板翅式换热器新技术及应用_凌祥

板翅式换热器新技术及应用_凌祥
板翅式换热器新技术及应用_凌祥

第31卷 第2期2002年3月 石 油 化 工 设 备

PET RO-CHEM ICAL EQ U IPM EN T

V o l.31 N o.2

M ar.

2002

试验研究

文章编号:1000-7466(2002)02-0001-04

板翅式换热器新技术及应用

凌 祥,周帼彦,邹群彩,涂善东

(南京工业大学过程装备先进制造技术重点实验室,江苏南京 210009)

摘要:介绍了作者近年来在板翅式换热器研究与开发方面所做的工作:①为提高铝板翅式换热器翅片和隔板表面的耐蚀性和亲水性,开发了一种表面处理技术。②开发的板翅式换热器快速创型系统,具有优化设计、参数化绘图和快速报价等功能,能降低产品成本,提高设计效率十几倍。③通过应用先进制造工艺和引进新材料开发了一系列具有抗强腐蚀、抗结垢、耐高温和耐高压能力的板翅式换热器系列新产品。④应用大型有限元分析系统对高压板翅式换热器的结构特性进行了初步分析,得出了一些提高产品可靠性的设计准则。

关 键 词:板翅式换热器;快速创型;表面处理;先进制造工艺;有限元分析

中图分类号:TQ051.51 文献标识码:A

N ew techniques of plate-fin heat exchangers and its application

LIN G Xiang,ZHO U Guo-ya n,ZO U Qun-cai,T U Sha n-do ng

(Adv anced M a nufacturing Technolog y Lab.o f Process Equipment,

N anjing Univ ersity o f Techno lo g y,N anjing210009,China)

Abstract:The resear ches made o n plat e-fin heat exchang ers by author s w ere intro duced.Fir stly,a surface tr eatment me tho d for fins and pa rting sheet is propo sed in o rder to enha nce their resistance to co rr osio n and hydro philic ca pability.Secondly,a rapid innov ation sy stem which inv o lv ed a lo t of functio ns such a s optima l ther mal desig n,pa ramet ric dr awing and r apid quo tatio n is dev eloped.The practice applicatio n o f this sy stem sho ws the desig n efficiency increases8to10tim es and the cost decr ease va stly.Thir dly,sev eral new type o f pla te-fin heat ex cha ng ers with specia l perfo rma nce,such as co rro sio n-proo f,anti-fo uling a nd high temper ature resistant etc,w er e dev eloped th ro ug h ado pting new adva nced ma terials and new a dv anced manufac turing techno log y.

Fina lly,the st reng th ana ly sis fo r plate-fin heat exchang ers subjected to hig h pr essur e w as car ried out.So me design criteria to ensure the reliability of pla te-fin heat ex chang er s a re o btained.

Key words:pla te-fin heat ex chang er;r apid innov ation;sur face t reatme nt;adv anced manufac turing techno log y;

finite element a naly sis

板翅式换热器具有结构紧凑、传热效率高等特点,与传统的管壳式换热器相比,其传热效率提高20%~30%,成本可降低50%,现已广泛应用于石油化工、航空航天、电子、原子能和机械等领域。目前板翅式换热器的制造材料主要使用铝合金,因此存在耐腐蚀性差、承压低等缺点。另外,板翅式换热器结构比较复杂,人工进行热力设计困难,特别是有相变、多股流体换热的情况,用手工进行精确热力设计计算几乎不可能。为了进一步拓宽其应用范围,近年来板翅式换热器的设计理论、试验研究、制造工艺及开拓应用的研究方兴未艾[1],特别是一些新技术的渗透,使板翅式换热器的应用范围更加广泛,下面将

收稿日期:2001-09-22

 基金项目:江苏省教委自然科学研究项目(99K JB460005)

 作者简介:凌 祥(1967-),男(汉族),江苏东台人,副教授,主要从事过程装备先进再制造技术、新型高效过程设备和计算机辅助工程(CA E)的研究与开发。

介绍我们近年来在板翅式换热器研究与开发方面所做的工作。

1 表面处理技术

板翅式换热器在压缩机中主要用于油冷却器和压缩空气冷却器,有空冷和水冷两种形式。无论是空冷还是水冷冷却器,高温压缩空气在冷却过程中都会有冷凝水析出,并在翅片上聚集形成“水桥”,阻止了空气的流通,从而使空气压力降增大,并导致热交换效率下降,空调中的板翅式换热器也存在类似的情况。尽管铝及其合金具有良好的抗蚀性能,但是长期滞留在铝表面的冷凝水吸收空气中的氧、硫及氮等,在铝表面形成腐蚀电池,加速腐蚀。腐蚀产物在铝翅片表面聚集,将降低热交换效率。对于水冷却器,在水侧同样存在腐蚀性问题,长期运行也将缩短铝制板翅式换热器的寿命。

为提高铝表面的抗腐蚀和亲水性能,作者对铝翅片表面处理技术进行研究,提出了一种两步成膜法。先用铬酸-铬盐在铝翅片表面形成一层防蚀纳米膜。在此涂层之上,再用小于100nm的细硅酸微粒进行涂膜,这样,-SiO H基团将在水中离解并产生负电荷,可使水中分散的负电荷很稳定,当加热此液态悬浮液时,硅粒子就很难再分散并且很难从表面移走。这些粒子上的-SiO H基团可以吸附水分子形成亲水表面。实际使用效果表明,采用此方法能提高换热器寿命和减小空气侧压力降。

2 快速创型系统[2]

目前,不借助计算机,手工完全可以进行一个完整的换热器热力计算。然而,由于板翅式换热器的设计公式比较复杂,通道设计又十分困难,计算过程将十分费时且易出现人为的误差,为便于简化计算还必须忽略许多二阶量的影响。另外多股流板翅式换热器和有相变板翅式换热器的手工计算几乎不可能,因此板翅式换热器经常弃置不用,设计者通常选用低效但相对简单的管壳式换热器[3]。近年来计算机辅助工程技术(Com puter Aided Engineering)的发展,使应用计算机模拟技术对换热器稳态和瞬时进行性能模拟已成为可能,这将解决多年来一直困扰设计人员的手工热力计算的难题。

Shah首先对紧凑式换热器的计算机辅助热工计算进行了讨论[4]。英国传热服务公司HTFS、美国ALT EC公司和SW公司等都曾推出专用商业软件。笔者经过多年的研究与开发,于1995年正式推出了板翅式换热器的快速创型系统(RIS-PFHE)软件包[5],该系统具有优化设计、参数化绘图和快速报价等功能。经过部分厂家使用,结果表明可提高设计效率10~20倍,大大减少了过去设计、绘图文件生成中的人为错误,使产品的设计周期大为缩短。与国外软件相比,除了热工计算外,还具有物性计算模块和用C++开发的基于AutoC AD系统的计算机参数化绘图模块以及快速报价等功能[6,7]。

一个高水平的计算机辅助设计程序必须兼备优化功能[4],RIS-PFHE系统应用遗传算法实现了板翅式换热器多目标的人工智能设计优化。实际使用表明,该方法具有极强的鲁棒性和全局寻优能力,应用该方法,我们已开发了风冷和水冷两个系列的压缩空气板翅式中冷器和后冷器。

3 新产品

虽然板翅式换热器的设计和制造技术已有很大的发展,其优点也已得到公认,但人们始终没有放弃对造价更低,适应性更广,特别是能耐更高压力、耐高温和耐腐蚀、不易结垢的新型板翅式换热器的研究。近年来,笔者应用先进制造工艺和引进新材料开发出一系列板翅式换热器新产品。

3.1 板翅式风机[8]

