七个数学巧算小技巧,让孩子的计算速度直线上升!
世界上最快的数学计算小妙招,为孩子收藏吧!
世界上最快的数学计算小妙招,为孩子收藏吧!1、十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。
2、头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。
3、第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。
4、几十一乘几十一:口诀:头乘头,头加头,尾乘尾。
例:21×41=?解:2×4=82+4=61×1=121×41=8615、11乘任意数:口诀:首尾不动下落,中间之和下拉。
例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。
6、十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。
奉送各种图形计算公式。
数学速算:十大实用技巧
数学速算:十大实用技巧1. 快速乘法通过将大数分解成更小的数字,使用分配律和结合律,可以简化乘法运算。
例如,计算 83 × 25 可以分解为 (80 + 3) × 25 = 80 × 25 + 3 × 25,然后将结果相加。
2. 快速除法利用乘法的逆运算,可以通过将除数转化为乘法表达式,再进行乘法运算得到商。
例如,计算 648 ÷ 8 可以转化为 648 × (1/8)。
3. 平方运算对于以5为结尾的数字的平方运算,可以利用特殊的规律。
例如,计算 35²可以通过将5²乘以7再在最后加上25的方式得到结果。
4. 百分比转化将一个百分数转化为小数可以十分简单,只需将百分数除以100即可。
例如,将75%转化为小数,直接计算 75 ÷ 100 = 0.75。
5. 近似计算在一些场景下,不需要精确计算,近似计算可以节省时间。
例如,对于长数字相加,可以舍去末尾几位进行估算。
6. 快速开方对于完全平方数的开方运算,可以通过找出最接近的完全平方数,再进行微调得到结果。
例如,计算√106 可以找出最接近的完全平方数 100,在此基础上微调得到结果。
7. 数字转化将一个小数转化为百分数可以通过将小数乘以100,并在末尾加上百分号。
例如,将0.625转化为百分数,直接计算 0.625 × 100 = 62.5%。
8. 简化分数将一个分数化简可以通过找到分子和分母的最大公约数,然后将两者同时除以最大公约数得到最简分数。
例如,将12/18化简,可以找到最大公约数为6,然后同时除以6得到最简分数 2/3。
9. 快速乘方对于整数的乘方运算,可以利用连乘的方式简化计算。
例如,计算 3³可以通过连乘 3 × 3 × 3 = 27 得到结果。
10. 快速负数运算对于负数的加减运算,可以将负号分别应用于每个数字,然后进行正常的加减运算。
数学之道:十大速算窍门
数学之道:十大速算窍门1. 数字拆分法将大数字拆分成易于计算的小数字,例如将 12345 拆分为10000 + 2000 + 300 + 40 + 5,分别进行计算再相加。
2. 倍数加速法利用数字的倍数特性,快速计算结果。
例如,计算156 乘以2,可以先计算 150 乘以 2 得到 300,再加上 6 乘以 2 得到 12,最终结果为 312。
3. 数字分组法将数字进行分组,例如将 1234 分为 12 和 34,先计算 12 乘以5 得到 60,再计算 34 乘以 5 得到 170,最后将两个结果相加得到230。
4. 加减交换律在加减法运算中,可以改变数字的顺序,这样可以简化计算。
例如,计算 123 + 45,可以改为计算 123 + 54,更容易计算出结果。
5. 乘法分配律利用乘法分配律,将复杂的乘法运算简化。
例如,计算 (2 + 3) 乘以 4,可以先计算 2 乘以 4 得到 8,再计算 3 乘以 4 得到 12,最后将两个结果相加得到 20。
6. 数字定位法对于较大的数字,可以通过数字定位法快速计算出结果。
例如,计算 123456 乘以 7,可以先计算 123456 乘以 10 得到 1234560,再减去 123456 得到 1111004。
7. 平方速算法利用平方数的特性,快速计算数字的平方。
例如,计算 13 的平方,可以先计算 10 的平方得到 100,再计算 3 的平方得到 9,最后将两个结果相加得到 169。
8. 立方速算法利用立方数的特性,快速计算数字的立方。
例如,计算 5 的立方,可以先计算 4 的立方得到 64,再加上 1 的立方得到 65。
9. 递减相加法在加法运算中,可以使用递减相加法,将计算简化。
