎣⎦21nS ≈22221()S ii i ta k =⎡⎤-⎣⎦∑根据公式和各层的传输函数,可以求出第k 次迭代总误差曲面的梯度()g k =()()E k x k ∂∂,分别代入式子便可以逐次修正其权值和阀值,并是总的误差向减小的方向变化,直到达到所需要的误差性能为止. 1.4 BP 算法的改进BP 算法理论具有依据可靠、推导过程严谨、精度较高、通用性较好等优点,但标准BP 算法存在以下缺点:收敛速度缓慢;容易陷入局部极小值;难以确定隐层数和隐层节点个数.在实际应用中,BP 算法很难胜任,因此出现了很多改进算.利用动量法改进BP 算法标准BP 算法实质上是一种简单的最速下降静态寻优方法,在修正W(K)时,只按照第K 步的负梯度方向进行修正,而没有考虑到以前积累的经验,即以前时刻的梯度方向,从而常常使学习过程发生振荡,收敛缓慢.动量法权值调整算法的具体做法是:将上一次权值调整量的一部分迭加到按本次误差计算所得的权值调整量上,作为本次的实际权值调整量,即:其中:α为动量系数,通常0<α<0.9;η—学习率,范围在0.001~10之间.这种方法所加的动量因子实际上相当于阻尼项,它减小了学习过程中的振荡趋势,从而改善了收敛性.动量法降低了网络对于误差曲面局部细节的敏感性,有效的抑制了网络陷入局部极小.自适应调整学习速率标准BP算法收敛速度缓慢的一个重要原因是学习率选择不当,学习率选得太小,收敛太慢;学习率选得太大,则有可能修正过头,导致振荡甚至发散.可采用图所示的自适应方法调整学习率.调整的基本指导思想是:在学习收敛的情况下,增大η,以缩短学习时间;当η偏大致使不能收敛时,要及时减小η,直到收敛为止.动量-自适应学习速率调整算法采用动量法时,BP算法可以找到更优的解;采用自适应学习速率法时,BP算法可以缩短训练时间.将以上两种方法结合起来,就得到动量-自适应学习速率调整算法.1. L-M学习规则L-M(Levenberg-Marquardt)算法比前述几种使用梯度下降法的BP算法要快得多,但对于复杂问题,这种方法需要相当大的存储空间L-M(Levenberg-Marquardt)优化方法的权值调整率选为:其中:e —误差向量;J —网络误差对权值导数的雅可比(Jacobian )矩阵;μ—标量,当μ很大时上式接近于梯度法,当μ很小时上式变成了Gauss-Newton 法,在这种方法中,μ也是自适应调整的. 1.5 BP 神经网络的设计 网络的层数输入层节点数取决于输入向量的维数.应用神经网络解决实际问题时,首先应从问题中提炼出一个抽象模型,形成输入空间和输出空间.因此,数据的表达方式会影响输入向量的维数大小.例如,如果输入的是64*64的图像,则输入的向量应为图像中所有的像素形成的4096维向量.如果待解决的问题是二元函数拟合,则输入向量应为二维向量.理论上已证明:具有偏差和至少一个S 型隐含层加上一个线性输出层的网络,能够逼近任何有理数.增加层数可以更进一步的降低误差,提高精度,但同时也使网络复杂化,从而增加了网络权值的训练时间.而误差精度的提高实际上也可以通过增加神经元数目来获得,其训练效果也比增加层数更容易观察和调整.所以一般情况下,应优先考虑增加隐含层中的神经元数. 隐含层的神经元数网络训练精度的提高,可以通过采用一个隐含层,而增加神经元数了的方法来获得.这在结构实现上,要比增加隐含层数要简单得多.那么究竟选取多少隐含层节点才合适?这在理论上并没有一个明确的规定.在具体设计时,比较实际的做法是通过对不同神经元数进行训练对比,然后适当地加上一点余量.1)0niMi C k =>∑,k 为样本数,M 为隐含层神经元个数,n 为输入层神经元个数.如i>M,规定C i M =0.2)和n 分别是输出层和输入层的神经元数,a 是[0.10]之间的常量.3)M=2log n ,n 为输入层神经元个数.初始权值的选取由于系统是非线性的,初始值对于学习是否达到局部最小、是否能够收敛及训练时间的长短关系很大.如果初始值太大,使得加权后的输入和n落在了S型激活函数的饱和区,从而导致其导数f (n)非常小,从而使得调节过程几乎停顿下来.所以一般总是希望经过初始加权后的每个神经元的输出值都接近于零,这样可以保证每个神经元的权值都能够在它们的S型激活函数变化最大之处进行调节.所以,一般取初始权值在(-1,1)之间的随机数.学习速率学习速率决定每一次循环训练中所产生的权值变化量.大的学习速率可能导致系统的不稳定;但小的学习速率导致较长的训练时间,可能收敛很慢,不过能保证网络的误差值不跳出误差表面的低谷而最终趋于最小误差值.所以在一般情况下,倾向于选取较小的学习速率以保证系统的稳定性.学习速率的选取范围在0.01-0.8之间.1.6BP神经网络局限性需要参数多且参数选择没有有效的方法对于一些复杂问题 ,BP 算法可能要进行几小时甚至更长的时间训练,这主要是由于学习速率太小所造成的.标准BP 网络学习过程缓慢,易出现平台,这与学习参数率l r的选取有很大关系.当l r较时,权值修改量大,学习速率也快,但可能产生振荡;当l r较小时,虽然学习比较平稳,但速度十分缓慢.容易陷入局部最优BP网络易陷入局部最小, 使 BP网络不能以高精度逼近实际系统.目前对于这一问题的解决有加入动量项以及其它一些方法.BP 算法本质上是以误差平方和为目标函数 , 用梯度法求其最小值的算法.于是除非误差平方和函数是正定的, 否则必然产生局部极小点, 当局部极小点产生时 , BP算法所求的就不是解.1.6.3 样本依赖性这主要表现在网络出现的麻痹现象上.在网络的训练过程中,如其权值调的过大,可能使得所有的或大部分神经元的加权值偏大,这使得激活函数的输入工作在S型转移函数的饱和区,从而导致其导函数非常小,使得对网络权值的调节过程几乎停顿下来.