最新单回路控制系统原理

合集下载

单回路控制系统原理

单回路控制系统原理

单回路控制系统原理单回路控制系统原理一、过程控制的特点与其它自动控制系统相比,过程控制的主要特点是:1、系统由工业上系列生产的过程检测控制仪表组成。

一个简单的过程控制系统是由控制对象和过程检测控制仪表(包括测量元件,变送器、调节器和调节阀)两部分组成。

Q2 x (t)如图1 :液位控制系统K C:调节器的静态放大系数QK V:调节阀的静态放大系数1K0:被控对象的静态放大系数Km :变送器的静态放大系数2、被控对象的设备是已知的,对象的型式不少,它们的动态特性是未知的或者是不十分活楚的,但普通具有惯性大,滞后大,而且多数具有非线性特性。

3、控制方案的多样性。

有单变量控制系统、多变量控制系统;有线性系统、有非线性系统、;有摹拟量控制系统、有数字量控制系统,等等。

这是其它自动控制系统所不能比拟的。

4、控制过程届慢过程,多半届参量控制。

即需对表征生产过程的温度、流量、压力、液位、成份、PH 等进行控制。

5、在过程控制系统中,其给定值是包定的 (定值控制) ,或者是已知时间的函数 (程序控制) 。

控制的主要目的是在丁如何减少或者消除外界扰动对被控量的影响。

y (t〕工业生产要实现生产过程自动化,首先必须熟悉生产过程,掌握对象特点;同时要熟悉过程参数的主要测量方法,了解仪表性能、特点,根据生产工艺要求和反馈控制理论的分析方法,合理正确地构建过程控制系统;并且通过改变调节仪表的特性参数,使系统运行在最佳状态,过程控制系统的品质是由组成系统的对象和过程检测仪表各环节的特性和系统的结构所决定的。

二、单回路控制系统原理如图所示单回路控制系统由对象、测量变送器,调节器,调节阀等环节组成。

由于系统结构简单,投资少,易于调整、投运,又能满足普通生产过程的控制要求, 所以应用十分广泛。

单回路控制系统的设计原则同样合用于复杂控制系统的设计,控制方案的设计和调节器整定参数值的确定,是系统设计中的两个重要内容,如果控制方案设计不正确,仅凭调节器参数的整定是不可能获得较好的控制质量的;反之,如果控制方案设计很好,但是调节器参数整定不合适,也不能使系统运行在最佳状态,、选择被控参数对于一个生产过程来说,影响正常操作的因素是不少的,但是,并非对所有影响因素都需要加以控制“选择被控参数的普通原则为:作用的、可直接测量的工艺参数为被控参数,当不能用直接参数(如测量滞后过大)作为被控参数时,应选择一个与直接参数有单值函数关系的间接参数作为被控参数,被控参数必须具有足够大的灵敏度⑥若生产工艺有几种控制参数可供选择,普通希翼控制通道克服扰动的校正能力要强,动态响应应比扰动通道快。

单回路控制系统的结构及基本原理

单回路控制系统的结构及基本原理

单回路控制系统的结构及基本原理单回路控制系统,听起来是不是有点高深?别担心,咱们慢慢来,把它说得简单明了。

想象一下,你家里的空调,夏天一开,立马变成了清凉的避风港。

这个过程背后,就是单回路控制系统在默默发挥作用。

它就像是一位调皮的管家,专门负责调节室内温度。

你觉得怎么样?挺酷吧?单回路控制系统到底是什么呢?其实就是一个简单的控制机制。

就像你在厨房里做饭,火候掌握得当,菜才能好吃。

系统通过传感器感知环境,像是人的“感觉器官”,然后根据设定的目标进行调整。

如果室温太高,控制系统就会给空调发信号,让它开起来。

这样一来,家里瞬间凉快。

是不是感觉有点像魔法?咱们再深入一下,单回路控制系统的基本原理其实就是反馈控制。

反馈控制就像是你骑自行车时的平衡,往左偏了就稍微向右打方向,保持稳定。

系统通过不断获取反馈数据,进行调整,保证温度不会过高或者过低。

要是没有这个反馈,空调就会像个无头苍蝇,根本不知道该怎么调节。

想象一下,如果空调开得太冷,你可能就得裹着毛毯看电视了,真是太折磨人了。

再说说控制环路,单回路控制系统的“主角”。

控制环路里有三个重要角色:传感器、控制器和执行器。

传感器就像你家里的眼睛,负责监测环境。

控制器是大脑,分析数据并做出决策。

执行器则是肌肉,负责实际操作。

三者协同合作,像是一场默契的舞蹈,缺一不可。

要是哪个环节出了问题,整个系统就会陷入混乱,真是让人无奈。

举个例子,想象一下你在夏天的炎热中,开着空调,舒舒服服地看着电视。

突然空调出问题,室内温度一下子飙升。

那种感觉就像是被烈日暴晒,简直要人命。

这个时候,如果控制系统能够及时反馈,让空调赶紧调整,那就完美了。

可一旦反馈失灵,你就得忍受那种汗流浃背的折磨,真是心烦意乱。

说到这里,咱们还得提一下这个系统的稳定性。

单回路控制系统就像是一道题,解出来才能得到最终答案。

假如反馈不准确,系统就可能过度反应,导致温度忽冷忽热,就像过山车一样刺激。

这样的结果可不是你想要的,毕竟生活需要一些“稳定感”,对吧?有了稳定的控制系统,大家才能安心享受生活。

单回路控制系统原理

单回路控制系统原理

单回路控制系统原理一、过程控制的特点与其它自动控制系统相比,过程控制的主要特点是:1、系统由工业上系列生产的过程检测控制仪表组成。

一个简单的过程控制系统是由控制对象和过程检测控制仪表(包括测量元件,变送器、调节器和调节阀)两部分组成。

如图1:液位控制系统Q2t)z(t)K C:调节器的静态放大系数K V:调节阀的静态放大系数K0:被控对象的静态放大系数K m:变送器的静态放大系数2、被控对象的设备是已知的,对象的型式很多,它们的动态特性是未知的或者是不十分清楚的,但一般具有惯性大,滞后大,而且多数具有非线性特性。

