生物统计学 概率和概率分布
生物统计学课件1、概率及概率分布
指数分布在统计分析中常用于计算随机事件的概率和期望值,如生存 分析和可靠性工程。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
概率分布的应用
在生物统计学中的应用
描述生物样本人群的特征
遗传学研究
通过概率分布,可以描述生物样本人 群的某些特征,如身高、体重、年龄 等。
在遗传学研究中,概率分布被广泛应 用于基因频率的分布和遗传疾病的分 布。
正态分布在统计学中的重要性在于许 多统计方法和假设检验都是基于正态 分布的假设。
泊松分布
泊松分布是一种离散概率分布 ,常用于描述单位时间内随机
事件发生的次数。
泊松分布的概率函数由两个参 数λ和k控制,其中λ表示单位时
间内随机事件发生的平均次数 ,k表示随机事件发生的次数。
泊松分布在生物统计学中常用 于描述某些离散变量的分布, 如遗传学中的基因突变频率、 流行病学中的疾病发病率等。
在社会科学研究中的应用
人口统计学研究
在人口统计学研究中,概率分布 被用于描述人口特征和分布情况
。
社会调查
在社会调查中,概率分布被用于描 述调查结果的分布情况,例如调查 结果的置信区间和抽样误差。
经济预测
在经济预测中,概率分布被用于预 测经济发展趋势和未来经济状况。
REPORT
CATALOG
DATE
描述随机变量取连续数值时的概率分布,如正态分布、指数 分布等。
离散概率分布
二项分布
描述在n次独立重复的伯努利试验中 成功的次数的概率分布,常用于描述 生物实验和调查中的成功次数。
泊松分布
描述单位时间内(或单位面积上)随 机事件发生的次数,常用于描述稀有 事件的概率模型。
生物统计学 几种常见的概率分布律
非此即彼
随机试验有两种互不相容不同结果。 重要条件: 1. 每次试验两个结果(互为对立事件),每一种结果在每次 试验中都有恒定的概率; 2. 试验之间应是独立的。
P(AB)=P(A)P(B)
2.14
二项分布的概率函数
服从二项分布的随机变量的特征数
方差 当以比率表示时
偏斜度
了解
峭度
做题时请先 写公式,代 数字,出结 果,描述结 果的意义。
正态分布表的单侧临界值
上侧临界值
下侧临界值
双侧临界值
§3.5 另外几种连续型概率分布
指数分布(exponential distribution)
了解
Γ分布(gamma distribution)
了解
了解
随着p的增加, Γ分布愈来愈 接近于正态分 布。
§3.6 中心极限定理 (Central Limit Theorem) 假设被研究的随机变量X可以表 示为许多相互独立的随机变量Xi 的和。如果Xi的数量很大,而且 每一个别的Xi对于X所起的作用 又很小,则X可以被认为服从或 近似地服从正态分布。
作业
P51
3.1, 3.2(算出各表现型概率即可); 3.12, 3.18
正态分布的密度函数和分布函数 正态分布(normal distribution) 高斯分布(Gauss distribution) 正态曲线(normal curve) 连续型概率分布律 两头少,中间多,两侧对称
了解
标准正态分布
/fai/
标准正态分布的特性
ቤተ መጻሕፍቲ ባይዱ
正态分布表的使用方法
正态分布标准化
生物统计学
第三章 几种常见的概率 分布律
2010.9
生物统计学 第三章 概率论
解: 经计算得每毫升水中平均细菌数为0.500,方差S2=0.496。两者很 接近,故可认为每毫升水中细菌数服从泊松分布。以0.500代替λ, 得 k
0.5 P( x k ) e 0.5 k!
从结果可以看出细菌数的频率分布与λ=0.5的泊松分布是相当吻合 的,进一步说明用泊松分布描述单位容积(或面积)中细菌数的分布 是适宜的。
将这种变量的所有可能取值及其对应的概率一一列 出所形成的分布,称为离散型随机变量的概率分 布:
变量xi 概率P(y=yi)
x1 x2 x3 … x n P1 P2 P3 …Pn
• 2、连续型随机变量
• 变量x的取值仅为一范围,且x在该范围 内取值时,其概率是确定的,这种类型 的变量称为连续型随机变量
2 3
即复合事件的概率必等于该事件出现的组合数目乘以
单个事件的概率;而这一复合事件的可能组合数目则相
当于从n(3)个物体中任取其x(2)个物体的组合数。数学上 的组合公式为:
n! C x!(n x)!
