(完整)苏教版初二数学上册期末试卷
苏教版八年级数学上册期末考试(及参考答案)
苏教版八年级数学上册期末考试(及参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位3.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知a )A .0B .3C .D .95.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 6.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG ;②BE ⊥DG ;③DE 2+BG 2=2a 2+2b 2,其中正确结论有()A.0个B.1个C.2个D.3个7.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.如图,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论不正确的是()A.BF=DF B.∠1=∠EFD C.BF>EF D.FD∥BC9.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC10.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A .75°B .80°C .85°D .90°二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 满足(a ﹣1)2+2b +=0,则a+b=________.2.若|x |=3,y 2=4,且x >y ,则x ﹣y =__________.3.若m+1m =3,则m 2+21m=________. 4.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).5.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =________.6.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =6,BC =8,则EF 的长为______.三、解答题(本大题共6小题,共72分)1.解下列不等式组:(1)2132(1);x x x x >+⎧⎨<+⎩, (2)231213(1)8;x x x x -⎧+≥+⎪⎨⎪--<-⎩,2.先化简,再求值:2361693x x x x -⎛⎫÷- ⎪+++⎝⎭,其中23x =-.3.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.4.我市某中学有一块四边形的空地ABCD ,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m ,DA=4m ,BC=12m ,CD=13m .(1)求出空地ABCD 的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?5.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、B5、C6、D7、D8、B9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、﹣12、1或5.3、74、ab5、2456、1三、解答题(本大题共6小题,共72分)1、(1)1<x <2 (2)-2<x 2≤2、13x +,.3、(1)12,32-;(2)略.4、(1)36;(2)7200元.5、略6、(1)A 种纪念品需要100元,购进一件B 种纪念品需要50元(2)共有4种进货方案(3)当购进A 种纪念品50件,B 种纪念品50件时,可获最大利润,最大利润是2500元。
苏教版八年级数学上册期末试卷(附答案)
苏教版八年级数学上册期末试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直5.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对9.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A.310B.103C.9 D.9210.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣1二、填空题(本大题共6小题,每小题3分,共18分)1.关于x的分式方程12122ax x-+=--的解为正数,则a的取值范围是_____.2.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm.3.一个正多边形的每个外角为60°,那么这个正多边形的内角和是______.4.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________。
苏教版八年级数学上册期末考试卷及参考答案
苏教版八年级数学上册期末考试卷及参考答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是( )A .25、25B .28、28C .25、28D .28、313.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.下列选项中,矩形具有的性质是( )A .四边相等B .对角线互相垂直C .对角线相等D .每条对角线平分一组对角5.下列方程中,是关于x 的一元二次方程的是( )A .ax 2+bx+c =0(a ,b ,c 为常数)B .x 2﹣x ﹣2=0C .211x x +﹣2=0D .x 2+2x =x 2﹣16.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y =13x 的图象交于点A (m ,﹣3),若kx ﹣13x >﹣b ,则( )A.x>0 B.x>﹣3 C.x>﹣6 D.x>﹣98.下列图形中,不是轴对称图形的是()A.B.C.D.8.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.–12B.12C.–2 D.210.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)二、填空题(本大题共6小题,每小题3分,共18分)1.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=________.2.当m=____________时,解分式方程533x mx x-=--会出现增根.3.若214x x x++=,则2211x x ++= ________. 4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= _________度。
苏教版八年级数学上册期末试卷(含答案)