3、控制方案的多样性。

有单变量控制系统、多变量控制系统;有线性系统、有非线性系统、;有模拟量控制系统、有数字量控制系统,等等。

这是其它自动控制系统所不能比拟的。

4、控制过程属慢过程,多半属参量控制。

即需对表征生产过程的温度、流量、压力、液位、成分、PH等进行控制。

5、在过程控制系统中,其给定值是恒定的(定值控制),或是已知时间的函数(程序控制)。

控制的主要目的是在于如何减少或消除外界扰动对被控量的影响。

工业生产要实现生产过程自动化,首先必须熟悉生产过程,掌握对象特点;同时要熟悉过程参数的主要测量方法,了解仪表性能、特点,根据生产工艺要求和反馈控制理论的分析方法,合理正确地构建过程控制系统;并且通过改变调节仪表的PID 特性参数,使系统运行在最佳状态。

过程控制系统的品质是由组成系统的对象和过程检测仪表各环节的特性和系统的结构所决定的。

二、单回路控制系统原理如图1所示单回路控制系统由对象、测量变送器、调节器、调节阀等环节组成。

由于系统结构简单,投资少,易于调整、投运,又能满足一般生产过程的控制要求,所以应用十分广泛。

单回路控制系统的设计原则同样适用于复杂控制系统的设计,控制方案的设计和调节器整定参数值的确定,是系统设计中的两个重要内容。

如果控制方案设计不正确,仅凭调节器参数的整定是不可能获得较好的控制质量的;反之,如果控制方案设计很好,但是调节器参数整定不合适,也不能使系统运行在最佳状态。

单回路控制系统概述

单回路控制系统概述

单回路控制系统概述
设定值r 偏差e 调节`器
u
调节阀
干扰 f (t)
μ
被控过程
测量值x
测量变送器
y(t) 被调参数
对于过程控制系统设计和应用来说,控制方案的设计和 调节器参数的整定是其中两个重要内容。如果控制方案设计 不正确,仅凭调节器参数的整定是不可能获得较好的控制质 量的;若控制方案很好,但是调节器参数整定不合适,也不 能使系统运行在最佳状态。
⑷ 执行器 执行器的图形符号是由执行机构和调节机构的图形符号
组合而成的。
单回路控制系统
单回路控制系统概述
2.仪表位号
在检测控制系统中,构成回路的每个仪表(或元件)都用仪表位 号来标识。仪表位号由字母代号组合和回路编号两部分组成.首 字母表示被控变量,后继字母表示仪表的功能。回路的编号由 工序号和顺序号组成,一般用3-5位阿拉伯数字表示。
单回路控制系统
单回路控制系统概述
1.1 单回路控制系统的构成
单回路控制系统示例
液位控制系统
温度控制系统
压力控制系统
单回路控制系统
单回路控制系统概述
1.2 控制系统的工程表示
工艺控制系统流程图(管道仪表流程图):
液位控制系统
温度控制系统
压力控制系统
带测控点工艺流程图是自控设计的文字代号、图形 符号在工艺流程图上描述生产过程控制的原理图, 是控制系统设计、施工中采用的一种图示形式。
国家行业标准HG20505-92过程检测和控制系统用文字代号和图形符号
单回路控制系统
单回路控制系统概述
一些常用的图形符号和文字代号
1.图形符号
过程检测和控制系统图形符号包括测量点、连接线(引线、信 号线)和仪表圆圈等。 ⑴ 测量点

第1章 单回路反馈控制系统

第1章 单回路反馈控制系统

第1章
单回路反馈控制系统
第1章
单回路反馈控制系统
1、系统构成
单回路反馈控制系统由四个基本环节组成,即被控对象 (简称对象)或被控过程(简称过程)、测量变送装置、控制器和 控制阀。有时为了分析问题方便起见,往往把控制阀、对象和 测量变送装置合在一起,称之为广义对象。这样系统就归结为 控制器和广义对象两部分。
第1章
单回路反馈控制系统
第1章
单回路反馈控制系统
可以看出。干扰作用与控制作用同时影响被控变量,不过 在控制系统中通过控制器正、反作用的选择使控制作用对被控 变量的影响正好与干扰作用对被控变量的影响方向相反,这样, 当干扰作用使被控变量偏离给定值发生变化时,控制作用就可 以抑制干扰的影响,把已经变化的被控变量拉回到给定值来 (当然这种控制作用是由控制器通过控制阀的开闭变化来达到 的)。因此、在一个控制系统中,干扰作用与控制作用是相互 对立而存在的,有干扰就有控制,没有干扰也就无需控制。 如何才能使控制作用有效地克服干扰对被控变量的影响呢? 关键在于选择一个可控性良好的控制变量。这就要研究对象的 特性.研究系统中存在的各种输入量以及它们对被控变量的影 响情况,以便从中总结出选择控制变量的一些原则。
第1章
单回路反馈控制系统
单回路控制系统能够正常工作的前提: 1)、正确选择被控变量与控制变量。 2)正确选择调节器的正反作用和调节阀的开关形式。 3)合理选择调节器的控制算法,保证一定的控制精 度,同时尽量减少系统的动态误差。 4)合理选择调节阀的流量特性,提高控制系统的线 性度。 5)正确选择测量变送器,减少信号失真与滞后,提 高控制质量。
对于定值控制系统,y(∞)就是系统的余差。由上 式可知:干扰通道的放大倍数Kf 越大,系统输出的余 差也越大,控制系统的稳态性能越差,即控制质量越 差。

第四章 单回路控制系统

第四章 单回路控制系统
4.2.1 被控参数的选择
② 选择被控参数_事例
a.
控制饱和蒸汽的供汽质量时,可以选饱和蒸汽压力为被控参数。其与燃 料量构成的控制系统解决蒸汽负荷变化与燃料波动对蒸汽质量的影响。
b.