例如,计算 123 + 45,可以先从 123 中减去 40 得到 83,再加上 5 得到 88。
10. 递增相减法在减法运算中,可以使用递增相减法,将计算简化。
例如,计算 123 - 45,可以先加上 1 得到 124,再减去 40 得到 84。
各种速算巧算技巧总结经典
各种速算巧算技巧总结经典一、加法速算巧算技巧1.去十法:将两位数相加,个位数保持不变,十位数去掉十位数的数再加1、例如:23+36=592.补数法:将两位数相加,若个位数相加等于10,则结果的十位数等于两个原数的十位数之和加1,个位数等于0。
例如:47+63=110。
3.同进法:将两个相同两位的数相加,在结果的十位数加1、例如:56+56=1124.十进法:将两个相邻的两位数相加,减10得到个位数,结果的十位数不变。
例如:56+57=10+56=1135.单位法:将两个相邻的两位数相加,结果的个位数等于个位数之和的个位数,结果的十位数等于个位数之和的十位数加上原来的十位数。
例如:54+67=(4+7)(5+6)=21+5=266.整十法:将个位数之和减去10,结果的个位数不变,结果的十位数加1、例如:56+49=(6+9)(5+4)=15+5=20+1=21二、减法速算巧算技巧1.补数法:相减的两个数差的绝对值等于减数加上被减数的补数,结果的符号取决于减数和被减数之间的关系。
例如:35-18=35+82=1172.同进法:减数的个位数与被减数的个位数相等,十位数大1,结果的个位数等于个位数之差,结果的十位数等于原数的十位数。
例如:57-25=323.进位借位法:被减数的个位数小于减数的个位数,从十位和百位依次向左借位。
例如:45-38=(40-8)(5-3)=74.破折法:将减数加上或减去10的倍数,使减数的个位数和百位数与被减数的个位数和百位数相等,然后计算,得到结果。
例如:147-86=147-80+6=675.近值法:如果两个数的个位数相等,差的绝对值为10的倍数,并且两个数的十位数的差不超过1,那么可以近似地认为差等于个位数之差乘以10。
例如:67-53≈(7-3)×10=40。
三、乘法速算巧算技巧1.移项法:将减数的个位数分别乘以被乘数的十位数和个位数,十位数的结果向左移动一位,个位数保持不变。
小学数学巧算术快速掌握计算技巧
小学数学巧算术快速掌握计算技巧数学是小学阶段的基础学科之一,在数学学习中,掌握快速和准确的计算技巧非常重要。
本文将介绍一些小学数学巧算术技巧,帮助学生能够更快速地解决计算问题。
一、乘法计算技巧1. 九九乘法口诀:乘法运算中,依靠记忆九九乘法口诀可以快速得出结果。
例如,需要计算8乘以7,可以参考九九乘法口诀中“八七是56”,直接得出结果。
2. 分解乘法运算:对于较复杂的乘法运算,可以使用分解乘法的方法。
例如,计算12乘以5,可以将12分解为10和2,然后分别与5相乘再相加,即(10 × 5)+(2 × 5)= 50 + 10 = 60。
3. 交换律的应用:在乘法运算中,乘法满足交换律。
例如,计算7乘以4和4乘以7得到的结果是相等的。
二、除法计算技巧1. 分解法:在整除运算中,可以使用分解法简化计算过程。
例如,计算48除以6,可以将48分解为40和8,然后分别除以6,得到(40 ÷ 6)+(8 ÷ 6)= 6 + 1.33 ≈ 7.33。
2. 近似法:在除法运算中,可以使用近似法快速得出结果。
例如,计算345除以25,可以近似到最接近的整数,即345 ÷ 25 ≈ 14。
三、加法计算技巧1. 补数法:在计算两位数相加时,可以使用补数法来简化运算。
例如,计算46加7,可以将7补足为10,然后将46加10得到56,最后减去补足的数,即56 - 3 = 53。
2. 单位延拓法:在计算带有单位的加法问题时,可以先将相同单位的数相加,然后再计算不同单位的数相加。
例如,计算2小时45分钟加上3小时20分钟,先将小时相加得到5小时,然后将分钟相加得到65分钟,最后将分钟转换为小时,即65 ÷ 60 = 1小时,所以最后结果为6小时5分钟。
四、减法计算技巧1. 整数减法的补数法:在计算整数相减时,可以使用补数法。
例如,计算76减去38,可以将38补足为40,然后将76减去40得到36,最后加上补足的数,即36 + 2 = 38。
探索小学生数学速算的方法与技巧
探索小学生数学速算的方法与技巧数学是一门重要的学科,也是小学生必修的课程之一。
在学习数学的过程中,掌握好速算方法和技巧,不仅可以提高计算效率,还能培养学生的逻辑思维能力和数学思维能力。
本文将探索小学生数学速算的方法与技巧,帮助孩子们更好地应对数学学习。
一、加法速算加法是小学生最早接触的运算之一,也是最基础的运算之一。
在进行加法运算时,我们可以利用一些技巧来提高计算速度。