在风冷式冷热水空调机组中,分散空气调节系统的末端装置广泛使用的是风机盘管,应用的是管翅式换热器,存在体积和质量大、热效率较低等缺点。针对上述问题,笔者应用板翅式换热器来代替管翅式换热器,提出了一种板翅式风机,其单位体积内换热面积大,热效率高,能很好克服常用风机盘管的缺点。实验证明,板翅式风机的热效率比同样风量风机盘管提高30%,水侧压力降仅为风机盘管的25%,总质量减小20%,现已申请实用新型专利。3.2 非金属板翅式换热器

由作者开发的非金属板翅式换热器,系采用改性增强的聚四氟乙烯制成[9]。聚四氟乙烯(简称F4)有塑料王之美称,化学性能相当稳定,可耐一切有机、无机化合物腐蚀介质,是迄今为止耐腐蚀性能最好的材料。F4具有优异的抗老化性能,根据国外资料,其老化期在10a以上。F4分子间引力小,表面自由能仅为 1.9×10-4N/cm2,几乎所有介质都不能粘附其表面,使用时不会有污垢,具有极强的抗结垢能力。鉴于上述优异的性能,该换热器可用于石油化工、制药和冶炼等行业中有特殊要求(如强酸、强碱等)的冷凝、冷却及加热等多种工艺操作中。

自从20世纪60年代杜邦公司最早研制成功氟塑料换热器以来,国外先后开发了管壳式、板式和浸没螺旋管式等多种形式的塑料换热器,所用材料有

·2

· 石 油 化 工 设 备 2002年 第31卷 

聚四氟乙烯、聚全氟乙丙烯、聚丙烯和聚碳酸脂等,并已尝试用石墨改性来提高聚四氟乙烯和聚丙烯的导热系数以及通过碳纤维来增强聚丙烯,但研究仅限制备工艺,得到的仅是经验结果,缺乏定量分析。

为进一步降低聚四氟乙烯板翅式换热器制造材料成本,作者对应用石墨改性来提高聚四氟乙烯的导热系数进行了定量研究。聚四氟乙烯的导热系数很小,仅为0.18W /(m ·K),通过添加高导热纳米石墨颗粒对聚四氟乙烯进行改性,提高聚四氟乙烯基复合材料导热系数。石墨和碳纤维对聚四氟乙烯基复合材料导热系数的影响见表1。随着石墨质量百分含量的增加,聚四氟乙烯基复合材料等效导热系数明显增大(图1),添加20%石墨可使其导热系数提高3倍左右。应用定向纤维增强技术提高聚四氟乙烯基复合材料的强度和抗热变形能力,现工艺已使强度提高了1倍,抗热变形和抗蠕变(冷流)能力也有显著提高。从图1中还可以看出,添加碳纤维也能提高聚四氟乙烯基复合材料的导热系数。满足同样热力条件,本换热器比聚四氟乙烯列管换热器成本降低了50%,但体积仅为聚四氟乙烯列管换热器的1/6。研制出的改性增强聚四氟乙烯板翅式换热器主要技术参数为:使用温度为-180~250℃,使用压力不大于1.2M Pa ,加速试验证明使用寿命可超过8a 。

表1 聚四氟乙烯基复合材料导热系数测定结果

A /%λ/

W ·(m

·K)-1

B /%λ/W ·(m ·K)-1A +B /%λ/

W ·(m ·K)-1

50.36557850.23782410+50.541791100.433004100.29544710+100.309721150.517511150.34625015+50.42635620

0.575550

20

0.351060

15+10

0.318040

 注:A 为石墨含量,B 为碳纤维含量,λ为导热系数

图1 聚四氟乙烯基石墨和碳纤维改性复合材料导热系数

3.3 不锈钢板翅式换热器

铝制板翅式换热器所能承受的最高压力仅为9M Pa,承受最高温度300℃。进一步提高板翅式换

热器使用压力、使用温度和耐腐蚀性能,较好的办法

是开发不锈钢板翅式换热器。根据国外文献报道,现在钎焊工艺生产的不锈钢板翅式换热器产品的耐热极限已达到850℃,耐压最高达14.0M Pa 。不锈钢板翅式换热器最常用的钎料是镍基钎料,其次是铜基,还有银基和锰基钎料[10]。其中铜基、银基和锰基钎料都不是高温钎料,铜基和锰基钎料的耐腐蚀性能很差,而采用镍基钎料不但能使产品耐高温而且具有很好的耐蚀性。采用真空钎焊的不锈钢主要是奥氏体、铁素体和马氏体不锈钢[11,12]。目前镍基钎料钎焊不锈钢的工艺还不很成熟,特别是大型不锈钢板翅式换热器,还有许多问题需要解决,如不锈钢热膨胀系数大,导热系数低,由于热应力容易导致产生的裂纹在470~815℃长时间停留,可能产生脆性极大的σ相。奥氏体不锈钢由870℃以上的温度缓冷会因C 和Cr 结合而致晶间贫铬,晶间贫铬将导致抗腐蚀性能甚至力学性能下降。另外不锈钢板翅式换热器钎焊前处理的要求非常高,对表面异物敏感性高。为解决上述问题,作者应用激光焊和扩散焊相结合的先进制造工艺来制造大型不锈钢板翅式换热器,已取得初步结果。该方法与常规的钎焊生产工艺不同,不仅生产成本低,耐压能力高,而且克服了钎焊中存在的难以解决的问题,进一步工程放大工作尚在进行中。4 高压板翅式换热器结构强度特性分析

高压下工作的板翅式换热器,因压力的循环变化会引起疲劳而使隔板产生裂纹,引起泄漏,因此在结构设计中必须考虑疲劳破坏。国内外对板翅式换热器结构强度特性的研究很少,我们结合模型实验和大型有限元AN SYS 5.4的数值模拟,对板翅式换热器的结构进行了分析。图2为逆流式板翅式换热器芯体的有限元分析模型,采用8节点的三维四

图2 板翅式换热器有限元分析模型

面体单元(So lid 45),网格划分单位为10,有限元计算单元数为140248,节点数为37318。根据模拟计

算结果已获得了如下一些定性结论:①承受3M Pa 以上的板翅式换热器,隔板厚度应不小于1.6mm,翅片厚度应不小于0.5m m 。②控制翅片与翅片、封

·

3· 第2期 凌 祥,等:板翅式换热器新技术及应用

文章编号:1000-7466(2002)02-0004-04

第31卷 第2期2002年3月 石 油 化 工 设 备PET RO -CHEM ICAL EQ U IPM EN T V o l.31 N o.2M ar.2002机械密封用焊接金属波纹管非线性应力分析

安源胜1

,蔡仁良1

,姚建国2

,顾 涛

2

(1.华东理工大学化工机械研究所,上海 200237; 2.上海高桥炼油厂,上海 200137)

摘要:针对机械密封用焊接金属波纹管的特点,考虑了波纹管内外缘焊菇的影响,从而建立新的力学模型,并利用有关文献提出的方法,计算了焊接波纹管在受轴对称载荷时的非线性应力。关 键 词:机械密封;焊接金属波纹管;应力分析中图分类号:TB 42 文献标识码:A

Nonlinear stress analysis on welded metal bellows of mechanical seals

AN Yua n-she ng 1,CAI Ren-lia ng 1,Y AO Jia n-g uo 2,G U T ao 2

(1.East China U niv ersity o f Science &T ech no lo gy ,Shanghai 200237,China;

2.Sha ng hai Ga oqiao Petr oleum Refiner y ,Shanghai 200127,China )

Abstract

:W elding mushr oo ms alw ay s pr oduce a g reat im pact o n the str ess of diaphrag m.In o rder to inv estig ate the no nlinea r problem o f welded metal bello ws under axial load ,a new mecha nica l model has been proposed fo r the

specia l co nfig ura tio n o f welded meta l bello ws and a naly zed acco rding to the refere nce [5