控制过热蒸气的供汽质量时,选过热蒸气压力和温度作为被控参数。 必要性:过热蒸气温度过高,过热器易损坏,汽轮机内部过度的热膨 胀,影响运行安全;过热蒸气温度过低,设备效率降低,汽轮机后级 蒸汽湿度增加,引起叶片磨损。蒸气压力控制是克服蒸气负荷或燃料 状况波动影响过热蒸气温度稳定的有效手段。
F3 ( s ) Wo3 ( s ) Y (s)
W ( s)
Wv ( s )
Wo1 ( s )
Wm ( s)
结论5:扰动通道的作用点离被控参数越远越好、扰动通道阻力环节 越多越好(容量滞后越大越好)。
4.2 被控参数与控制参数的选择原则
4.2.2 控制参数的选择
② 过程动态特性对控制质量的影响
d. 控制通道动态特性的影响_可控性指标分析方法
第四章 单回路控制系统
本章主要内容
① 单回路控制系统的基本原理 ② 单回路控制系统主要应用范围 ③ 单回路控制系统设计要点
基本要求
① ② ③ ④
掌握单回路控制系统的基本原理 掌握单回路控制系统的适用范围 掌握单回路控制系统方案的设计方法 掌握单回路控制系统调节器的参数整 定方法
4.1 概述
4.1.1 单回路控制系统的组成及性能
4.1 概述
4.1.3 控制系统设计的基本内容
① 方案设计:主要包括被控参数和控制参数选择与确认,检测点的初步选择及
系统组成,调节器正/反作用方式的确定及其控制规律的选取,调节阀的选 择,绘制出带控制点的工艺流程图,编写控制方案设计说明书等。

单回路闭合式控制系统

单回路闭合式控制系统
对象的动态特性对调节系统的控制质量会产生非常大的影响对象的动态特性及其对控制过程的影响我们在第一章已经分析过了但是对象的动态特性在一般情况下不能人为的加以改变只能通过选择合适的调节规律及优化调节器参数来改善控制系统的品质
单回路控制系统
60 李小爽
一单回路控制系统的基本概念
• • • • • 1基本概念 单回路控制系统,是指控制系统中只对被控参数进行测量并反馈到控制器的 输入端,从而只构成一个反馈回路的控制系统,称为单回路控制系统。 2概念的理解 (1) 单回路控制系统只对被控参数进行测量反馈 在单回路控制系统中,只对被控参数进行测量,并将测量信号反馈到控制器 的输入端。而对系统中其它的信号(例如:影响被控参数发生变化的各种扰 动信号)没有进行测量和直接处理。这是理解单回路控制系统概念的最为关 键的地方; (2) 单回路控制系统只含有一个反馈回路 单回路控制系统包含并且只包含一个唯一的闭合反馈回路,这是单回路控制 系统与多回路控制系统的区别之处。单回路控制系统的名字就是由此而来。 (3) 单回路控制系统只含有一个调节器 单回路控制系统包含并且只包含一个调节器,接收被控参数的测量反馈信号 与定值信号,从而完成调节任务; (4) 单回路控制系统只含有一个被控对象并且被控参数只有一个;
一单回路汽包水位控制系统结构分 析
火电厂中锅炉汽包水位控制系统的主要任 务就是保证汽包水位稳定在一定的数值 即H=H中燃烧放热,并将热量传给工质, 以产生一定压力和温度的蒸汽,供汽轮发 电机组发电。电厂锅炉与其他行业所用锅 炉相比,容量大,参数高,结构复杂,自 动化程度高等优点。
1 调节器 2 调节器是构成单回路控制系统的核心元件,是控制系统的“神经中枢”。 承担着对测量信号逻辑思维运算的功能。 2 执行器 执行调节器的输出指令信号,对调节机构的开度进行调节。(例如汽包水 位控制系统中用来调节给水流量的给水调节阀门) 3 调节结构 电厂中用到的调节结构主要有调节阀门和调节挡板,它们通过机械的联接 手段(例如铰链、连杆等)与执行器连接。在执行器的操纵下改变自身 的开度以改变调节量的大小,从而实现对被调量的调节。 4 对象 对象是我们设计控制系统进行控制的对象,可以是电厂中的某一个具体设 备(例如汽包、过热器等),也可以是某一热力生产过程(例如燃烧过 程)。对象的动态特性对调节系统的控制质量会产生非常大的影响(对 象的动态特性及其对控制过程的影响我们在第一章已经分析过了),但 是,对象的动态特性在一般情况下不能人为的加以改变,只能通过选择 合适的调节规律及优化调节器参数来改善控制系统的品质。 5 测量变送器 测量变送器的性能直接决定测量信号的准确性,进而对控制系统的调节品 质产生非常大的影响。

单回路控制系统详解

单回路控制系统详解

一、单回路控制系统1. 画出图示系统的方框图:2. 一个简单控制系统总的开环增益(放大系数)应是正值还是负值?仪表行业定义的控制器增益与控制系统中定义的控制器的增益在符号上有什么关系?为什么?3. 试确定习题1中控制器的正反作用。