x n
(二)二项分布的概率函数
二项式中包含两项,这两项的概率为p、q,并且 p+q=1,可推知变量x的概率函数为:
• 3.对立事件的减法
• 若事件A的概率为P(A),那么其对立事件的
概率为:P( A )=1-P(A)
_
• 4.完全事件系的概率
• 例如上例,黄色种子和白色种子构成完全 事件系,其概率为1。
三. 概率分布
1、离散型随机变量
变量x的取值可用实数表示,且x取某一值时,其 概率是确定的,这种类型的变量称为离散型随机 变量。
• (2) • λ值愈小分布愈偏倚, 随着λ的增大,分布趋 于对称。 • 当λ= 20时分布接近于 正态分布 • 当λ=50时,可以认为泊 松分布呈正态分布 • 当 λ≥20时就可以用正 态分布来近似地处理泊 松分布的问题。
概率论在生物统计学中的应用
概率论在生物统计学中的应用概率论是数学中的一个分支,研究的是事件发生的可能性。
在生物统计学中,概率论起到了重要的作用。
通过运用概率论的方法,我们可以分析和解释生物数据的变异性,评估实验结果的可靠性以及进行生物学假设的检验。
本文将探讨概率论在生物统计学中的几个重要应用。
一、随机事件与概率在生物统计学中,许多生物学现象都表现为随机事件,比如基因突变、疾病发生等。
概率论通过定义事件的概率,可以帮助我们衡量这些随机事件的发生概率。
例如,在研究某种疾病的遗传机制时,我们可以利用概率论来计算某个基因突变在人群中的概率,从而判断该突变是否与疾病的发生有关。
二、概率分布与生物学数据分析在生物学研究中,我们常常需要对实验数据进行分析。
概率分布是一种用于描述随机变量的数学函数,通过概率分布,我们可以得到随机变量在不同取值下的概率。
例如,在研究某种药物的疗效时,我们可以利用正态分布来描述被试者的体重变化,从而评估该药物的疗效。
三、假设检验与生物统计学假设检验是生物统计学中常用的方法,它用于判断样本数据是否与假设相符。
概率论为假设检验提供了理论基础,通过计算得到的p值,我们可以判断样本数据是否支持某一假设。
例如,在临床试验中,我们可以利用假设检验来评估一种新药物的疗效,判断该药物是否优于对照组。
四、贝叶斯统计与生物信息学贝叶斯统计是一种基于概率论的统计学方法,它用于根据已有的数据和先验知识来更新对未来事件的概率分布。
在生物信息学中,贝叶斯统计广泛应用于基因组学、蛋白质学等领域。
例如,在基因组学研究中,我们可以利用贝叶斯统计来预测编码蛋白质的基因。
通过整合多种数据源,例如DNA序列、转录组数据等,我们可以计算出每个基因是编码蛋白质的概率,从而提高基因预测的准确性。
五、抽样与统计推断抽样是生物统计学中常用的方法,它通过从总体中选取一部分样本来估计总体参数。
概率论提供了抽样方法的理论基础,通过计算样本的均值、方差等统计量,我们可以推断总体的参数。
生物统计学第三章概率分布
中位数 ➢ x轴为曲线向左、右延伸的渐进线
➢ 由两个参数决定: 平均数 和 标准差 • 决定曲线在x 轴上的位置 • 决定曲线的形状
正态分布
平均数的影响
标准差的影响
正态分布
标准正态分布(standard normal distribution)
对于给定的两尾概率求标准正态分布在x 轴上的分位点
/2
/2
对于给定的一尾概率求标准正态分布在x 轴上的分位点
/2
/2
(1)设标准正态分布的右尾(左尾)概率为
,求分位数u值
用2 查附表2,可得一尾概率为 时的分位数u值
= 20.05 = 0.1查表得u = 1.644854 。
(2)
, = 20.01 = 0.02查表得u = 2.326348
离散型随机变量的概率分布
普哇松分布的概率函数
普哇松分布的期望与方差
离散型随机变量的概率分布
例2:某遗传病的发病率为0.0003,某鸡场有10000头 肉鸡,问今年发生该遗传病4头及4头以上的概率有 多少?