通常为避免这种现象的发生,一是选取较小的初始权值,二是采用较小的学习速率,但又要增加时间训练.初始权敏感对于一些复杂的问题,BP算法可能要进行几个小时甚至更长时间的训练.这主要是由于学习速率太小造成的.可采用变化的学习速率或自适应的学习速率来加以改进.2.BP神经网络应用2.1 手算实现二值逻辑—异或这个例子中,采用手算实现基于BP网络的异或逻辑.训练时采用批量训练的方法,训练算法使用带动量因子的最速下降法.在MATLAB中新建脚本文件main_xor.m,输入代码如下:%脚本%批量训练方式.BP网络实现异或逻辑%%清理clear allclcrand('seed',2)eb = 0.01; %误差容限eta = 0.6; %学习率mc = 0.8; %动量因子maxiter = 1000; %最大迭代次数%% 初始化网络nSampNum = 4;nSampDim = 2;nHidden = 3;nOut = 1;w = 2*(rand(nHidden,nSampDim)-1/2);b = 2*(rand(nHidden,1)-1/2);wex = [w,b];W = 2*(rand(nOut,nHidden)-1/2);B = 2*(rand(nOut,1)-1/2);WEX = [W,B];%%数据SampIn=[0,0,1,1;...0,1,0,1;…1,1,1,1];expected = [0,1,1,0];%%训练iteration = 0;errRec = [];outRec =[];for i = 1:maxiter% 工作信号正向传播hp = wex*SampIn;tau = logsig(hp);tauex = [tau',1*ones(nSampNum,1)]';HM = WEX*tauex;out = logsig(HM);outRec = [outRec,out'];err = expected - out;sse = sumsqr(err);errRec = [errRec,sse];fprintf('第%d 次迭代,误差:%f \n',i,sse);% 判断是否收敛iteration = iteration + 1;if sse <= ebbreak;end% 误差信号反向传播% DELTA 和delta 为局部梯度DELTA = err.*dlogsig(HM,out);delta = W' * DELTA.*dlogsig(hp,tau);dWEX = DELTA*tauex';dwex = delta*SampIn';% 更新权值if i == 1WEX = WEX + eta*dWEX;wex = wex + eta*dwex;elseWEX = WEX + (1-mc)*eta*dWEX + mc*dWEXold;wex = wex + (1-mc)*eta*dwex+mc*dwexold;enddWEXold = dWEX;dwexold = dwex;W = WEX(:,1:nHidden);end%%显示figure(1)grid[nRow,nCol]=size(errRec);semilogy(1:nCol,errRec,'LineWidth',1.5);title('误差曲线');xlabel('迭代次数');x=-0.2:.05:1.2;[xx,yy] = meshgrid(x);for i=1:length(xx)for j=1:length(yy)xi=[xx(i,j),yy(i,j),1];hp = wex*xi';tau = logsig(hp);tauex = [tau',1]';HM = WEX*tauex;out = logsig(HM);z (i,j) =out;endendfigure(2)mesh(x,x,z);figure(3)plot([0,1],[0,1],'*','LineWidth',2);hold onplot([0,1],[1,0],'O','LineWidth',2);[c,h]=contour(x,x,z,0.5,'b');clabel(c,h);legend('0','1','分类面');title('分类面')2.2 误差下降曲线如下图所示:Finger 1010*******400500600700800900100010-210-110误差曲线迭代次数网格上的点在BP 网络映射下的输出如下图:Finger 2异或本质上是一个分类问题,,分类面如图:Finger 3分类面-0.200.20.40.60.81 1.2本文介绍了神经网络的研究背景和现状,分析了目前神经网络研究中存在的问题.然后描述了BP神经网络算法的实现以及BP神经网络的工作原理,给出了BP网络的局限性.本文虽然总结分析了BP神经网络算法的实现,给出了实例分析,但是还有很多的不足.所总结的BP神经网络和目前研究的现状都还不够全面,经过程序调试的图形有可能都还存在很多细节上的问题,而图形曲线所实现效果都还不够好,以及结果分析不够全面、正确、缺乏科学性等,这些都还是需加强提高的.近几年的不断发展,神经网络更是取得了非常广泛的应用,和令人瞩目的发展.在很多方面都发挥了其独特的作用,特别是在人工智能、自动控制、计算机科学、信息处理、机器人、模式识别等众多方面的应用实例,给人们带来了很多应用上到思考,和解决方法的研究.但是神经网络的研究最近几年还没有达到非常热门的阶段,这还需有很多热爱神经网络和研究神经网络人员的不断研究和创新,在科技高度发达的现在,我们有理由期待,也有理由相信.我想在不久的将来神经网络会应用到更多更广的方面,人们的生活会更加便捷.学年论文成绩评定表。