若加热变成冷却,且控制阀由气开变为气关,控制器的正反作用是否需要4. 什么是对象的控制通道和扰动通道?若它们可用一阶加时滞环节来近似,试述K P 、K f 、τp 、τf 对控制系统质量的影响。

5. 已知广义对象的传递函数为1)S (T e K P SτP P +-,若P P T τ的比值一定时,T P 大小对控制质量有什么影响?为什么?6. 一个简单控制系统的变送器量程变化后,对控制质量有什么影响?举例说明。

7. 试述控制阀流量特性的选择原则,并举例加以说明。

8. 对图示控制系统采用线性控制阀。

当负荷G 增加后,系统的响应趋于非周期函数,而G 减少时,系统响应震9. 一个简单控制系统中,控制阀口径变化后,对系统质量有何影响?10. 已知蒸汽加热器如图所示,该系统热量平衡式为:G 1C 1(θ0-θi )=G 2λ(λ为蒸汽的冷凝潜热)。

(1)主要扰动为θi 时,选择控制阀的流量特性。

(2)主要扰动为G 1时,量特性。

(3特性。

11.作用后,对系统质量有什么影响?为了保持同样的衰减比,比例度δ要增加,为什么?12. 试写出正微分和反微分单元的传递函数和微分方程;画出它们的阶跃响应,并简述它们的应用场合。

13. 什么叫积分饱和?产生积分饱和的条件是什么?14. 采用响应曲线法整定控制器参数,选用单比例控制时,δ=K P τP /T P ×100%,即δ∝K P ,δ∝τP /T P ,为什么?而选择比例积分控制时,δ=1.44K P τP /T P ×100%,即比例度增加,为什么?15. 采用临界比例度法整定控制器参数,在单比例控制时,δ=2δK (临界比例度),为什么?16. 在一个简单控制系统中,若对象的传递函数为)1T )(1S 1)(T S (T K W P V P +-+S ,进行控制器参数整定时,应注意什么? 17. 已知广义对象的传递函数为1)S (T e K P SτP P +-,采用比例控制,当系统达到稳定边缘时,K C =K CK ,临界周期为T K 。

单回路控制系统实验报告

单回路控制系统实验报告

单回路控制系统实验报告实验名称:单回路控制系统实验实验目的:掌握单回路控制系统的基本原理和调节方法,熟悉控制系统的建模、分析和设计过程。

实验设备:计算机、控制系统实验仪器、数据采集卡、传感器、执行器等。

实验原理:单回路控制系统是由闭环反馈控制器、过程装置和传感器组成的反馈控制系统。

其基本原理是根据反馈信号来调节输出信号,使得系统输出达到期望值或稳定在某个给定值上。

单回路控制系统可用于控制温度、压力、速度等各种物理量。

实验步骤:1. 搭建单回路控制系统:将闭环反馈控制器、过程装置和传感器按照实验要求连接起来,确保各个设备之间的信号传输正常。

2. 设定控制目标:根据实验需求,设定控制系统的目标值,如温度控制系统中的目标温度。

3. 进行系统建模:将控制系统中的各个元件抽象为数学模型,如控制器的传递函数、过程装置的传递函数等。

4. 参数调整:选择合适的控制器参数,如比例增益、积分时间和微分时间,并通过试控实验进行参数调整。

5. 进行闭环控制实验:将控制系统闭合,即将输出信号作为反馈信号输入到控制器中,通过控制器输出调节过程装置的输入信号,控制系统达到期望值或稳定在给定值上。

6. 实验数据采集与分析:利用数据采集卡采集实验过程中的各个信号数据,并进行数据分析,如误差分析、系统响应时间等。

7. 评价控制效果:根据实验数据分析结果,评价控制系统的性能,并对控制系统进行改进或优化。

实验结果:根据实验数据采集与分析结果,可以得到控制系统的性能指标,如超调量、调节时间等。

根据实验结果,评价控制系统的性能,并对控制器参数进行调整和优化,以达到更好的控制效果。

实验总结:通过本实验,掌握了单回路控制系统的基本原理和调节方法,了解了控制系统的建模、分析和设计过程。

实验中还发现了控制系统中可能存在的问题,并进行相应的改进措施。

在今后的工作中,将进一步研究和应用控制系统技术,提高控制系统的性能和稳定性。

第四节单回路控制系统

第四节单回路控制系统

第四节单回路控制系统在热工生产过程控制中,最基本的且应用最多的单回路控制系统,其他各种复杂控制系统都是在单回路系统的基础上发展起来的,而且许多复杂控制系统的整定都利用了单回路控制系统的整定方法,可以说单回路控制系统是过程控制系统的基础。

一、单回路控制系统的组成及初步设计单回路控制系统的组成原理方框图如图3-44所示,它是仅有一个测量变送器,一个调节器和一个执行器(包括调节阀),连同被控对象组成的闭环负反馈控制系统。

图1-26 单回路控制系统组成原理方框图1、被调量的选择在图1-26中,被调量是表征生产过程是否符合工艺要求的物理量,在热工生产过程中主要是温度、压力、流量、化学成分等。

一般情况下,欲维持的工艺参数就是系统的被调量,如火力发电厂锅炉过热蒸汽温度控制系统的任务就是维持锅炉过热器出口蒸汽温度,所以汽温控制系统的被调量就是过热器出口汽温。