1. 逢十进位法:当两个数相加时,如果其中一个数的个位数为0,那么直接将另一个数的十位数加到结果上即可。
例如,计算85+20,我们可以直接将20的十位数2加到85上,得到结果105。
2. 分解法:将较大的数分解成更容易计算的两个数相加。
例如,计算63+47,我们可以将47拆分成40和7,然后分别与63相加,最后将结果相加得到110。
3. 进位法:当两个数相加时,如果个位数的和大于等于10,就需要进位。
例如,计算58+27,我们可以先计算个位数8+7=15,然后进位到十位数,最后得到85。
二、减法速算减法是小学生学习的另一种基础运算,同样可以通过一些方法来提高计算速度。
1. 补数法:将被减数补成一个更容易计算的数,然后与减数相减。
例如,计算97-58,我们可以将58补成60,然后用60减去97的个位数7,再用6减去9,最后得到39。
2. 借位法:当被减数的个位数小于减数的个位数时,可以向十位数借位。
例如,计算48-23,我们可以先计算个位数8-3=5,然后向十位数借位,最后得到25。
三、乘法速算乘法是小学生学习的较为复杂的运算,但也可以通过一些方法来加快计算速度。
1. 乘法口诀表:熟记乘法口诀表是提高乘法计算速度的基础。
通过反复背诵乘法口诀表,可以快速记住乘法的结果,从而加快计算速度。
2. 分解法:将乘法运算中的一个数分解成更容易计算的两个数相乘。
例如,计算6×8,我们可以将8拆分成4和4,然后分别与6相乘,最后将结果相加得到48。
快速计算技巧小学生数学速算训练
快速计算技巧小学生数学速算训练在小学阶段,数学是一个重要的学科,培养学生的数学计算能力对于他们的学业发展至关重要。
而快速计算技巧是提高学生计算能力的关键。
本文将介绍一些适用于小学生的数学速算训练方法,帮助他们提高计算速度和准确性。
一、加法的快速计算技巧加法是数学学习的基础,掌握了加法的快速计算技巧,能够在解决实际问题时提高计算效率。
以下是一些常见的加法速算技巧:1. 利用近似值:当计算较大的数相加时,可以先用近似值代替,再根据误差进行修正。
例如,计算789+451时,可以先将789近似为800,451近似为450,然后得到800+450=1250,最后再减去修正的误差。
2. 利用进位法则:当某一位的和超过10时,我们需要进位。
通过训练,学生可以掌握进位法则,快速进行进位运算。
3. 利用补数:对于计算接近10的数相加,可以使用补数法。
例如,计算8+5时,可以将5补为10-5=5,然后进行8+5=8+10-5=13的计算。
二、减法的快速计算技巧除了加法,减法也是小学生必须掌握的技能。
以下是几种常用的减法速算技巧:1. 利用几个特殊差值:对于一些常见的差值,如9-7,9-8等,学生可以通过经验记住这些特殊差值,从而快速计算减法。
2. 利用进退法则:在计算减法时,可以借助进退法则。
例如,计算35-19时,可以先将19退位为20,然后计算35-20=15,再根据实际减少的数目进行修正。
三、乘法的快速计算技巧乘法是数学中难度稍高的计算方式,但是通过一些技巧,小学生也能够掌握乘法的快速计算:1. 利用乘法补数:乘法补数是乘法运算的一种简化方式。
例如,计算7×8时,可以将8看作10-2,然后进行7×10-7×2=70-14=56的计算。
2. 利用倍数法则:当遇到一个数乘以一个倍数时,可以先计算小数的结果,再根据倍数进行修正。
例如,计算6×40时,可以先计算6×4=24,再根据倍数40进行修正,得到240。
数学巧算的方法和技巧
数学巧算的方法和技巧巧算,也称为简便计算,是一种数学技巧,旨在通过特定的方法快速地完成计算。
这些方法通常比直接使用基本的算术运算更为高效。
掌握巧算的方法和技巧对于提高数学计算速度和准确性非常重要。
以下是几种常见的数学巧算的方法和技巧:1. 乘法分配律:乘法分配律是数学中的一个基本法则,它可以用于简化复杂的乘法表达式。
例如,对于任意实数a、b、c,有:a × (b + c) = a × b +a × c。
这个法则可以用于简化多个数的乘法运算。
2. 提取公因数:在处理复杂的乘法或加法表达式时,尝试找出并提取出公因数。
例如,在计算25 × 17 + 25 × 83 时,可以提取出公因数 25,简化为25 × (17 + 83)。
3. 利用平方差公式:平方差公式是(a + b) × (a - b) = a^2 - b^2。
这个公式在处理与平方有关的计算时非常有用。
例如,计算 100 - 99 + 98 - 97 + ... + 4 - 3 + 2 - 1 可以简化为 (100 - 99) + (98 - 97) + ... + (4 - 3) + (2 - 1)。
4. 分数的简化:对于分数,尝试通过约分或通分来简化表达式。
例如,对于分数3/4 × 5/6,可以通分为 15/24,进一步约分为 5/8。