苏教版八年级数学上册期末试卷(含答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.下列分式中,最简分式是( )A .2211x x -+B .211x x +-C .2222x xy y x xy -+-D .236212x x -+ 3.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有两个不相等的实数根,则k 的取值范围是( )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 4.若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >5.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>56.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( )A .4 1.2540800x x ⨯-=B .800800402.25x x -=C .800800401.25x x -=D .800800401.25x x -= 9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .22二、填空题(本大题共6小题,每小题3分,共18分)1.若3x x =,则x=__________2.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________. 3.一次函数y =kx +b 与y =2x +1平行,且经过点(﹣3,4),则表达式为:________.4.如图,正方形ABCD 中,点E 、F 分别是BC 、AB 边上的点,且AE ⊥DF ,垂足为点O ,△AOD 的面积为7,则图中阴影部分的面积为________.5.如图,在△ABC 和△DBC 中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD ,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN 的周长为___________.6.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)430210x yx y-=⎧⎨-=-⎩(2)134342x yx y⎧-=⎪⎨⎪-=⎩2.先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.3.已知关于x的不等式组5x13(x-1),13x8-x2a22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a的取值范围.4.如图,将矩形ABCD沿对角线AC翻折,点B落在点E处,FC交AD于F.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.5.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、D5、B6、A7、D8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、-153、y=2x+1045、46、40°三、解答题(本大题共6小题,共72分)1、(1)1010xy=⎧⎨=⎩(2)64xy=⎧⎨=⎩2、1 23、-4≤a<-3.4、(1)略;(2)10.5、略.6、(1)120件;(2)150元.。
苏教版八年级数学上册期末考试卷(完整版)
苏教版八年级数学上册期末考试卷(完整版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠33.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.已知一个多边形的内角和等于900º,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形5.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.如图,直线y=kx+b (k ≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )A .x >﹣2B .x <﹣2C .x >4D .x <48.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,在矩形纸片ABCD 中,AB=3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC=∠ECA ,则AC 的长是( )A .33B .6C .4D .5二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______. 3.使x 2-有意义的x 的取值范围是________.4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_________.5.如图:在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,若∠BOC =132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。
苏教版八年级数学上册期末考试卷及答案【完美版】
苏教版八年级数学上册期末考试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是()A.-2 B.12-C.12D.22.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是()A.25、25 B.28、28 C.25、28 D.28、313.已知三角形的三边长分别为2,a-1,4,则化简|a-3|+|a-7|的结果为()A.2a-10 B.10-2aC.4 D.-44.已知关于x的分式方程21mx-+=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2 5.如果2(21)12a a-=-,则a的取值范围是()A.12a<B.12a≤C.12a>D.12a≥6.如图,∠AOB=60°,点P是∠AOB内的定点且OP=3,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A 36B33C.6 D.37.如图,矩形纸片ABCD中,已知AD =8,折叠纸片使AB边与对角线AC 重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A .3B .4C .5D .68.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .23cmB .24cmC .26cmD .212cm9.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠CD .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 2.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__________. 3.已知x 、y 满足方程组2524x y x y +=⎧⎨+=⎩,则x y -的值为________. 4.如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为________.5.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是________. 6.如图,已知直线y =ax +b 和直线y =kx 交于点P ,则关于x ,y 的二元一次方程组y kx y ax b =⎧⎨=+⎩的解是________.三、解答题(本大题共6小题,共72分)1.解分式方程:2216124x x x --=+-2.先化简,后求值:(5a 5a (a ﹣2),其中12+2.3.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++=(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值4.如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x 轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.5.已知:如图所示,AD平分BAC,M是BC的中点,MF//AD,分别交CA延长线,AB于F、E.求证:BE=CF.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、D5、B6、D7、D8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、5a <且3a ≠2、-1或5或13-3、14、x >15、186、12x y =⎧⎨=⎩.三、解答题(本大题共6小题,共72分)1、原方程无解2、43、(1)详见解析(2)k 4=或k 5=4、E (4,8) D (0,5)5、略.6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x ≤130);(3)购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元.。