但是生产过程中,有些工艺参数目前还没有获得直接的快速测量手段,如火电厂进入磨煤机的原煤干燥程度的测量。

这种情况下往往采用间接测量手段,如采用磨煤机入口介质的温度来代表原煤的干燥程度。

以间接参数作为系统的被调量,要求被调量与实际所需维持的工艺参数之间为单值函数关系,否则要采取相应的补偿措施。

对于那些虽有直接测量手段,但所测得的信号过于微弱或迟延较大的情况,不如选用间接参数作为系统的被调量。

为提高测量的灵敏度,减小迟延,应采用先进的测量方法,选择合理的取样点,正确合理地安装检测元件。

2、控制量的选择选择什么样的控制量去克服扰动对被调量的影响呢?原则上是选择工艺上允许作为控制手段的变量作为控制量,一般不应选择工艺上的主要物料或不可控制的变量作为控制量。

例如:火力发电厂锅炉负荷控制系统,其被调量是主蒸汽压力,而影响主蒸汽压力的主要因素是汽轮机进汽量和锅炉燃料量,前者是电力生产要求所确定的,因而不能作为控制量,而只能选择燃料量作为控制量。

给定值 调节器 对象被调量 - μ 扰动 扰动 图1-28 单回路调节系统 3、控制通道和扰动通道单回路控制系统的组成如图1-27所示,图中W 01(s )为对象的传递函数,它是包括了检测元件、测量变送器、执行机构和调节阀在内的广义对象特性;W c (s )为调节器的传递函数,D 为扰动信号,W 02(s )为被调量与扰动信号间的传递函数。

第三节 单回路控制系统

第三节 单回路控制系统
带法(也称稳定边界法)的扩充,是一种闭环整定的 实验经验方法。按该方法整定PID参数的步骤如下:
• (1)选择一个足够短的采样周期 Tmin。所谓足够短, 具体地说就是采样周期选择为纯滞后时间的1/10以下。 • (2)将数字PID控制器设定为纯比例控制,并逐步减 小比例带 ( 1 ),使闭环系统产生临界振荡。此时 Kp 的比例带和振荡周期称为临界比例带 和临界振荡周 k 期 。

• (5)按求得的整定参数投入在投运中观察控 制效果,再适当调整参数,直到获得满意的控 制效果。
3、衰减曲线法(参见P183)
调节器取纯比例形式,
由大到小调节,使过渡过
程衰减比达到4 :1 (或10 :1 ), 如右图所示。
记录此时的 S、TS, 根据表5 (表 8 5 9)计 算调节器参数。
间接参数要有足够的灵敏度。
3、选择被控参数的一般原则(P158)
选择对产品的产量和质量、安全生产、经济运行和环境 保护具有决定作用的、可直接测量的工艺参数为被控量。
当不能用直接参数作为被控量时,应选择一个与直接参 数有单值函数关系的间接参数作为被控参数。 被控参数必须具有足够大的灵敏度。 被控参数的选取,必须考虑工艺过程的合理性和所用仪 表的性能。
简之:就是确定最佳过渡过程中控制器的比例度 、积分时间
常数 TI 和微分时间常数 TD 的具体值。 单回路参数整定的目标:使过渡过程呈现4:1(缓慢过程为 10:1)的衰减过程。 整定方法:
理论计算法: 计算烦琐
工程整定法: 是一种近似方法,但简单、方便、适用。
工程整定法 1、经验法(现场实验整定法) 按照 先比例、后积分、再微分 的顺序进行整定
X (S )
Wc (S ) WV (S ) W01(S ) W02 (S ) W03(S )

单回路控制系统

单回路控制系统

J ITAE et dt
0
对存在余差的系统,采用
作为误差项代入。
采用不同积分指标,所获得的过渡过程的性能要求也不同。
例如,ISE最小的系统着重于抑制过渡过程中的大误差,但衰减比很大;
ITAE最小的系统着重于惩罚过渡过程时间过长,但过渡过程振荡激烈。
误差积分指标不能都保证控制系统具有合适的衰减比。
3.1 单回路控制系统的结构与组成 控制系统的有关术语
控制通道:操纵变量到被控变量的通道。 扰动通道:扰动变量到被控变量的通道。
扰动影响被控变量或设定值变化时,通过控制通道调节。 改变操纵变量,克服扰动对被控变量的影响或跟随设定变化。
定值控制系统:设定值固定的控制系统。 随动控制系统:被控变量跟随设定值变化的控制系统。 采样控制系统:包含采样开关的控制系统。如,计算机控制
(2)绝对误差积分准则IAE( Integral of Absolute Value of Error Criterion ):
(3)时间乘绝对误差积分准则ITAE( Integral of Time Multiplied by The Value
of Error Criterion ):
f e, t e t;
控制器(Controller):根据设定值与测量值间的偏差, 按控制规律输出信号的设备;
执行器(Control Valve):接受控制器输出信号,控制操 纵变量的设备。
3.1 单回路控制系统的结构与组成 控制系统的有关术语
框图中的各个信号是增量。箭头表示信号流向,不是物流和能量流。 各环节增益的正负根据稳态条件下输出增量与输入增量之比确定。该环 节输入增加时,输出增加,增益为正;输出减少,增益为负。 常用执行器、被控对象和检测变送环节组成广义对象,用G0(s)表示。 该环节增益除以该物理量基准值表示为无量纲描述。控制器输入和输出 采用标准信号时,广义对象增益是无量纲的。