神经网络实学习 例子

神经网络实学习 例子

神经网络实学习例子1通过神经网络滤波和信号处理,传统的sigmoid函数具有全局逼近能力,而径向基rbf函数则具有更好的局部逼近能力,采用完全正交的rbf径向基函数作为激励函数,具有更大的优越性,这就是小波神经网络,对细节逼近能力更强。

BP网络的特点①网络实质上实现了一个从输入到输出的映射功能,而数学理论已证明它具有实现任何复杂非线性映射的功能。

这使得它特别适合于求解内部机制复杂的问题。

我们无需建立模型,或了解其内部过程,只需输入,获得输出。

只要BPNN结构优秀,一般20个输入函数以下的问题都能在50000次的学习以内收敛到最低误差附近。

而且理论上,一个三层的神经网络,能够以任意精度逼近给定的函数,这是非常诱人的期望;②网络能通过学习带正确答案的实例集自动提取"合理的"求解规则,即具有自学习能力;③网络具有一定的推广、概括能力。

bp主要应用回归预测(可以进行拟合,数据处理分析,事物预测,控制等)、分类识别(进行类型划分,模式识别等),在后面的学习中,都将给出实例程序。

但无论那种网络,什么方法,解决问题的精确度都无法打到100%的,但并不影响其使用,因为现实中很多复杂的问题,精确的解释是毫无意义的,有意义的解析必定会损失精度。

BP注意问题1、BP算法的学习速度很慢,其原因主要有:a由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,必然会出现"锯齿形现象",这使得BP算法低效;结论4:由上表可以看出,后者的初始权值比较合适些,因此训练的时间变短,误差收敛速度明显快些。

因此初始权值的选取对于一个网络的训练是很重要的。

1.4,用最基本的BP算法来训练BP神经网络时,学习率、均方误差、权值、阈值的设置都对网络的训练均有影响。

综合选取合理的值,将有利于网络的训练。

在最基本的BP算法中,学习率在整个训练过程是保持不变的,学习率过大,算法可能振荡而不稳定;学习率过小,则收敛速度慢,训练时间长。

BP神经网络MATLAB实例

BP神经网络MATLAB实例
clc
% NEWFF——生成一个新的前向神经网络
% TRAIN——对 BP 神经网络进行训练
% SIM——对 BP 神经网络进行仿真
pause
% 敲任意键开始
clc
% 定义训练样本
% P 为输入矢量
P=[-1, -2, 3, 1; -1, 1, 5, -3];
inputbias=net.b{1}
% 当前网络层权值和阈值
layerWeights=net.LW{2,1}
layerbias=net.b{2}
pause
clc
% 设置训练参数
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
pause;
clc
echo off
下面给出了网络的某次训练结果,可见,当训练至第 136 步时,训练提前停止,此时的网络误差为 0.0102565。给出了训练后的仿真数据拟合曲线,效果是相当满意的。
[net,tr]=train(net,P,T,[],[],val);
clc
elseif(choice==2)
echo on
clc
% 采用贝叶斯正则化算法 TRAINBR
net.trainFcn='trainbr';
pause
clc
% 对 BP 网络进行仿真
A = sim(net,P)
% 计算仿真误差
E = T - A
MSE=mse(E)
pause
clc
echo off
例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。其中,样本数据可以采用如下MATLAB 语句生成:

Pytorch实现UNet例子学习

Pytorch实现UNet例子学习

Pytorch实现UNet例子学习一、UNet简介UNet是一种经典的卷积神经网络架构,主要用于图像分割任务。

它在2024年由Olaf Ronneberger等人提出,并在医学图像分割领域取得了显著的成果。

UNet的特点是有一个对称的U形结构,通过编码器(下采样)和解码器(上采样)的对称结构,使得网络可以同时进行局部和全局信息的学习和传递。

在本文中,我们将使用PyTorch实现一个简单的UNet网络。

二、数据准备三、网络架构接下来我们定义UNet的网络架构。

UNet的主要特点是有一个对称的U形结构,我们先定义编码器部分,然后定义解码器部分。

1.编码器编码器部分由多个卷积层组成,每个卷积层后接一个ReLU激活函数和一个2x2的最大池化层。

这样可以逐步减小特征图的尺寸和增加通道数。

2.解码器解码器部分跟编码器部分相似,每个解码器层包含一个反卷积层(上采样),然后与对应的编码器层的特征图进行拼接,最后接上一个卷积层。

这样可以逐步恢复特征图的尺寸和减小通道数。

3.跳跃连接为了将编码器中的局部信息传递到解码器中,我们在每个解码器层与对应的编码器层进行拼接,这样可以使得解码器可以同时有局部和全局信息。

四、网络训练在训练之前,我们需要定义一些超参数,如学习率、批大小和训练轮数等。

然后,我们定义损失函数和优化器。

这里我们使用二分类交叉熵作为损失函数,使用Adam优化器进行优化。

然后,我们开始进行训练。

每一轮训练中,我们从数据集中随机抽取一个批次的训练样本,将输入传入网络得到输出,计算损失并进行反向传播更新网络参数。

最后,我们计算并记录训练集和验证集的准确率和损失值。

五、网络测试总结:本文简要介绍了UNet网络的原理和PyTorch实现。

UNet在图像分割任务中表现出色,其特点是具有对称的U形结构,能够同时学习和传递局部和全局信息。

通过实践,我们可以更好地理解和掌握UNet在图像分割任务中的应用。

以上是对PyTorch实现UNet例子的学习的1200字以上的介绍。

BP神经网络模型及实例

BP神经网络模型及实例
另一种是基于数值优化理论的训练算法,下面介绍三种网络训练函数, 分别为共轭梯度法(traincgf,traincgp,traincgb,trainscg)以及高斯-牛 顿法(trainbfg,trainoss)和Levenberg-Marquardt(trainlm)
(1)由动量的梯度下降法
在神经网络工具箱中, traingdm函数采用了由动量的梯度下降法,提高 了学习速度并增加了算法的可靠性。
x x1, x2,
hi hi1, hi2,
ho ho1, ho2,
yi yi1, yi2,
yo yo1, yo2,
do d1, d2,
, xn
, hip
, hop
, yiq
, yoq
, dq
2.4.2 BP网络的标准学习算法
– 输入层与中间层的连接权值:
wih
– 隐含层与输出层的连接权值:
2.4.1 BP神经网络模型
• 三层BP网络
2.4.1 BP神经网络模型
• 激活函数
– 必须处处可导
• 一般都使用S型函数
• 使用S型激活函数时BP网络输入与输出关 系
– 输入 net x1w1 x2w2 ... xnwn
– 输出
y
f
(net)
1
1 enet
2.4.1 BP神经网络模型
2.4 BP神经网络模型与学习算法
概述
• Rumelhart,McClelland于1985年提出了BP网络的误差 反向后传BP(Back Propagation)学习算法
David Rumelhart
J. McClelland
• BP算法基本原理
– 利用输出后的误差来估计输出层的直接前导层的误差,再用这个 误差估计更前一层的误差,如此一层一层的反传下去,就获得了 所有其他各层的误差估计。

深度学习笔记(3)神经网络,学习率,激活函数,损失函数

深度学习笔记(3)神经网络,学习率,激活函数,损失函数

深度学习笔记(3)神经⽹络,学习率,激活函数,损失函数神经⽹络(NN)的复杂度空间复杂度:计算神经⽹络的层数时只统计有运算能⼒的层,输⼊层仅仅起到将数据传输进来的作⽤,没有涉及到运算,所以统计神经⽹络层数时不算输⼊层输⼊层和输出层之间所有层都叫做隐藏层层数 = 隐藏层的层数 + 1个输出层总参数个数 = 总w个数 + 总b个数时间复杂度:乘加运算次数学习率以及参数的更新:w t+1=w t−lr∗∂loss ∂w t指数衰减学习率的选择及设置可以先⽤较⼤的学习率,快速得到较优解,然后逐步减⼩学习率,使模型在训练后期稳定。