λ=μ=np=10000×0.0003=3 x=4 P(x≥4)=1-P(x<4)=1-P(0)-P(1)-P(2)-P(3)
离散型随机变量的概率分布
二项分布的概率函数
二项分布的期望 二项分布的方差
离散型随机变量的概率分布
例1:一头母猪一窝产了10头仔猪,分别求其
中有2头公猪和6头公猪的概率。
产公猪头数的期望值: 产公猪头数的方差:
离散型随机变量的概率分布
普哇松分布(Poisson distribution)
关于生物统计学基本概念及公式
是以概率理论为基础,研究生命科学中随机现象规律性的应用数学科学。
涉及到医学科学研究的设计、资料搜集、归纳、分析与解释的一门应用性基础学科、二、科学研究的基本程序1、提出一个欲待研究的问题:2、科学研究设计:专业设计、统计学设计:究对象,拟定研究因素及其分配,如何执行随机、对照与重复的统计学原则,如何观察与度量效应,以及数据收集、整理与分析的方法,通过合理的、系统的安排,达到控制系统误差,以尽可能少的资源消耗(最小的人力、物力、财力和时间)获取准确可靠的信息资料及可信的结论,使效益最大化。
3、获取试验与观察的资料,又称为搜集资料4、数据审核与计算机录入5、分析资料进行检测与描述。
(confidence interval)估计与统计学假设检验(hypothesis test)。
统计学分析过程按变量的多寡可分为单变量分析与多重变量分析。
6、分析结果的合理解释(Explication of results):研究中应注意的问题1、统计学结论的正确与否取决于统计学分析数据的真实性、准确性以及研究样本对研究总体的代表性。
2、尽可能地控制系统误差是统计分析数据真实性、准确性的保证。
3、随机化抽样是确保样本数据对研究总体具有代表性的重要过程。
,个体的许多属性(如年龄、性别、血浆胆固醇等)存在变异性,统计学上将反映个体简称变量; 针对不同类型的属性,需采用不同类型的变量,因而产生不同类型的资料。
根据研究目的所确定的具有相同性质的观察单位的集合成为总体(母体)。
从同一总体中通过随机化过程抽取的部分观察单位称为样本(子样)。
对照组的过程。
体的参数不等,或多个样本的统计量存在差异性称为抽样误差。
A的发生概率记为P(A)。
概率的取值在0 到1之间,若P=1或P=0的事件称为必然事件,若0<P<1 的事件为随机事件。
概率接近于0(如P<0.05)的事件称为小概率事件。
μ表示总体均数,σ表示总体标准差,π表示总体率。
医学生物统计学知识点
医学生物统计学知识点在医学领域,生物统计学是一门重要的学科,它提供了在医学实验和研究中收集、分析和解释数据的方法和技巧。
本文将介绍医学生物统计学的一些基本知识点。
一、基本概念1. 总体和样本:在生物统计学中,研究对象被称为总体,而从总体中选取的一部分作为研究样本。
2. 变量和观测值:研究中所关心的特定性质或特征被称为变量,而在样本中观察到的具体数值被称为观测值。
二、描述性统计学1. 频数分布:用来描述变量不同取值出现的次数,通常以频数表或频率直方图的形式展示。
2. 平均数:用来表示一组数据的集中趋势,包括算术平均数、加权平均数和几何平均数等。
3. 中位数:将一组数据按照大小排序,中间的那个值即为中位数,对于偶数个数据则取中间两个数的平均值。
4. 方差和标准差:用来衡量数据的离散程度,方差是各数据与平均数之差的平方和的平均数,标准差是方差的平方根。
三、概率与概率分布1. 概率的基本原理:描述事件发生的可能性,介于0和1之间,其中0表示不可能发生,1表示一定会发生。
2. 离散型随机变量与概率分布:如二项分布、泊松分布等,适用于离散型变量的概率计算。
3. 连续型随机变量与概率密度函数:如正态分布、指数分布等,适用于连续型变量的概率计算。
四、假设检验1. 原假设与备择假设:在医学研究中,我们通常提出原假设来进行检验,并根据收集到的数据判断是否拒绝原假设。
2. 显著性水平和P值:显著性水平是我们指定的拒绝原假设的程度,而P值是根据实际数据计算出来的,表示观察到的结果与原假设一致的可能性。
3. 单样本检验和双样本检验:单样本检验用于研究样本与总体的差异,双样本检验用于比较两个样本之间的差异。
五、相关性分析1. 相关系数:用来衡量两个变量之间的线性相关程度,常用的有皮尔逊相关系数和斯皮尔曼等级相关系数。
2. 散点图:用来展示两个变量之间的关系,可以直观地观察到变量之间的趋势。
六、回归分析1. 简单线性回归:研究一个自变量与一个因变量之间的关系,通过回归方程来描述二者之间的线性关系。