《单回路控制系统》PPT课件

《单回路控制系统》PPT课件

Gm (S)
K m e S TmS 1
20
4.3.2 选型注意事项
应尽量减少其时间常数与滞后时间。 选择快速反应的测量元件,以减小时间常数 选择合适的测量点,以减小纯滞后 使用微分单元,以克服容量滞后
21
4.4 控制阀的选择
问题:干扰(设定值、负荷或其它因素变化)的存在会破坏系 统的正常运行状态,那么用什么办法来克服扰动的影响 【请根据系统框图回答】
与控制阀输出流量Q成正 比,则阀流量特性应选线 性;
KP变化,且随Q增大反而
减少,则应选对数(或抛 物线/或蝶阀)流量特性;
KP变化,且随Q增大反而
增大,则应选快开流量特 性;
Q 直线
l
Q
对数/抛物 线/蝶阀
l
Q 快开
l
32
数学分析法:定值控制系统(负荷为干扰)
y 负荷线 R
Q
Q1Q2Q3
y 负荷线 R
1)数学分析法 根据对象特性选取合适的控制阀流量特性
2)经验法(工程上多采用) 根据被控对象、控制参数,按照经验选取流量特性。按
经验法选择流量特性时: 需要考虑工艺配管情况; 考虑负荷变换的情况: 在负荷变化幅度大的场合,选等
百分比阀较合适;当所选控制阀经常工作在小开度时,也宜选 等百分比阀。
26
数学分析法(举例)
离心泵流量控制
9
2、离心泵的流量控制
离心泵是液体输送的常用设备。生产工艺往往对输送的流体流量 有定量的要求。此时被控量是离心泵的实际排出液体的流量,扰动因素主 要有管道阻力特性的变化和泵的供电电压的变化等。控制方案常见的有如 下三种:
F
F
C
C
F
C
(a) 直 接 节 流 方 案 (c) 控制转速方案

第2章单回路反馈控制系统-V1

第2章单回路反馈控制系统-V1

Y(S)
Km Z(S)
U(S)
TmS+1
(TdS+1)
测量、变送装置与微分器连接示意图
24
概述
测量信号的处理
选择被控变量 选择控制变量 处理测量信号
选择调节阀 选择控制规律
滤波:克服随机干扰信号
中位值滤波 算术平均滤波 递推平均滤波
1 n
x n i1 xi
加权递推平均滤波
一阶惯性滤波
输入
1 TS+1
18
概述 选择被控变量 选择控制变量 处理测量信号
选择调节阀 选择控制规律
系统投运 参数整定
干扰通道时间常数 Tf Tf越大越好,干扰对被控变量的影响越缓慢,越有利于 改善控制质量
干扰通道滞后时间τf 干扰通道的纯滞后τf不会影响 控制质量
无纯滞后 有纯滞后
干扰通道纯滞后τf的影响 19
概述 选择被控变量 选择控制变量 处理测量信号
14
概述 选择被控变量 选择控制变量 处理测量信号
选择调节阀 选择控制规律
系统投运 参数整定
精馏塔系统的控制变量选择
p TD
进料 Q入,X入,T

QZ 蒸汽
TH
回流 F
冷却水 塔顶产品
进料流量Q入 进料成分X入 进料温度T入 回流流量F 回流温度TH 加热蒸汽流量QZ 冷凝器冷却温度
塔底产品
塔压P
对象特性 系统的输入输出关系 分为对象静态性质和对象动态性质 考察对象特性对控制质量的影响,用以选择控 制变量
16
概述 选择被控变量 选择控制变量 处理测量信号
选择调节阀 选择控制规律
系统投运 参数整定
对象稳态性质对控制质量的影响

第3章 单回路控制系统

第3章 单回路控制系统

当温度TD 恒定时, 组分XD和压力P之间也存 在单值对应关系,如图 3-5 所示。
在温度 TD 和压力P两者之间,只要固定其中一个 参数,另一个就可作为间接参数来反映组分XD的变化。 大量经验证明,塔压力的稳定有利于保证产品的纯 度,提高塔的效率和降低操作费用。因此,固定塔压, 选择温度作为被控变量对精馏塔的出料组分进行间接指 标控制是可行的,也是合理的。
二、控制器正、反作用的确定 工业控制器一般都具有正作用和反作用两种工作方 式。 控制器的输出信号随着被控变量的增大而增加时, 控制器工作于正作用方式; 控制器输出信号随着被控变量的增大而减小时,控 制器工作于反作用方式。 控制器设置正、反作用的目的是为了适应对不同被 控对象实现闭环负反馈控制的需要。 控制器正、反作用的选择并不是一项困难的工作。 下面介绍的判别准则具有普遍的指导作用。
阀流量特性选择,见表3-1。

二、执行器开、闭形式的选择 气动执行器有气开和气关两种工作方式。 在控制系统中,选用气开式还是气关式,主要由具 体的生产工艺来决定。 提供几条原则作为选择的依据。 1、首先要考虑生产的安全。 2、有利于保证产品的质量。 3、有利于降低原料成本和节能。 选择时需注意两点: 1.按照上述原则选择开闭形式可能会得出相互矛盾的结 果。在这种情况下,首先考虑生产的安全性。 2.由于工艺要求不同,同一个执行器可以有两种不同的 选择结果。
在整个系统中各信号的传递关系可以用图3-2 所示的方块图表示。
单回路控制系统是按负反馈的原理根据偏差进行 工作的,组成自动化装置各环节的设备数量均为一个, 它们与被控对象有机地构成一个闭环系统。 单回路控制系统具有结构简单、工作可靠、所需 自动化工具少、投资成本低、便于操作和维护等优点, 是目前研究最多也是最为成熟的过程控制系统,适用 于对象的纯滞后和惯性较小、负荷和干扰的变化都不 太频繁和剧烈、控制品质要求不是很高的应用场合。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单回路控制系统原理一、过程控制的特点与其它自动控制系统相比,过程控制的主要特点是:1、系统由工业上系列生产的过程检测控制仪表组成。

一个简单的过程控制系统是由控制对象和过程检测控制仪表(包括测量元件,变送器、调节器和调节阀)两部分组成。

如图1Q2y(t)K C:调节器的静态放大系数K V:调节阀的静态放大系数K0:被控对象的静态放大系数K m:变送器的静态放大系数2、被控对象的设备是已知的,对象的型式很多,它们的动态特性是未知的或者是不十分清楚的,但一般具有惯性大,滞后大,而且多数具有非线性特性。