指数衰减学习率 = 初始学习率 * 学习率衰减率(当前轮数 / 多少轮衰减⼀次)指数衰减学习率=初始学习率∗学习率衰减率当前轮数多少轮衰减⼀次#学习率衰减import tensorflow as tfw = tf.Variable(tf.constant(5, dtype=tf.float32))epoch = 40LR_BASE = 0.2LR_DECAY = 0.99LR_STEP = 1for epoch in range(epoch):lr = LR_BASE * LR_DECAY**(epoch / LR_STEP)with tf.GradientTape() as tape:loss = tf.square(w + 1)grads = tape.gradient(loss, w)w.assign_sub(lr * grads)print("After %2s epoch,\tw is %f,\tloss is %f\tlr is %f" % (epoch, w.numpy(), loss,lr)) After 0 epoch, w is 2.600000, loss is 36.000000 lr is 0.200000After 1 epoch, w is 1.174400, loss is 12.959999 lr is 0.198000After 2 epoch, w is 0.321948, loss is 4.728015 lr is 0.196020After 3 epoch, w is -0.191126, loss is 1.747547 lr is 0.194060After 4 epoch, w is -0.501926, loss is 0.654277 lr is 0.192119After 5 epoch, w is -0.691392, loss is 0.248077 lr is 0.190198After 6 epoch, w is -0.807611, loss is 0.095239 lr is 0.188296After 7 epoch, w is -0.879339, loss is 0.037014 lr is 0.186413After 8 epoch, w is -0.923874, loss is 0.014559 lr is 0.184549After 9 epoch, w is -0.951691, loss is 0.005795 lr is 0.182703After 10 epoch, w is -0.969167, loss is 0.002334 lr is 0.180876After 11 epoch, w is -0.980209, loss is 0.000951 lr is 0.179068After 12 epoch, w is -0.987226, loss is 0.000392 lr is 0.177277After 13 epoch, w is -0.991710, loss is 0.000163 lr is 0.175504After 14 epoch, w is -0.994591, loss is 0.000069 lr is 0.173749After 15 epoch, w is -0.996452, loss is 0.000029 lr is 0.172012After 16 epoch, w is -0.997660, loss is 0.000013 lr is 0.170292After 17 epoch, w is -0.998449, loss is 0.000005 lr is 0.168589After 19 epoch, w is -0.999308, loss is 0.000001 lr is 0.165234After 20 epoch, w is -0.999535, loss is 0.000000 lr is 0.163581After 21 epoch, w is -0.999685, loss is 0.000000 lr is 0.161946After 22 epoch, w is -0.999786, loss is 0.000000 lr is 0.160326After 23 epoch, w is -0.999854, loss is 0.000000 lr is 0.158723After 24 epoch, w is -0.999900, loss is 0.000000 lr is 0.157136After 25 epoch, w is -0.999931, loss is 0.000000 lr is 0.155564After 26 epoch, w is -0.999952, loss is 0.000000 lr is 0.154009After 27 epoch, w is -0.999967, loss is 0.000000 lr is 0.152469After 28 epoch, w is -0.999977, loss is 0.000000 lr is 0.150944After 29 epoch, w is -0.999984, loss is 0.000000 lr is 0.149434After 30 epoch, w is -0.999989, loss is 0.000000 lr is 0.147940After 31 epoch, w is -0.999992, loss is 0.000000 lr is 0.146461After 32 epoch, w is -0.999994, loss is 0.000000 lr is 0.144996After 33 epoch, w is -0.999996, loss is 0.000000 lr is 0.143546After 34 epoch, w is -0.999997, loss is 0.000000 lr is 0.142111After 35 epoch, w is -0.999998, loss is 0.000000 lr is 0.140690After 36 epoch, w is -0.999999, loss is 0.000000 lr is 0.139283After 37 epoch, w is -0.999999, loss is 0.000000 lr is 0.137890After 38 epoch, w is -0.999999, loss is 0.000000 lr is 0.136511After 39 epoch, w is -0.999999, loss is 0.000000 lr is 0.135146激活函数sigmoid 函数tf.nn. sigmoid(x)f (x )=11+e−x图像:相当于对输⼊进⾏了归⼀化多层神经⽹络更新参数时,需要从输出层往输⼊层⽅向逐层进⾏链式求导,⽽sigmoid 函数的导数输出是0到0.25之间的⼩数,链式求导时,多层导数连续相乘会出现多个0到0.25之间的值连续相乘,结果将趋近于0,产⽣梯度消失,使得参数⽆法继续更新且sigmoid 函数存在幂运算,计算⽐较复杂tanh 函数tf.math. tanh(x)f (x )=1−e −2x1+e−2x图像:和上⾯提到的sigmoid 函数⼀样,同样存在梯度消失和幂运算复杂的缺点Relu 函数tf.nn.relu(x)f (x )=max (x ,0)=0(x <0)时或者x (x >=0)时图像:Relu 函数在正区间内解决了梯度消失的问题,使⽤时只需要判断输⼊是否⼤于0,计算速度快训练参数时的收敛速度要快于sigmoid 函数和tanh 函数输出⾮0均值,收敛慢Dead RelU 问题:送⼊激活函数的输⼊特征是负数时,激活函数输出是0,反向传播得到的梯度是0,致使参数⽆法更新,某些神经元可能永远不会被激活。

人工智能深度学习入门练习之(26)TensorFlow–例子:人工神经网络(ANN)

人工智能深度学习入门练习之(26)TensorFlow–例子:人工神经网络(ANN)

⼈⼯智能深度学习⼊门练习之(26)TensorFlow–例⼦:⼈⼯神经⽹络(ANN)⼈⼯神经⽹络(ANN)介绍⽣物神经元⼈脑有数⼗亿个神经元。

神经元是⼈脑中相互连接的神经细胞,参与处理和传递化学信号和电信号。

以下是⽣物神经元的重要组成部分:树突 – 从其他神经元接收信息的分⽀细胞核 – 处理从树突接收到的信息轴突 – ⼀种被神经元⽤来传递信息的⽣物电缆突触 – 轴突和其他神经元树突之间的连接⼈脑神经元处理信息的过程:多个信号到达树突,然后整合到细胞体中,如果积累的信号超过某个阈值,就会产⽣⼀个输出信号,由轴突传递。

⼈⼯神经元⼈⼯神经元是⼀个基于⽣物神经元的数学模型,神经元接受多个输⼊信息,对它们进⾏加权求和,再经过⼀个激活函数处理,然后将这个结果输出。

⽣物神经元对照⼈⼯神经元⽣物神经元⼈⼯神经元细胞核节点 (加权求和 + 激活函数)树突输⼊轴突带权重的连接突触输出⼈⼯神经⽹络⼈⼯神经⽹络,模仿哺乳动物⼤脑⽪层的神经系统,但规模要⼩得多。

它由许多简单的处理单元(神经元)互联组成,这些处理单元(神经元)的作⽤类似于⽣物神经元,接受信息输⼊,处理后向下⼀层输出信息。

⼈⼯神经⽹络由多层神经元组成。

层与层之间的神经元有连接,⽽层内之间的神经元没有连接。

最左边的层叫做输⼊层,这层负责接收输⼊数据;最右边的层叫输出层,我们可以从这层获取神经⽹络输出数据。

输⼊层和输出层之间的层叫做隐藏层。

⼈⼯神经⽹络的训练给神经⽹络输⼊⼀批样本数据,神经⽹络会产⽣输出。

⽐较神经⽹络的输出与样本中的正确结果,根据两者的差值,对神经⽹络的权重进⾏调整,使差值变⼩。

重复这个过程,直到神经⽹络产⽣正确输出,从⽽确定神经⽹络的权重值完成训练。

训练好的神经⽹络就可以⽤来处理数据,给神经⽹络输⼊数据,给出正确的输出。

所以,所谓神经⽹络的训练过程,实际上就是确定神经元之间输⼊权重的过程。

如上图所⽰,具体训练过程如下:1. 给神经⽹络输⼊⼀批样本数据,经过神经⽹络传输到输出层,这⼀步被称为前向传播。

基于神经网络的温度控制系统设计与实现

基于神经网络的温度控制系统设计与实现

基于神经网络的温度控制系统设计与实现一、引言随着现代工业的快速发展,各种智能化系统的应用越来越广泛,其中控制系统作为其中一个重要的组成部分,对工业生产的稳定性与效率都有着非常重要的影响。