生物统计学答案第二章
生物统计学答案第二章第二章概率和概率分布2.1在这样的实验中,取一枚镍币,将图案表面称为a,将文字表面称为B。
向上翻转硬币,观察硬币下落后是向上还是向上。
分组重复10次,记下a上升的次数。
总共有10组。
然后以100次为一组,1000次为一组,分别做10组。
计算a的频率,并验证2.1.3的内容。
答:在这里用二项分布随机数模拟一个抽样试验,与同学们所做的抽样试验并不冲突。
以变量y表示图向上的次数,n表示重复的次数,m表示组数,每次落下后图向上的概率φ=1/2。
sas程序如下,该程序应运行3次,第一次n=10,第二次n=100,第三次n=1000。
选项nodate;datavalue;n=10;m=10;phi=1/2;doi=1tom;保留3053177个;doj=1吨;y=ranbin(seed,n,phi);output;end;end;datadisv;设定值;裴勇俊;iffirst.ithensumy=0;sumy+y;meany=sumy/n;py=平均Y/n;iflast.ithenoutput;keepnmphimeanypy;run;procprint;title'binomialdistribution:n=10m=10';run;普鲁斯曼;瓦梅尼比;title'binomialdistribution:n=10m=10';run;以下三个表格是该计划的结果。
表的第一部分是每组y的平均结果,包括平均频率和平均频率,共10组。
表的第二部分是10组数据的平均值。
从结果可以看出,随着样本量的增加,样本的频率在0.5左右波动,平均振幅越来越小,最终稳定在0.5。
binomialdistribution:n=10m=10obsnmphimeanypy110100.55.70.57210100.54.50.45310100.55.10.51410100.56.10.61510100.56.10.61610 100.54.30.43710100.55.60.56810100.54.70.47910100.55.20.521010100.55.60.56binomialdistribution:n=10m=10变量平均----------------------意思是。
生物概率知识点总结
生物概率知识点总结生物统计学的基本概率知识包括以下几个方面:1. 随机变量:随机变量是生物学实验中随机产生的变量,它可以通过实验来测量和观测。
生物学中常见的随机变量包括染色体数量、细胞形态、体质量等。
随机变量的概率分布描述了随机变量取不同值的概率分布情况,包括二项分布、泊松分布、正态分布等。
2. 概率密度函数:概率密度函数描述了随机变量在不同取值下的概率密度分布,它是描述随机变量概率分布的一种数学函数。
在生物学研究中,概率密度函数通常被用于推断生物学现象、预测生物学趋势和探究生物学规律。
3. 条件概率:条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
在生物学研究中,条件概率常常被用于分析生物学现象、推断生物学规律和预测生物学趋势。
例如,在疾病发生的研究中,科学家常常需要根据某些条件来推断疾病的发生概率,这就是条件概率的应用之一。
4. 贝叶斯统计学:贝叶斯统计学是一种基于贝叶斯定理的概率统计方法,它将先验信息和新数据结合起来,给出新数据的后验概率。
在生物学研究中,贝叶斯统计学通常被用于推断生物学现象、分析生物学规律和预测生物学趋势。
除了上述基本概率知识外,生物统计学中还有许多其他重要的概率知识点,比如推断统计学、核心统计学、假设检验等内容。
在生物学研究中,这些概率知识点都有着重要的应用价值,科学家们常常通过这些概率知识点来分析和解释生物学数据,推断生物学现象、预测生物学趋势等。
总的来说,生物概率知识点是生物统计学中的重要内容,它是帮助我们理解和解释生物学现象、推断生物学规律、预测生物学趋势的重要工具。
通过深入学习和理解生物概率知识点,我们可以更好地应用统计学方法来分析和解释生物学数据,推断生物学现象、预测生物学趋势,为生物学研究提供更有力的支持。
高数帮生物统计学
高数帮生物统计学
生物统计学是生物学、医学、生态学等领域中不可或缺的统计方法学科之一。
高等数学作为生物统计学的基础知识之一,对于生物统计学的学习和应用有着至关重要的作用。
生物统计学是一种对生物数据进行处理、分析、解释和推断的科学方法。
它包括描述性统计学、推论性统计学和实验设计等内容。