~6].Key words :mechanical seal;w elded metal bellow;st ress a naly sis

条间叠装间隙,在相邻流道间采用翅片断面错列接缝等措施可防止隔板产生疲劳裂纹,同时将承受交

变载荷的流道不布置在最外侧,或在最外侧布置1~2层,以改善其受力状况。③可采用封头和板束焊接衬圈、开焊接坡口及焊加强板等措施来减小连接部位的应力,从而提高产品的可靠性。5 结语

(1)开发的表面处理技术,可提高铝板翅式换热器的耐蚀性和亲水性,能提高换热器寿命,降低压缩空气的压力损失。

(2)开发的板翅式换热器快速创型系统具有优化设计、参数化绘图和快速报价等功能,能提高设计效率几十倍,降低产品成本。

(3)通过应用先进制造工艺和引进新材料,开发了具有抗强腐蚀、抗结垢的聚四氟基复合材料板翅式换热器,对能耐高压和耐高温的不锈钢板翅式换热器的制造工艺进行了研究,取得了一些初步结果,这将进一步拓宽板翅式换热器的应用范围和领域。(4)应用大型有限元AN SYS 系统对高压板翅式换热器的结构进行了分析,得出了一些提高产品

可靠性的设计准则。

参考文献:

[1] 凌 祥,陆卫权,涂善东.板翅式换热器的研究与应用进展

[J ].石油机械,1999,28(5):54-58.

[2] 凌 祥,涂善东.板翅式换热器快速创型系统V2.0.软件版

权登记号2001S R0542[CP].北京:国家版权局,2001.

[3] Lu nsford K M.Advantages of brazed alumin um h eat exch an-gers [J ].Hydrocarbon Processing,1996,(7):55-63.

[4] Sh ah R K .Compact h eat exch ang er su rface s election meth ods

[J ].Heat Trans fer ,1978,4:193-199.

[5] 凌 祥,柳雪华,涂善东.板翅式换热器CAD 系统的开发

[J ].炼油设计,1997,27(6):57-59.

[6] 凌 祥,邹群彩,涂善东.板翅式换热器参数化绘图[J ].化

工机械,2000,27(6):325-327.

[7] 邹群彩,凌 祥,涂善东.用Ob ject AR X 开发板翅式换热器

参数化C AD 系统[J ].压力容器,2001,18(2):38-41.

[8] 凌 祥,涂善东,陆卫权.板翅式风机[P ].中国专利:ZL

00220477.0,2000.

[9] 涂善东,凌 祥,黄 健,等.非金属板翅式换热器制造工艺

[P].中国专利:CN 1276515A,2000.

[10]屠恒悦.真空钎焊技术的应用[J ].金属热处理,1998,(5):

21-23.

[11]路文江,张国栋,俞伟元,等.非晶态合金钎料真空钎焊接头

组织研究[J].甘肃工业大学学报,1999,25(1):1-5.

[12]刘 红,李 文,张世航.马氏体不锈钢真空钎焊与真空热处理一

体化工艺[J ].沈阳工业学院学报,1999,18(2):37-41.

(王编)

收稿日期:2001-10-21

 作者简介:安源胜(1966-),男(汉族),河南睢县人,副教授,从事流体密封技术研究。

板翅式换热器

板翅式换热器 同组人:张弘达18、张来超14 薛业成06、张太平02 引言: 板翅式换热器:通常由隔板、翅片、封条、导流片组成。在相邻两隔板间放置翅片、导流片以及封条组成一夹层,称为通道,将这样得夹层根据流体得不同方式叠置起来,钎焊成一整体便组成板束,板束就是板翅式换热器得核心。 ---- 张弘达 一、板翅式换热器得发展 二十世纪三十年代,板翅式换热器首先在航空工业上被采用,它结构紧凑、轻巧、传热效率高等特点引起了研究人员与设计工作者得兴趣。随后在制冷、石油化工、空气分离、航空航天、动力机械、超导等工业部门得到广泛应用,被公认就是高效新型换热器之一。 1942年,美国得诺利斯首先进行了平直翅片、锯齿翅片、波纹翅 片、钉状翅片得传热机理研究,找出几种主要翅片得摩擦因子(f),传热因子(j)与雷诺数(Re得关系,为以后得研究与设计奠定了基础。1947 年美国海军研究署、船舶局、航空局合作在斯坦福大学拟定了系统得研究计划并扩大了研究范围。 板翅式换热器发展中另一方面就是制造工艺,对于结构复杂、隔板与翅片

又很薄得铝合金钎焊工艺掌握就是在经历了一段相当漫长又曲折过程,在突破许多关键技术后才达到今天得水平。 现在国外板翅式换热器最高设计压力可达10MPa以上,最大芯体尺寸(L X W X H)6000~7000X 1200x 1200mm,重达10 吨以上,可以有十多种流体同时换热。我国就是从20世纪60年代中期开始板翅式换热器试验研究, 70 年代初期自行开发成功,并首先在空分设备上得到应用。90年代初,杭氧厂引进美国S、W公司大型真空钎焊炉与板翅式换热器制造技术, 板翅式换热器生产在我国得到飞速发展。现在已在空气分离、石油化工(乙烯、合成氨、天然气分离与液化)、动力机械及航天(神舟号飞船)等工业部门得到广泛应用。并有部分出口国外(美国、加拿大等国)。 我国板翅式换热器目前得生产水平相当于国际上20世纪90年代中期水平。杭氧现已开发有近50 种不同型式与尺寸规格得翅片,可满足各种换热要求。 二、板翅式换热器特点 (1 )传热效率高。 (2)结构紧凑, 单位体积换热面积为管壳式换热器5 倍以上,最大可达几十倍。管壳式换热器一般为150~200m2m3,而板翅式换热器因翅片具有扩展二次表面,使传热面积可达到1500~2500 m2/m3。 (3)轻巧、牢固。铝材密度p为2、7g/cm3,而钢材为7、8g/cm3, 铜材为8、9g/cm3。

铝制板翅式换热器使用说明书_secret

铝制板翅式换热器使用说明书 目录 前言第1页 1 铝板翅式换热器结构介绍第1页 2 板式安装第4页 2.1设备到达检查第4页 2.2存放第4页 2.3板式安装第4页 3 安装第5页 3.1系统试压第5页 3.2 热交换介质的要求第5页 3.3 热交换介质的要求第6页 4、技术性能、安装尺寸第6页 5、维护与保养第6页 6、制造、检验、验收标准第7页 前言 铝板翅式换热器广泛用于低温精馏装置,如空气分离与液化设备、天然气分离与液化、乙烯精馏;也用于化工处理、机车冷却和其它领域; 本使用说明为铝板翅式换热器安装、使用、维护的一般知识,对文中黑体字部份应特别注意,以免对设备或人员造成伤害。在使用过程中对不清楚的地方应向制造厂家咨询。