最新苏教版八年级数学上册期末考试卷【及参考答案】
最新苏教版八年级数学上册期末考试卷【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<3.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.若6-13的整数部分为x ,小数部分为y ,则(2x +13)y 的值是( )A .5-313B .3C .313-5D .-35.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩6.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a7.下列图形中,是轴对称图形的是( )A .B .C .D .8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩10.如图,在平行四边形ABCD 中,∠ABC 的平分线交AD 于E ,∠BED=150°,则∠A 的大小为( )A .150°B .130°C .120°D .100°二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.21a +8a =__________.3.因式分解:a 3﹣2a 2b+ab 2=________.4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= _________度。
最新苏教版八年级数学上册期末考试卷(完美版)
最新苏教版八年级数学上册期末考试卷(完美版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .18 4.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >05.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C 34D .4346.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .37.下列说法中错误的是( )A .12是0.25的一个平方根 B .正数a 的两个平方根的和为0 C .916的平方根是34D .当0x ≠时,2x -没有平方根 8.下列图形中,不是轴对称图形的是( )A .B .C .D .8.如图,在矩形AOBC 中,A (–2,0),B (0,1).若正比例函数y=kx 的图象经过点C ,则k 的值为( )A .–12B .12C .–2D .210.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________. 3.如果不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,那么m 的取值范围是________. 4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x--=(2)1421 x x=-+2.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.2222444424x x xx x x x⎛⎫---÷⎪-+--⎝⎭.3.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c13分,求3a-b+c的平方根.4.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)若点D在y轴负半轴上,且满足S△COD =13S△BOC,求点D的坐标.5.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、B5、D6、A7、C8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、-153、3m ≤.4、(-4,2)或(-4,3)5、46、1三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、x+2;当1x =-时,原式=1.3、3a-b+c 的平方根是±4.4、(1)k=-1,b=4;(2)点D 的坐标为(0,-4).5、略6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。
苏教版八年级数学上册期末试卷及答案【完美版】
苏教版八年级数学上册期末试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120202.下列分式中,最简分式是()A.2211xx-+B.211xx+-C.2222x xy yx xy-+-D.236212xx-+3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°4.如果23a b-=,那么代数式22()2a b aba a b+-⋅-的值为()A.3B.23C.33D.43 5.如果2(21)12a a-=-,则a的取值范围是()A.12a<B.12a≤C.12a>D.12a≥6.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形7.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.8.如图,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论不正确的是()A .BF =DFB .∠1=∠EFDC .BF >EFD .FD ∥BC9.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n .则△OA 2A 2018的面积是( )A .504m 2B .10092m 2C .10112m 2D .1009m 2二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 满足(a ﹣1)2+2b +=0,则a+b=________.2.若|x |=3,y 2=4,且x >y ,则x ﹣y =__________.3.设m ,n 是一元二次方程x 2+2x -7=0的两个根,则m 2+3m +n =_______.4.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是________.5.如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上, 将BMN △沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B =________°.6.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程:214111x x x ++=--2.先化简,后求值:(a+5)(a ﹣5)﹣a (a ﹣2),其中a=12+2.3.解不等式组513(1)131722x x x x +>-⎧⎪⎨-≤-⎪⎩,并把它的解集在数轴上表示出来.4.如图①,△ABC 中,AB =AC ,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、A5、B6、B7、D8、B9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、﹣12、1或5.3、54、x=25、956、7三、解答题(本大题共6小题,共72分)1、x=﹣3.2、43、24x -<≤,数轴见解析.4、(1)△AEF 、△OEB 、△OFC 、△OBC 、△ABC 共5个,EF=BE+FC ;(2)有,△EOB 、△FOC ,存在;(3)有,EF=BE-FC .5、(1)2;(2)60︒ ;(3)见详解6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