5. 利用数的特性:利用数的特性进行巧算。
例如,对于整数1至9,有1×9=9,2×8=16,3×7=21,...,这些结果都是9的倍数。
因此,在计算这些数的乘积时,可以快速得出结果。
6. 利用特殊数字关系:例如,对于π(圆周率)的一些近似值(如),可以利用它与其他数字的关系进行巧算。
例如,× 2 = ,× 3 = 等。
7. 利用公式和定理:许多数学公式和定理可以用于简化计算。
例如,勾股定理、三角函数公式、几何图形的面积和体积公式等。
数学技巧训练小学生迅速提升数学水平
数学技巧训练小学生迅速提升数学水平数学是一门需要不断练习和提升的学科,对于小学生来说,通过适当的数学技巧训练,可以帮助他们迅速提升数学水平。
本文将介绍几种有效的数学技巧训练方法,帮助小学生在数学学习中取得更好的成绩。
一、快速计算技巧快速计算技巧是提高小学生数学运算能力的重要手段。
以下是几种常见的快速计算技巧:1. 快速加减法小学生在进行简单的加减法运算时,可以使用以下技巧:- 利用相邻数的互补性:比如,计算36 + 47,可以先将36变为40,再加上7,即为47 + 3,得到50。
- 利用进位:比如,计算68 + 47,可以将68拆分成60 + 8,再加上40 + 7,即100 + 15,得到115。
2. 快速乘法小学生在进行乘法运算时,可以使用以下技巧:- 利用倍数关系:比如,计算7 × 9,可以先计算7 × 10,再减去7,即70 - 7,得到63。
- 利用分配律:比如,计算36 × 25,可以将36拆分成30 + 6,再乘以25,即(30 × 25) + (6 × 25),得到750。
二、图形思维培养图形思维是数学学习中的重要能力,对于小学生来说,培养图形思维可以帮助他们在几何学习和问题解决中更加得心应手。
以下是几种培养图形思维的方法:1. 视觉观察能力训练绘制各种不规则图形,例如五角星、六边形等,让小学生观察并提取图形特征,帮助他们培养对图形的敏感度。
2. 图形转化训练将一个图形转化成另一个图形的练习,例如将正方形通过平移、旋转等操作变为长方形,让小学生在操作中理解图形的相似性和差异性。
三、逻辑推理训练逻辑推理能力是小学生数学学习中的关键能力之一。
以下是几种培养逻辑推理能力的训练方法:1. 数列推理给小学生一些数字的序列,让他们寻找其中的规律,进而预测下一个数字。
这样的练习可以帮助小学生培养逻辑思维和归纳能力。
2. 推理问题解决给小学生一些推理问题,例如谜语、推理题等,让他们通过分析条件、排除错误选项等来解决问题,从而培养他们的逻辑推理能力。
数学学习秘籍:十大速算技巧
数学学习秘籍:十大速算技巧1. 数字分组技巧将数字进行合理分组,可以有效降低计算难度。
例如,将123456 分为 12 和 3456,先计算 12,再计算 3456,最后将结果相加。
2. 倍数简化技巧利用数字的倍数关系,将计算问题简化。
例如,计算 25 乘以48,可以先计算 25 乘以 40 和 25 乘以 8,再将结果相加。
3. 因数分解技巧将数字进行因数分解,有助于快速找到计算规律。
例如,计算123456 除以 12,可以先将 123456 分解为 12 和 10288,然后进行计算。
4. 数字交换技巧在计算过程中,适当交换数字的位置,有时可以获得更简便的计算方法。
例如,计算 135 乘以 24,可以先将 24 乘以 5,再将结果乘以 13。
5. 拆分与合并技巧将复杂的计算问题拆分为简单的部分,计算后再合并。
例如,计算 12345 加上 6789,可以先计算 12345 加上 6000,再将结果加上 789。
6. 巧用公式技巧熟练掌握各种数学公式,可以提高计算速度。
例如,利用平方公式计算 9 的平方,直接得出结果为 81。
7. 递推计算技巧利用递推关系,简化计算过程。
例如,计算 1 到 n 的求和问题,可以利用递推公式进行计算。
8. 数列求和技巧对于数列求和问题,可以利用求和公式,快速得出结果。
例如,计算 1 到 n 的求和,利用求和公式 S = n(n+1)/2。
9. 图形化计算技巧将计算问题转化为图形问题,可以直观地找到计算规律。
例如,计算平面几何中三角形面积,可以利用公式 S = 底×高/2。
10. 逆向思维技巧从结果出发,反推计算过程,有时可以找到更简便的计算方法。
例如,已知结果为 6,求 2 乘以几等于 6。
掌握以上十大速算技巧,能有效提高数学计算速度和准确率。
在实际应用中,需根据具体情况选择合适的技巧。
祝大家学习愉快!。
巧算速算技巧
巧算速算技巧在我们的日常生活和学习中,数学计算无处不在。
无论是在购物时计算折扣和找零,还是在考试中快速解答数学题目,拥有巧算速算的技巧都能让我们事半功倍。