其中,描述性统计学是对数据进行描述和分析,包括数据的中心趋势、离散程度、分布形态等;推论性统计学是根据样本数据推断总体数据的统计方法,包括假设检验、置信区间、方差分析等;实验设计是为了得到可靠的实验结果而设计的统计方法。
高等数学作为生物统计学的基础知识之一,主要涉及到概率论、数理统计、线性代数等内容。
其中,概率论是生物统计学的基础,它涉及到概率、随机变量、概率分布、期望、方差等概念;数理统计是生物统计学的核心,它涉及到参数估计、假设检验、方差分析、回归分析等内容;线性代数则是生物统计学的应用之一,它涉及到多元统计分析、主成分分析、因子分析等内容。
生物统计学在生物学、医学、生态学中的应用非常广泛。
在生物学中,生物统计学可用于描述和分析生物数据,如基因表达、蛋白质结构、遗传连锁等;在医学中,生物统计学可用于临床试验设计和数据分析,如药物疗效评价、病人生存分析等;在生态学中,生物
统计学可用于生态数据的处理和分析,如物种多样性、生态系统稳定性等。
高等数学作为生物统计学的基础知识之一,对于生物统计学的学习和应用有着重要的作用。
生物统计学在生物学、医学、生态学中的应用也越来越广泛,促进了生物学、医学、生态学等领域的发展。
《高级生物统计》课件
ROC曲线分析
介绍ROC曲线的起源、定义和应 用领域,突出在生物学研究中 的意义。
第六章:生存分析
1
Kaplan-Meier曲线
2
深入讲解Kaplan-Meier生存曲线的绘制原
理和意义,以及如何执行生存分析。
3
基本特征
介绍生存分析的基本概念和数学模型, 引入失效时间的概念。
Cox比例风险模型
详细解释Cox比例风险模型的构建和学习, 落实其实践应用。
第二章:概率分布
基本概念
介绍概率分布的基本概念、参数 和图形表达方式。
常见分布
列举和比较常见的概率分布,如 正态分布、二项分布、泊松分布 等。
密度函数和累积分布函数
讨论概率密度函数和累积分布函 数,深入挖掘其内在含义。
第三章:假设检验
1
基本思想
解释假设检验的基本原理和步骤,让读者明白其检验的核心。
《高级生物统计》PPT课 件
准备好了吗?快来加入我们的高级生物统计学课程,开启一场探索基因组学、 蛋白质组学和系统生物学的旅程!
第一章:概述
生物统计学简介
介绍生物统计学的定义、发 展历程和主要应用领域。
重要作用
讲述生物统计学在生命科学 研究中的重要性,促进读者 认识其现实意义。
发展历程
探究生物统计学的起源、发 展和最新趋势。
2
单样本检验
从单个样本的角度,讲解如何做出正确的假设检验结论。
3
双样本检验
从两个或多个相关样本的角度,介绍假设检验的思路和方法。
4
方差分析
阐述方差分析的基本概念、类型和应用领域,指导读者如何正确地实施分析。
第四章:回归分析
1 简单线性回归
第三章 概率与概率分布 华中农业大学生物统计学讲义
该试验样本空间由10个等可能的基本事件构成,即n=10,而事 件A所包含的基本事件有3个,即抽得编号为1、2、3中的任何一 个,事件A便发生。
P(A)=3/10=0.3
P(B)=5/10=0.5
12 3 4 5
6
7
8 9 10
一、概率基本概念
A=“一次取一个球,取得红球的概率”
10个球中取一个球,其可能结果有10个基本事件(即每个球 被取到的可能性是相等的),即n=10 事件A:取得红球,则A事件包含3个基本事件,即m=3
P(A)=3/10=0.3
12 3 4 5
6
7
8
9 10
一、概率基本概念
B= “一次取5个球,其中有2个红球的概率” 10个球中任意取5个,其可能结果有C105个基本事件,即n= C105 事件B =5个球中有2个红球,则B包含的基本事件数m= C32 C73
P(B) = C32 C73 / C105 = 0.417
2、在一定条件下可能发生也可能不 发生。
(二)频率(frequency)
一、概率基本概念
若在相同的条件下,进行了n次试验,在这n 次试验中,事件A出现的次数m称为事件A出现的 频数,比值m/n称为事件A出现的频率(frequency), 记为W(A)=m/n。
0≤W(A) ≤1
例:
一、概率基本概念
设样本空间有n个等可能的基本事件所构成,其中事件A包 含有m个基本事件,则事件A的概率为m/n,即P(A)=m/n。
古典概率(classical probability) 先验概率(prior probability)
一、概率基本概念
1 2 3 4 5 6 7 8 9 10