1. 铝板翅式换热器结构介绍 1.1 铝板翅式换热器属间壁式紧凑换热器; 1.2 铝板翅式换热器的材质为防锈铝合金;换热介质在工作温度下不能对铝合金产生腐蚀或与铝合金有化学反应;这样会降低换热器的使用寿命; 1.3 板式由接管、板束体、其它附属装置组成; 1.3.1 接管 连接换热器与外部接管,可采用焊接、法兰连接或双金属接头连接;接管与板束体相连是封头,封头用于流体分布; 接管材料通常是5A02或5083 1.3.2 板束体 板束体是热交换的场所,结构单位是层;每层由导流片、翅片、封条、隔板组成;层组合为板束体高度(厚度);整体为真空钎焊,不可拆卸; 1.3. 2.1导流片分进、出口导流片,引导流体进、出各层; 1.3. 2.2翅片为流体热交换提供扩展面积和支承强度;节距一般从1mm~4.2mm,故不清洁介质不能入内,以免堵塞,特别在试压、管道吹扫时应特别注意; 1.3. 2.3 封条在每层的四周,把介质与外界隔开;在流体进、出口处开口; 1.3. 2.4隔板把相邻两层隔开,热交换通过隔板进行,常用隔板一般厚1mm~2mm; 1.3.3 其它附属装置包括:支座、吊耳、保冷等; 1.3.3.1支座支承换热器,支架与支座相连;如果需要,支座要考虑隔热; 1.3.3.2 吊耳为换热器吊装使用; 1.3.3.3 当换热器工作温度高于、低于环境温度时换热器应保温以减少冷损。保冷通常采用聚胺脂发泡或干燥珠光砂保冷; 1.4 板式可根据需要进行并联或串联以解决装置需要与钎焊设备尺寸限制的矛盾;并联布置时应注意换热器间流量分配的均匀度; 2 板式安装 2. 1设备到达检查

换热器的发展前景

换热器的发展前景 摘要:换热器是化工、石油、能源等各工业中应用相当广泛的单元设备之一。据统计, 在现代化学工业中换热器的投资大约占设备总投资的30% , 在炼油厂中占全部工艺设备的40% 左右, 海水淡化工艺装置则几乎全部是由换热器组成的。对国外换热器市场的调查表明, 虽然各种板式换热器的竞争力在上升,但管壳式换热器仍占主导地位约64% 。新型换热元件与高效换热器开发研究的结果表明, 列管式换热器已进入一个新的研究时期, 无论是换热器传热管件, 还是壳程的折流结构都比传统的管壳式换热器有了较大的改变, 其流体力学性能、换热效率、抗振与防垢效果从理论研究到结构设计等方面也均有了新的进步。目前各国为改善该换热器的传热性能开展了大量的研究, 主要包括管程结构和壳程结构强化传热的发展。 关键词:换热器:发展前景:存在问题 一.应用前景 近几年来, 随着高温热管技术研究的不断成熟和深入, 高温热管换热器的应用领域逐渐扩大, 目前已广泛应用于工业、民用和国防等各个领域。在冶金、化学、陶瓷、建材及轻工等工业生产中, 常需要500℃以上的清洁空气以满足助燃、干燥和供氧等需要, 采用高温热管空气加热器可以轻易地达到这一要求, 并且从根本上解决常规空气加热器所无法解决的传热难题。 高温热管技术在喷雾干燥中的应用取得成功, 并已收到了令人满意的实际效果。根据现场测试的参数表明, 高温热管换热器达到的某些性能指标, 是其他类型热风发生器所达不到的, 因而在某些特定工况条件下的应用也是无法取代的: 1. 向各类干燥设备( 喷雾于燥、沸腾干燥、气流干燥、隧道干燥及链板式干燥等) 提供清洁的高温热风。 2. 向气流焙炉提供800 ℃以上的高温热风,对物料直接进行气流焙烧。 3. 向各类燃烧器提供助燃热风, 改善燃烧状况, 提高燃烧效率, 节约燃料。据资料介绍, 用普通换热器将助燃风加热到300~ 400 可节约燃料15% ~ 25%, 用高温换热器可节约燃料40% 以上。 4. 高温预热煤气( 或助燃气) , 使冶金工厂大量的低热值高炉煤气( 其热值约为4 187J)资源在加热炉上的利用成为可能。 5. 回收利用六大耗能工业( 冶金、化工、炼油、玻璃、水泥及陶瓷) 的高温余热, 使这些领域的能源利用率达到一个新的水平。由以上可以预见, 高温热管

板翅式换热器封头有限元参数化结构分析

板翅式换热器封头有限元参数化结构分析 发表时间:2016-08-17T14:43:48.870Z 来源:《低碳地产》2015年第6期作者:袁俊杰 [导读] 阐述板翅式封头在设计工作中遇到的一些开孔率超出标准规定的问题. 四川川空换热器公司 【摘要】阐述板翅式封头在设计工作中遇到的一些开孔率超出标准规定的问题,利用ANSYS有限元分析解决大开孔的问题。利用其参数化设计,可让一般设计人员使用,并利用应力分析对板翅式封头设计工作进行一定程度优化。 【关键词】应力分析;封头;有限元;接管;板翅式换热器 一、前言 目前,使用ANSYS软件对零部件和简单结构进行参数化设计及有限元分析已较为成熟,在设计计算领域已得到广泛应用。使用APDL 对处理零部件非常有效,本文以板式换热器封头结构为研究对象,运用参数化与命令流相结合的方法建立结构模型,并对模型进行有限元分析,从而为板翅式换热器封头结构以及其结构的优化设计提供了一种快速的建模方法,解决了模型修改困难的问题。 二、基于ANSYS的有限元参数化基本思路 根据具体工程结构的设计特点与分析要求,用参数描述其特征尺寸及其它相关数据,并在建立有限元模型与分析时,以参数表征其过程,从而实现可变结构参数的有限元分析。实施时具体步骤如下:①根据模型的几何结构、特征形状抽象出描述模型的特征参数,并对模型适当简化。②建立包含实体建模、分析过程、结果处理过程的用ANSYS的命令流文件。③用APDL语言将抽象出的特征参数代替建模中的参数,构成可变参数的有限元分析。④根据设计分析要求,将参数赋于不同的特征值,并进行有限元计算分析,获取结果。前3步工作完成后,在进行结构分析时只需重复第4步就可不断获得新的有限元分析结果。 三、ANSYS命令流文件的建立和APDL参数化语言 1.ANSYS命令流文件的建立 ANSYS命令流文件是一种在模型建立过程中自动生成的.log文件,它记录了模型建立过程中的每一步操作和命令,并将这些操作转变成ANSYS命令流的形式进行保存。过对命令的修改和编辑建立进行参数化设计的ANSYS命令流文件,从而实现对同一系列板式换热器封头结构结构模型的修改。 2.APDL参数化语言 APDL是指ANSYS参数化设计语言,用来自动完成某些功能或建模的一种脚本语言。它是一种功能强大的描述性、解释性语言,它可以实现模型的参数化,可以获取ANSYS数据库信息,可以进行数学运算(包括矩阵和矢量运算),可以定义经常使用的命令或宏的缩写。(1)定义方法 由于APDL参数定义方法很多,这里只介绍其中比较简单的三种定义方法。 ①采用*SET命令定义例如*SET,LONG,10000②采用赋值号“=”定义 例如LONG=10000 HIGH=1000③GUI菜单定义定义途径:UtilityMenu>Parameters>ScalarParameters (2)APDL参数的使用 APDL 定义的参数主要是用于修改模型,其中包括模型的外轮廓尺寸(如长,宽、高、各板件之间的间隔以及材料的厚度等)和模型建立过程中坐标的移动距离。模型的修改也主要是这些参数数值的变化。当我们改变这些参数的数值后,将ANSYS命令导入ANSYS命令流窗口,就可以自动生成修改后的模型。 四、ANSYS参数化结构分析的实现 4.1参数化有限元模型的建立 进入ANSYS 的前处理模块,在工具菜单中(UtilityMenu)中选择Parameters 选项下ScalarParameters 项,调出参数尺寸定义界面,将模型中需要进行参数化的尺寸依次输入定义,完成参数化过程。 在参数化模型建立后,进行正常的单元定义,实参数定义,单元划分,加载,求解工作。在这些过程进行后,通过ANSYS 的LGWRITE 命令保存命令流文件,文件名为Jobname.lgw。Jobname 为自定义的分析文件名名称。用记事本打开,可以看到操作的步骤都被一一被ANSYS 以一定的格式记录下来,对其中的尺寸定义部分进行编辑,保存文件。开始一个新的分析过程,用ANSYS 的/INPUT 命令将Jobname.lgw 文件读入ANSYS,由于是批处理文件,因此程序自动进行分析过程得到参数化尺寸编辑后的模型及其计算结果。从上述论述中,可以看到应用ANSYS的参数化模型建立功能可以方便的得到相同结构不同尺寸模型的模型结果和分析结果。 4.2板翅式换热器封头结构ANSYS有限元建模及网格划分 采用自底向上的方法构建封头的模型,即在构造模型时,首先定义关键点,再利用这些关键点定义较高级的图元(即线、面、体)。通过计算各关键点坐标,先定义各个关键点,再生成封头体的轮廓线,通过轮廓线绕轴线旋转生成外形曲面。 有限元法的基本思想是把复杂的形体拆分为若干个形状简单的单元,利用单元节点变量对单元内部变量进行插值来实现对总体结构的分析,将连续体进行离散化即称网格划分。离散而成的有限元集合将替代原来的弹性连续体,所有的计算分析都将在这个模型上进行。模型进行网格划分,生成的有限元模型。 4.3 限制边界条件及施加压力载荷 加载即用边界条件数据描述结构的实际情况,即分析结构和外界之间的相互作用。在加载时,边界条件可直接施加在几何模型上,其优点在于当改变有限元网格而重新进行分析时,无需在节点上重新施加边界条件;而通常的做法是将边界条件加载在有限元模型上,这样当改变有限元网格时,必须先删去现有节点上的边界条件,再施加新的载荷,以保证加载的准确性。 4.4 求解及后处理 我们选择软件默认的直接解法,它只寻求分析的稳定性,并不强调求解的速度,而且对计算机的内存要求不高,在求解器处理每个单元时,同时进行整体矩阵的组集和求解。后处理是将计算所得的结果可视化。ANSYS 有两个后处理器:通用后处理器,它只能观看整个模