巧算速算不仅能够提高计算的速度和准确性,还能培养我们的逻辑思维和数学能力。
接下来,让我们一起探索一些实用的巧算速算技巧。
一、加法巧算1、凑整法凑整法是加法巧算中最常用的方法之一。
例如,计算 28 + 57 + 72 时,可以先将 28 和 72 相加,得到 100,再加上 57,结果为 157。
因为28 和 72 能够凑成整百数,这样的计算就会变得更加简便快捷。
2、基准数法当相加的数都比较接近某一个数时,可以把这个数作为基准数。
比如计算 97 + 98 + 99 + 100 + 101 + 102 + 103 时,可以把 100 作为基准数,原式就可以转化为 100×7 3 2 1 + 1 + 2 + 3 = 700 。
二、减法巧算1、凑整法在减法中同样可以使用凑整法。
例如,计算 156 78 22 时,可以先将 78 和 22 相加得到 100,再用 156 减去 100,结果为 56 。
2、减法的性质a b c = a (b + c) ,利用这个性质可以使计算简化。
比如计算254 36 64 时,可以转化为 254 (36 + 64)= 154 。
三、乘法巧算1、乘法交换律和结合律乘法交换律:a×b = b×a ;乘法结合律:(a×b)×c = a×(b×c) 。
例如,计算 25×13×4 时,可以先将 25 和 4 相乘得到 100,再乘以 13,结果为 1300 。
2、乘法分配律乘法分配律:a×(b + c) = a×b + a×c 。
比如计算 25×(40 + 4) 时,可以分别计算 25×40 和 25×4,然后相加,得到 1000 + 100 =1100 。
12种数学速算技巧
12种数学速算技巧在学习数学过程中,速算技巧是必备的。
掌握速算技巧不仅可以提高数学计算的效率,还能提高数学思维能力。
本文将介绍12种数学速算技巧。
一、乘法口诀乘法口诀是小学阶段我们必须掌握的一种速算技巧。
通过乘法口诀我们可以快速地进行乘法运算。
例如,当算9 × 8时,可以快速地用乘法口诀:9 × 8 = 72。
二、加减法逆运算加减法逆运算指的是,在做加减法运算时,我们可以反向思考,从结果推算出来运算式。
例如,当算30 + 20时,我们可以将结果50拆分为25 + 25,再相加得到结果。
三、平方之和公式平方之和公式指的是,当算两个数平方之和时,我们可以使用公式(a+ b)²= a²+2ab+b²。
例如,当算9² + 13²时,我们可以使用公式(9+13)²=9²+2×9×13+13²=250 。
四、减法分配律减法分配律指的是,当要减去一个数时,我们可以将这个数分别减去每一个加数,再相减得到结果。
例如,当算18 - 9时,我们可以用减法分配律:18 - 9 = 18 - 8 -1 = 10。
五、倍数关系倍数关系指的是,两个数有倍数关系时,它们的差是这两个数中较小的数的倍数。
例如,当算72 - 36时,我们可以知道36是72的一半,所以答案是36 × 1 = 36。
六、除法结合律除法结合律指的是,当除以一个数时,我们可以将这个数分别除以每一个因数,再相除得到结果。
例如,当算108÷3÷4时,我们可以用除法结合律:108÷3÷4=108÷(3×4)=9。
七、水仙花数水仙花数是指,一个三位数,其每位的数字的立方和等于这个数本身。
例如,153是一个水仙花数,因为1³+5³+3³=153。
通过水仙花数的规律,我们可以推广到四、五位的水仙花数。
数学速算的秘诀:十大实用技巧
数学速算的秘诀:十大实用技巧1. 使用近似值:在进行大数计算时,可以使用近似值来简化计算。
例如,将3.14近似为3,可以在计算圆的面积时减少复杂度。
2. 利用倍数关系:当计算乘法时,可以利用倍数关系来简化计算。
例如,计算8乘以6时,可以先计算8乘以10再减去8乘以2,避免了复杂的乘法运算。
3. 利用数字特性:数字有许多特性可以利用。
例如,两个偶数相乘的结果一定是偶数,两个奇数相乘的结果一定是奇数,可以根据这些特性来简化计算。
4. 利用零的特殊性:任何数与0相乘都等于0,任何数与0相加都等于原数。
利用这个特性可以简化计算,特别是在处理大型复杂公式时。
5. 使用分配律:在计算含有加法和乘法的表达式时,可以使用分配律来简化计算。
例如,计算3乘以(4加上5)时,可以先计算4加5再乘以3,避免了复杂的乘法运算。
6. 利用平方和立方的特性:计算平方数和立方数时,可以利用它们的特性来简化计算。
例如,计算25的平方可以直接将25乘以25,计算27的立方可以直接将27乘以27再乘以27。
7. 利用数字的逆运算:数字的逆运算即将一个运算符的结果反过来使用另一个运算符进行计算。
例如,计算1除以3可以转化为1乘以1/3,利用逆运算可以简化计算。