随机抽取一个球,求下列事件的概率; (1)事件A=抽得一个编号< 4 (2)事件B =抽得一个编号是2的倍数
生物统计学中的概率统计和参数估计方法
生物统计学中的概率统计和参数估计方法生物统计学是一门统计学和生物学的交叉学科,主要研究如何利用概率统计和参数估计等方法,对生物学和医学中的相关数据进行分析和研究。
以下将对生物统计学中的概率统计和参数估计方法进行探讨。
一、概率统计概率统计是生物统计学中非常重要的一个分支,其方法主要用来描述和分析生物学和医学数据中的随机变量和随机过程,包括概率分布、概率密度函数、概率质量函数、期望值、方差等。
1.1 概率分布概率分布是随机变量取某些值时的可能性分布,如正态分布、泊松分布、二项分布、均匀分布等。
其中,正态分布是最为常见的一种概率分布,其符合“大数定律”,即大量同类数据的平均值趋近于正态分布。
1.2 概率密度函数和概率质量函数概率密度函数和概率质量函数是描述一种概率分布的函数形式。
概率密度函数主要针对连续随机变量,而概率质量函数则主要针对离散随机变量。
以正态分布为例,其概率密度函数为:$$f(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$$其中,$\mu$代表均值,$\sigma$代表标准差。
1.3 期望和方差期望是随机变量在大量试验中出现的平均值,其描述了概率分布的中心位置。
而方差则描述了随机变量离平均值的距离,即数据的分散程度。
以正态分布为例,其期望为均值$\mu$,方差为标准差的平方$\sigma^{2}$。
二、参数估计参数估计是生物统计学中另一个非常重要的分支,其方法主要用于从已知的样本数据中,估计未知的总体参数值。
其中两种常见的方法是极大似然估计和贝叶斯估计。
2.1 极大似然估计极大似然估计是从样本数据出发,估计总体参数的一种方法。
其基本思想是找到最能反映样本数据特征,同时符合总体分布的参数值。
其计算过程主要包含两步:第一步,定义似然函数。
似然函数是描述数据在不同参数下的可能性,即已知某参数下的样本数据,求该参数下数据出现的概率密度函数。
生物统计学第5版
生物统计学第5版简介生物统计学是一门应用统计学的学科,旨在分析和解释生物数据。
生物数据是指从生物实验、调查和观测中收集的各种统计信息。
生物统计学的目标是帮助科学家们通过合理的实验设计、数据采集和分析来回答和解释生物学问题。
本文档将介绍《生物统计学第5版》这本经典教材的内容概要,包括主要章节和重点内容。
希望通过阅读本文档,读者能对生物统计学的基本概念和方法有一个清晰的了解。
目录1.数据的整理和描述2.概率和概率分布3.统计推断:总体与样本4.置信区间与假设检验5.分析方差6.相关与回归分析7.分类变量的分析8.生存分析9.多因素实验设计主要章节和重点内容章节1:数据的整理和描述本章主要介绍了如何整理和描述生物学数据,包括数据的测量和分类、数据的可视化展示、数据的度量和统计描述等。
重点内容有:•数据类型和测量尺度的分类•统计图表的应用和解读•描述性统计方法:中心趋势和离散程度的度量章节2:概率和概率分布本章介绍了概率的基本概念和统计学中常用的概率分布,包括离散和连续概率分布。
重点内容有:•概率的基本原理和性质•常见离散概率分布:二项分布和泊松分布•常见连续概率分布:正态分布和指数分布章节3:统计推断:总体与样本本章介绍了统计推断的基本思想和方法,包括点估计和区间估计。
重点内容有:•总体和样本的概念•点估计和区间估计的原理和应用•抽样分布和中心极限定理的理解章节4:置信区间与假设检验本章介绍了置信区间和假设检验的原理和应用。
重点内容有:•置信区间的计算和解释•假设检验的逻辑和步骤•单样本和双样本假设检验的应用章节5:分析方差本章介绍了方差分析的原理和应用,包括单因素和多因素分析方差。
重点内容有:•单因素方差分析的基本原理•多因素方差分析的原理和应用•方差分析结果的解读和比较章节6:相关与回归分析本章介绍了相关和回归分析的原理和应用。
重点内容有:•相关分析:相关系数的计算和解释•简单线性回归分析:回归方程和回归系数的估计•多元回归分析:多个自变量对因变量的影响章节7:分类变量的分析本章介绍了分类变量的分析方法,包括卡方检验和逻辑回归。
生物统计学:几种常见的概率分布律
头仔猪中白色的为x头,则x为服从二项分布B(10,0.75)
的随机变量。于是窝产10头仔猪中有7头是白色的概率
为:
10! P ( x 7) C 0.75 0.25 0.75 7 0.253 0.2503 7!3!