换热器的发展现状及前景

换热器的研究发展现状及前景 摘要:随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现。随着经济的发展,各种不同结构和种类的换热器发展很快,新结构、新材料的换热器不断涌现。换热器又称热交换器,是一种将热流体的部分热量传递给冷流体的设备,也是实现化工生产过程中热量交换和传递不可缺少的设备。换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如石化、煤炭工业中的余热回收装置等。本文主要介绍了现有换热器的分类,各种换热器的特点工作原理及应用情况,对目前换热器的存在问题和发展趋势进行分析。 关键词:换热器;强化换热;研究现状 随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现 1换热器的分类方式 随着科学和生产技术的发展,各种换热器层出不穷,难以对其进行具体、统一的划分。虽然如此,所有的换热器仍可按照它们的一些共同特征来加以区分,具体如下。 按照用途来分:预热器(或加热器)、冷却器、冷凝器、蒸发器等。 按照制造热交换器的材料来分:金属的、瓷的、塑料的、石墨的、玻璃的等。 按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。 按照热流体与冷流体的流动方向来分:顺流式、逆流式、错流式、混流式。

浅谈换热器研究应用的发展前景

浅谈换热器研究应用的发展前景 摘要 换热器是化学工业中应用相当广泛的单元设备之一。据有关资料统计, 换热器在现代化学工业中的投资大约占设备总投资的30% , 海水淡化工艺装置则几乎全部是由换热器组成的。对国外换热器市场的调查表明, 虽然各种板式换热器的竞争力在上升,但管壳式换热器仍占主导地位约64% 。新型换热元件与高效换热器开发研究的结果表明, 列管式换热器已进入一个新的研究时期,其流体力学性能、换热效率、抗振与防垢效果从理论研究到结构设计等方面也均有了新的进步。目前各国为改善该换热器的传热性能开展了大量的研究, 主要包括管程结构和壳程结构强化传热的发展。 关键词 换热器现状研究应用前景 一、换热器的国内研究现状 换热器按其功能分为:如冷凝器、蒸发器、再热器、过热器等,按换热部件的特点可分为:管壳式换热器、翅片管式换热器、板式换热器(包括板片式换热器和板翅式换热器)。对于各型换热器的强化换热技术的研究,主要集中在对换热器内流体流态变化以及对各部件的参数优化研究两方面,而对换热器部件参数的主要研究对象就是换热管(板)排列方式(顺排或叉排)、换热管(板)排数、换热管(板)间距大小、肋片布置间距、肋片形状等。通常的研究方法包括:数值

模拟计算、实验方法研究、理论研究三类。 二、当前存在的主要问题 当前, 高温热管换热器在传热方面还面临两大急需解决的问题: 1. 过渡段的衔接不合理, 导致部分热管处于不工作和非正常工作状态。 2. 结构庞大, 成本昂贵, 极大地阻碍了高温热管换热器工业化应用进程。 三、要解决好上述问题的关键 1. 优化高温热管换热器结构有两个途径: 一是对单根热管进行传热强化研究; 二是合理预测壳程的流场与温度场的分布, 二者的优化组合研究是今后热管换热器强化传热技术发展的方向。 2. 过渡段的强化传热对优化高温热管换热器结构、安全衔接各区域热管换热器起着非常重要的作用。 四、研究应用的发展前景 (一)换热器研究的发展前景 换热器肋片换热的研究应该注重基础性的理论研究创新,寻求建立能支撑肋片设计选型的系统化的理论,同时要结合实验研究,寻求实际应用中最节能的肋片参数值。换热器制造商和设计人员对于换热器肋片外型、布置仍然没有可靠的理论依据,传统的肋片布置方式在换热效率上不如换热管表面设置的针状或圆台状肋。 换热的散布规律仍然还不明晰,理论研究非常薄弱;对替代传统的平板和环状肋片的高效换热肋片研究甚少。新型换热管的形状研究

板翅式换热器及FLUENT软件的初步认识

前期报告 1.选题的目的和意义: 板翅式换热器由于其体积小、重量轻、效率高、结构紧凑等优点,在石油化工、航空航天、电子、原子能、机械和空调等领域得到了越来越广泛的应用。波纹翅片作为板翅式热交换器的一种常见翅片类型,研究其传热和流动特性对板翅式热交换器的设计具有指导作用,也对以后的工程计算有很大的帮助作用。 2.传热,流动及防结垢研究 关于传热,流动及防结垢的研究涉及范围宽广的许多问题。其最终目的有二:一是强化传热并尽量减少流动阻力,二是为更精确的设计计算提供理论基础和方法.强化传热同时避免过大的流动阻力的主要途径有两个方面,一方面开发出新的更高效的传热表面,另一方面更合理地选择有关参数和更合理地设计流体分配结构,使流动在流道中得以更均匀地分配。 1.2板翅换热器翅片的类型、特点及应用场合 1.2.1翅片类型 板翅换热器的传热面由平板和翅片表面组成,平板部分的传热面叫一次传热面,由翅片组成的叫二次传热面。二次传热面积占总传热面积的绝大部分,一般达70~90%。 (1)平直翅片:它是最基本的一种翅片,由金属薄片制成的一种最简单的翅片形式。其特点是有很长的带光滑壁的长方形翅片,其传热特性和流体流动特性与流体在长的圆形管道中的传热和流动特性