8. 利用数列和等差数列的特性:在计算一系列数字的和时,可以利用数列和等差数列的特性来简化计算。
例如,计算1加2加3加...加100时,可以利用等差数列的和公式来计算。
9. 利用数的分解和合并:将一个复杂的数分解成易于计算的因子,然后再合并计算结果。
例如,计算48乘以25可以拆分为(40加8)乘以25,再合并计算结果。
10. 利用数的对称性:数字有许多对称性可以利用。
例如,两个数相乘时,交换两个数的位置结果不变,可以根据对称性来简化计算。
这些数学速算的秘诀可以帮助大家在进行数学计算时简化复杂度,提高计算效率。
通过灵活运用这些技巧,可以更好地应对各种数学问题。
数学速算的秘诀:十大实用技巧
数学速算的秘诀:十大实用技巧引言数学速算是提高计算速度和精度的重要技能,无论是在学校、工作还是日常生活中都能发挥巨大作用。
本文将向您介绍十大实用技巧,帮助您成为数学计算的高手。
1. 掌握基本运算规则熟练掌握加、减、乘、除等基本运算规则是进行快速计算的基础。
了解运算符的优先级,能够灵活运用括号改变运算顺序,提高计算效率。
2. 数字分组将数字进行合理分组,可以有效简化计算过程。
例如,将12345分为12和345,先计算12×345,再计算结果与345的乘积,最后相加得到最终答案。
3. 分解因数将数字分解为易于计算的因数,可以简化计算过程。
例如,计算18×24时,将18分解为2×9,24分解为3×8,然后计算2×3×9×8得到432。
4. 利用平方表掌握平方表,可以快速计算两位数的平方。
例如,计算35的平方,可以直接查表得到1225。
5. 运用平方公式熟练运用平方公式,可以快速计算复合数的平方。
例如,计算(6+7)²时,可以将其展开为6²+2×6×7+7²。
6. 巧妙运用乘法分配律乘法分配律在计算中具有广泛应用。
例如,计算25×(36+44)时,可以先计算36+44得到80,然后计算25×80得到2000。
7. 加减法速算掌握加减法速算技巧,可以提高计算速度。
例如,利用尾数法,快速计算出两个数的和的个位数。
8. 乘除法速算掌握乘除法速算技巧,可以提高计算速度。
例如,利用乘法口诀,快速计算两位数的乘积。
9. 运用数学恒等式熟练运用数学恒等式,可以简化计算过程。
例如,利用恒等式a²-b²=(a+b)(a-b),快速计算差平方问题。
10. 练习心算心算是数学速算的最高境界。
通过大量练习,提高心算能力,可以在没有计算工具的情况下,快速得出结果。
结语掌握以上十大实用技巧,结合大量练习,相信您的数学速算能力将得到显著提高。
高效学习:数学速算十大方法
高效学习:数学速算十大方法
概述
数学速算是一种提高计算效率和准确性的技巧,对于数学学习和解决实际问题都非常有帮助。
本文将介绍数学速算的十种高效方法,帮助你在学习数学过程中更加迅速和准确地进行计算。
1. 快速乘法法则
通过利用数字的特性,如交换律和分配律,可以在乘法计算中更快地得出结果。
2. 快速除法法则
使用除法法则可以在除法计算中更迅速地得到商和余数。
3. 快速加法法则
通过将数字按位数进行分组,可以更快地进行加法计算。
4. 快速减法法则
利用数字的特性,如借位和减法的逆运算,可以更快地进行减法计算。
5. 平方近似法
利用数字的平方近似值,可以更快地估算平方根和乘法结果。
6. 百分比转换法
利用分数和小数的关系,可以更快地进行百分比转换和计算。
7. 数据整合法
将大量数据进行整合和简化,可以更快地进行统计和分析。
8. 单位换算法
利用单位之间的换算关系,可以更快地进行长度、面积、体积等单位之间的转换和计算。
9. 快速排列组合法
利用排列组合的性质,可以更快地计算不同元素的排列组合情况。
10. 快速逻辑推理法
通过分析逻辑关系和条件,可以更快地得出结论和解决问题。
总结
数学速算是提高计算效率和准确性的重要技巧。
通过掌握以上十种高效方法,你可以更迅速和准确地进行数学计算,提高数学学习和解决实际问题的能力。
数学速算技巧大全
数学速算技巧大全数学速算是指在不依赖计算器和纸笔的情况下,通过一些特定的技巧和方法,以最快的速度获得数学运算的结果。
下面将介绍一些数学速算的技巧,以帮助大家提高计算速度和准确性。
1.乘法速算:-9乘法口诀:9乘以一个数时,可先求出该数的九倍,然后将乘积各位数相加,若和是个位数,则结果即为乘法的结果。
例如:9×7=63,3+6=9-11乘法口诀:11乘以一个两位数时,将该两位数的两个数字相加,然后将和放在中间。
例如:11×26=286,2+6=8,将8放在中间,结果为286-5乘法口诀:用10减去被乘数的个位数,再将结果和个位数乘以5、例如:5×8=40-8=32-快速乘以25:将被乘数后面两个零去掉,然后除以4、例如:25×48=1200÷4=300。