苏教版八年级数学上册期末考试卷【含答案】
苏教版八年级数学上册期末考试卷【含答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.下列分式中,最简分式是( )A .2211x x -+B .211x x +-C .2222x xy y x xy -+-D .236212x x -+ 3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=---4.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .10,(3,﹣5)C .1,(3,4)D .3,(3,2)5.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)6.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2a BC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长7.下列说法中错误的是( )A .12是0.25的一个平方根B .正数a 的两个平方根的和为0C .916的平方根是34D .当0x ≠时,2x -没有平方根 8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)10.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD =60°,则花坛对角线AC 的长等于( )A .3米B .6米C .3D .3米二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.3.若2|1|0a b -++=,则2020()a b +=_________.4.如图,将Rt ABC 绕直角顶点C 顺时针旋转90,得到DEC ,连接AD ,若25BAC ∠=,则BAD ∠=________.5.如图,Rt △ABC 中,∠ACB=90°,AB=6,D 是AB 的中点,则CD=_____.6.如图,长为8 cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3 cm 到点D ,则橡皮筋被拉长了_____ cm.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--. 2.(1)已知x 35y 352x 2-5xy +2y 2的值. (2)先化简,再求值:222222x y x y x xy y x xy x y ⎛⎫--÷ ⎪-+--⎝⎭,其中x =221-,y =22-3.(1)若x y >,比较32x -+与32y -+的大小,并说明理由;(2)若x y <,且(3)(3)a x a y ->-,求a 的取值范围.4.如图,将矩形ABCD沿对角线AC翻折,点B落在点E处,FC交AD于F.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、D5、C6、B7、C8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、12、k<6且k≠33、14、705、36、2.三、解答题(本大题共6小题,共72分)1、x=32、(1)42,(2)123+-3、(1)-3x+2<-3y+2,理由见解析;(2)a<34、(1)略;(2)10.5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.。
苏教版_八年级数学上册期末试卷(含答案)
八年级数学期终试卷一、细心填一填(本大题共有13小题,20空,每空2分,共40分.请把结果直接填在题中的横线上.)1.4的平方根是 ;94的算术平方根是 ; 的立方根为-2. 2.计算:(1)a 12÷a 4= ;(2)(m +2n )(m -2n )= ;(3)20092008)8(125.0-⨯= .3.在数轴上与表示3的点距离最近的整数点所表示的数是 .4.如图,△ABC 中,∠ABC =38︒,BC =6cm ,E 为BC 的中点,平移△ABC 得到△DEF ,则∠DEF = ︒,平移距离为cm.5.正九边形绕它的旋转中心至少旋转 ︒后才能与原图形重合.6.如图,若□ABCD 与□EBCF 关于BC 所在直线对称,且∠ABE =90°,则∠F = °. 7.如图,在正方形ABCD 中,以BC 为边在正方形外部作等边三角形BCE ,连结DE ,则∠CDE 的度数为 °.8.如图,在□ABCD 中,∠ABC 的平分线交AD 于点E ,且AE =DE =1,则□ABCD 的周长等于.9.在梯形ABCD 中,AD ∥BC ,∠的度数为 °.10.如图,在△ABC 中,AB =AC =两点,则图中阴影部分的面积是112,3,m ,则m = . 12.矩形ABCD 的周长为24,面积为32,则其四条边的平方和为.13.在四边形ABCD 中,对角线AC 、BD 相交于点O ,其中AC +BD =28,CD =10. (1)若四边形ABCD 是平行四边形,则△OCD 的周长为 ; (2)若四边形ABCD 是菱形,则菱形的面积为 ; (3)若四边形ABCD 是矩形,则AD 的长为 .二、精心选一选(本大题共有7小题,每小题2分,共14分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.) 14.在101001.0-,7,41 , 2π- , 0中,无理数的个数是( )A .1个B .2个C .3个D .4个A B DC E F第4题A B CD F 第6题 C 第7题 第10题15.下列运算正确的是( ) A .632a a a =⋅B .33a a a =÷C .532)(a a =D .4229)3(a a = 16.下列图形中既是轴对称图形又是中心对称图形的是( )A .D .17.若216x mx ++是一个完全平方式,则符合条件的m 的值是( )A .4B .8C .±4D .±818.给出下列长度的四组线段:①1,2,2;②5,12,13;③6,7,8;④3m ,4m ,5m (m>0).其中能组成直角三角形的有( )A .①②B .②④C .②③D .③④19.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现 一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可 以进行以下哪项操作( )A .先逆时针旋转90︒,再向左平移B .先顺时针旋转90︒,再向左平移C .先逆时针旋转90︒,再向右平移D .先顺时针旋转90︒,再向右平移 20.下列判断中错误..的是( )A .平行四边形的对边平行且相等.B .四条边都相等且四个角也都相等的四边形是正方形.C .对角线互相垂直的四边形是菱形.D .对角线相等的平行四边形是矩形.三、认真答一答(本大题共有8小题,共46分.解答需写出必要的文字说明或演算步骤.) 21.(第(1)(2)小题,每题3分,第(3)题4分,共10分)(1)计算:23(2)π-+- (2)化简:22226)2)(3(ab c a ab ÷--(3)先化简,后求值:)32)(32()2(2y x y x y x -+-+其中21=x ,y =-3 22.(每小题3分,共6分)分解因式(1)-a +2a 2-a 3(2)22)2()32(b a b a --+23.