7 10 7 3
【例3.2】 设在家畜中感染某种疾病的概率为20%,现有两 种疫苗,用疫苗A 注射了15头家畜后无一感染,用疫苗B 注射 15头家畜后有1头感染。设各头家畜没有相互传染疾病的可能, 问:应该如何评价这两种疫苗? 假设疫苗A完全无效,那么注射后的家畜感染的概率仍为20 %,则15 头家畜中染病头数x=0的概率为
1-p=q,则称这一串重复的独立试验为n重贝努利试验,
简称贝努利试验(Bernoulli trials)。
在生物学研究中,我们经常碰到的一类离 散型随机变量,如孵n枚种蛋的出雏数、n头病 畜治疗后的治愈数、n 尾鱼苗的成活数等,可用 贝努利试验来概括。 在n重贝努利试验中,事件 A 可能发生0,1, 2,…,n次,现在我们来求事件A恰好发生 k(0≤k≤n)次的概率Pn(k)。
四、二项分布的平均数与标准差 统计学证明,服从二项分布B(n,p)的随机变 量之平均数μ、标准差σ与参数n、p有如下关系: 当试验结果以事件A发生次数k表示时
μ=np
(3-5)
(3-6)
npq
【例3.4】求【例3.3】平均死亡猪数及死 亡数的标准差。
以p=0.2,n=5代入 (3-5)和(3-6) 式得: 平均死亡猪数 μ=5×0.20=1.0(头) 标准差
一、波松分布的意义
若随机变量x(x=k)只取零和正整数值0,1, 2,…,且其概率分布为
k , k=0,1,…… (3-10) P( x k ) e k!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频率与概率
Frequency and Probability
参数:总体的统计指标, 如总体均数、标准差,采 样本的实际发生率称为频率。设在相同 用希腊字母分别记为A μ 、 条件下,独立重复进行k次试验,事件 出 现l次,则事件A出现的频率为 l/k。 σ。固定的常数
概率:随机事件发生的可能性大小,用 样本统计量:样本的统计指标,如样本均数、标准差,采用
作业
某动物饲养房现有雌鼠雄鼠各5只,
随机抽取3只小鼠出来,请问: 1、全部都是雄鼠的概率是多少? 2、至少有2只雄鼠的概率是多少?
§2.2 概率分布 变量可是定量的,也可以是定性的。 1、变量 —— 可以测量的任何特征或属
定量变量( quantitative variable ):亦称为数 性Any characteristic or attribute that can 随机变量 值变量,变量值是定量的,表现为数值大小, be measured。 (不同个体结果可能不同) 一般有度量衡单位。e.g. 身高、体重。 • 2 、随机变量 —— 在概率论中称变量为随机 随机变量( random variable ) ):亦称为分类 定性变量(qualitative variable 变量 变量,其变量值是定性的,表现某个体属于 观测值( observation),即数据或资料(data) • 几种互不相容的类型中的一种。 3 、 观 测 值 ( observed value ) 、 变量值 e.g. 血型, 豌豆花的颜色。 (value of variable)、资料(data) —— 离散型随机变量( discrete random variable) 变量的测得值。 连续型随机变量( continuous random variable) 常数(constant):是不能给予不同数值的变 量,代表事物特征和性质的数值。e.g.样本平 均数,标准差。
大写的 P 表示;取值 [0参数附近波动的随机变量 ,1]。 英文字母分别记为 x 、 s。 。
事件的频率与该事件的概率有关。事件发生 的概率愈大,它的频率就愈高。同样,当它 的频率较高时,说明它的概率较大。因此, 在试验次数较多时,可以用频率作为概率的 近似值。 概率是事件在试验结果中出现可能性大小的 定量计量,是事件固有的属性。
做这种题目,首先要把问题转 变为符号和公式
条件
3. 概率乘法法则
将(2.11)式稍加改动,可以得到概率乘法公式:
概率乘法法则(multiplicative law of probability) 可以叙述为:两事件交的概率,等于其中一事件 (其概率必须不为0)的概率乘以另一事件在已知 前一事件发生条件下的条件概率。
用一个词来 形容对立事 件
2. 条件概率
A conditional probability is the 前面所讲的都是在某一组规定的条件下,事 probability of an event occurring, 件 A出现的概率。有时需研究在事件 B已经发 生的条件下,事件 A发生的概率。这时的概率 given that another event has already 称为已知事件B发生条条件下,事件A发生的 occurred. The conditional 条件概率( conditional probability ),记为 probability P (A | B)。 of event B occurring, given that event A has occurred, is 相对于条件概率,把没有附加条件时的概率 denoted by P(B|A) and is read as 称为无条件概率(unconditional probability)。 “probability of B, given A.”