2.除法速算:-快速除以5:将被除数的个位数除以5,商保留,再加上被除数十位上的数字作为商的十位数。
例如:275÷5=27,27+5=32-快速除以9:将被除数的各位数加起来,若和是个位数,则为商。
例如:801÷9=9×100+100÷9=100+1=111-快速除以11:将被除数的各位数从右往左相加,并将和作为商的各位数。
例如:1155÷11=(1+5+5)=11,商为1053.平方速算:-整十数平方:将个位数的平方写在结果后面,再在个位数上加1、例如:30²=900+1=901-数字重叠平方:将个位数与由9减去个位数的差相乘,个位数的平方写在结果后面。
例如:34²=3×6(9-4)=3×6×6=3×36=10894.立方速算:-整十数立方:将个位数的立方写在结果的后面,再乘以个位数的3倍。
例如:20³=8000。
-数字重叠立方:将个位数与个位数的平方相乘,再加上个位数的立方。
例如:53³=5×(5×5)×3+3³=5×25×3+27=375+27=40225.百分数转换:-将小数转换为百分数:将小数点后移两位,加上%符号。
数学巧算速算方法
数学巧算速算方法数学是一门普遍被人们广泛应用的学科,其中速算是数学中非常重要的一部分。
速算方法可以帮助我们在短时间内快速准确地完成计算,提高计算效率。
本文将介绍一些常见的数学巧算速算方法,帮助读者更好地掌握这些技巧。
一、整数相乘的速算方法1. 将两个整数相乘时,如果其中一个数是10的倍数,那么结果就是另一个数加上若干个0。
例如,23乘以10等于230,23乘以100等于2300。
2. 如果两个整数都接近10的倍数,可以将两个数与10的差相乘,再加上两个数与10的差的乘积。
例如,17乘以13等于(20-3)*(10+3)+3*3=221。
3. 如果两个整数都是偶数,可以将两个数分别除以2,再将商相乘,最后再乘以2。
例如,36乘以48等于(36÷2)*(48÷2)*2=18*24*2=864。
4. 如果两个整数一个是偶数,一个是奇数,可以将偶数除以2,再乘以奇数。
例如,24乘以5等于(24÷2)*5=12*5=60。
二、小数相乘的速算方法1. 小数相乘时,可以先将小数化为分数,再进行计算。
例如,0.6乘以0.2等于(6/10)*(2/10)=12/100=0.12。
2. 如果一个小数很接近1,可以将另一个小数乘以1,结果保持不变。
例如,0.98乘以0.04等于0.98*1*0.04=0.0392。
三、整数除法的速算方法1. 如果被除数是10的倍数,可以将被除数直接除以10,再加上若干个0。
例如,2300除以10等于230,2300除以100等于23。
2. 如果被除数比除数小很多,可以先将被除数乘以10,再除以除数。
例如,230除以5等于(230*10)/5=2300/5=460。
四、百分数的速算方法1. 当计算某个数的百分之几时,可以将这个数除以100,再乘以百分数。
例如,计算48的百分之25,可以先将48除以100,再乘以25,即48/100*25=12。
2. 当计算某个数是另一个数的百分之几时,可以将这个数除以另一个数,再乘以100。
数学学习秘籍:十大速算技巧
数学学习秘籍:十大速算技巧
数学是一门重要而又普遍的学科,对于学生来说,掌握好数学是非常关键的。
然而,有些学生可能会觉得数学很难,速算更是一门高难度的技巧。
为了帮助你更好地掌握数学和速算,以下是十大速算技巧的秘籍:
1. 快速的九九乘法表
九九乘法表是数学研究的基础,熟练掌握九九乘法表可以帮助你在计算中更快速地得出结果。
2. 逢五进一法则
在进行加减法计算时,遇到以5结尾的数字可以使用逢五进一的法则,将其舍入为最接近的整数。
3. 快速的平方计算
熟练掌握平方数的计算方法可以帮助你在速算中更快地得出结果。
4. 除法的简化
在进行除法计算时,可以通过简化被除数和除数来简化计算过程,使得计算更加迅速。
5. 百分数的转化
熟练掌握百分数的转化方法可以帮助你在计算中更快速地得出结果。
6. 近似计算
在进行大数相加或相乘的计算时,可以通过近似计算来简化计算过程,减少出错的概率。
7. 快速的立方计算
熟练掌握立方数的计算方法可以帮助你在速算中更快地得出结果。
8. 分数的化简
在进行分数计算时,可以通过化简分数来简化计算过程,使得计算更加迅速。
9. 快速的开方计算
熟练掌握开方数的计算方法可以帮助你在速算中更快地得出结果。
10. 快速的单位换算
熟练掌握常见单位的换算方法可以帮助你在计算中更快速地得出结果。
以上是十大速算技巧的秘籍,希望能对你的数学研究有所帮助。
记住,只有通过不断的练和实践,才能真正掌握这些技巧,并在数
学研究中取得更好的成绩。
加油!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七个数学巧算小技巧,让孩子的计算速度直线上升!