相似。翅片的主要作用是扩大传热面,而对于促进流体湍动的作用很小,但流道长度对传热效果有明显的影响。. (2)锯齿形翅片:结构特点是流体的流道被冲制成凹凸不平,其目的是增加流体湍动程度,并破坏传热边界层,从而强化传热过程使传热效率提高。 (3)多孔翅片:它是在平直翅片上冲出许多孔洞而成的.由于翅片上这些孔使传热边界层不断被破坏,不仅能提前向湍流过渡,而且能明显地增强过渡区和湍流区的传热,但在高雷诺数范围会出现噪音和振动. (4)波纹翅片:肋片纵向里波纹(或人字)状,可使流体的流向不断改变以促进湍流形成,弯曲处边界层可有微小破裂.流体在通道中流动时,由于不断改变流向而产生二次流及边界层分离而使传热效果得以增强。波纹越密,波幅越大,其增强效果也越大。 (5)错位翅片:在沿流体流动方向看是间断的而且是错位排列的。从传热和流动的角度来看,可以认为是由一系列相错排列的短的平直翅片组成的。传热系数高的主要原因是因为流体在流动中,其边界层在一个翅片段上还未及充分发展就被下一个错位的翅片段破坏了.从2整个流道长度来看,可以认为传热和流动都始终处于发展段. (6)百叶窗式翅片:其特点是翅片上冲有等距离的百叶窗式的栅格,向流道内凸出,其目的是破坏熟边界层,从而强化传热过程.在翅片尺寸相同条件下,栅格愈多传热效果愈好,但阻力亦愈大。1.2.2板翅换热器的优缺点

板翅式换热器新技术及应用_凌祥

第31卷 第2期2002年3月 石 油 化 工 设 备 PET RO-CHEM ICAL EQ U IPM EN T V o l.31 N o.2 M ar. 2002 试验研究 文章编号:1000-7466(2002)02-0001-04 板翅式换热器新技术及应用 凌 祥,周帼彦,邹群彩,涂善东 (南京工业大学过程装备先进制造技术重点实验室,江苏南京 210009) 摘要:介绍了作者近年来在板翅式换热器研究与开发方面所做的工作:①为提高铝板翅式换热器翅片和隔板表面的耐蚀性和亲水性,开发了一种表面处理技术。②开发的板翅式换热器快速创型系统,具有优化设计、参数化绘图和快速报价等功能,能降低产品成本,提高设计效率十几倍。③通过应用先进制造工艺和引进新材料开发了一系列具有抗强腐蚀、抗结垢、耐高温和耐高压能力的板翅式换热器系列新产品。④应用大型有限元分析系统对高压板翅式换热器的结构特性进行了初步分析,得出了一些提高产品可靠性的设计准则。 关 键 词:板翅式换热器;快速创型;表面处理;先进制造工艺;有限元分析 中图分类号:TQ051.51 文献标识码:A N ew techniques of plate-fin heat exchangers and its application LIN G Xiang,ZHO U Guo-ya n,ZO U Qun-cai,T U Sha n-do ng (Adv anced M a nufacturing Technolog y Lab.o f Process Equipment, N anjing Univ ersity o f Techno lo g y,N anjing210009,China) Abstract:The resear ches made o n plat e-fin heat exchang ers by author s w ere intro duced.Fir stly,a surface tr eatment me tho d for fins and pa rting sheet is propo sed in o rder to enha nce their resistance to co rr osio n and hydro philic ca pability.Secondly,a rapid innov ation sy stem which inv o lv ed a lo t of functio ns such a s optima l ther mal desig n,pa ramet ric dr awing and r apid quo tatio n is dev eloped.The practice applicatio n o f this sy stem sho ws the desig n efficiency increases8to10tim es and the cost decr ease va stly.Thir dly,sev eral new type o f pla te-fin heat ex cha ng ers with specia l perfo rma nce,such as co rro sio n-proo f,anti-fo uling a nd high temper ature resistant etc,w er e dev eloped th ro ug h ado pting new adva nced ma terials and new a dv anced manufac turing techno log y. Fina lly,the st reng th ana ly sis fo r plate-fin heat exchang ers subjected to hig h pr essur e w as car ried out.So me design criteria to ensure the reliability of pla te-fin heat ex chang er s a re o btained. Key words:pla te-fin heat ex chang er;r apid innov ation;sur face t reatme nt;adv anced manufac turing techno log y; finite element a naly sis 板翅式换热器具有结构紧凑、传热效率高等特点,与传统的管壳式换热器相比,其传热效率提高20%~30%,成本可降低50%,现已广泛应用于石油化工、航空航天、电子、原子能和机械等领域。目前板翅式换热器的制造材料主要使用铝合金,因此存在耐腐蚀性差、承压低等缺点。另外,板翅式换热器结构比较复杂,人工进行热力设计困难,特别是有相变、多股流体换热的情况,用手工进行精确热力设计计算几乎不可能。为了进一步拓宽其应用范围,近年来板翅式换热器的设计理论、试验研究、制造工艺及开拓应用的研究方兴未艾[1],特别是一些新技术的渗透,使板翅式换热器的应用范围更加广泛,下面将 收稿日期:2001-09-22  基金项目:江苏省教委自然科学研究项目(99K JB460005)  作者简介:凌 祥(1967-),男(汉族),江苏东台人,副教授,主要从事过程装备先进再制造技术、新型高效过程设备和计算机辅助工程(CA E)的研究与开发。

换热器分类

换热器分类 夹套式换热器 结构如图所示。夹套空间是加热介质和 冷却介质的通路。这种换热器主要用于 反应过程的加热或冷却。当用蒸汽进行 加热时,蒸汽上部接管进入夹套,冷 凝水由下部接管流出作为冷却器时,冷 却介质(如冷却水)由夹套下部接管进 入,由上部接管流出。 夹套式换热器结构简单,但由于其加热 面受容器壁面限制,传热面较小,且传 热系数不高。 二.喷淋式换热器喷淋式换热器的结构 与操作如下图所示。这种换热器多用作 冷却器。热流体在管内自下而上流动, 冷水由最上面的淋水管流 出,均匀地分布在蛇管 上,并沿其表面呈膜状自 上而下流下,最后流入水 槽排出。喷淋式换热器常 置于室外空气流通处。冷 却水在空气中汽化亦可带 走部分热量,增强冷却效 果。其优点是便于检修, 传热

效果较好。缺点是喷淋不 易均 .套管式换热 器

套管式换热器的基本部件由 直径不同的直管按同轴线相 套组合而成。内管用180 暗 幕 * Сざ任?~ 6m。若管子太长,管中间会 向下弯曲,使环隙中的流体分布不均匀 套管换热器的优点是构造简单,内管能耐高压,传热面积可根据需要增减,适当选择两管的管径,两流体皆可获得适宜的流速,且两流体可作严格逆流。其缺点是管间接头较多,接头处易泄漏,单位换热器体积具有的传热面积较小。故适用于流量不大、传热面积要求不大但压强要求较高的场合。 四.管壳式换热器 1.固定管板式结构如图所示。管子两端与管板的连接方式可用焊接法或胀接法固定。壳体则同管板焊接。从而管束、管板与壳体成为一个不可拆的整体。这就是固定 管板式名称的由来

折流板主要是圆缺形与盘环形两 种,其结构如图所示。 操作时,管壁温度是由管程与壳程 流体共同控制的,而壳壁温度只与 壳程流体有关,与管程流体无关。 管壁与壳壁温度不同,二者线膨胀 不同,又因整体是固定结构,必产 生热应力。热应力大时可能使管子 压弯或把管子从管板处拉脱。所 以当热、冷流体间温差超过50℃时应有减小热应力的措施,称“热补偿”。 固定管板式列管换热 器常用“膨胀节” 结构进行热补偿。图 所示的为具有膨胀 节的固定管板式换 热器,即在壳体上焊 接一个横断面带圆弧 型的钢环。该膨胀节 在受到换热器轴向 体伸缩,从而减小热应力。但这种补偿方式仍不适用于热、冷流体 温差较大 大于70℃)的场合,且因膨胀节是承压薄弱处,壳程流体压强不宜超过6at 。 管式列管换热 器