(本题满分4分)如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,第19题借助图中阴影部分面积的不同表示可以用来验证等式ab a b a a +=+2)(成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式 ; (2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性.24.(本题满分5分) 在如图的方格纸中(每个小方格的边长都是1个单位)有一个格点△ABC ,(1)求出△ABC的边长,并判断△ABC 是否为直角三角形; (2)画出△ABC 关于点O 的中心对称图形△A 1B 1C 1; (3)画出△ABC 绕点O 按顺时针方向旋转90°后得到的图形△A 2B 2C 2;(4)△A 1B 1C 1可能由△A 2B 2C 2怎样变换得到? (写出你认为正确的一种即可).25.(本题满分5分)在□ABCD 中,E 、F 分别为对角线BD 上的两点,且BE =DF .(1)试说明四边形AECF 的平行四边形; (2)试说明∠DAF 与∠BCE 相等.26.(本题满分5分)如图,在△ABC 中,AB =BC ,若将△ABC 沿AB 方向平移线段AB 的长得到△BDE .(1)试判断四边形BDEC 的形状,并说明理由;(2)试说明AC 与CD 垂直. 27.(本小题满分5分)如图,ABCD 是矩形纸片,翻折∠B 、∠D ,使BC 、AD 恰好落在AC 上.设F 、H 分别是B 、D 落在AC 上的点,E 、G 分别是折痕CE 与AB 、AG 与CD 的交点.第24题第26题aba ab b 第23题 a b a a b b乙 甲 a b A BCD EF第25题(1)试说明四边形AECG 是平行四边形;(2)若矩形的一边AB 的长为3cm ,当BC 的长为多少时,四边形AECG 是菱形?28.(本题满分6分)如图,在直角梯形ABCD 中,∠B =90°,AD ∥BC ,且AD =4cm ,AB =6cm ,DC =10cm .若动点P 从A 点出发,以每秒4cm 的速度沿线段AD 、DC 向C 点运动;动点Q 从C 点出发以每秒5cm 的速度沿CB 向B 点运动. 当Q 点到达B 点时,动点P 、Q 同时停止运动.设点P 、Q 同时出发,并运动了t 秒,(1)直角梯形ABCD 的面积为 cm 2.(2)当t = 秒时,四边形PQCD 成为平行四边形? (3)当t = 秒时,AQ =DC ;(4)是否存在t ,使得P 点在线段DC 上且PQ ⊥DC ?若存在,求出此时t 的值,若不存在,说明理由.八年级数学期终试卷参考答案及评分标准2008.1一、细心填一填 1.2± ;32;-8 2.8a ;224n m -;8- 3.2 4.38,3 5.40 6.135 7.15 8.6 9.150 10.6 11.5或13 12.160 13.(1)24 (2)96 (3)96(或填64) 二、精心选一选14.B 15.D 16.D 17.D 18.B 19.A 20.C 三、认真答一答 21.(1)原式=243-+-π (2分)=π-1(3分)(2) 原式=224643ab c a ab ÷⋅-(2分)=242c a -(3分)(3)原式=)94()44(2222y x xy y x --++(2分)=2104y xy +(3分)当21=x ,y =-3时,原式=-6+90=84(4分) 22.(1)原式=)12(2+--a a a (2分)=2)1(--a a (3分)(2)原式=)232)(232(b a b a b a b a +-+-++(1分)=b b a 4)24(⨯+(2分)=)2(8b a b +(3分)23.(1)2223))(2(b ab a b a b a ++=++(2分) (2)略(4分) 24.(1)AB =23,AC =24,BC =25(1分,不化简也对)∴222BC AC AB =+∴△ABC 是Rt △(2分)(2)图略(3分) (3)图略(4分)(写出等式与画图各1分,图上不标线段长不得分)A BCDEF G H第27题ABCDP Q第28题(4)先将△A 2B 2C 2绕A 2点按顺时针方向旋转90°,再将所得图形向右平移6个单位即得到△A 1B 1C 1(5分,变换可以不同,只要正确即可) 25.证明:(1)连结AC 交BD 于O .(1分)∵ABCD 是平行四边形,∴OA =OC ,OB =OD ,(2分) ∵BE =DF ∴OE =OF ∴四边形AECF 的平行四边形(3分)(2)∵四边形AECF 的平行四边形 ∴AF ∥EC ∴∠F AC =∠ECA (4分) ∵ABCD 是平行四边形 AD ∥BC ∴∠DAC =∠BCA ∴∠DAF =∠BCE (5分) 26.(1)解:∵△ABC 沿AB 方向平移AB 长得到△BDE ∴AB =CE =BD ,BC =DE ,(1分)∵AB =BC ∴BD =DE =CE =BC ,(2分)∴四边形BDEC 为菱形.(3分)(2)证明:∵四边形BDEC 为菱形 ∴BE ⊥CD (4分) ∵△ABC 沿AB 方向平移AB 长得到△BDE ∴AC ∥BE ∴AC ⊥CD .(5分) 27.(1)由题意,得∠GAH =21∠DAC , ∠ECF =21∠BCA (1分) ∵四边形ABCD 为矩形 ∴AD ∥BC ∴∠DAC =∠BCA ∴∠GAH =∠ECF ∴AG ∥CE (2分)又∵AE ∥CG ∴四边形AECG 是平行四边形(3分)(2)∵四边形AECG 是菱形 ∴F 、H 重合∴AC =2BC (4分)在Rt △ABC 中,设BC =x ,则AC =2x 在Rt △ABC 中222BC AB AC +=即2223)2(x x +=,解得x =3,即线段BC 的长为3 cm.(5分)28.解:(1)48(1分) (2)94秒(2分) (3)0.8秒(3分) (4)如图,设QC =5t ,则DP =4t -4,∵CD =10 ∴PC =14-4t ,连结DQ , ∵ AB =6,∴t t AB QC S DQC 15652121=⨯⨯=⨯=∆ 若PQ ⊥CD ,则PQ PQ PQ DC S DQC5102121=⨯⨯=⨯=∆ ∴5PQ =15t , 即PQ =3t (4分)∵PQ ⊥CD 则QC 2=PQ 2+PC 2 ∴222)414()3()5(t t t -+= 解得t =47(5分) 当t =47时, 4<4t <14,此时点P 在线段DC 上,又5t =435<12 点Q 在线段CB 上. ABCDPQ第28题∴当P 点运动到DC 上时,存在t =47秒,使得PQ ⊥CD.(6分) 本资料来源于《回澜阁教育网》。
最新苏教版八年级数学上册期末考试卷【及参考答案】
最新苏教版八年级数学上册期末考试卷【及参考答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥32.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠33.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm4.若6-13的整数部分为x,小数部分为y,则(2x+13)y的值是()A.5-313B.3 C.313-5 D.-35.实数a,b在数轴上对应点的位置如图所示,化简|a|+2()a b+的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b6.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形7.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,若∠A=54°,∠B=48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.在数轴上表示实数a 的点如图所示,化简2(5)a -+|a -2|的结果为____________.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是__________.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)75331x yx y+=⎧⎨+=⎩; (2)()346126x y yx y y⎧+-=⎪⎨+-=⎪⎩.2.先化简,再求值:2282442xxx x x⎛⎫÷--⎪-+-⎝⎭,其中2x=.3.已知,a、b互为倒数,c、d互为相反数,求31ab c d+的值.4.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、A6、B7、B8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、03、3.4、135°5、(-2,0)6、6三、解答题(本大题共6小题,共72分)1、(1)52xy=⎧⎨=⎩;(2)2xy=⎧⎨=⎩2、22x-,12-.3、0.4、(1)略;(2)3.5、24°.6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。