数学不像语文那样,很多题型只要答出相近意思即可,它要求计算的准确性,一点都不能错,一步错步步错!
发现很多小学生在计算方面很“弱”——找不到技巧。
在一些规定要用“简便方法”计算的题目中,很多同学不会套用“简便方法”。
所以,小编特意整理了一部分关于运用“简便方法”计算的资料,希望可以帮助这方面比较欠缺的孩子!
01
提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
02
借来借去法
用此方法时,需要注意观察,发现规律。
还要注意“还”,有“借”有“还”,再“借”不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:
9999+999+99+9
=(9999+1)+(999+1)+(99+1)+(9+1)-4
0 3
拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=(8×12.5)×(0.4×25)
04
运算律法
①注意对加法结合律
(a+b)+c=a+(b+c)
的运用,通过改变加数的位置来获得更简便的运算。
例如:
5.76+13.67+4.24+
6.33
=(5.76+4.24)+(13.67+6.33)
②拆分法和乘法分配律结合
这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:
34×9.9=34×(10-0.1)
05
利用基准数
在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:
2072+2052+2062+2042+2083
=(2062×5)+10-10-20+21
06
利用公式法
(1) 加法:
交换律:a+b=b+a
结合律:(a+b)+c=a+(b+c)
(2) 减法运算性质:
a-(b+c)=a-b-c
a-(b-c)=a-b+c
a-b-c=a-c-b
(a+b)-c=a-c+b=b-c+a
(3)乘法(与加法类似):
交换律:a×b=b×a
结合律:(a×b)×c=a×(b×c)
分配率:(a+b)×c=ac+bc
(a-b)×c=ac-bc
(4) 除法运算性质(与减法类似):a÷(b×c)=a÷b÷c,
a÷(b÷c)=a÷b×c
a÷b÷c=a÷c÷b
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。
其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
例题
例1:
283+52+117+148
=(283+117)+(52+48)
(运用加法交换律和结合律)
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:
657-263-257
=657-257-263
=400-263
(运用减法性质,相当加法交换律)
例3:
195-(95+24)=195-95-24
=100-24
(运用减法性质)例4:
150-(100-42)
=150-100+42 (运用减法性质) 例5:
(0.75+125)×8 =0.75×8+125×8 (运用乘法分配律) 例6:
(125-0.25)×8
=125×8-0.25×8
=1000-2
(运用乘法分配律)
例7:
(1.125-0.75)÷0.25 =1.125÷0.25-0.75÷0.25 (运用除法性质)
例8:
(450+81)÷9
=450÷9+81÷9
(运用除法性质)
例9:
375÷(125÷0.5)
=375÷125×0.5
(运用除法性质)
例10:
4.2÷(0.6×0.35)
=4.2÷0.6÷0.35
(运用除法性质)
例11:
12×125×0.25×8
=(125×8)×(12×0.25)
(运用乘法交换律和结合律) 例12:
(175+45+55+27)-75
=175-75+(45+55)+27 (运用加法性质和结合律)
07
裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法。
常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,
找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
分数裂项的三大关键特征:
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”。
(3)分母上几个因数间的差是一个定值。
公式:
end。