换热器文献综述

相变换热器文献综述 学院:材料与化学工程学院 专业:过程装备与控制工程 班级:2011-01 姓名:*** 学号:***

相变储热换热器文献综述 ***(郑州***化工学院) 摘要:本文通过对换热器发展历史的回顾,总结相变储热换热器的理论技术和结构设计,对其物性数据,相变储热材料等做了简要评述。1引言 在工业生产中,为了实现物料之间热量传递过程的一种设备,统称为换热器。它是化工、炼油、动力、原子能和其他许多工业部门广泛应用的一种通用工艺设备。对于迅速发展的化工、炼油等工业生产来说,换热器尤为重要。通常在化工厂的建设中,换热器约占总投资的10~20%。在石油炼厂中,换热器约占全部工艺设备投资的85~40%。在化工生产中,为了工艺流程的需要,往往进行着各种不同的换热过程:如加热、冷却、蒸发和冷凝等。换热器就是用来进行这些热传递过程的设备,通过这种设备,以便使热量从温度较高的流体传递给温度较低的流体,以满足工艺上的需要。由于使用的条件不同,换热设备又有各种各样的形式和结构。另外,在化工生产中,有时换热器作为一个单独的化工设备,有时则把它作为某一个工艺设备中的组成部分。其他如回收排放出去的高温气体中的废热所用的废热锅炉,有时在生产中也是不可缺少的。总之,换热器在化工生产中的应用是十分广泛的,任何化工生产工艺几乎都离不开它。 2换热器发展历史简要回顾 二十世纪20年代出现板式换热器,并应用于食品工业。以板代管

制成的换热器,结构紧凑,传热效果好,因此陆续发展为多种形式。30年代初,瑞典首次制成螺旋板换热器。接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。在此期间,为了解决强腐蚀性介质的换热问题,人们对新材料料制成的换热器开始注意。60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。换热器按传热方式的不同可分为混合式、蓄热式和间壁式三类。 节能和环保已经成为当今世界的两大主题,经济高速发展、人口不断增长、过度开采和能源的利用率过低导致能源供需矛盾越来越大.能源紧缺受到人们越来越多的关注,能量存储随之引入了人们的生活。近年来,相变储换热器在太阳能利用、工业废热利用及暖通空调蓄冷和蓄热等领域获得了广泛的应用。相变储换热器有多种形式如管簇式、球形堆积床式和平板式,一些研究者对其热性能进行了模拟和实验研究。 3实验研究的主要成果 3.1相变储能材料的导热强化

中高压板翅式换热器的设计与开发

职称论文 题目:中高压板翅式换热器的设计与开发单位:XXXXXXXXXXX 姓名:XXX 二零一五年六月

中高压板翅式换热器的设计与开发 XXX (X X X X X X X X X) 【论文摘要】本文提出了低、中、高压板翅式换热器分类意见,介绍了中高压板翅式换热器设计特点,阐述了采用真空钎焊制造中、高压板翅式换热器工艺的特殊措施。并以低压板式换热器制造成功实践说明采用特殊工艺措施是正确的、可行的。同时介绍了中高压换热器的应用前景。 关键词:中高压板翅式换热器真空钎焊翅片封条流道空分装夹 一、板翅式换热器的发展现状 随着空分技术和机械行业的不断发展,板翅式换热器的应用也越来越广泛,要求板翅式换热器的设计压力也越来越高。尤其进入20世纪80年代以来,随着我国内地和沿海油田的不断开发和石油化工行业的快速发展,承受中、高压的板翅式换热器应用日趋广泛,由于国内无法制造中、高压力的板翅式换热器,当时我国用于大型空分设备和石油化工设备中的中、高压板翅式换热器全部依赖进口。 板翅式换热器根据设计压力不同分为低压(3.0MPa以下),中压(3.0-6.4MPa)和高压(6.4-9.6MPa)。低压板翅式换热器大多用于空分设备。中、高压板翅式换热器用于空分液化设备,天燃气液化及分离设备,石油、天燃气化工设备及乙烯冷箱。近年来随着真空钎焊技术的发展,相关的工艺也相对成熟起来,我公司又有多年低压板翅式换热器的设计和生产的成功经验,为开发中、高压板翅式换热器奠定了物质技术基础。我公司生产的常规的板翅式换热器均能达到3.0Mpa以上的压力,且产品的使用状况良好。

二、高压板翅式换热器整体结构 高压板翅式换热器芯体由隔板、翅片和封条3部分组成。在相邻两隔板之间放置翅片及封条,组成一夹层,称之为通道。对于高压板翅式换热器,由于承受的压力较高,隔板与翅片、封条的钎焊要求也比较高,隔板的复合层要比低压换热器隔板的复合层厚,封条的宽度也需相应增加。由于板翅式换热器芯体结构复杂,钎焊缝的检查受到结构限制,不可能进行无损检测和其他检查,也无法做强度核算,所以只能通过试样的爆破试验来确定产品的耐压强度。按ASME规范规定,试样的爆破试验压力应是最大许用工作应力的3~5倍,且以翅片母材拉伸断裂为合格标准。对于高压板翅式换热器,其翅片的最大许用工作压力相应提高。为了达到这一要求,应选择性能较好的翅片材料,同时增加翅片的厚度。我公司现有翅片型式有锯齿型、平直型和波纹型。在中高压板翅式换热器翅片的选用时,应尽量避免采用锯齿型翅片。因为锯齿型翅片是切开的,削弱了承压能力,同时小节距厚翅片的锯齿型很难生产制造。选用翅片规格的原则是压力越高节距越小,当节距小到工艺无法生产时,再用增加翅片厚度(节距放大)来满足设计压力的要求,即小节距厚翅片。我公司常用的中压翅片特性参数见下表1: 表1

板翅式换热器

铝制板翅式换热器介绍 1. 概述 板翅式换热器的出现把换热器的换热效率提高到了一个新的水平,同时板翅式换热器具有体积小、重量轻、可处理两种以上介质等优点。目前,板翅式换热器已广泛应用于石油、化工、天然气加工等行业。 2. 基本结构 板翅式换热器的板束单元结构如图所示,它的每一层都是由翅片、隔板和封条三部分组成。在相邻的两隔板间放置翅片及封条组成的夹层,称为通道。将这样的夹层根据介质的不同流动方式叠置起来钎焊成整体,即组成板束。再在板束上配置适当的介质进出口的导流片和封头,就组成了一个完整的板翅式换热器 。 由此可以看出,一台典型的板翅式换热器主要组成元件有翅片、隔板、封条、导流片和封头等。 a-翅片 翅片是铝板翅式换热器的基本元件,传热过程主要通过翅片热传导及翅片与流体之间的对流传热来完成。翅片的主要作用是扩大传热面积, 提高换热器得紧凑性,提高传热效率,兼做隔板的支撑,提高换热器的强度和承压能力。翅片间的节距一般从1mm~4.2mm ,翅片的种类和型式多种多样,常用的形式有锯齿型、多孔型、平直型、波纹型等,国外还有百叶窗式翅片、片条翅片、钉状翅片等。 b-隔板 隔板是二层翅片之间的金属平板,,它在母体金属表面覆盖有一层钎料合金,在钎焊时合金熔化而使翅片、封条与金属平板焊接成一体。隔板把相邻两层隔开,热交换通过隔板进行,常用隔板一般厚1mm~2mm 。 c-封条 封条在每层的四周,其作用是把介质与外界隔开。封条按其截面形状可分为燕尾槽形、槽钢形和腰鼓形三种。一般,封条的上下两个侧面应具有0.3/10的斜度,以便在与隔板组合成板束时形成缝隙,利于溶剂的渗透和形成饱满的焊缝。 d-导流片 导流片一般布置在翅片的两端,在铝板翅式 换热器中主要是起流体的进出口导向作用,以利于流体在换热器内的均匀分布,减少流动死区,提高换热效率。 e-封头 封头也叫集流箱,通常由封头体、接管、端板、法兰等零件经焊接组合而成。封头的作用是分布和集聚介质、连接板束与工艺管道。 另外,一台完整的板翅式换热器还应包括支