The probability of an event A is between 0 and 1, inclusive. That is…
Certain
1
小概率事件
必然事件
随机事件 不可能事件
P = 1
0 < P < 1
0.5
P = 0
Impossible
0
P ≤ 0.05(5%)或P ≤ 0.01(1%)称为
课程网站
链接 /wljxpt/kcIndex.action?kcd m=1801110001
试验(trial):同一组综合条件的实现。
随机试验(random
trial) 试验的每一最基本的结果称为基本事件 (elementary event)。基本事件用小写 拉丁字母a,b,x等表示。 基本事件的集合称为事件(event),通 常用大写的拉丁字母A,B,…表示。
事件的几种基本运算
生物统计学
Biostatistics
第二章 概率和概率分布
Probability and y Distribution
2016.3
生物统计学主要教学内容
统计数据的收集与整理 概率与概率分布 抽样分布 统计推断 拟合优度检验与列联表卡方检验 方差分析 回归与简单相关分析 实验设计 EXCEL和SPSS的一般应用
1. 事件的和(并,union)
2. 事件的交(intersection)
3. 互不相容事件(mutually exclusive event)
概率的统计定义
The frequency of outcomes in the sample space is estimated from experimentation.
2.1 概率的基本概念
概率(probability) 确定性现象 非确定性现象 -- 随机现象
随机现象也并非不可认识,当我们对某一随机现象 做了大量的研究之后,就能从其偶然性中揭示出内 在的规律。研究偶然现象本身规律性的科学称为概 率论。基于实际观测结果,利用概率论得出的规律, 揭示偶然性中所寄寓的必然性的科学就是统计学。 概率论与统计学都是研究随机现象规律性的科学, 概率论是统计学的基础,而统计学则是概率论所得 出的规律在各领域中的实际应用。
红 白
黄 粉
0.5 0.2 0.2 0.1
概率函数
概率
是指随机变量小于 等于某一可能值 (x0)的概率。它 是累积的吗?
红 白
黄 粉
0.5 0.2 0.2 0.1
连续型概率分布 Continuous Probability Distribution
不同于离散型随机变量任何值都可以求出它的
以大写拉丁字母,如X、Y、U等表
示随机变量。 以小写拉丁字母如xi、yi、等表示第i 次观测值。
离散型概率分布 Discrete Probability Distribution
离散型随机变量X,可能取得的数值为有限 个或可数无穷个孤立的值。因此,对于X的 每一个值都能得出一个概率值。可以将随机 变量X所取得值x的概率P(X=x)写成x的函 数p(x),这样的函数称为随机变量X的概 率函数(probability function)。
概率。 连续型随机变量在试验中可以取某一区间内的 任何值,这些数值构成不可数的无穷集合。
特点1:任一确定的x概率都是0,但
并非该事件不发生。不能给随机变量 X的每一个值得出一个概率,只能给 X中的任意区间给出概率。
概率函数
概率
连续型概率的特点2:
X的任何一个精确值的概率都等于0,如P (X=a)=0, P(X=b)=0,所以 P(a<X<b)= P(a≤X≤b) (2.21)
Multiplication Rule
4. 独立事件 Independent Event
Multiplication Rule
学习小组任务
1、请以几种彩票为例,结合概率论知识,论述 为什么要中一个彩票大奖很难? 2、生活中什么时候用到概率乘法法则,什么时 候用到概率加法法则,请举例说明。 3、请讲解各习题的答题思路。
§2.3 总体特征数(参数)
随机变量的数学期望和方差
=1
有什么意义?
数学期望与方差的运算
总体原点矩和总体中心矩
对照p16
了解
了解
本章作业
P37
2.10,2.11,2.14 ,2.15
请翻译以下术语/Try
to translate these terms
please: 概率、概率分布、随机试验、multiplicative law of probability、conditional probability、 数学期望
对于离散型随机变量是否成立?
累积只能从负无限一侧累积。
如何通过 分布函数 求某一区 间概率:
概率分布与频率分布的关系
统计分布(经验分布)--频率分布 理论分布(总体分布)--概率分布 统计量(statistic):样本各种特征均使用拉
丁字母表示 参数(parameter):总体各种特征均使用希 腊字母表示
补充作业
某动物饲养房现有雌鼠雄鼠各5只,
随机抽取3只小鼠出来,请问: 1、全部都是雄鼠的概率是多少? 2、至少有2只雄鼠的概率是多少?
学习小组任务
1、请以几种彩票为例,结合概率论知识,论述 为什么要中一个彩票大奖很难? 2、生活中什么时候用到概率乘法法则,什么时 候用到概率加法法则,请举例说明。 3、请讲解各习题的答题思路。
小概率事件(习惯),统计学上认为不大可能发生。
概率的古典定义
了解
The number of outcomes in the sample space is known and each outcome is equally likely to occur.
概率的一般运算
1. 概率加法法则 Addition Rule