3、控制方案的多样性。

有单变量控制系统、多变量控制系统;有线性系统、有非线性系统、;有模拟量控制系统、有数字量控制系统,等等。

这是其它自动控制系统所不能比拟的。

4、控制过程属慢过程,多半属参量控制。

即需对表征生产过程的温度、流量、压力、液位、成分、PH等进行控制。

5、在过程控制系统中,其给定值是恒定的(定值控制),或是已知时间的函数(程序控制)。

控制的主要目的是在于如何减少或消除外界扰动对被控量的影响。

工业生产要实现生产过程自动化,首先必须熟悉生产过程,掌握对象特点;同时要熟悉过程参数的主要测量方法,了解仪表性能、特点,根据生产工艺要求和反馈控制理论的分析方法,合理正确地构建过程控制系统;并且通过改变调节仪表的PID特性参数,使系统运行在最佳状态。

过程控制系统的品质是由组成系统的对象和过程检测仪表各环节的特性和系统的结构所决定的。

二、单回路控制系统原理如图1所示单回路控制系统由对象、测量变送器、调节器、调节阀等环节组成。

由于系统结构简单,投资少,易于调整、投运,又能满足一般生产过程的控制要求,所以应用十分广泛。

单回路控制系统的设计原则同样适用于复杂控制系统的设计,控制方案的设计和调节器整定参数值的确定,是系统设计中的两个重要内容。

如果控制方案设计不正确,仅凭调节器参数的整定是不可能获得较好的控制质量的;反之,如果控制方案设计很好,但是调节器参数整定不合适,也不能使系统运行在最佳状态。

1、选择被控参数对于一个生产过程来说,影响正常操作的因素是很多的,但是,并非对所有影响因素都需要加以控制。

选择被控参数的一般原则为:[1]、选择对产品的产量和质量、安全生产、经济运行和环境保护等具有决定性作用的、可直接测量的工艺参数为被控参数。

[2]、当不能用直接参数(如测量滞后过大)作为被控参数时,应选择一个与直接参数有单值函数关系的间接参数作为被控参数。

[3]、被控参数必须具有足够大的灵敏度。

[4]、被控参数的选取,必须考虑工艺过程的合理性和所采用仪表的性能。

2、选择控制参数若生产工艺有几种控制参数可供选择,一般希望控制通道克服扰动的校正能力要强,动态响应应比扰动通道快。

控制通道:是指调节作用与被控参数之间的信号联系。

即P(t)到y(t)。

扰动通道:是指扰动作用与被控参数之间的信号联系。

即f(t)到y(t)。

扰动作用是由扰动通道对对象的被控参数产生影响的,使被控参数偏离给定值。

引入控制作用的目的是为了克服扰动作用的影响,使被控参数恢复和保持在给定值上。

而控制作用是由控制通道对对象的被控参数施加影响,抵消扰动作用。

选择控制参数的一般原则为:[1]、选择控制通道的静态放大系数K0要适当大一些,时间常数T0应适当小一些,纯滞后时间τ0则越小越好。

[2]、选择扰动通道的静态放大系数K f应尽可能小,时间常数T f应大些,扰动引入系统的位置离被控参数越远,即越靠近调节阀,控制质量越好。

[3]、当控制通道由几个一阶惯性环节组成时,为了提高系统的性能,应尽量拉开各个时间常数。

[4]、应注意工艺上的合理性。

3、系统中的测量及信号传递问题在过程控制系统中,测量变送环节起着信息获取和传送作用。

在具体分析测量变送环节对控制质量的影响时,经常碰到测量、变送和信息传送中的滞后问题。

因为它会引起控制指标的下降,系统失调,甚至产生事故。

测量变送中的滞后包括测量滞后,纯滞后和信息传送滞后等,这些滞后均与测量元件本身的特性、元件安装位置的选择和信息传送的方法有关。

A、测量滞后测量滞后是测量元件本身的特性所引起的动态误差。

例如用热电偶或热电阻测量温度时,由于其保护套管存在着热阻和热容,因而具有一定的时间常数,测温元件的输出信号总是滞后于被控参数的变化,引起被控参数的测量值与真实值之间产生动态误差,从而造成控制质量下降。