而在控制系统中,温度控制系统尤为重要,因为温度直接关系到物体的性质及其承受能力,所以对于温度的控制必须要准确、稳定和及时。

基于神经网络的温度控制系统,是一种基于智能化算法的温度控制系统。

通过神经网络来模拟物体的温度变化,从而实现对物体温度的精确控制,因此被广泛应用于各种工业生产领域。

本文将从神经网络的基本原理开始,讲述基于神经网络的温度控制系统的设计和实现,并且结合实际例子,深入探讨神经网络算法在温度控制系统中的优势和应用。

二、神经网络基本原理神经网络是一种模仿生物神经网络的计算模型,它通过学习来自动推断规则和模式,从而实现数据处理、模式识别、控制等任务。

神经网络由神经元构成,每个神经元的输入都是来自其他神经元的输出。

每个神经元都包含有一个非线性的激励函数,用来转换输入信号。

神经网络的学习过程分为监督学习和无监督学习。

在监督学习中,神经网络根据已知的输入输出数据来调整权值,使得输出结果更接近于真实结果。

在无监督学习中,神经网络只根据输入数据本身进行学习,没有人工干预。

神经网络在温度控制系统中的应用,是利用其强大的模式识别和预测能力,来模拟物体温度变化规律,并基于此来控制物体的温度,实现自动化调节。

三、基于神经网络的温度控制系统设计基于神经网络的温度控制系统设计分为三部分:神经网络模型设计,温度数据采集与处理,温度控制算法。

(一)神经网络模型设计神经网络模型是基于神经网络算法实现的,它是基于对物体温度变化规律的学习和预测来建立的。

具体而言,神经网络模型需要解决以下问题:1、神经网络结构神经网络结构包括输入层、中间层和输出层。

传感器采集到温度数据作为神经网络的输入层,中间层是隐含层,用于将输入层的信息进行变换,输出层是对温度进行控制的决策结果。

第 4 章 神经计算基本方法(BP神经网络MATLAB仿真程序设计)例子

第 4 章 神经计算基本方法(BP神经网络MATLAB仿真程序设计)例子
44
BP网络应用实例
x=imread(m,’bmp’); bw=im2bw(x,0.5); 为二值图像 [i,j]=find(bw==0); )的行号和列号 imin=min(i); )的最小行号 imax=max(i); )的最大行号 %读人训练样本图像丈件 %将读人的训练样本图像转换 %寻找二值图像中像素值为0(黑
4
BP网络学习算法
图5.5具有多个极小点的误差曲面
5
BP网络学习算法
另外一种情况是学习过程发生振荡,如图5.6所示 。 误差曲线在m点和n点的梯度大小相同,但方向相反 ,如果第k次学习使误差落在m点,而第k十1次学习 又恰好使误差落在n点。 那么按式(5.2)进行的权值和阈值调整,将在m 点和n点重复进行,从而形成振荡。
图 5.16
待分类模式
20
BP网络应用实例
解(1)问题分析 据图5.16所示两类模式可以看出,分类为简单的非 线性分类。有1个输入向量,包含2个输入元素;两 类模式,1个输出元素即可表示;可以以图5.17所 示两层BP网络来实现分类。
图 5.17
两层BP网络
21
BP网络应用实例
(2)构造训练样本集
6
BP网络学习算法
图5.6学习过程出现振荡的情况
7
BP网络的基本设计方法
BP网络的设计主要包括输人层、隐层、输出层及各 层之间的传输函数几个方面。 1.网络层数 大多数通用的神经网络都预先确定了网络的层数,而 BP网络可以包含不同的隐层。
8
BP网络的基本设计方法
但理论上已经证明,在不限制隐层节点数的情况下 ,两层(只有一个隐层)的BP网络可以实现任意非 线性映射。 在模式样本相对较少的情况下,较少的隐层节点, 可以实现模式样本空间的超平面划分,此时,选择 两层BP网络就可以了;当模式样本数很多时,减小 网络规模,增加一个隐层是必要的,但BP网络隐层 数一般不超过两层。

人工智能行业的深度学习算法与应用案例

人工智能行业的深度学习算法与应用案例

人工智能行业的深度学习算法与应用案例深度学习算法是人工智能领域的重要组成部分,它通过模拟人脑的神经网络结构,进行大规模的数据训练和学习,从而实现对复杂问题的解决和智能决策。

在这篇文章中,我们将介绍几个人工智能行业中深度学习算法的应用案例。

案例一:图像分类与识别在图像分类与识别领域,深度学习算法已经取得了重大突破。

以卷积神经网络(Convolutional Neural Network,CNN)为代表的深度学习算法,通过多层次的卷积和池化操作,可以有效地对图像进行特征提取和分类。