中国换热器产业现状及发展趋势_黄庆军

第1期 中国换热器产业现状及发展趋势 黄庆军1 任俊超1 苏是2 黄蕾2 (1.四平市换热器协会, 吉林 四平 136000) (2.太原科技大学机电学院, 山西 太原 030024) [摘 要] 分析了国内换热器的市场规模、竞争格局、产业布局以及外资企业在华投资布局,介绍了国内换热器的技术现状和差距,预测了今后的产业发展趋势。 [关键词] 换热器;现状;发展趋势 1 市场规模分析 2008年,中国换热器产业市场规模在360亿元左右,主要集中在石油、化工、冶金、电力、船舶、集中供热、制冷空调、机械、食品、制药等领域。其中,石油化工领域仍然是换热器产业最大的市场,其市场规模在100亿元以上;电力冶金领域换热器市场规模在60亿元左右;船舶工业换热器市场规模在30亿元以上;机械工业换热器市场规模约为30亿元;集中供热行业换热器市场规模超过25亿元。 2 市场竞争格局 按照产品类型的不同,我国换热器产业市场竞争主要集中在以下四大产品领域。 板式换热器领域,国内外企业竞争激烈,大量外资企业已经完成在中国的布局。其中,四平巨元瀚洋、兰石换热设备公司、四平维克斯是我国板式换热器领域内资企业中的龙头企业,其板式换热器年产值都在2亿元以上。外资企业主要包括阿法拉伐(江阴)、舒瑞普(北京、苏州)、APV(上海、北京)、丹佛斯(天津)、传特(北京)、桑德克斯(上海、宁波)、风凯(常州)等企业,世界著名的板式换热器企业大都已经进入中国市场。此外,沈阳太宇、蓝科高新(原兰石所)、上海艾克森、湖北登峰、山东北辰、佛山澜石、上海南华等企业也是我国重要的板式换热器企业。 管壳式换热器领域,我国生产企业众多,且规模都较小。其中,抚顺机械设备制造有限公司、兰石集团炼化设备公司、中石化南京化工机械是我国内资管壳式换热器的龙头企业,其管壳式换热器年产值都在2亿元以上;江苏中圣集团、无锡化工装备总厂、宝钛集团南京宝色股份、西安核设备制造厂(原国营524厂)、合肥通用特种材料设备有限公司是我国特种材料换热器领域的重要企业,其特种材料管壳式换热器年产值都在1.5亿元以上;中石化镇海石化建安工程有限公司、中石化北京燕化、中石化茂名重力石化机械制造有限公司等企业依托母公司中石化的市场优势,也形成了一定的换热器生产规模,年产值在1~2亿元左右;此外,张家港化工机械、大连金重公司、湖北长江石化设备公司、大连东方亿鹏、合肥通用特种材料设备有限公司、西安大秦化工机械(原西安化工机械厂)、林德工程(大连)、天津国际机械(原天津市换热装备总厂)、大连东方亿鹏等企业也是国内管壳式换热器的主要生产企业,管壳式换热器的年产值都在1亿元以上。相对而言,管壳式换热器外资企业在华布点不多,比较知名的有日本森松(上海)、林德工程(大连)、美国艾普尔(苏州)、德国风凯(常州),这主要缘于我国石油化工领域换热器企业众多,生产能力较强,国外企业进入中国市场较为困难。 空冷式换热器领域,哈空调是我国最大的空冷式换热器生产企业。此外,江苏双良股份、国电集团北京龙源冷却技术有限公司、四川简阳空冷器、蓝科高新(原兰石所)、兰州兰石集团长征机械、西安大秦化工机械(原西安化工机械厂)、湖北长江石化设备、江阴电力设备冷却器公司等企业也具有一定的竞争力。外资企业中,基伊埃(芜湖、廊坊)、斯必克(张家口)在空冷式换热器领域具有较强的竞争力。 板翅式换热器领域,杭州杭氧股份和开封空分集团是我国石油化工领域著名的板翅式换热器企业,浙江银轮股份、贵州永红航空机械、无锡马山 作者简介:黄庆军(1967—),男,1992年毕业于燕山大学,硕士研究生学历,高级工程师。主要从事换热器行业分析及产品研究。

换热器1文献综述

换热器又称热交换器,是一种将热流体的部分热量传递给冷流体的设备,也是实现化工生产过程中热量交换和传递不可缺少的设备。 换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如石化、煤炭工业中的余热回收装置等。 换热器的发展已经有近百年的历史,被广泛应用在石油、化、冶金、电力、船舶、集中供热、制冷空调、机械、食品、制药等领域。 进入80 年代以来,由于制造技术、材料科学技术的不断进步和传热理论研究的不断完善,有关换热器的节能设计和应用越来越引起关注。按照用途来分:预热器(或加热器)、冷却器、冷凝器、蒸发器等。按照制造热交换器的材料来分:金属的、陶瓷的、塑料的、石墨的、玻璃的等。按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。按照热流体与冷流体的流动方向来分:顺流式、逆流式、错流式、混流式。按照传送热量的方法来分:间壁式、混合式、蓄热式等三大类。其中间壁式换热器的冷、热流体被固体间壁隔开,并通过间壁进行热量交换的换热器,因此又称表面式换热器,这类换热器应用最广。 目前在发达的工业国家热回收率已达96 % ,换热设备在石油炼厂中约占全部工艺设备投资的35 %~40 %。其中管壳式换热器仍然占绝对的优势, 约70 %。其余30 %为各类高效紧凑式换热器、新型热管和蓄热器等设备, 其中板式、板翅式、热管及各类高效传热元件的发展十分迅速。随着工业装置的大型化和高效率化, 换热器也趋于大型化, 并向低温差设计和低压力损失设计的方向发展。当今换热器的发展以CFD (Computational Fluid Dynamics) 、模型化技术、强化传热技 术及新型换热器开发等形成了一个高技术体系。 管壳式换热器: 管壳式换热器又称为列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器,结构一般由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。目前,国内外工业生产中所用的换热设备中,管壳式换热器仍占主导地位,虽然它在换热效率、结构紧凑性和金属材料消耗等方面不如其它新型换热设备,但它具有结构坚固,操作弹性大,适应性强,可靠程度高,选材范围广,处理能力大,能承受高温高压等特点,所以在工程中仍得到广泛应用。以下是几种常见的管壳式强化换热器。 螺旋槽管换热器,横纹管换热器,螺旋扁管换热器,螺旋扭曲管换热器,波纹管换热器,内翅片管换热器,缩放管换热器,波节管管

高效微通道平行流换热器翅片结构

分类号学号M201170593学校代码10487密级 硕士学位论文 高效微通道平行流换热器翅片结构 参数研究设计 学位申请人:成亮 学科专业:机械工程 指导教师:张国军教授 黄禹副教授 答辩日期:2013年5月16日

A Thesis Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Engineering Structural Parameters of Radiating Fin for Highly Efficient Micro-channel Parallel Flow Heat Exchanger Candidate : Cheng Liang Major : Mechanical Engineering Supervisor : Prof. Zhang Guojun Assoc. Prof. Huang Yu Huazhong University of Science & Technology Wuhan,Hubei 430074,P. R. China May. 2013

独创性声明 本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 学位论文作者签名: 日期: 年 月 日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,即:学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权华中科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本论文属于 (请在以上方框内打“√”) 学位论文作者签名: 指导教师签名: 日期: 年 月 日 日期: 年 月 日 保密□,在 年解密后适用本授权书。 不保密□。

相关文档
最新文档