为了克服测量滞后的不良影响,在系统可以采用以下措施:[1]、合理选择快速测量元件。

[2]、正确使用微分环节。

B、纯滞后纯滞后往往是由测量元件的安装位置不当而引入的。

在生产过程中,温度测量和成分分析最容易引入纯滞后。

微分作用对于纯滞后是无能为力的。

为了克服纯滞后的影响,只有合理选择测量元件的安装位置,尽量减小纯滞后。

当过程参数测量引起的纯滞后较大时,单回路控制系统很难满足生产工艺要求,应考虑其它控制方案。

C、信息传送滞后测量信息传送滞后,主要是指气动单元组合仪表的输出信号在管路中传送所造成的滞后。

为了克服信号传送滞后,可采用以下措施:[1]、用气—电和电—气转换器,将气压信号转换为电信号再传送。

[2]、在气压信号管路上设置气动继动器或气动阀门定位器,以增大输出功率,减少传送滞后。

4、控制规律的选择调节器的控制规律有比例(P)、积分(I)、微分(D)这三种基本规律及其各种组合。

比例调节(P):依据偏差的大小来动作,其输出与输入偏差的大小成正比。

比例调节及时、有力、但有余差。

积分调节(Ti):依据偏差是否存在来动作,它的输出与偏差对时间的积分成比例,只有当余差消失时,积分作用才会停止。

积分的作用是消除余差,但积分作用使最大动偏差增大,延长了调节时间。

积分时间越小表明积分作用越强,积分作用太强时会引起震荡。

积分控制通常与比例控制或微分控制联合作用,构成PI或PID 控制。

积分控制能消除系统的稳态误差,提高控制系统的控制精度。

但积分控制通常使系统的稳定性下降。

Ti太小系统将不稳定;Ti偏小,震荡次数较多;Ti太大对系统性能的影响减少。

微分调节(T d):依据偏差变化速度来动作,它的输出与输入偏差变化的速度成比例,其作用是阻止被调参数的一切变化,有超前调节的作用,对滞后大的对象有很好的效果。

它可以克服调节对象的惯性滞后、容量滞后,但不能克服调节对象的纯滞后。

常用控制系统温度控制系统:时间常数一般较大,为几分钟到几十分钟。

温度控制系统的纯滞后一般也较大。

为了改善温度控制系统的品质,测量元件应选用时间常数小的元件,并尽可能的安装在测量纯滞后小的地方,调节器一般选用PID调节器,适当引入微分作用,可以加快调节作用,改善因系统时间常数较大对控制系统造成的影响。

压力控制系统:气体压力对象基本上是单容的,时间常数与系统容积成正比,一般为几秒钟到几分钟,调节器常选用PI调节器,积分时间一般为几十秒到几分钟;液体压力对象具有不可压缩性,时间常数很小,通常为几秒钟,同时对象的纯滞后时间很小,调节过程中被控变量的振荡周期很短。

调节器常选用PI调节器。

流量控制系统:流量对象时间常数很小,一般为几秒,对象的纯滞后时间也很小,调节过程中被控变量的振荡周期也很短。

调节器常选用PI调节器。

液位控制系统:一个设备或储罐的液位,代表了其流入量和流出量差的累积。

调节器常选用P或PI调节器。

调节器的参数整定调节器参数的工程整定方法有响应曲线法、临界比例度法、衰减曲线法和现场经验法。

在现场我们使用的是现场经验法来进行调节器的参数整定。

对于由比例调节器构成的过程控制系统,其整定参数只有一个比例度δ,此时只需将比例度δ由大逐渐调小,观察系统过渡过程曲线,直到认为其曲线达到最佳为止。

对于由比例积分调节器构成的过程控制系统,其整定参数有比例度δ和积分时间Ti。

此时,首先将Ti→∞,按纯比例作用整定调节器的比例度,使其得到较好的过渡过程曲线。

然后,把比例度放大约1.2倍,再引入积分作用并将积分时间从大到小进行调整,使其得到较好的过渡过程曲线。

最后,在这个积分时间下,再改变比例度,观察其曲线变化情况,如曲线变化,就按此方向再整定比例度;如曲线无变化,可将比例度再减小一点,改变积分时间,观察曲线是否变化。

这样反复多次,直到认为其曲线达到最佳为止。

对于由比例积分微分调节器构成的过程控制系统,先使微分时间T d=0,再按上述比例积分调节器的整定方法,得到较满意的过渡过程曲线,然后引入微分作用,使微分时间由小到大进行调整,逐步凑试,直到得到最佳整定参数值5、调节阀特性的选择调节阀是过程控制系统中的一个重要组成环节。

调节阀的选择主要是流量特性的选择、流通能力的选择、结构形式的选择和开关形式的选择。

应根据对象特性、负荷变化情况和生产工艺的要求出发,来确定所需要的调节阀。

主要介绍气动调节阀,正确选用气动调节阀应考虑工艺操作条件(温度、压力、流量、介质特性等)和过程控制系统的质量要求。

调节阀对通过的流体流量的控制是基于改变阀芯与阀座之间的流通截面大小,即改变其阻力大小来达到的。

所以,从流体力学的观点来看,调节阀是一个局部阻力可以变化的节流元件。

A、调节阀的尺寸选择调节阀的尺寸通常用公称直径D和阀座直径d来表示。

D和d是根据计算出来的流通能力C来选择。

流通能力C表示调节阀的容量,其定义为:调节阀全开,阀前、阀后压差为0.1MPa流体重度为1g/cm3时,每小时通过阀门的流体流量m3数。

C = Q r /(p1-p2)式中:r —流体重度;Q —流体的体积流量p1-p2——调节阀前后压差根据调节所需的物料量Qmax、Qmin,流体重度r及调节阀上的压降p1-p2可以求得最大流量、最小流量时的Cmax和Cmin值。

根据Cmax,在所选用产品型式的标准系列中,选取大于Cmax值,并最接近一级的C值。

B、气开、气关的选择气动调节阀分气开、气关两种。

有控制气压信号(即有输出信号)时阀开、无控制气压信号时阀关叫气开式;有控制气压信号(即有输出信号)时阀关、无控制气压信号时阀开叫气关式。

在具体选用调节阀气开、气关形式时,应考虑以下情况[1]、考虑事故状态时人身和工艺设备的安全[2]、在事故状态下减少生产原料或动力的消耗浪费,以及保证产品质量。

[3]、考虑介质的性质(防止物料结晶、凝固和堵塞)C、调节阀流量特性的选择调节阀的流量特性是指介质流过阀门的相对流量与阀门相对开度之间的关系。

从过程控制的角度来看,调节阀最重要的特性是它的流量特性。

因为调节阀的特性对整个过程控制系统的品质有很大的影响。

不少控制系统工作不正常,往往是由于调节阀的特性选择不合适,或者是阀芯在使用中受腐蚀、磨损使特性变坏引起的。

调节阀的理想流量特性,就是在调节阀前后压差一定的情况下得到的流量特性。

它取决于阀芯的形状,阀芯的形状有快开、直线、抛物线和等百分比四种。

相关文档
最新文档