苏教版八年级数学上册期末试卷及答案【完整版】
苏教版八年级数学上册期末试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.若关于x 的方程3m(x +1)+5=m(3x -1)-5x 的解是负数,则m 的取值范围是( )A .m >-54B .m <-54C .m >54D .m <543.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4-10m m 为( )A .-10B .-40C .-90D .-1605.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.下列四个图形中,线段BE 是△ABC 的高的是( )A. B.C. D.8.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为()A.32B.3 C.1 D.439.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米10.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣1二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1,4.则a的取值范围是________.2.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.3.若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n =________.4.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.5.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转(090)αα<<,使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知:12x =-,12y =+,求2222x y xy x y +--+的值.4.在Rt △ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点.过点A 作AF ∥BC 交BE 的延长线于点F(1)求证:△AEF ≌△DEB ;(2)证明四边形ADCF 是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.5.甲、乙两车分别从A 、B 两地同时出发,甲车匀速前往B 地,到达B 地立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地,设甲、乙两车距A 地的路程为y (千米),甲车行驶的时间为x (时),y 与x 之间的函数图象如图所示(1)求甲车从A 地到达B 地的行驶时间;(2)求甲车返回时y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)求乙车到达A 地时甲车距A 地的路程.6.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、B4、A5、C6、C7、D8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1a 4<<2、k<6且k ≠33、﹣24、40°5、15°或60°.6、6三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、1a b-+,-13、4、(1)证明略;(2)证明略;(3)10.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.。
2021年苏教版八年级数学上册期末测试卷及答案【完美版】
A.1.2…109个B.12…109个C.1.2…1010个D.1.2…1011个C.x=-1D.x=-32021年苏教版八年级数学上册期末测试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1. j4的算术平方根为()A.±j 2B.C.€2D.22. 将抛物线y 二2x 2向上平移3个单位长度,再向右平移2个单位长度,所得 到的抛物线为()•A.y —2(x ,2)2,3;B ・y —2(x —2)2,3;C.y —2(x —2)2—3;D.y —2(x ,2)2—3.3. 已知:是整数,则满足条件的最小正整数n ()A.2B.3C.4D.54•已知3a —1,3b —2,则3a ,b 的值为()A.1B.2C.3D.275•中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()6. 如图,直线y=ax+b 过点A (0,2)和点B (-3,0),则方程ax+b=0的解7.如图,在数轴上表示实数v 15的点可能是()是(A.x=2C.点MD.点N A.xV-2或x>2C.—2VxV0或0VxV2B.xV-2或0VxV2 D.-2VxV0或x>2 7•如图’正比例函数y i €▽的图像与反比例函数y €*的图象相交于A 、B 两 点,其中点A 的横坐标为2,当人>y 2时,x的取值范围是() 9•如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系 10.如图,已知ZABC=ZDCB ,下列所给条件不能证明△ABC^^DCB 的是A.ZA=ZDB.AB=DCC.ZACB=ZDBCD.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)13x ,y 二1,aA.点pB.点Q 的位D1.若关于y的二元一次方程组…x,3y€3的解满足x+y<2,则a的取值范围为x+a>02.若不等式组{12有解,则a的取值范围是1一2x>x—23•分解因式:X3—X二若直线y=2x与线段AB有公共点,则n的值可以为.(写出一个即可)6.如图,长为8cm的橡皮筋放置在x向上拉升3cm到点D,则橡皮筋被拉长了cm.12x 1•解方程:(1)(2)4.如图,点A在双曲线y=1上,点B在双曲线y=-上,且AB〃x轴,C、D在x xx轴上,若四边形ABCD为矩形,则它的面积为.5.如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),三、解答题(本大题共6小题,共72分)2•先化简,再求值:(?-—1)十^1,其中m=&3+1.mm3.已知a-2b=2,且a…1,b…0.(1)求b的取值范围(2)设m=a,2b,求m的最大值.D C4.如图,直角坐标系xOy中,一次函数y二-x+5的图象l分别与x,y轴交21于A,B两点,正比例函数的图象l与l交于点C(m,4).21(1)求m的值及l的解析式;2(2)求S-S的值;△AOC△BOC(3)一次函数y=kx+1的图象为l,且l,l,l不能围成三角形,直接写出k31235.如图,某市有一块长为(3a,b)米,宽为(2a,b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a二3,b二2时的绿化面积?6.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?11) 3、 1) 4、 1)—1<b <0;(2)22参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、C6、D7、C8、D9、C10、D二、填空题(本大题共6小题,每小题3分,共18分1、a €42、a>-13、x (x+1)(x -1)4、25、26、2.三、解答题(本大题共6小题,共72分) 210X —X =-3;(2)9.2、或-25、(5a2+3ab)平方米,63平方米6、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.。