比如在人脸识别领域,深度学习算法可以自动识别出人脸的特征点,实现高精度的人脸识别和身份验证。

案例二:自然语言处理深度学习算法在自然语言处理领域也有广泛的应用。

以循环神经网络(Recurrent Neural Network,RNN)为基础的深度学习模型,可以实现对自然语言的情感分析、语义理解和机器翻译等任务。

通过训练大量的语料库,深度学习算法可以学习到语言的规律和逻辑,提高自然语言处理的准确度和效率。

案例三:智能驾驶深度学习算法在智能驾驶领域也发挥着重要作用。

通过对大量的行车数据进行学习和训练,深度学习算法可以实现自动驾驶车辆的识别和决策。

比如,在交通信号灯识别任务中,深度学习算法可以准确地判断红绿灯的状态,并做出相应的反应。

此外,深度学习算法还可以对周围环境进行感知和建模,提高行车的安全性和舒适性。

案例四:医疗诊断深度学习算法在医疗诊断领域也有广泛的应用。

例如,在疾病诊断任务中,通过对大量医疗影像数据进行学习和训练,深度学习算法可以自动识别出疾病特征和异常情况。

此外,深度学习算法还可以对医疗数据进行分析和挖掘,辅助医疗决策和治疗方案的制定。

总结:深度学习算法在人工智能行业中的应用案例举不胜举,图像分类与识别、自然语言处理、智能驾驶和医疗诊断只是其中的几个代表性例子。

随着深度学习技术的不断发展和创新,相信未来还会有更多领域可以通过深度学习算法实现智能化和自动化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

神经网络实学习例子1通过神经网络滤波和信号处理,传统的sigmoid函数具有全局逼近能力,而径向基rbf函数则具有更好的局部逼近能力,采用完全正交的rbf径向基函数作为激励函数,具有更大的优越性,这就是小波神经网络,对细节逼近能力更强。

BP网络的特点①网络实质上实现了一个从输入到输出的映射功能,而数学理论已证明它具有实现任何复杂非线性映射的功能。

这使得它特别适合于求解内部机制复杂的问题。

我们无需建立模型,或了解其内部过程,只需输入,获得输出。

只要BPNN结构优秀,一般20个输入函数以下的问题都能在50000次的学习以内收敛到最低误差附近。

而且理论上,一个三层的神经网络,能够以任意精度逼近给定的函数,这是非常诱人的期望;②网络能通过学习带正确答案的实例集自动提取"合理的"求解规则,即具有自学习能力;③网络具有一定的推广、概括能力。

bp主要应用回归预测(可以进行拟合,数据处理分析,事物预测,控制等)、分类识别(进行类型划分,模式识别等),在后面的学习中,都将给出实例程序。

但无论那种网络,什么方法,解决问题的精确度都无法打到100%的,但并不影响其使用,因为现实中很多复杂的问题,精确的解释是毫无意义的,有意义的解析必定会损失精度。

BP注意问题1、BP算法的学习速度很慢,其原因主要有:a由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,必然会出现"锯齿形现象",这使得BP算法低效;结论4:由上表可以看出,后者的初始权值比较合适些,因此训练的时间变短,误差收敛速度明显快些。

因此初始权值的选取对于一个网络的训练是很重要的。

1.4,用最基本的BP算法来训练BP神经网络时,学习率、均方误差、权值、阈值的设置都对网络的训练均有影响。

综合选取合理的值,将有利于网络的训练。

在最基本的BP算法中,学习率在整个训练过程是保持不变的,学习率过大,算法可能振荡而不稳定;学习率过小,则收敛速度慢,训练时间长。

而要在训练之前选择最佳的学习率是不现实的。

因此学习率可变的BP算法(variable learning rate backpropagation,VLBP)应运而生。

下一结介绍用VLBP来训练该网络的情况。

b存在麻痹现象,由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区域内,权值误差改变很小,使训练过程几乎停顿;c为了使网络执行BP算法,不能用传统的一维搜索法求每次迭代的步长,而必须把步长的更新规则预先赋予网络,这种方法将引起算法低效。

2、网络训练失败的可能性较大,其原因有:a从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此,算法很有可能陷入局部极值,使训练失败;b网络的逼近、推广能力同学习样本的典型性密切相关,而从问题中选取典型样本实例组成训练集是一个很困难的问题。

3、网络结构的选择:尚无一种统一而完整的理论指导,一般只能由经验选定。

为此,有人称神经网络的结构选择为一种艺术。

而网络的结构直接影响网络的逼近能力及推广性质。

因此,应用中如何选择合适的网络结构是一个重要的问题。

4、新加入的样本要影响已学习成功的网络,而且刻画每个输入样本的特征的数目也必须相同。

5、采用s型激活函数,由于输出层各神经元的理想输出值只能接近于1或0,而不能打到1或0,因此设置各训练样本的期望输出分量Tkp时,不能设置为1或0,设置0.9或0.1较为适宜。