苏教版八年级数学上册期末试卷(完整版)
苏教版八年级数学上册期末试卷(完整版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .6<m <7B .6≤m <7C .6≤m ≤7D .6<m ≤73.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.已知一个多边形的内角和等于900º,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形5.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,56.如图,两条直线l 1∥l 2,Rt △ACB 中,∠C=90°,AC=BC ,顶点A 、B 分别在l 1和l 2上,∠1=20°,则∠2的度数是( )A .45°B .55°C .65°D .75°7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE ⊥AB 于 E ,PF ⊥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.58.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°9.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DCC .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3二、填空题(本大题共6小题,每小题3分,共18分)181________.2.函数32y x x =-+x 的取值范围是__________. 3.若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为________.4.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,在矩形ABCD 中,BC =20cm ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快_________s 后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x y x y +=⎧⎨-=⎩ (2)12163213x y x y --⎧-=⎪⎨⎪+=⎩2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.(1)求点B 的坐标;(2)若△ABC 的面积为4,求2l 的解析式.5.如图,四边形ABCD 的四个顶点分别在反比例函数m y x =与n y x=(x >0,0<m <n)的图象上,对角线BD//y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为4.(1)当m=4,n=20时.①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由.(2)四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,试说明理由.6.某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、C5、C6、C7、C8、A9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±32、23x -<≤3、-1或2或14、x=25、49136、4三、解答题(本大题共6小题,共72分)1、(1)21x y =⎧⎨=-⎩;(2)53x y =⎧⎨=⎩.2、3x3、(1)102b -≤≤;(2)2 4、(1)(0,3);(2)112y x =-. 5、(1)①132y x =-+;②四边形ABCD 是菱形,理由略;(2)四边形ABCD 能是正方形,理由略,m+n=32.6、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.。
最新苏教版八年级数学上册期末考试卷(及参考答案)
最新苏教版八年级数学上册期末考试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .184.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC于点D、E,则∠BAE=()A.80°B.60°C.50°D.40°9.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是.2.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.3.4的平方根是.4.如图,AB∥CD,则∠1+∠3—∠2的度数等于 _________.5.如图:在△ABC中,∠ABC,∠ACB的平分线交于点O,若∠BOC=132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习
初二数学
一、选择题(本大题共10小题,每小题2分,共20分)
1.在101001
.0
-, 7,
4
1
,
2
π
-38, 0中,无理数的个数是()A.1个B.2个C.3个D.4个
2.下列图形中既是轴对称图形又是中心对称图形的是
()
A.B.C.D.3.下列说法正确的是
A.0的平方根是0 B.1的平方根是1
C.-1的平方根是-1 D.()21-的平方根是-1
4.有一组数据:10、20、80、40、30、90、50、40、50、40,它们的中位数是A.30 B.90 C.60 D.40
5.如果点P(m,1-2m)在第四象限,那么m的取值范围是
A.
1
2
m
<<B.
1
2
m
-<<
C.0
m<D.
1
2
m>
6.正方形具有而菱形不一定具有的性质是
A.对角线互相平分B.对角线互相垂直
C.对角线相等D.对角线平分一组对角
7.已知一次函数(1)3
y m x
=-+,若y随x的增大而增大,则m的取值范围是A.1
m>B.1
m<
C.2
m>D.2
m<
8.如图所示,在梯形ABCD中,AD∥BC,中位线EF交BD于点O,若OE∶OF=1∶4,则AD∶BC等于
A.1∶2 B.1∶4 C.1∶8 D.1∶16
B
A
A
••
习
9.如图所示,在边长为2的正三角形ABC 中,已知点P 是三角形内任意一点,则点P 到三角形的三边距离之和PD +PE +PF 等于
A 3
B .23
C .3
D .无法确定
10.如图所示,在长方形ABCD 的对称轴l 上找点P ,使得△P AB 、△PBC 均为等腰三角形,则满足条件的点P 有
A .1个
B .3个
C .5个
D .无数多个
二、填空题(本大题共8小题,每小题2分,共16分)
11.正九边形绕它的旋转中心至少旋转 后才能与原图形重合. 12.直角三角形三边长分别为2,3,m ,则m = . 13.-27的立方根是 .
14.已知5个数据的和为485,其中一个数据为85,那么另4个数据的平均数是 . 15.已知点A (a ,2a -3)在一次函数y =x +1的图象上,则a = .
16.已知等腰三角形ABC 的周长为8cm ,AB =3cm .若BC 是该等腰三角形的底边,则BC = cm .
17.如图所示,点A 、B 在直线l 的同侧,AB =4cm ,点C 是点B 关于直线l 的对称点,AC 交直线l 于点D ,AC =5cm ,则△ABD 的周长为 cm .
18.如图所示,在△ABC 中,已知AB=AC ,∠A =36°,BC =2 ,BD 是△ABC 的角平分线,则AD = .
(第17题)
C
B
A
D
l
(第18题)
C
D
B A
习
O
F
C
D
E
B
A C
D
B
A
三、解答题 (本大题共64分)
22.(本题满分6分)已知点O (0,0),A (3,0),点B 在y 轴上,且 △OAB 的面积是6,求点B 的坐标.
23.(本题满分7分)如图所示,在梯形ABCD 中,已知AD ∥BC ,AB =DC ,∠ACB =40°,∠ACD =30°.
(1)∠BAC = °;
(2)如果BC =5cm ,连接BD ,求AC 、BD 的长度.
24.(本题满分6分)如图,△ABC 的中线AF 与中位线DE 相交于点O .试问AF 与DE
是否互相平分?为什么?
25.(本题满分7分)某公司为了了解公司每天的用电情况,抽查了某月10天全公司的用
电数量,数据如下表(单位:度): 度数 90 100 102 110 116 120 天数
1
1
2
3
1
2
(1)求出上表中数据的众数和平均数;
(2)根据获得的数据,估计该公司本月的用电数量(按30天计算);若每度电的定价为0.5元,试估算本月的电费支出约多少元?
习 O
E
C D
B
A
E
D C
B
y
26.(本题满分9分)已知:如图,在矩形ABCD 中,点E 在AD 边上,AE >DE ,BE =BC ,点O 是线段CE 的中点. (1)试说明CE 平分∠BED ; (2)若AB =3,BC =5,求BO 的长;
(3)在直线AD 上是否存在点F ,使得以B 、C 、F 、E 为顶点的四边形是菱形? 如果存在,试画出点F 的位置,并作适当说明;如果不存在,请说明理由.
27.(本题满分9分)已知一次函数y kx b =+的图象经过点(0,3)P -,且与函数
112y x =
+的图象相交于点8
(,)3A a . (1)求a 的值;
(2)若函数y kx b =+的图象与x 轴的交点是B ,函数1
12
y x =
+的图象与y 轴的交点是C ,求四边形ABOC 的面积(其中O 为坐标原点). 28.(本题满分8分)如图所示,四边形OABC 是矩形,点D 在OC 边上,以AD 为折痕,将△OAD 向上翻折,点O 恰好落在BC 边上的点E 处,若△ECD 的周长为2,△EBA 的周长为6.
(1)矩形OABC 的周长为 ▲ ; (2)若A 点坐标为5,02⎛⎫
⎪⎝⎭
,求线段AE 所在直线的解析式.
习
23.(本题满分4分)
如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式ab a b a a +=+2
)(成立. (1)根据图乙,利用面积的不同表示方法,写出一个代数恒等
式 ;
(2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性.
28.(本题满分8分)
如图,在直角梯形ABCD 中,∠B =90°,AD ∥BC ,且AD =4cm ,AB =6cm ,DC =10cm .若动点P 从A 点出发,以每秒4cm 的速度沿线段AD 、DC 向C 点运动;动点Q 从C 点出发以每秒5cm 的速度沿CB 向B 点运动. 当Q 点到达B 点时,动点P 、Q 同时停止运动. 设点P 、Q 同时出发,并运动了t 秒,
(1)直角梯形ABCD 的面积为 cm 2.
(2)当t = 秒时,四边形PQCD 成为平行四边形? (3)当t = 秒时,AQ =DC ;
(4)是否存在t ,使得P 点在线段DC 上且PQ ⊥DC ?
若存在,求出此时t 的值,若不存在,说明理由.
a
b
a a
b b 第23题
a b a a b b
乙 甲
a b A B
C
D P Q。