一认识bp:第二节内容:主要是阐述BP中几个容易混绕的概念和问题,包括什么是网络的泛化能力?过拟合是什么,怎么处理?学习速率有什么作用?神经网络的权值和阈值分别是个什么概念?用BP逼近非线性函数,如何提高训练精度?本节主要学习BP中几个容易混绕的概念和问题:什么是网络的泛化能力?过拟合是什么,怎么处理?学习速率有什么作用?神经网络的权值和阈值分别是个什么概念?用BP逼近非线性函数,如何提高训练精度?什么是网络的泛化能力?一个神经网路是否优良,与传统最小二乘之类的拟合评价不同(主要依据残差,拟合优度等),不是体现在其对已有的数据拟合能力上,而是对后来的预测能力,既泛化能力。

网络的预测能力(也称泛化能力、推广能力)与训练能力(也称逼近能力、学习能力)的矛盾。

一般情况下,训练能力差时,预测能力也差,并且一定程度上,随训练能力地提高,预测能力也提高。

但这种趋势有一个极限,当达到此极限时,随训练能力的提高,预测能力反而下降,即出现所谓"过拟合"现象。

此时,网络学习了过多的样本细节,而不能反映样本内含的规律。

过拟合是什么,怎么处理?神经网络计算不能一味地追求训练误差最小,这样很容易出现"过拟合"现象,只要能够实时检测误差率的变化就可以确定最佳的训练次数,比如15000次左右的学习次数,如果你不观察,设成500000次学习,不仅需要很长时间来跑,而且最后结果肯定令人大失所望。

避免过拟合的一种方法是:在数据输入中,给训练的数据分类,分为正常训练用、变量数据、测试数据,在后面节将讲到如何进行这种分类。

其中变量数据,在网络训练中,起到的作用就是防止过拟合状态。

学习速率有什么作用?学习速率这个参数可以控制能量函数的步幅,并且如果设为自动调整的话,可以在误差率经过快速下降后,将学习速率变慢,从而增加BPNN的稳定性。

此时训练方法采用采用贝叶斯正则化算法提高BP网络的推广能力。

二主要函数1 prepca函数对归一化后的样本数据进行主元分析,从而消除样本数据中的冗余成份,起到数据降维的目的。

[ptrans,transMat]=prepca(pn,0.001);1、数据归一化mapminmax(x,minx,maxx)minx为要取得的最小值,maxx为最大值一般归一化到0.1-0.9比较和2或者使用mapstd 3反归一化y1=mapminmax('reverse',y,ps)2、数据分类,主要包括打乱数据顺序,抽取正常训练用数据、变量数据、测试数据4dividevec()函数输入训练数据的乱序排法,以及分类[trainV,valV,testV]=dividevec(p,t,valPercent,testPercent)p=rands(3,1000);t=[p(1,:).*p(2,:);p(2,:).*p(3,:)];[trainV,valV,testV]=dividevec(p,t,0.20,0.20);net=newff(minmax(p),[10 size(t,1)]);正常数据,是用来正常训练用变量数据,主要目的是防止训练中出现过拟合状态测试数据,是用来看训练效果的net=train(net,trainV.P,trainV.T,,,valV,testV);sim(net,validateSamples.P,,,validateSamples.T)5 traingdx函数[net,TR]=traingdx(net,TR,trainV,valV,testV)traingdx is anetwork training function that updates weight and bias values according to gradient descent momentum and an adaptive learning rate.info=traingdx('info')net:Neural network TR:Initial training record created by train trainV:Training data created by train valV:Validation data created by train testV:Test data created by train and returns net:Trained network TR:Training record of various values over each epoch 4常用bp训练函数Traingdm%动量梯度下降算法Traingda变学习率梯度下降算法Traingdx%变学习率动量梯度下降算法TrainrpRPROP(弹性BP)算法,内存需求最小大型网络训练方法%(共轭梯度算法)traincgf';%Fletcher-Reeves修正算法traincgp';%Polak-Ribiere修正算法,内存需求比Fletcher-Reeves修正算法略大traincgb';%Powell-Beal复位算法,内存需求比Polak-Ribiere修正算法略大%(大型网络的首选算法)trainscg';%Scaled Conjugate Gradient算法,内存需求与Fletcher-Reeves修正算法相同,计算量比上面三种算法都小很多trainbfg';%Quasi-Newton Algorithms-BFGS Algorithm,计算量和内存需求均比共轭梯度算法大,但收敛比较快trainoss';%One Step Secant Algorithm,计算量和内存需求均比BFGS算法小,比共轭梯度算法略大%(中型网络的首选算法)'trainlm';%Levenberg-Marquardt算法,内存需求最大,收敛速度最快'trainbr';%贝叶斯正则化算法[trainV,valV,testV,trainInd,valInd,testInd]=divideblock(allV,trai nRatio,valRatio,testRatio)[训练数据,变量数据,测试数据,训练数据矩阵的标号,变量数据标号,测试数据标号]=divideblock(所有数据,训练数据百分比,变量数据百分比,测试数据百分比)其实dividevec和后面四个分类函数的区别在于,dividevec一般直接在Matlab代码中调用。

而后面四个函数是通过设置网络的divideFcn函数来实现,比如,net.divideFcn='divideblock',但不是说不可以在代码中像dividevec直接调用阀值和权值训练好的权值、阈值的输出方法是:输入到隐层权值:代码:w1=net.iw{1,1}隐层阈值:代码:theta1=net.b{1}隐层到输出层权值代码:w2=net.lw{2,1};输出层阈值:代码:theta2=net.b{2}net.IW是输入权值,net.LW是层权值,net.b是阈值。

相关文档
最新文档